
Spectrum Spatial Analyst Extensibility Guide v.2019.1 1

Spectrum Spatial Analyst Extensibility Guide v.2019.1 2

Introduction ... 3

Overview ... 3

Hello World Extension Example .. 7

Summary ... 9

Configuring New Components .. 11

Configuration ... 11

Containers ... 14

Components in a Different Module but the Same Container .. 15

Restricting the Instances of Dynamic Containers where a Component is Added 15

List of Static Containers ... 16

List of Dynamic Containers ... 17

Advanced Configuration Options .. 19

Referencing Third-Party Libraries ... 19

Specifying the Map Configurations that Show Components ... 20

Adding a Custom Component at a Specific Position .. 21

Removing Existing Spectrum Spatial Analyst Components ... 23

Map Project-Based Component Removal ... 23

Removable Components via Config File ... 23

Removable Components via Functionality Profile Settings ... 24

Component Context Parameters .. 24

Component Initialization Parameters ... 25

Components that can Run at Startup ... 26

Components with Only Code and Without HTML ... 26

Reordering the Left-Hand Panel Menu ... 27

Validating your Components and Available Third-Party Libraries ... 31

Module Config Validator .. 31

Third-Party Libraries and Versions ... 32

Branding/Styling of Third-Party Components ... 32

Path Restrictions for Modules/Components .. 32

Referencing Spectrum Spatial Analyst APIs in your Component .. 33

Use of Existing Services, Store Actions, Selectors, and Components ... 33

Openlayers .. 33

Glossary of Terms .. 34

Useful Links .. 34

Spectrum Spatial Analyst Extensibility Guide v.2019.1 3

Spectrum Spatial Analyst is an extensive web mapping platform that developers can customize. Its
framework is based on the Angular 4.2.6 component model, which lets you create and add new
components to Spectrum Spatial Analyst or alter the behavior of existing components.

This document describes how to extend Spectrum Spatial Analyst, explains related concepts, and gives
examples. Read this guide along with the extensibility API documentation.

Spectrum Spatial Analyst lets you add Angular based components dynamically at run-time to an already
deployed and running instance. It is not necessary to compile components or build a custom version of
Spectrum Spatial Analyst.

Components are built as standard Angular 4.2.6 components (written in TypeScript) and are included in
an Angular 4.2.6 module. An Angular 4.2.6 module can include one or more components. Components
are injected dynamically into the application at designated places called injection points.

The image on page 6 showcases some of the extension points, such as the places to add new
components. You can create components to replace existing Spectrum Spatial Analyst components, such
as menus, or to dynamically inject into existing Spectrum Spatial Analyst components. Injection points
have a unique identifier. The parent components where new extensions will be injected are called
containers.

Static Container

These containers are available for injection in the Spectrum Spatial Analyst Extensibility Platform, such
as into the Settings panel, Layer panel, and Right panel. These injection points are available out-of-the-
box for developers to add their components. It is irrelevant what type of data or map you host on
Spectrum Spatial Analyst from Spectrum Spatial, a Web Mapping Service (WMS), or Vector layer. Static
containers are available for injection.

Dynamic Container

Dynamic containers are available based on the data that the Spectrum Spatial Analyst Extensibility
Platform hosts. For example, a Spectrum Spatial legend item is only available when a Spectrum Spatial
layer is included in the Spectrum Spatial Analyst Map configuration. Dynamic containers also pass in
context data to the injected component. For example, if a component is a child of the Annotation legend
item, then that child component will have access to annotation information like annotation name,
annotation center, extents of annotation, and so on (which the child component can use to determine
how it behaves and even whether it is rendered).

Spectrum Spatial Analyst Extensibility Guide v.2019.1 4

Removable Component

The Spectrum Spatial Analyst user interface has multiple containers and components such as the Left
panel, Right panel, Map, Legend, and Search box. Some of these can be removed or replaced with
custom components using the Spectrum Spatial Analyst Extensibility Platform. You can remove
components using the functionality profiles in Spatial Manager or using the Spectrum Spatial Analyst
Extensibility Platform config file.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 5

Spectrum Spatial Analyst Extensibility Guide v.2019.1 6

To inject a new component at one of the available extension points, a configuration file called
CustomAnalystModuleConfig.json is used. This file configures containers for third-party extensions,
indicates which components to remove, and includes parameters for using extensions.

Spectrum Spatial Analyst capabilities have been exposed as APIs, which third-party components can use
in their logic. For example, adding and removing map layers, calling different Spectrum Spatial services
such as data flows, specifying queries, thematically styling map layers, and so on. All these services have
APIs which encapsulate a wide variety of third-party libraries that are part of Spectrum Spatial Analyst,
such as Openlayers (mapping), Proj4JS (re-projection of vector data), JSTS (geometry operations on
vector data), jsPDF (for exporting to PDF), XLSXJS (for parsing Excel spreadsheets) and papaparse (for
parsing CSV files).

Spectrum Spatial Analyst uses an architecture based on NgRx Store (https://ngrx.io/guide/store) for
maintaining state and providing inter-component communications. Many services are available to
developers via store actions and their corresponding selectors. The store is a bridge between the caller
and executor. To draw a layer on a map, you would dispatch an action with the relevant parameters via
store.dispatch.

https://ngrx.io/guide/store

Spectrum Spatial Analyst Extensibility Guide v.2019.1 7

To embed an Angular 4 component into Spectrum Spatial Analyst:

1. Create an Angular 4 component; for example, HelloWorldComponent.
2. Create an Angular 4 module; for example, DynamicModule containing the HelloWorldComponent.
3. Place the module and component file into the folder under

customerconfigurations/analyst/theme/extensions folder.
4. Create or update a module definition file representing that component.
5. Validate the module definition file with the Spectrum Spatial Analyst Custom Modules file validator

(web page).
6. Put the module definition file into the custom configuration folder once the file is validated.
7. Refresh the browser to see the component embedded in Spectrum Spatial Analyst.

Creating and Invoking the Hello World Extension

This section describes how to add a new menu item called Hello World Extension to the Add Panel
menu, which prompts an alert message when clicked. This exercise answers:

1. How to create a custom Angular 4 component
2. How to inject a custom Angular 4 component into the Spectrum Spatial Analyst Extensibility

Platform

Prerequisites

• Basic knowledge of Angular 2/4

• Ability to code in Typescript

• Basic understanding of Spectrum Spatial Analyst (such as customerconfigurations, map projects, and
Spatial Manager)

Steps

1. Create a folder named extensions under:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\
Typical installation path looks like:
C:\Program Files\Pitney Bowes\SpectrumSpatialAnalyst\customerconfigurations\analyst\theme

2. Create a file called dynamic.component.ts under the folder:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions

3. Paste the below content into the file:

import {Component, Input} from '@angular/core';

import {ComponentFactoryResolver} from '@angular/core';

import {ViewContainerRef} from '@angular/core';

@Component({

 selector: 'hello-world-selector',

 template: `<div (click)=sayHello() class=""><img class="fillColor"

 src="../controller/theme/extensions/icon-circle.png" alt="icon-circle" height="25"

Spectrum Spatial Analyst Extensibility Guide v.2019.1 8

 width="25">Hello World Extension</div>`,

 styles: [`

 .btnPosition {

 z-index: 1;

 right: 12%;

 }

 .iconContainer {

 padding: 10px;

 background-image: linear-gradient(90deg,#3e53a4,#cf0989);

 }

 .fillColor {margin: 3px; cursor:pointer;}

 `]

})

export class HelloWorldComponent{

 constructor() {

 }

 onInit() {

 }

 sayHello() {

 alert('Congratulations! You have successfully extended the Spectrum Spatial Analyst
application.');

 }

}

4. Save the following image as icon-circle.png in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions
Please note that theme is an existing folder in the Spectrum Spatial Analyst installation.

5. Create a file called dynamic.module.ts in:

<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme \extensions\
6. Paste the following content in that file and save it:

import {NgModule } from '@angular/core';

import {HelloWorldComponent} from './dynamic.component.ts';

@NgModule({

 imports: [],

 declarations: [HelloWorldComponent],

 exports: [HelloWorldComponent]

})

export class DynamicModule { };

Spectrum Spatial Analyst Extensibility Guide v.2019.1 9

7. Go to the customer configuration folder in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst
The path looks like:
C:\Program Files\Pitney Bowes\SpectrumSpatialAnalyst\customerconfigurations\analyst

8. Create a file called CustomAnalystModuleConfig.json under that directory.
9. Paste the following content into the CustomAnalystModuleConfig.json file and save it:

{

 "modules": [{

 "name": "DynamicModule",

 "description": "Hello World Extension in the Add Panel.

 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components": [{

 "componentName": "HelloWorldComponent",

 "parentComponentName": "AddPanel"

 }]

 }],

 "componentsToRemove": []

}

10. Open the browser and launch the Spectrum Spatial Analyst URL from the address bar.

11. Go to the Add panel, (+) plus button on top right corner of application, to see your first component

with the above image and label Hello World Extension.

12. Click on it to display a popup with a success message as shown in the following image:

In the first few steps of the above Hello World example (for an Angular component and Angular module)
included resources for the component, such as an image. We then created the configuration to inject
that component into the Spectrum Spatial Analyst Extensibility Platform.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 10

The parentContainer tag in the CustomAnalystModuleConfig.json file is responsible for injecting a
component into the correct container. The Spectrum Spatial Analyst Extensibility Platform provides
multiple containers for third-party components to position them in the screen layout correctly. For
details about containers, refer to the following sections.

Note: The name of the class in the component file and the name of the component in the configuration
file should be identical because this is the main link between the component and configuration. The
Angular module should have a declaration of the component it embeds. There are no restrictions on the
number of components that a single angular module can have.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 11

A model is available to define and represent all the new components that are added. This is held in JSON
format and is contained within the CustomModulesDefinition.json file.

It is important to have a single file for all new modules. The order in which the components are defined
is important as there may be dependencies between components. For example, a component may
remove out-of-the-box components as part of its definition, but another component may be using it as a
container.

The example below shows how a typical CustomAnalystModuleConfig.json file looks:

{ "modules": [{

 "name": "GIQueryModule",

 "description": "Module For GI query",

 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components":[{componentName:"TestComponent","parentComponentName": "SettingsPanel",

 "initParameters": {

 "initX": 0,

 "initY": 0,

 "endPointUrl": "localhost:3306/mysql/gidata",

 }

 }}],

 "externalLibraryPath": [{

 "libName": "GDAL",

 "libPath": "../controller/theme/app/gdal.js",

 }

],

 "mapConfigAssociated": {

 "GeoInsightMaps": ["TestComponent"],

 "GeoInsightSummaryMaps": ["TestComponent"]

 }

 }

],

,

 "componentsToRemove":[

 {"componentName":"BaseMapSwitcherComponent",

 "fromMapConfig":"Drive Time"},

 {"componentName":"MapConfigSwitcherComponent",

 "
 fromMapConfig":"Drive Time"}

Spectrum Spatial Analyst Extensibility Guide v.2019.1 12

]}

}

The following table describes the parameters that can be included in a custom module definition.

Top Level Nodes

Field Name Type Required Description

Modules Json Array Yes An array of multiple module definitions as
described in the definitions section above.

ComponentsToRemove Json Array Yes An array of pre-existing components
provided out-of-the-box with Spectrum
Spatial Analyst that would be removed.

Module JSON Object

Each array element inside the Modules node defines a module as follows:

Field Name Type Required Description

name String Yes The name should not be the same as any of
the Spectrum Spatial Analyst modules. You
can find a list of module names in the
documentation.

description String optional Gives details about the purpose of the
module for users looking at the configuration
file.

ModulePath String Yes The location of the module in the file system.
This will be in:

customerconfigurations/analyst/theme/exten
sions

Note: The folder containing the module
should be in this path for it to be accessible

#ModuleName is mandatory in the module
path to allow it to be loaded. #ModuleName
is the name of the Module class in the ts file.

Note Each module can have a separate
folder. For example,

Spectrum Spatial Analyst Extensibility Guide v.2019.1 13

Field Name Type Required Description

extensions/weather/weather.module.ts#Wea
therModule

Components Map Yes This is a key value pair where

• Key = Name of the component

• Value = The parent container in Spectrum
Spatial Analyst where the component is
to be injected.

Note: The Component Name should match
the #ModuleName that you have declared for
creating Angular 4 component class and not
the selector.

externalLibraryPath JsonArray Optional Set of third-party libraries that component
may need for it to function. This path can be
CDN or a local path relative to index.html of
Spectrum Spatial Analyst.

mapConfigAssociated Map Optional A key value pair where:

• Key = Spectrum Spatial Analyst map
configuration name

• Value = Array of components that will be
visible for that map configuration

If the component is not explicitly associated
with a mapconfig file, then it will appear for
all mapconfig files that are available.

initparameters Json
Object

Optional A key value pair where:

• Key = Name of the component

• Value = json object of the initialization
parameters which will be passed to each
instance of the component. There is no
restriction on the type of init parameter;
it can be any type.

ComponentToRemove

Each array element inside the ComponentsToRemove node will define the following:

Field Name Type Required Description

componentName String Yes Name of the component to be removed. Note this is
an existing Spectrum Spatial Analyst component and

Spectrum Spatial Analyst Extensibility Guide v.2019.1 14

Field Name Type Required Description

not a third-party component. Specific components,
like BaseMapSwitcher and SearchBox, may be
removed from the application.

fromMapConfig String Optional Removes the component from a specific mapconfig
file. If omitted, it removes the component from all
mapconfigs files.

The Spectrum Spatial Analyst extensibility platform divides the entire layout of the product into
different parts called containers. Containers are parents to the new components created by developers.
Containers let a developer place their visual or non-visual components in the right place. For example, if
a developer wants to place a component in the Add Panel, then he needs to specify AddPanel as a
parent container for the newly created component. There is no limitation to the number of components
that can be added to a given container. The look, feel, and the CSS of a new component can control the
position of the component in a given container.

There can be cases where a single container is hosting more than one third-party component. For
example, a “Find XY” and “Add WMTS layer” menu item can both be added to AddPanel. It is perfectly
valid to specify the same parent container as many times as needed with different components.
Components can belong to different modules as well. In that case, entries for the same parent container
will be repeated in each module entry. The following sample illustrates this, where there are
components in the same module and same container:

 {

 "name": "DynamicModule",

 "description": "Find a defined x and y with a specific ICON.",

 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components": [

 {

 "componentName": "FindXY",

 "parentComponentName": "AddPanel",

 },

 {

 "componentName": "AddWMTSLAYER",

 "parentComponentName": "AddPanel"

 }

}

Spectrum Spatial Analyst Extensibility Guide v.2019.1 15

{

 "name": "FINDXYModule",

 "description": "Find a defined x and y with a specific ICON.",

 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components": [

 {

 "componentName": "FindXY",

 "parentComponentName": "AddPanel"

 }]

 }

{

 "name": "WMTSModule",

 "description": "Find a defined x and y with a specific ICON.",

 "modulePath": "extensions/another.module.ts#AnotherModule",

 "components": [

 {

 "componentName": "AddWMTSLAYER",

 "parentComponentName": "AddPanel"

 }]

}

The Spectrum Spatial Analyst Extensibility Platform supports two types of containers: static and
dynamic.

• Static component containers are available out-of-the-box and do not depend on the data or
state of the application. The AddPanel, SettingsPanel, LayerPanel, and LeftPanel are examples of
static components.

• Dynamic component containers depend on the state or data of the system. Examples of
dynamic components include the overflow menus shown against different legends, and for map
information, the Query legend, Thematic legend, and User Added Vector layer legend.

A container is assigned in the CustomAnalystModuleConfig.json file where it also references the name of
the parent container.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 16

A dynamic component is handled differently from a static component. If the association of a component
is with a dynamic container, then the new component will be visible with all the instances of a dynamic
container. For example, a third-party component adds a new menu to the AnnotationLegendItem
dynamic container to be added against only circle annotations to query data and show a report within
the radius of the circle: because a user may create more than one type of annotation, the new menu
item would appear for all annotations.

The way to manage this is within the components code by referencing context parameters. Since
dynamic containers pass context parameters to their children, then if there is a need to restrict the view
of a new component for a given instance, the component can determine under what context it is to be
shown. For example, the component can reference the AnnotationLegendObject context to see if it is a
circle annotation type and decide to hide or show itself. For a detailed explanation and a list of context
parameters for all dynamic components, refer to the Context Parameter section.

Name Description Location CustomAnalystModuleConfig
Identifier (CaseSensitiive)

Add Panel Top Right panel + icon Top right corner AddPanel

Settings Panel Panel represented by a
cogwheel

Top right part of
Spectrum Spatial
Analyst browser screen

SettingsPanel

Right Panel Panel containing all sub-
panel settings, and add
layer. Use this parent to
have the component
always visible and
available at startup.

Top right corner holding
all sub-panels

RightPanel

Left Panel Panel that displays when
clicking on the map

Left part of the screen
after clicking the map

LeftPanel

Legend
Container

Panel represented with
Burger Icon

Top right corner LegendContainer

Search Box
Container

Includes a new search
box for the Spectrum
Spatial Analyst
Extensibility Platform

Top Left corner. CSS can
be used to the
position/change the
look and feel. Used
especially for the cases
when the user wants to
replace an existing
search of Spectrum
Spatial Analyst with a
custom one.

SearchBoxContainer

Query Results Adds the component as
a menu item of query
results (to push the

Query Results panel in
the top left once results
are displayed

QueryResultsItem

Spectrum Spatial Analyst Extensibility Guide v.2019.1 17

Name Description Location CustomAnalystModuleConfig
Identifier (CaseSensitiive)

query result to a web
service for example)

Annotation
Tools Container

Provides custom
annotations for the
Spectrum Spatial Analyst
Extensibility Platform.
Annotation tools enable
in Spatial Manager.

Add Panel Annotation
Toolset

AnnotationToolsContainer

Map Config
Switcher
Container

Allows adding the
component next to
MapConfigSwitcher in
the Settings Panel

SettingsPanel
MapConfig dropdown

MapConfigSwitcherContainer

Base Map
Switcher
Container

Allows adding
component next to
BaseMapSwitcher in
Settings Panel

SettingsPanel BaseMap
dropdown

BaseMapSwitcherContainer

Layer Panel

Allows adding a
component in Layer
Panel

Layer Panel LayerPanel

Measurement
Tool Container

Allows a third-party
component developer to
provide custom
measurement tool in
Spectrum Spatial Analyst
Extensibility Platform

Measurement Tool
Container

MeasurementToolContainer

Name Description Location CustomAnalystModuleConfig
Identifier (CaseSensitiive)

Annotation
Legend Item

Line item
corresponding to
Annotation in Legend

Legend container AnnotationLegendItem

Query Legend
item

Line Item
corresponding to the
query created in
Legend

Legend Container QueryLegendItem

ThematicLegend
Item

Line Item
corresponding to the
thematic created in
Legend

Legend Container ThematicLegendItem

Spectrum Spatial Analyst Extensibility Guide v.2019.1 18

Name Description Location CustomAnalystModuleConfig
Identifier (CaseSensitiive)

Vector Layer
Legend Item

Line Item
corresponding to the
Vector layer added in
Legend

Legend Container VectorLayerLegendItem

TMS Legend
Item

Line Item
corresponding to the
TMS layer in a map
project

Legend Container TMS Legend Item

XYZ Legend Item Line Item
corresponding to XYZ
layer legend in map
project

Legend Container XYZLegendItem

WMS Legend
Item

Line Item
corresponding to
WMS layer legend in
map project

Legend Container WMSLegendItem

Spectrum
Spatial Group
Layer Legend
Item

Line Item
corresponding to
Spectrum Spatial
Group layer legend in
map project

LegendContainer SpatialLegendItem

Spectrum
Spatial Layer
Legend Item

Line Item
corresponding to
Spectrum spatial layer
legend in map project

LegendContainer SpatialSubLegendItem

Envinsa Tile
Legend Item

Line Item
corresponding to
Envinsa tile layer
legend in map project

LegendContainer EnvinsaTileLegendItem

MVT Layer
Legend Item

Line Item
corresponding to MVT
layer legend in map
project

LegendContainer MVTLegendItem

Callout Card
Container

Allows new
component to be
present at table level
menu item of mapclick
event

Left panel that
comes after map
click

CalloutCardContainer

Callout Record
Container

Allows new
component to be
present at each record
of a given table

Left panel comes
after map click

CalloutRecordContainer

Spectrum Spatial Analyst Extensibility Guide v.2019.1 19

Name Description Location CustomAnalystModuleConfig
Identifier (CaseSensitiive)

Annotation
Legend Group
Item

Adds a new
component at the
Group level of the
Annotation menu list.

Annotation Panel in
legend container

AnnotationLegendGroupItem

The Spectrum Spatial Analyst Extensibility Platform envisages cases where new components may need
to reference third-party external libraries. These libraries can be either Angular or normal JavaScript
libraries. The Spectrum Spatial Analyst Extensibility Platform facilitates the onboarding of such libraries
with ease. To use new libraries in the component, follow the steps given below. Libraries can be
references from the file system of the Spectrum Spatial Analyst server or can be referenced from a
hosting site/CDN. The mechanism for registering the library is the same in both cases. There are certain
restrictions that the Spectrum Spatial Analyst Extensibility Platform has while embedding a new library.

1. Only one version of a new library needs to be embedded
2. If the library is already available with a certain version, one cannot embed a new version of that

library. We provide a list of libraries available out-of-the-box within Spectrum Spatial Analyst via the
module config validator page.

3. Checking for license terms, vulnerability, and certification of new libraries (libs) in the Spectrum
Spatial Analyst Extensibility Platform is the responsibility of the component developer.

4. If someone intentionally violates point 1 and more than one version of the same library is added to
the Spectrum Spatial Analyst Extensibility Platform, it cannot guarantee deterministic behavior.

5. If one module is embedding a specific version of a library, then another module cannot embed
another version of the same library.

6. If one module is embedding a version of a library, that library can be used across multiple
modules/components without repeating the same library in the other modules.

Embedding a New Library in the Spectrum Spatial Analyst Extensibility Platform

1. Register a library with the Spectrum Spatial Analyst Extensibility Platform by adding an entry in
CustomAnalystModuleConfig.json file.
The entry looks similar to:

"externalLibraryPath": [{

 "libName": "jquery",

 "libPath": "https://code.jquery.com/jquery-3.2.1.min.js"

 },

{

 "libName": "gdal",

Spectrum Spatial Analyst Extensibility Guide v.2019.1 20

 “mainFilePath”:”index.js”

 "libPath": "../controller/theme/extensions/app/gdal"

 }

]

2. libPath can be a local and relative path. If the path is relative, the path resolution happens based on
the controller URL of Spectrum Spatial Analyst. The above example shows an actual path. You need
to mention the controller to resolve libraries (libs) that are located under the theme folder:
customerconfigurations. Spectrum Spatial Analyst will only ensure backward compatibility and
successful upgrades for libraries kept under the extensions folder:
<ANALYST_INSTALL_PATH>/customerconfigurations/analyst/theme/extensions

3. One can then refer to the embedded library in the component.
4. There is an example corresponding to usage of one such library within the Spectrum Spatial Analyst

Extensibility Platform in the code links.
5. In case the library is hosted locally, and there is more than one file in the library, the system needs

to know which JavaScript file to refer to for loading all the files. In that case, you need to provide
another field as shown below:

{

 "libName": "testimport",

 "mainFilePath":"../controller/theme/extensions/js/common/testimport.js",

 "libPath": "../../../extensions/js/common"

 }

The Spectrum Spatial Analyst Extensibility Platform supports the conditional rendering of newly added
components based on the map project being used at that time. Consider a scenario that a component
developer creates a component that should be available to only users when they browse to a specific
map configuration. To achieve this, a user will create an entry in the CustomAnalystModuleConfig.json
file and register a component for the specific map project(s). If there is more than one third-party
component to be shown for a given map configuration, they can all be added as an array corresponding
to the map project. Please note that the component name mentioned in the components tag should be
the name of an Angular component class that is created.

Map project association to a third-party component is a whitelisting:

• If we mention a component for a map project, then that component is visible only for that map
project and not others.

• To make a component available in more than one map project but not in all of them, then
whitelist the component in all map projects.

• To make a component available in all map projects, do not provide any entry in the
mapconfigAssociated tag. For example:

Spectrum Spatial Analyst Extensibility Guide v.2019.1 21

"mapConfigAssociated":[{

 "mapConfigName":"defaultmap",

 "components":["TestComponent"]

 }]

You can add a component at a specific position in Setting, Add Layer, or the Legend panel and control
the order of existing options in these panels using CSS to specify the order of elements. To do this, you
set the order of components, including custom components, in the map project-specific brand.css file:
<Analyst_install_directory>\customerconfigurations\analyst\theme\branding\default\brand.css. By
default, brand.css includes sample entries.

The following example shows how you can insert a custom component in the Setting Panel just below
the Print option.

#createPanelContainer{

 display: flex;

 flex-direction: column;

}

#addLayerContainer{order: 10; }

#addNewRecord{order: 20; }

#create_QueryContainer{order: 30; }

#createThematicContainer{order: 40; }

#annotationToolContainer{order: 50; }

#measurementToolContainer{order: 60; }

#multiSelectContainer{order: 70; }

#settingsPanelContainer{

 display: flex;

 flex-direction: column;

}

#printContainer {order: 10; }

Spectrum Spatial Analyst Extensibility Guide v.2019.1 22

#imageExporterContainer {order: 20; }

#currentMapViewContainer {order: 30; }

#helpContainer {order: 40; }

#localeContainer {order: 50; }

#templateDesignerContainer {order: 60; }

#mapProjectContainer {order: 70; }

#authBtnContainer {order: 80; }

#appVersionContainer {order: 90; }

#settingsPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME1> {order: 11; }

#settingsPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME2> {order: 61; }

#layersPanelContainer {

 display: flex;

 flex-direction: column;

}

#mapProjectSwitcherContainer{order: 10; }

#baseMapSwitcherContainer{order: 20; }

#legendContainer{order: 30; }

#layersPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME> {order: 11; }

The ‘order’ attribute specified for an element determines the order in which it appears. Elements
without a specified order display at the top in the panel.

You must replace the <CUSTOM_COMPONENT_ELEMENT_NAME1> placeholder with the corresponding
custom component’s selector name. The order applies to all projects using the corresponding brand. We
recommend creating a new branding file instead of editing the default brand.css file.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 23

Current users of Spectrum Spatial Analyst have use-cases where they need to replace entire
components of Spectrum Spatial Analyst with custom components. One use-case is the address search
box that Spectrum Spatial Analyst provides. Another use-case is when a client wants a different base
map switching capability instead of a dropdown. The Spectrum Spatial Analyst Extensibility Platform
supports the replacement of components in two stages. In the first stage, a component developer
removes the existing component from the Spectrum Spatial Analyst Extensibility Platform and in the
second stage, they introduce a new typescript based angular component in its place.

Below is a list of components that can be removed from the Spectrum Spatial Analyst extensibility
platform. It depends on your needs if you want to introduce a new component or remove it.

Note: If a parent component is removed, then its child component is also removed automatically.

To remove a component, a developer needs to mention the component in
CustomAnalystModuleConfig.json file shown below.

" componentsToRemove":[
 {"componentName":"BaseMapSwitcherComponent"}]

Note: When removing a component, such as the left panel, then it cannot be a parent container of any
third-party component.

There may be certain cases when a developer wants to remove components in certain conditions only.
In this case, all users need to create a map project and configure the component to remove in the
CustomAnalystModuleConfig.json file. A typical entry in CustomAnalystModuleConfig.json would look
like this:

"componentsToRemove":[

 {"componentName":"BaseMapSwitcherComponent",
 "fromMapConfig":"Drive Time"}]

When removing the same component from more than one map project, the entry for the component
repeats for each map project.

Component Name Identifier Remove Only via config file

Base Map Switcher
Component

BaseMapSwitcherContainer Yes

Spectrum Spatial Analyst Extensibility Guide v.2019.1 24

Component Name Identifier Remove Only via config file

Map Config Switcher
Component

MapConfigSwitcherContainer Yes

Left Panel Component LeftPanelContainer Yes

Query Results Component QueryResultsComponent Yes

Callout Container
Component

CalloutContainerComponent No (Via Adminconsole as well)

Search Box Component SearchBoxContainer Yes

Summarization Results
Component

SummarizationComponent No (Via Adminconsole as well)

Legend Container
Component

LegendContainerComponent Yes

Summarization Component SummarizationComponent No (Via Adminconsole as well)

Spectrum Spatial Analyst also supports the removal of components via a functionality profile. Depending
on the use case, you can choose to remove some common components via functionality profile. The list
of components is:

Component Name

Query

Annotations

Summarize Data in Annotations

Measuring Tools

Annotations Tools

Annotation KML Import/Export

Print

End-User Thematics

Add Layer

Summarization Component

Editing in Tables

The Spectrum Spatial Analyst extensibility platform provides support for passing in context parameters
from dynamic container components to its child components, including child components created by
developers. Developers can use the data as per their needs to adjust the logic of the components they
create. For example, when a user draws a circle annotation, a developer creates a custom component to
query within the circle annotation. The Spectrum Spatial Analyst Extensibility Platform passes in all the
information about circle annotation to the custom component like radius, XY location, name of
annotation and so on.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 25

Context data may be useful for passing the information to external systems or it can be used to make
the component rendering exclusive for an instance of the dynamic container. For example, if there are
more than one circle annotation and developer wants to show the component for the first circle
annotation only then he can use the annotation name from the context parameter to restrict the view of
the new component in its template.

To access this context data, a component developer needs to create an input field with name data: any
in its own created typescript component. Inside this data field, each of the dynamic containers has a
specific name for context parameters; for example, the annotationLegendItem context parameter name
is annotationLegendObject. The following table provides the names of all the context data parameters
that are available for different dynamic components:

Dynamic Container Name Context parameter Name (For example,
data. annotationLegendObject)

AnnotationLegendItem annoationLegendObject

EnvinsaTileLegendItem legendGroupObject

MVTLegendItem legendGroupObject

AnnotationLegendGroupItem annoationGroupObject

QueryLegendItem queryLegendObject

SpatialLegendItem legendGroupObject

SpatialSubLegendItem legendObject

ThematicLegendItem legendGroupObject

TMSLegendItem legendGroupObject

VectorLayerLegendItem vectorLayerLegendObject

WMSLegendItem legendGroupObject

XYZLegendItem legendGroupObject

CalloutCardContainer calloutObject

CalloutContainer calloutRecordObject

The Spectrum Spatial Analyst extensibility platform envisages cases where more than one instance of
newly created angular 4 third-party components need to be onboarded. There can be cases where
multiple instances of the new component may need to share the same set of information. For example,
a developer may create a new component that shows Google Street View that is shown in multiple
instances and needs to share the API key for Google between them. The Spectrum Spatial Analyst
extensibility platform supports parameter sharing using the init parameters among multiple component
instances. To get access to the init parameter, the developer needs to:

1. Declare an input field called data in its component.
2. Add an entry corresponding to the component in CustomAnalystModuleConfig.json. For example:

"modules": [{

 "name": "GIQueryModule",

Spectrum Spatial Analyst Extensibility Guide v.2019.1 26

 "description": "Module For GI query",

 "modulePath": "../../../extensions/dynamic.module.ts#DynamicModule",

 "components":[{componentName:"TestComponent","parentComponentName": "SettingsPanel",

 "initParameters": {

 "apiKey": “abcdef”

}

 }}]

}]

3. Once this is declared in CustomAnalystModuldeConfig.json one can access the key like
data.initParameters.apiKey in the component instance.

The init parameter supports the data types that JavaScript supports. It does not put restrictions on the
size of the parameters supplied.

The Spectrum Spatial Analyst extensibility platform supports running components that are required
during startup time (when a user first opens the Spectrum Spatial Analyst application in the browser).
This can be achieved if the component is injected into a parent that comes into existence during startup.
The RightPanel is one such parent container. To make a component available at startup, declare the
RightPanel as its parent. The component then comes into existence at startup.

The Spectrum Spatial Analyst extensibility platform supports components having pure business logic and
no visual elements. As such all Angular components support capability to embed HTML in them but it is
optional. To create a component without HTML, keep the template blank, and the Spectrum Spatial
Analyst Extensibility Platform calls the component at the time of instantiating its parent container. For
example, a developer creates a component that gets weather data from a remote API and passes this on
to some other component for further processing. Let’s assume the component developer makes it a
child of the AddPanel container. When a user clicks on the AddPanel in Spectrum Spatial Analyst, the
third-party component calls the child and it then makes a call to get the weather data.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 27

You can reorder the menu items in the left-hand panel at three levels:

Layer level

Record level

Tabular grid’s overflow menu

The layer and record levels use the same overflow menu components. Applying the change shown in the
below CSS example affects the order of menu items for both layer and record levels.

.open>#overflowMenu{

 display: flex;

 flex-direction: column;

 }

 .exportAsCsv{

 order: 10;

 }

 .addAsAnnotation{

 order: 20;

 }

 .showOnMap{

 order: 30;

 }

 .editRecord{

 order: 40;

 }

 .deleteRecord{

 order: 50;

 }

 .dataBindTitle{

 order: 60;

 }

 .linkouts{

 order: 70;

Spectrum Spatial Analyst Extensibility Guide v.2019.1 28

 }

 /* Please specify selector of custom component to specify its order*/

 #overflowMenu>CUSTOM-ELEMENT-NAME{

 order: 30;

 }

This CSS example re-orders menu items in the tabular grid’s overflow menu:

.open>#gridOverflowMenuContent{

 display: flex;

 flex-direction: column;

 }

 .linkoutQryGrd{

 order: 10;

 }

 .exportCurrentPageQryGrd{

 order: 20;

 }

 .exportAllDataQryGrd{

 order: 30;

 }

 .columnsQryGrid{

 order: 40;

 }

 .columnNamesQryGrid{

 order: 50;

 }

To achieve this, refractor the overflow menu component. If a custom component uses injection points,
such as QueryResultsItem, CalloutCardContainer, or CalloutContainer, then adapt

the component code as follows:

@Component({

 selector: 'my-CallOutCardContainer',

 template: `

 </i>CallOutCardContainer

 `,

})

Spectrum Spatial Analyst Extensibility Guide v.2019.1 29

Wrap the HTML element within an element:

@Component({

 selector: 'my-CallOutCardContainer',

 template: `

 <li class="ellipsesDropdown">

 <i _ngcontent-c46="" class="nc-icon-outline ui-1_trash-simple margin-r overflow-
imgMargin"></i>CallOutCardContainer

 `,

})

Example: Adding a custom component to a layer’s information overflow menu

This example adds a custom component at the second position in a layer’s information overflow menu.

1. Configure an extensible component at the CalloutContainer injection point.

2. Uncomment the following CSS in the brand.css file.

.open>#overflowMenu{
 display: flex;
 flex-direction: column;
 }
 .exportAsCsv{
 order: 10;
 }
 .addAsAnnotation{
 order: 20;
 }
 .showOnMap{
 order: 30;
 }
 .editRecord{
 order: 40;
 }
 .deleteRecord{
 order: 50;
 }
 .dataBindTitle{
 order: 60;
 }
 .linkouts{
 order: 70;

Spectrum Spatial Analyst Extensibility Guide v.2019.1 30

 }
 /* Please replace CUSTOM-ELEMENT-NAME with the selector of custom component to specify its
order*/
 #overflowMenu>CUSTOM-ELEMENT-NAME{
 order: 30;
 }

3. Replace the CUSTOM-ELEMENT-NAME with the selector of the custom component.

For example, my-CallOutContainer is the selector in the following component:

@Component({
 selector: 'my-CallOutContainer',
 template: `
 <li class="ellipsesDropdown">

 <i _ngcontent-c46="" class="nc-icon-outline ui-1_trash-simple margin-r overflow-
imgMargin"></i>CallOutCardContainer

 `,
})

The entry in the brand.css file for my-CallOutContainer will be something like this:

/* Please replace CUSTOM-ELEMENT-NAME with the selector of custom component to specify its
order*/
 #overflowMenu>CUSTOM-ELEMENT-NAME{
 order: 30;
 }

After replacing the CUSTOM-ELEMENT-NAME to my-CallOutContainer, the entry looks like this:

/* Please replace CUSTOM-ELEMENT-NAME with the selector of custom component to specify its
order*/
 #overflowMenu>my-CallOutContainer'{
 order: 11;
 }

Also update the order property from 30 to 11, so that it is visible after the user selects the Export to CSV
option in Spectrum Spatial Analyst.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 31

This section discusses how to validate your components and available third-party libraries in the
Spectrum Spatial Analyst Extensibility Platform.

Since the module configuration can become complex if many modules are added to it, the Spectrum
Spatial Analyst extensibility platform provides a module config validator that can be used to validate the
CustomAnalystModuleConfig.json file. The tool is simple to use, browse to it as follows:

1. Browse to http://<InstallationURL>:8010/connect/analyst/mobile/#/customModuleValidation.
The following screen displays.

2. Choose and browse to a manually authored CustomAnalystModuleConfig.json file on the file system.
The tool will validate the file. It also shows any errors to the user.

3. Once validation is complete, place the CustomAnalystModuleConfig.json file into the
customerconfigurations folder of the Spectrum Spatial Analyst installation.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 32

The ModuleConfig validator performs semantic and syntactic validation of the
CustomAnalystModuleConfig.json, and returns any errors for missing braces, un-equal parenthesis,
missing mandatory fields, and so on. It also validates the location of modules and external JavaScript
files in the CustomAnalystModuleConfig.json file. We recommend that you check the
CustomAnalystModuleConfig.json file is valid before deploying it to Spectrum Spatial Analyst in the
customerconfigurations folder. Please refer to the tables for configuring the
CustomAnalystModuleConfig.json to check for mandatory and optional fields in the
CustomAnalystModuleConfig.json file.

The module config validator page also provides a list of libraries that are part of the Spectrum Spatial
Analyst Extensibility Platform and its corresponding version. It is important to go over the list if you want
to onboard a new library in the Spectrum Spatial Analyst Extensibility Platform. If a library is available in
the Spectrum Spatial Analyst Extensibility Platform, you can use it directly in your component.

Note: You cannot include two versions of the same library. If you need some feature that is available in a
later version of a library, you should request this in the next version of Spectrum Spatial Analyst via tech
support. If the library is not available in the list, you are free to onboard it as described in “Referencing
Third-Party Libraries” above.

The Spectrum Spatial Analyst extensibility platform provides comprehensive branding/styling as part of
the brand CSS facility to customize the look and feel of Spectrum Spatial Analyst. Different brands can be
created and referenced in map projects via the map project settings. A component developer can
reference all of the branding classes in the CSS to adjust the look and feel of their components as per the
branding guidelines of Spectrum Spatial Analyst.

It is recommended to put the components in the extensions folder in the
<ANALYST_INSTALL_PATH>/customerconfigurations/analyst/theme/extensions. It helps the Spectrum
Spatial Analyst installer in backing up and restoring these extensions during upgrades. It ensures that
during installation and upgrades, your extensions are not lost. Paths mentioned in the
CustomAnalystModuleConfig.json are static.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 33

This section describes how to use the existing services, store actions, selectors, and components of the
Spectrum Spatial Analyst Extensibility Platform.

NgRx Store

NgRx store is the base architecture for the Spectrum Spatial Analyst Extensibility Platform. It is the
primary mechanism to consume the resources of the Spectrum Spatial Analyst Extensibility Platform in
third-party components via the use of store actions and selectors.

For example, if you want to listen to the map click event in your custom component you will use a
selector to achieve this. Similarly, if you want to add a new layer to the map from your custom
component you will dispatch an action for this. For the store to be used in a component one has to add
it as a parameter in the component’s constructor. We have provided various examples to showcase how
it can be used.

The real power of the Spectrum Spatial Analyst Extensibility Platform comes from re-using many
services, components and third-party libraries that come out of the box with Spectrum Spatial Analyst.
For example, you can utilize the extensive set of services the platform exposes for querying features by
SQL, at an XY or within a user drawn region, rather than coding this into your component. There are also
multiple sets of utilities exposed via the Spectrum Spatial Analyst Extensibility Platform. A complete list
of these can be found in the API docs shipped with Spectrum Spatial Analyst installation.

Though API docs list all of the functionality in Spectrum Spatial Analyst components, developers are
advised to only use the public APIs or components of the Spectrum Spatial Analyst extensibility
platform. This is necessary to maintain backward compatibility. Backward compatibility is not
guaranteed when using private API, which is subject to change without notice.

Most third-party components are likely to need to interact with the Openlayers library that is available
out of the box with Spectrum Spatial Analyst. This may be to capture user interaction (such as map
clicks, drawing, or feature selection) or to add layers and features to the map or to move/zoom the map.
While it is entirely feasible to reference the map object and to interface directly with Openlayers, in
most circumstances. We recommend doing this via store actions. The use of store actions ensures that
the state is consistently maintained between the map and the legend panel, where actions on one affect
the other.

Spectrum Spatial Analyst Extensibility Guide v.2019.1 34

Component
This is an Angular 4 component written in typescript (TS) and provided to the Spectrum Spatial Analyst
Extensibility Platform to embed at run time.

Spectrum Spatial Analyst Extensibility Platform
The architecture of Spectrum Spatial Analyst that allows third-party components are dynamically added
at run-time and the set of core services that Spectrum Spatial Analyst provides for re-use by embedded
components.

SystemJS
This is the main module that Spectrum Spatial Analyst uses to boot-strap and enable run-time
embedding of third-party components in Spectrum Spatial Analyst.

CustomModulesDefinition.json
Configuration file configuring the definition of third-party components.

Module
The smallest unit of third-party code that the Spectrum Spatial Analyst Extensibility Platform can embed.
A module is an Angular 4 module of one or more components mentioned in point 1.

Store
Spectrum Spatial Analyst Extensibility Platform's front end architecture is based on the Ng Rx store.
Most of the services that a developer can use are available via Store actions and their corresponding
selectors. The Store is a bridge between the caller and executor. For example, if a third-party developer
wants to draw a layer on a map, then they dispatch an action with the necessary parameters such as
layerUrl/extents/center and so on via store.dispatch.

https://angular.io/tutorial

https://angular.io/api

https://v2.angular.io/docs/js/latest/cookbook

https://github.com/angular/quickstart

https://code.visualstudio.com/download

https://angular.io/tutorial
https://angular.io/tutorial
https://angular.io/api
https://angular.io/api
https://v2.angular.io/docs/js/latest/cookbook
https://v2.angular.io/docs/js/latest/cookbook
https://github.com/angular/quickstart
https://github.com/angular/quickstart
https://code.visualstudio.com/download

Spectrum Spatial Analyst Extensibility Guide v.2019.1 35

3001 Summer Street

Stamford CT 06926-0700

USA

www.pitneybowes.com

© 2020 Pitney Bowes Software Inc. All rights reserved

http://www.pitneybowes.com/

