
Spectrum Spatial Analyst

Extensibility User Guide

Version 2022.1

1 - Introduction

Overview...5

Static Container...5

Dynamic Container..5

Removable Component...6

2 - Hello World Extension

Example

Prerequisite...8

Embedding Angular 11 component.......................8

Angular Compilers ..8

AOT-enabled Extension Support.........................13

Summary...14

3 - Upgrading Extensible

Components

Upgrading Extensible Components16

4 - Setting up Extensible

AoT-enabled Dev Environment

Steps to create an Extensible AoT-enabled Dev

Environment...21

5 - Configuring New

Components

Configurations...23

Containers...26

6 - Advanced Configuration

Option

Referencing Third-party Libraries........................28

Specifying Map Configuration that Shows

Components...28

Adding Custom Components under the Parent

Components ..29

Adding a Custom Component at a Specific Position

...30

Removing Existing Spectrum Spatial Analyst

Components ..33

Map Project-based Component Removal...........34

Removing Components using Config File...........34

Removing Components using Functionality Profile

Settings..35

Component Context Parameter...........................35

Component Initialization Parameter....................37

Component that Can Run at Startup...................38

Component Without HTML..................................38

Reordering Left Hand Panel Menu......................38

7 - Validating Your Components

and Third-party Libraries

Overview...45

Module Config Validator......................................45

Third-party Libraries and Versions......................46

Branding Third-party Components......................46

Path Restriction for Module or Components.......47

Table of Contents

8 - Referencing Spectrum

Spatial Analyst APIs in your

Component

Use of Existing Services Store Actions, Selectors,

and Components..49

NgRx Store..49

Openlayers..50

Useful Links...50

9 - Gloassary of Terms

List of Terms..52

Appendix A: Appendix

List of changes in Action payloads and Action names

...54

Extension points..63

3Spectrum Spatial Analyst 2022.1 Extensibility User Guide

1 - Introduction
Spectrum Spatial Analyst is an extensive web mapping platform that
developers can customize. Its framework is based on the Angular component
model, which lets you create and add new components to Spectrum Spatial
Analyst or alter the behavior of an existing components. This document
describes how to extend Spectrum Spatial Analyst, explains related concepts,
and gives examples. Read this guide along with the extensibility API
documentation.

In this section

Overview..5
Static Container..5
Dynamic Container...5
Removable Component..6

Overview

Spectrum Spatial Analyst lets you add Angular based components dynamically at run-time to an
already deployed and running instance.

Components in Spectrum Spatial Analyst are built as standard Angular 11 components (written in
TypeScript) and are included in an Angular 11 module. An Angular 11 module can include one or
more components. Components are injected dynamically into the application at designated places
called injection points. The image on page 6 showcases some of the extension points, such as the
places to add new components.You can create components to replace existing Spectrum Spatial
Analyst components, such as menus, or to dynamically inject into existing Spectrum Spatial Analyst
components. Injection points have a unique identifier.The parent components where new extensions
will be injected are called containers.

It is not necessary to compile components or build a custom version of Spectrum Spatial Analyst.

Static Container

In the Spectrum Spatial Analyst Extensibility Platform, the Static containers are available for injection
into the Settings panel, Layer panel, and Right panel.

These injection points are available for the developers to add their components. Regardless of the
type of data or map you host onSpectrum Spatial Analyst, from Spectrum Spatial, a Web Mapping
Service (WMS), or Vector layer.

Dynamic Container

Dynamic containers are available based on the data that the Spectrum Spatial Analyst Extensibility
Platform hosts. For example, a Spectrum Spatial legend item is only available when a Spectrum
Spatial layer is included in the Spectrum Spatial Analyst Map configuration. Dynamic containers also
pass in context data to the injected component. For example, if a component is a child of the
Annotation legend item, then that child component will have access to annotation information like
annotation name, annotation center, extents of annotation, and so on (which the child component
can use to determine how it behaves and even whether it is rendered).

5Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Introduction

Removable Component

The Spectrum Spatial Analyst user interface has multiple containers and components such as the
Left panel, Right panel, Map, Legend, and Search box. Some of these can be removed or replaced
with custom components using the Spectrum Spatial Analyst Extensibility Platform.You can remove
components using the functionality profiles in Spatial Manager or using the Spectrum Spatial Analyst
Extensibility Platform config file.

To inject a new component at one of the available extension points, a configuration file called
CustomAnalystModuleConfig.json is used. This file configures containers for third-party
extensions, indicates which components to remove, and includes parameters for using extensions.

Spectrum Spatial Analyst capabilities have been exposed as APIs, which third-party components
can use in their logic. For example, adding and removing map layers, calling different Spectrum
Spatial services such as data flows, specifying queries, thematically styling map layers, and so on.
All these services have APIs which encapsulate a wide variety of third-party libraries that are part of
Spectrum Spatial Analyst, such as Openlayers (mapping), Proj4JS (re-projection of vector data),
JSTS (geometry operations on vector data), jsPDF (for exporting to PDF), XLSXJS (for parsing Excel
spreadsheets) and Papa Parse (for parsing CSV files).

Spectrum Spatial Analyst uses an architecture based on NgRx Store (https://ngrx.io/guide/store) for
maintaining state and providing inter-component communications. Many services are available to
developers via store actions and their corresponding selectors. The store is a bridge between the
caller and executor. To draw a layer on a map, you would dispatch an action with the relevant
parameters via store.dispatch.

6Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Introduction

2 - Hello World Extension
Example
This section explains how to embed an Angular 11 component into Spectrum
Spatial Analyst application.

In this section

Prerequisite..8
Embedding Angular 11 component..8
Angular Compilers ...8
AOT-enabled Extension Support..13
Summary..14

Prerequisite

• Basic knowledge of Angular 2/4
• Ability to code in Typescript
• Basic understanding of Spectrum Spatial Analyst (such as customerconfigurations, map projects,

and Spatial Manager)

Embedding Angular 11 component

To embed an Angular 11 component into Spectrum Spatial Analyst

1. Create an Angular 11 component; for example, HelloWorldComponent.

2. Create an Angular 11 module; for example, DynamicModule containing the HelloWorldComponent.

3. Place the module and component file into the folder under the
customerconfigurations/analyst/theme/extensions folder.

4. Create or update a module definition file representing that component.

5. Validate the module definition file with the Spectrum Spatial Analyst Custom Modules file validator
(web page).

6. Put the module definition file into the custom configuration folder once the file is validated.

7. Refresh the browser to see the component embedded in Spectrum Spatial Analyst.

Angular Compilers

Angular provides two ways to compile your application, Just-in-Time (JIT) and Ahead-of-Time (AOT).

Just-in-Time (JIT) Mode

Just in Time (JIT) compiler provides compilation during the execution of the program at a run time.
In simple words, code get compiled when it is needed, not at the build time. In JIT mode, the angular
compiler gets shipped to the browser.

8Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

Ahead-of-Time (AOT) Mode

The application is compiled ahead of time on the server side. The Ahead of Time (AOT) compiler
converts the code during the build time before your browser downloads and runs that code.

Creating and Invoking the Hello World Extension in JIT mode

This section describes how to add a new menu item called Hello World Extension to the Add Panel
menu, which prompts an alert message when clicked.

1. Create a folder named extensions under
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\. For example,
a typical installation path looks like: C:\Program
Files\Precisely\SpectrumSpatialAnalyst\customerconfigurations\analyst\theme.

2. Create a file called dynamic.component.ts under the
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions
folder.

3. Paste the following code snippet into the file:

import {Component, Input} from '@angular/core';
 import {ComponentFactoryResolver} from '@angular/core';
 import {ViewContainerRef} from '@angular/core';
 @Component({
 selector: 'hello-world-selector',
 template: `<div (click)=sayHello() class=""><img
class="fillColor"
 src="../controller/theme/extensions/icon-circle.png"
alt="icon-circle" height="25"
 width="25">Hello World Extension</div>`,
 styles: [`
 .btnPosition {
 z-index: 1;
 right: 12%;
 }
 .iconContainer {
 padding: 10px;
 background-image: linear-gradient(90deg,#3e53a4,#cf0989);

 }
 .fillColor {margin: 3px; cursor:pointer;}
 `]
 })
 export class HelloWorldComponent{
 constructor() {
 }
 onInit() {
 }

9Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

 sayHello() {
 alert('Congratulations! You have successfully extended the
Spectrum Spatial Analyst application.');
 }
 }

4. Save the following image as icon-circle.png in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions.

Please note that theme is an existing folder in the Spectrum Spatial Analyst installation.

5. Create a file called dynamic.module.ts
in:<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions.

6. Paste the following content in that file and save it:

import {NgModule } from '@angular/core';
 import {HelloWorldComponent} from './dynamic.component.ts';

 @NgModule({
 imports: [],
 declarations: [HelloWorldComponent],
 exports: [HelloWorldComponent]
 })
 export class DynamicModule { };

7. Go to the customer configuration folder in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst.The path looks like
C:\Program
Files\Precisely\SpectrumSpatialAnalyst\customerconfigurations\analyst.

8. Create a file called CustomAnalystModuleConfig.json under that directory.

9. Paste the following content into the CustomAnalystModuleConfig.json file and save it:

{
 "modules": [{
 "name": "DynamicModule",
 "description": "Hello World Extension in the Add Panel.
 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components": [{
 "componentName": "HelloWorldComponent",
 "parentComponentName": "AddPanel"
 }]
 }],
 "componentsToRemove": []
 }

10Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

10. Open the browser and launch the Spectrum Spatial Analyst URL from the address bar.

11. Go to the Add panel, (+) plus button on top right corner of application, to see your first component
with the above image and label Hello World Extension

12. Click on it to display a pop up with a success message as shown in the following image:

Creating and Invoking the Hello World Extension in AOT mode

This section describes how to add a new menu item called Hello World Extension to the Add Panel
menu, which prompts an alert message when clicked.

1. Create a folder named extensions under
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\. For example,
a typical installation path looks like: C:\Program
Files\Precisely\SpectrumSpatialAnalyst\customerconfigurations\analyst\theme.

2. Create a file called dynamic.component.ts under the
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions
folder.

3. Paste the following code snippet into the file:

import {Component, Input} from '@angular/core';
 import {ComponentFactoryResolver} from '@angular/core';
 import {ViewContainerRef} from '@angular/core';
 @Component({
 selector: 'hello-world-selector',
 template: `<div (click)=sayHello() class=""><img
class="fillColor"
 src="../controller/theme/extensions/icon-circle.png"
alt="icon-circle" height="25"
 width="25">Hello World Extension</div>`,
 styles: [`

11Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

 .btnPosition {
 z-index: 1;
 right: 12%;
 }
 .iconContainer {
 padding: 10px;
 background-image: linear-gradient(90deg,#3e53a4,#cf0989);

 }
 .fillColor {margin: 3px; cursor:pointer;}
 `]
 })
 export class HelloWorldComponent{
 constructor() {
 }
 onInit() {
 }
 sayHello() {
 alert('Congratulations! You have successfully extended the
Spectrum Spatial Analyst application.');
 }
 }

4. Save the following image as icon-circle.png in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions.

Please note that theme is an existing folder in the Spectrum Spatial Analyst installation.

5. Create a file called dynamic.module.ts
in:<ANALYST_INSTALL_PATH>\customerconfigurations\analyst\theme\extensions.

6. Paste the following content in that file and save it:

import {NgModule } from '@angular/core';
 import {HelloWorldComponent} from './dynamic.component.ts';

 @NgModule({
 imports: [],
 declarations: [HelloWorldComponent],
 exports: [HelloWorldComponent]
 })
 export class DynamicModule { };

7. Go to the customer configuration folder in:
<ANALYST_INSTALL_PATH>\customerconfigurations\analyst.The path looks like
C:\Program
Files\Precisely\SpectrumSpatialAnalyst\customerconfigurations\analyst.

8. Create a file called CustomAnalystModuleConfig.json under that directory.

12Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

9. Paste the following content into the CustomAnalystModuleConfig.json file and save it:

{
 "modules": [{
 "name": "DynamicModule",
 "description": "Hello World Extension in the Add Panel.
 "modulePath": "extensions/dynamic.module.ts#DynamicModule",

 "components": [{
 "componentName": "HelloWorldComponent",
 "parentComponentName": "AddPanel"
 }]
 }],
 "componentsToRemove": []
 }

10. Open the browser and launch the Spectrum Spatial Analyst URL from the address bar.

11. Go to the Add panel, (+) plus button on top right corner of application, to see your first component
with the above image and label Hello World Extension

12. Click on it to display a pop up with a success message as shown in the following image:

AOT-enabled Extension Support

AOT-enabled extension support in Spectrum Spatial Analyst:

Creating an extension Development Environment

1. npm install --global @angular/cli
2. ng new <project-name> --create-application=false

13Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

3. cd <project-name>
4. ng generate library <lib-name>
5. copy provided Spectrum Spatial Analyst typings in a dir out of <project-name> dir and provide

path in package.json for property ‘analyst’ in devDependecies. For example:

"analyst": "file:../ssa-typings",

6. Run npm i @angular-devkit/build-webpack @ngtools/webpack

7. Copy provided webpack.config.js and webpack.config.prod.js in <lib-name> directory
8. Change entry file and tsConfigPath in webpack.config.js
9. Replace @angular-devkit/build-angular:ng-packagr with @angular-devkit/build-webpack:webpack

in angular.json
10. provide "webpackConfig": "projects/<lib-name>/webpack.config.js" in options of angular.json
11. provide "webpackConfig": "projects/<lib-name>/webpack.config.prod.js" in configurations >

production of angular.json
12. ng build <lib-name>

Run ng generate component component-name --project my-lib to generate a
 new component

You can also use:

ng generate directive|pipe|service|class|guard|interface|enum|module
--project my-lib

Summary

In the first few steps of the above Hello World example (for an Angular component and Angular
module) included resources for the component, such as an image.We then created the configuration
to inject that component into the Spectrum Spatial Analyst Extensibility Platform.

The parentContainer tag in the CustomAnalystModuleConfig.json file is responsible for injecting
a component into the correct container.The Spectrum Spatial Analyst Extensibility Platform provides
multiple containers for third-party components to position them in the screen layout correctly. For
details about containers, refer to the following sections.

Note: The name of the class in the component file and the name of the component in the
configuration file should be identical because this is the main link between the component
and configuration.The Angular module should have a declaration of the component it embeds.
There are no restrictions on the number of components that a single angular module can have.

14Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Hello World Extension Example

3 - Upgrading Extensible
Components

In this section

Upgrading Extensible Components ...16

Upgrading Extensible Components

Spectrum Spatial Analyst enables you to migrate your existing extensible components to Angular
11. The following sections will help you successfully migrate your components.

You need to make the following changes to run the extensible components in the migrated Spectrum
Spatial Analyst application.

1. NgRx Store

The NgRx Store has been migrated from version 2.2.3 to version 11.1.1.This upgrade requires some
syntax changes as explained below:

• First change: Remove the new operator while dispatching the action.This is must for every action’s
dispatch that you are using in your extensible component.

In Angular 4, whenever you dispatched an action, you would use the below syntax:

this.store.dispatch(new actionName(payload));

Now, you need to remove the new operator in Spectrum Spatial Analyst Angular 11’s extensible
components so that it looks like:

this.store.dispatch(actionName(payload));

To create a query in Spectrum Spatial Analyst make the changes as described in the table below.

To create a query layer in Angular 11To create a query layer in Angular 4

this.store.dispatch(ExecuteQueryAction(params));const params = {
query: "SELECT

// No change in the payload passedCountry,Capital,Continent
 to ExecuteQueryAction. FROM
Only change is removing the new
operator.

\"/Samples/NamedTables/WorldTable\"

WHERE Lower(Country) LIKE
Lower('%In%')",
layerName: "Country",
name: "Countries name containing
'In'",
addToMap: addToMap,
getResult: getResult,
orderIndex: 0,
replaceCurrentLegend: false,
customComponentData: {
customDataObj: "customDataObj" }

16Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Upgrading Extensible Components

To create a query layer in Angular 11To create a query layer in Angular 4

};
this.store.dispatch(new
ExecuteQueryAction(params));

• Second change: Modify the payload passed to action while dispatching it. It is required only when
your payload is of type string, number, Boolean or an array. If the payload is of type JSON object
like in the above example of query, then there is no need to make any change in the payload. For
example,

this.store.dispatch(new ToggleResourceSelectorVisiblity(true));

To dispatch action when payload is of type Boolean:

Angular 11Angular 4

this.store.dispatch(ToggleResourceSelectorVisiblity(
{toggleVisiblity: true}));

this.store.dispatch(new
ToggleResourceSelectorVisiblity(true));

So, if the payload is of primitive type like Boolean, make the following changes:

• Remove the new operator as explained above.
• Wrap the Boolean payload in a JSON object. The key which has been introduced for
ToggleResourceSelectorVisiblity action is toggleVisiblity. Each actions have
different key name, refer to the API documentation for details on actions and the corresponding
keys.

2. RxJS

It has been migrated from version 5.4.2 to 6.6.7 and requires the following changes:

• First change: If you are using map, mergeMap, concatMap, switchMap etc. operators of RxJS in
your extensible component, then you have to use pipe operator as shown below:

Using RxJS map operator in Angular 11Using RxJS map operator in Angular 4

this.xhrIncokerService.invokeController
(options).pipe(map((data)=> {;
//logic });

this.xhrIncokerService.invokeController
(options).map((data) => {

17Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Upgrading Extensible Components

Using RxJS map operator in Angular 11Using RxJS map operator in Angular 4

//logic
});

• Second change: Importing RxJS operators has also changed.To import certain operators like map,
mergeMap, concatMap, and switchMap you can use the following code:

Importing RxJS operators in Angular 11Importing RxJS operators in Angular 4

// Latest version;
import { map, mergeMap, switchMap,

// Old version
import { Observable } from

 concatMap } from 'rxjs/Observable';
'rxjs/operators'; // Old version
importing very commonly used Rxjsimport { Subject } from
 stuff like Observable, 'rxjs/Subject';
Subscription, Subject // Old version
import {Observable, Subject, import { Observer } from

'rxjs/Observer'; Observer, Subscription, of } from
 'rxjs';

You can refer to RxJS documentation for the latest updates.

3. Open Layers

It has been migrated from 4.2.0 to 6.5.0 and requires the following changes.

Using open layers in 6.5.0Using open layers in 4.2.0

import { Map, Feature } from 'ol';
import VectorSource from

import * as ol from 'openlayers';
const vectorSource = new

'ol/source/Vector';ol.source.Vector();
import VectorLayer from const point_feature = new
'ol/layer/Vector';ol.Feature({});
import Point from 'ol/geom/Point';const point_geom = new
import { defaults } from ol.geom.Point([2.0000000000345,
'ol/interaction';1.0000000245]);
const vectorSource = new point_feature.setGeometry(point_geom);
VectorSource();vectorSource.addFeature(point_feature);
const point_feature = new const layer = new ol.layer.Vector({
Feature({}); source: vectorSource});
const point_geom = new const map = new ol.Map({
Point([2.0000000000345, layers: [layer],
1.0000000245]); interactions:
point_feature.setGeometry(point_geom);ol.interaction.defaults({
vectorSource.addFeature(point_feature); doubleClickZoom: false,
const layer = new VectorLayer({ shiftDragZoom: false,

18Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Upgrading Extensible Components

Using open layers in 6.5.0Using open layers in 4.2.0

 keyboard: false,
 mouseWheelZoom: false,

source: vectorSource });
 const map = new Map({

 pinchZoom: false layers: [layer],
 }), interactions: defaults({
 target: 'map'
 });

 doubleClickZoom: false,
 shiftDragZoom: false,
 keyboard: false,
 mouseWheelZoom: false,
 pinchZoom: false
 }),
 target: 'map'
 });

4. Angular Framework and dependencies upgrade

If you have set up a local dev environment to create or edit extensible components, then you need
to upgrade the following:

• Angular framework -> 11
• NgRxStore -> 11.1.1

• RxJS -> 6.6.7
• Openlayers -> 6.5.0

19Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Upgrading Extensible Components

4 - Setting up Extensible
AoT-enabled Dev
Environment
This section explains how to set up an AoT-enabled development
environment.

In this section

Steps to create an Extensible AoT-enabled Dev Environment.................21

Steps to create an Extensible AoT-enabled Dev
Environment

1. npm install --global @angular/cli
2. ng new <project-name> --create-application=false
3. cd <project-name>
4. ng generate library <lib-name>
5. Copy provided Spectrum Spatial Analyst typings in a dir out of <project-name> dir and
6. Provide path in package.json for property ‘analyst’ in devDependecies "analyst":

"file:../ssa-typings",
7. Run npm i @angular-devkit/build-webpack @ngtools/webpack
8. Copy provided webpack.config.js and webpack.config.prod.js in the <lib-name>

directory
9. Change entry file and tsConfigPath in the webpack.config.js file
10. Replace @angular-devkit/build-angular:ng-packagr with

@angular-devkit/build-webpack:webpack in angular.json
11. Provide "webpackConfig": "projects/<lib-name>/webpack.config.js" in options of

angular.json

12. Provide "webpackConfig": "projects/<lib-name>/webpack.config.prod.js" in
configurations > production of angular.json

13. ng build <lib-name>

21Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Setting up Extensible AoT-enabled Dev Environment

5 - Configuring New
Components

In this section

Configurations..23
Containers..26

Configurations

A model is available to define and represent all the new components that are added. This is kept in
the JSON format and is contained within the CustomModulesDefinition.json file.

It is important to have a single file for all new modules. The order in which the components are
defined is important as there may be dependencies between components. For example, a component
may remove out-of-the-box components as part of its definition, but another component may be
using it as a container.

The example below shows how a typical CustomAnalystModuleConfig.json file looks:

 { "modules": [{
 "name": "GIQueryModule",
 "description": "Module For GI query",
 "modulePath": "extensions/dynamic.module.ts#DynamicModule",
 "components":[{componentName:"TestComponent","parentComponentName":
"SettingsPanel",
 "initParameters": {
 "initX": 0,
 "initY": 0,
 "endPointUrl": "localhost:3306/mysql/gidata",
 }
 }}],
 "externalLibraryPath": [{
 "libName": "GDAL",
 "libPath": "../controller/theme/app/gdal.js",
 }
],
 "mapConfigAssociated": {
 "GeoInsightMaps": ["TestComponent"],
 "GeoInsightSummaryMaps": ["TestComponent"]
 }
 }
],
 ,
 "componentsToRemove":[
 {"componentName":"BaseMapSwitcherComponent",
 "fromMapConfig":"Drive Time"},
 {"componentName":"MapConfigSwitcherComponent",
 " fromMapConfig":"Drive Time"}

]}
 }

23Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Configuring New Components

Top Level Nodes

The following table describes the parameters that can be included in a custom module definition.

DescriptionRequiredTypeField Name

An array of multiple module definitions as described in the
definitions section above.

YesJson ArrayModules

An array of pre-existing components provided out-of-the-box
with Spectrum Spatial Analyst that would be removed.

YesJson ArrayComponentsToRemove

Module JSON Object

Each array element inside the Modules node defines a module as follows.

DescriptionRequiredTypeField Name

The name should not be the same as any of the Spectrum
Spatial Analyst modules.You can find a list of module
names in the documentation..

YesStringName

Gives details about the purpose of the module for users
looking at the configuration file.

optionalStringdescription

The location of the module in the file system. This will be
in:

customerconfigurations/analyst/theme/extensions

Note: The folder containing the module should be in this
path for it to be accessible

#ModuleName is mandatory in the module path to allow it
to be loaded. #ModuleName is the name of the Module
class in the ts file.

Note Each module can have a separate folder. For example,
extensions/weather/weather.module.ts#WeatherModule

YesStringModulePath

24Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Configuring New Components

DescriptionRequiredTypeField Name

This is a key value pair where

• Key = Name of the component

• Value = The parent container in Spectrum Spatial Analyst
where the component is to be injected.

Note: The Component Name should match the
#ModuleName that you have declared for creating Angular
4 component class and not the selector.

YesMapComponents

Set of third-party libraries that component may need for it
to function. This path can be CDN or a local path relative
to index.html of Spectrum Spatial Analyst.

OptionalJsonArrayexternalLibraryPath

A key value pair where:

• Key = Spectrum Spatial Analyst map configuration name

• Value = Array of components that will be visible for that
map configuration

If the component is not explicitly associated with a
mapconfig file, then it will appear for all mapconfig files that
are available.

OptionalMapmapConfigAssociated

A key value pair where:

• Key = Name of the component

• Value = json object of the initialization parameters which
will be passed to each instance of the component. There is
no restriction on the type of init parameter; it can be any
type.

OptionalJson Objectinitparameters

ComponentToRemove

Each array element inside the ComponentsToRemove node will define the following.

DescriptionRequiredTypeField Name

Name of the component to be removed. Note this is an
existing Spectrum Spatial Analyst component and not a
third-party component. Specific components, like
BaseMapSwitcher and SearchBox, may be removed from
the application.

YesStringcomponentName

25Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Configuring New Components

DescriptionRequiredTypeField Name

Removes the component from a specific mapconfig file. If
omitted, it removes the component from all mapconfigs files.

OptionalStringfromMapConfig

Containers

The Spectrum Spatial Analyst extensibility platform divides the entire layout of the product into
different parts called containers. Containers are parents to the new components created by developers.
Containers let a developer place their visual or non-visual components in the right place. For example,
if a developer wants to place a component in the Add Panel, then he needs to specify AddPanel as
a parent container for the newly created component. There is no limitation to the number of
components that can be added to a given container.The look, feel, and the CSS of a new component
can control the position of the component in a given container.

There can be cases where a single container is hosting more than one third-party component. For
example, a “Find XY” and “Add WMTS layer” menu item can both be added to AddPanel. It is perfectly
valid to specify the same parent container as many times as needed with different components.
Components can belong to different modules as well. In that case, entries for the same parent
container will be repeated in each module entry. The following sample illustrates this, where there
are components in the same module and same container:

 {
 "name": "DynamicModule",
 "description": "Find a defined x and y with a specific ICON.",
 "modulePath": "extensions/dynamic.module.ts#DynamicModule",
 "components": [
 {
 "componentName": "FindXY", "parentComponentName": "AddPanel",
 },
 {
 "componentName": "AddWMTSLAYER", "parentComponentName": "AddPanel"
 }
 }
 ,
 "componentsToRemove":[
 {"componentName":"BaseMapSwitcherComponent",
 "fromMapConfig":"Drive Time"},
 {"componentName":"MapConfigSwitcherComponent",
 " fromMapConfig":"Drive Time"}

]}
 }

26Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Configuring New Components

6 - Advanced
Configuration Option
Spectrum Spatial Analyst is an extensive web mapping platform that
developers can customize. Its framework is based on the Angular 4.2.6
component model, which lets you create and add new components to
Spectrum Spatial Analyst or alter the behavior of existing components.This
document describes how to extend Spectrum Spatial Analyst, explains
related concepts, and gives examples. Read this guide along with the
extensibility API documentation.

In this section

Referencing Third-party Libraries...28
Specifying Map Configuration that Shows Components..........................28
Adding Custom Components under the Parent Components29
Adding a Custom Component at a Specific Position30
Removing Existing Spectrum Spatial Analyst Components33
Map Project-based Component Removal..34
Removing Components using Config File..34
Removing Components using Functionality Profile Settings....................35
Component Context Parameter..35
Component Initialization Parameter...37
Component that Can Run at Startup..38
Component Without HTML...38
Reordering Left Hand Panel Menu...38

Referencing Third-party Libraries

The Spectrum Spatial Analyst Extensibility Platform envisages cases where new components may
need to reference third-party external libraries. These libraries can be either Angular or normal
JavaScript libraries. The Spectrum Spatial Analyst Extensibility Platform facilitates the on-boarding
of such libraries with ease. To use new libraries in the component, follow the steps given below.
Libraries can be references from the file system of the Spectrum Spatial Analyst server or can be
referenced from a hosting site/CDN. The mechanism for registering the library is the same in both
cases. There are certain restrictions that the Spectrum Spatial Analyst Extensibility Platform has
while embedding a new library.

1. Only one version of a new library needs to be embedded.

2. If the library is already available with a certain version, one cannot embed a new version of that
library. We provide a list of libraries available out-of-the-box within Spectrum Spatial Analyst via
the module config validator page.

3. Checking for license terms, vulnerability, and certification of new libraries (libs) in the Spectrum
Spatial Analyst Extensibility Platform is the responsibility of the component developer.

4. If someone intentionally violates point 1 and more than one version of the same library is added
to the Spectrum Spatial Analyst Extensibility Platform, it cannot guarantee deterministic behavior.

5. If one module is embedding a specific version of a library, then another module cannot embed
another version of the same library.

6. If one module is embedding a version of a library, that library can be used across multiple
modules/components without repeating the same library in the other modules.

Specifying Map Configuration that Shows
Components

The Spectrum Spatial Analyst Extensibility Platform supports the conditional rendering of newly
added components based on the map project being used at that time. Consider a scenario that a
component developer creates a component that should be available to only users when they browse
to a specific map configuration. To achieve this, a user will create an entry in the
CustomAnalystModuleConfig.json file and register a component for the specific map project(s).
If there is more than one third-party component to be shown for a given map configuration, they can
all be added as an array corresponding to the map project. Please note that the component name
mentioned in the components tag should be the name of an Angular component class that is created.

Map projects associated to a third-party component should be present in allowlisting:

28Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

• If you mention a component for a map project, then that component is visible only to that map
project and not others.

• To make a component available to more than one map projects but not for all of them, then allowlist
the component in all map projects.

• To make a component available in all map projects, do not provide any entry in the
mapconfigAssociated tag. For example:

"mapConfigAssociated":[{
 "mapConfigName":"defaultmap",
 "components":["TestComponent"]
 }]

Adding Custom Components under the Parent
Components

While injecting custom components, the extensibility developers can:

• add new injection points on the left and right panels
• apecify the order of the custom component inside parent component

Note: Along with the new enhancements, the existing injection points and approach will
continue to work in the same manner as it has been.

Explore new locations - add new injection points on the left and right panels

To explore new injection points, load the Spectrum Spatial Analyst in browser and inspect the parent
element under which you want to insert the custom component by right clicking on that element and
choosing inspect option. It opens the developer tool bar in the browser, then we need to copy the
id of the element and put it as parentComponentName inside CustomAnalystModuleConfig.json
file. Apart from this approach of providing the id of the parent element, you can also use class of
the parent element or can even directly supply CSS selector for the parent element.

Note: It is recommended to use the id or CSS selector approach as class approach can
lead to insertion of custom component at multiple places because class is not unique.

Specify the order of the custom component inside parent component

As explained above, specifying parent component in either of the approach always inserts a custom
component as the last child of the parent component. But now, you can specify the position of custom
component among the child elements of the parent component. For that we have introduced a new

29Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

option called “childPosition” just below the “parentComponentName” option inside the
CustomAnalystModuleConfig.json file.

 {
 "parentComponentName": "LegendContainer",
 “childPosition” : 1
 }

In the above childPosition is 1 which means the custom component when injected inside Spectrum
Spatial Analyst, will be positioned as the first child element of LegendContainer. Similarly, if specified
as 2, it will be positioned as the second child element and so on.

Spectrum Spatial Analyst allows you to add custom components.You can develop your extensions
as custom components and add them where they are needed in the application. To do so, you need
to register your extensions in the CustomAnalystModuleConfig.json file.You can find this file
at: <Analyst_install_directory>\Program
Files\Precisely\SpectrumSpatialAnalyst
\customerconfigurations\analyst\CustomAnalystModuleConfig.json. After registering
your custom components, when Spectrum Spatial Analyst reloads, it will load the extensible
components as per the configurations in the json file.

In the CustomAnalystModuleConfig.json file, you need to specify the following information:

• path of the extensions
• the map project to which you want to associate your extension with, and
• the injection point such as add panel, left panel, or Legend where you want to insert the component

This feature enables you to add the component anywhere. Moreover, this feature will not disrupt any
existing custom component because it is backward compatible. Therefore, any existing custom
component will continue to work as expected.

For a list of parent components, see Extension points on page 63.

Adding a Custom Component at a Specific
Position

You can add a component at a specific position in Setting, Add Layer, or the Legend panel and
control the order of existing options in these panels using CSS to specify the order of elements. To
do this, you set the order of components, including custom components, in the map project-specific
brand.css file:
<Analyst_install_directory>\customerconfigurations\analyst\theme\branding\default\brand.css.
By default, brand.css includes sample entries.

30Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

The following example shows how you can insert a custom component in the Setting Panel just
below the Print option.

 #createPanelContainer{
 display: flex;
 flex-direction: column;
 }
 #addLayerContainer{order: 10; }
 #addNewRecord{order: 20; }
 #create_QueryContainer{order: 30; }
 #createThematicContainer{order: 40; }
 #annotationToolContainer{order: 50; }
 #measurementToolContainer{order: 60; }
 #multiSelectContainer{order: 70; }
 #settingsPanelContainer{
 display: flex;
 flex-direction: column;
 }
 #printContainer {order: 10; }

 #imageExporterContainer {order: 20; }
 #currentMapViewContainer {order: 30; }
 #helpContainer {order: 40; }
 #localeContainer {order: 50; }
 #templateDesignerContainer {order: 60; }
 #mapProjectContainer {order: 70; }
 #authBtnContainer {order: 80; }
 #appVersionContainer {order: 90; }
 #settingsPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME1> {order: 11;
 }
 #settingsPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME2< {order:
61; }
 #layersPanelContainer {
 display: flex;
 flex-direction: column;
 }
 #mapProjectSwitcherContainer{order: 10; }
 #baseMapSwitcherContainer{order: 20; }
 #legendContainer{order: 30; }
 #layersPanelContainer > <CUSTOM_COMPONENT_ELEMENT_NAME< {order: 11;
 }

The ‘order’ attribute specified for an element determines the order in which it appears. Elements
without a specified order display at the top in the panel.

You must replace the <CUSTOM_COMPONENT_ELEMENT_NAME1> placeholder with the
corresponding custom component’s selector name. The order applies to all projects using the
corresponding brand. We recommend creating a new branding file instead of editing the default
brand.css file.

31Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Example

In the following example, we will demonstrate how to insert an extensible component below the 'Add
Layer' link on the Add panel.

1. Start with inspecting the ‘Add Layer’ link in the browser's developer tools by right clicking it. For
example, if you are using Chrome DevTools, when the DevTools opens, copy the id as shown
below. In this example, the id is addLayer.

In the screenshot, we can see there are other ids like addLayerContainer for the elements which
are parent to ‘Add Layer’ link. We can use those id as well. So, we can copy either addLayer or
addLayerContainer from the dev tool. Let’s assume we use the id as addLayer for this sample.

2. Paste the id that we copied in Step 1 as parentComponentName inside the
CustomAnalystModuleConfig.json file as highlighted in yellow.

3. Open the SSA application and then open the Add panel. We will see the extensible component
getting injected below the ‘Add Layer’ link as shown below.

32Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Removing Existing Spectrum Spatial Analyst
Components

Current users of Spectrum Spatial Analyst have use-cases where they need to replace entire
components of Spectrum Spatial Analyst with custom components. One use-case is the address
search box that Spectrum Spatial Analyst provides. Another use-case is when a client wants a
different base map switching capability instead of a drop-down. The Spectrum Spatial Analyst
Extensibility Platform supports the replacement of components in two stages. In the first stage, a
component developer removes the existing component from the Spectrum Spatial Analyst Extensibility
Platform and in the second stage, they introduce a new typescript based angular component in its
place.

Below is a list of components that can be removed from the Spectrum Spatial Analyst extensibility
platform. It depends on your needs if you want to introduce a new component or remove it.

Note: If a parent component is removed, then its child component is also removed
automatically.

To remove a component, a developer needs to mention the component in
CustomAnalystModuleConfig.json file shown below.

 " componentsToRemove":[
 {"componentName":"BaseMapSwitcherComponent"}]

33Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Note: When removing a component, such as the left panel, ensure it is not a parent container
of any third-party component.

Map Project-based Component Removal

There may be certain cases when a developer wants to remove components in certain conditions
only. In this case, all users need to create a map project and configure the component to remove in
the CustomAnalystModuleConfig.json file. A typical entry in CustomAnalystModuleConfig.json
would look like this:

"componentsToRemove":[
 {"componentName":"BaseMapSwitcherComponent",
 "fromMapConfig":"Drive Time"}]

When removing the same component from more than one map project, the entry for the component
repeats for each map project.

Removing Components using Config File

Remove Only via config fileIdentifierComponent Name

YesBaseMapSwitcherContainerBase Map Switcher
Component

YesMapConfigSwitcherContainerMap Config Switcher
Component

YesLeftPanelContainerLeft Panel Component

YesQueryResultsComponentQuery Results Component

No (Via Adminconsole as well)CalloutContainerComponentCallout Container
Component

YesSearchBoxContainerSearch Box Component

34Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Remove Only via config fileIdentifierComponent Name

No (Via Adminconsole as well)SummarizationComponentSummarization Results
Component

YesLegendContainerComponentLegend Container
Component

No (Via Adminconsole as well)SummarizationComponentSummarization Component

Removing Components using Functionality
Profile Settings

Spectrum Spatial Analyst also supports the removal of components via a functionality profile.
Depending on the use case, you can choose to remove some common components via functionality
profile. The list of components is:

• Query
• Annotations

• Summarize Data in Annotations
• Measuring Tools
• Annotations Tools
• Annotation KML Import/Export
• Print
• End-User Thematics
• Add Layer
• Summarization Component
• Editing in Tables

Component Context Parameter

The Spectrum Spatial Analyst extensibility platform provides support for passing in context parameters
from dynamic container components to its child components, including child components created
by developers. Developers can use the data as per their needs to adjust the logic of the components

35Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

they create. For example, when a user draws a circle annotation, a developer creates a custom
component to query within the circle annotation.The Spectrum Spatial Analyst Extensibility Platform
passes in all the information about circle annotation to the custom component like radius, XY location,
name of annotation and so on.

Context data may be useful for passing the information to external systems or it can be used to make
the component rendering exclusive for an instance of the dynamic container. For example, if there
are more than one circle annotation and developer wants to show the component for the first circle
annotation only then he can use the annotation name from the context parameter to restrict the view
of the new component in its template.

To access this context data, a component developer needs to create an input field with name data:
any in its own created typescript component. Inside this data field, each of the dynamic containers
has a specific name for context parameters; for example, the annotationLegendItem context parameter
name is annotationLegendObject. The following table provides the names of all the context data
parameters that are available for different dynamic components:

Context parameter Name (For example, data.
annotationLegendObject)

Component Name

annoationLegendObjectAnnotationLegendItem

legendGroupObjectEnvinsaTileLegendItem

legendGroupObjectMVTLegendItem

annoationGroupObjectAnnotationLegendGroupItem

queryLegendObjectQueryLegendItem

legendGroupObjectSpatialLegendItem

legendObjectSpatialSubLegendItem

legendGroupObjectThematicLegendItem

legendGroupObjectTMSLegendItem

vectorLayerLegendObjectVectorLayerLegendItem

legendGroupObjectWMSLegendItem

legendGroupObjectXYZLegendItem

36Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Context parameter Name (For example, data.
annotationLegendObject)

Component Name

calloutObjectCalloutCardContainer

calloutRecordObjectCalloutContainer

Component Initialization Parameter

The Spectrum Spatial Analyst extensibility platform envisages cases where more than one instance
of newly created angular 4 third-party components need to be on-boarded. There can be cases
where multiple instances of the new component may need to share the same set of information. For
example, a developer may create a new component that shows Google Street View that is shown
in multiple instances and needs to share the API key for Google between them.The Spectrum Spatial
Analyst extensibility platform supports parameter sharing using the init parameters among multiple
component instances. To get access to the init parameter, the developer needs to:

1. Declare an input field called data in its component.
2. Add an entry corresponding to the component in CustomAnalystModuleConfig.json. For

example:

 "modules": [{
 "name": "GIQueryModule",
 Spectrum Spatial Analyst Extensibility Guide v.2019.1 26
 "description": "Module For GI query",
 "modulePath": "../../../extensions/dynamic.module.ts#DynamicModule",

 "components":[{componentName:"TestComponent","parentComponentName":
 "SettingsPanel",
 "initParameters": {
 "apiKey": “abcdef”
 }
 }}]
 }]

3. Once this is declared in CustomAnalystModuldeConfig.json one can access the key like
data.initParameters.apiKey in the component instance.

The init parameter supports the data types that JavaScript supports. It does not put restrictions on
the size of the parameters supplied.

37Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Component that Can Run at Startup

The Spectrum Spatial Analyst extensibility platform supports running components that are required
during startup time (when a user first opens the Spectrum Spatial Analyst application in the browser).
This can be achieved if the component is injected into a parent that comes into existence during
startup. The RightPanel is one such parent container. To make a component available at startup,
declare the RightPanel as its parent. The component then comes into existence at startup.

Component Without HTML

The Spectrum Spatial Analyst extensibility platform supports components having pure business logic
and no visual elements. As such all Angular components support capability to embed HTML in them
but it is optional. To create a component without HTML, keep the template blank, and the Spectrum
Spatial Analyst Extensibility Platform calls the component at the time of instantiating its parent
container. For example, a developer creates a component that gets weather data from a remote API
and passes this on to some other component for further processing. Let’s assume the component
developer makes it a child of the AddPanel container.When a user clicks on the AddPanel in Spectrum
Spatial Analyst, the third-party component calls the child and it then makes a call to get the weather
data.

Reordering Left Hand Panel Menu

You can reorder the menu items in the left-hand panel at three levels.

• Layer level
• Record level
• Tabular grid’s overflow menu

38Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Layer level

Record level

39Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

Tabular grid’s overflow menu

The layer and record levels use the same overflow menu components. The following CSS example
re-orders menu items for the layer and record levels.

 .open>#overflowMenu{
 display: flex;
 flex-direction: column;
 }
 .exportAsCsv{
 order: 10;
 }
 .addAsAnnotation{
 order: 20;
 }
 .showOnMap{
 order: 30;
 }
 .editRecord{
 order: 40;
 }
 .deleteRecord{
 order: 50;
 }
 .dataBindTitle{
 order: 60;
 }
 .linkouts{
 order: 70;

40Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

 }
 /* Please specify selector of custom component to specify its order*/

 #overflowMenu>CUSTOM-ELEMENT-NAME{
 order: 30;
 }

This CSS example re-orders menu items in the tabular grid’s overflow menu:

.open>#gridOverflowMenuContent{
 display: flex;
 flex-direction: column;
 }
 .linkoutQryGrd{
 order: 10;
 }
 .exportCurrentPageQryGrd{
 order: 20;
 }
 .exportAllDataQryGrd{
 order: 30;
 }
 .columnsQryGrid{
 order: 40;
 }
 .columnNamesQryGrid{
 order: 50;
 }

To achieve this, refactor the overflow menu component. If a custom component uses injection points,
such as QueryResultsItem, CalloutCardContainer, or CalloutContainer, then adapt the component
code as follows:

@Component({
 selector: 'my-CallOutCardContainer',
 template: `
 <pan class="btn btn-link text-left btn-block container-flex">
 </i>CallOutCardContainer

 `,
 })
 @Component({
 selector: 'my-CallOutCardContainer',
 template: `
 <li class="ellipsesDropdown">

 <i _ngcontent-c46="" class="nc-icon-outline ui-1_trash-simple margin-r
 overflow-imgMargin">
 </i>CallOutCardContainer

41Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

 `,
 })

Example - Adding Custom Component in Overflow Menu

This example adds a custom component at the second position in a layer’s information overflow
menu.

1. Configure an extensible component at the CalloutContainer injection point.
2. Uncomment the following CSS in the brand.css file.

.open>#overflowMenu{
 display: flex;
 flex-direction: column;
 }
 .exportAsCsv{
 order: 10;
 }
 .addAsAnnotation{
 order: 20;
 }
 .showOnMap{
 order: 30;
 }
 .editRecord{
 order: 40;
 }
 .deleteRecord{
 order: 50;
 }
 .dataBindTitle{
 order: 60;
 }
 .linkouts{
 order: 70;

 }
 /* Please replace CUSTOM-ELEMENT-NAME with the selector of custom
component to specify its order*/
 #overflowMenu>CUSTOM-ELEMENT-NAME{
 order: 30;
 }

42Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

3. Replace the CUSTOM-ELEMENT-NAME with the selector of the custom component. For example,
my-CallOutContainer is the selector in the following component:

@Component({
 selector: 'my-CallOutContainer',
 template: `
 <li class="ellipsesDropdown">

 <i _ngcontent-c46="" class="nc-icon-outline ui-1_trash-simple margin-r
 overflow-imgMargin">
 </i>CallOutCardContainer

 `,
 })

The entry in the brand.css file for my-CallOutContainer will be something like this:

/* Please replace CUSTOM-ELEMENT-NAME with the selector of custom
component to specify its order*/
 #overflowMenu>CUSTOM-ELEMENT-NAME{
 order: 30;
 }

After replacing the CUSTOM-ELEMENT-NAME to my-CallOutContainer, the entry looks like this:

/* Please replace CUSTOM-ELEMENT-NAME with the selector of custom
component to specify its order*/
 #overflowMenu>my-CallOutContainer'{
 order: 11;
 }

Also update the order property from 30 to 11, so that it is visible after the user selects the Export to
CSV option in Spectrum Spatial Analyst.

43Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Advanced Configuration Option

7 - Validating Your
Components and
Third-party Libraries
This section discusses how to validate your components and available
third-party libraries in the Spectrum Spatial Analyst Extensibility Platform.

In this section

Overview..45
Module Config Validator...45
Third-party Libraries and Versions...46
Branding Third-party Components...46
Path Restriction for Module or Components..47

Overview

This section discusses how to validate your components and available third-party libraries in the
Spectrum Spatial Analyst Extensibility platform.

Module Config Validator

Since the module configuration can become complex if many modules are added to it, the Spectrum
Spatial Analyst extensibility platform provides a module config validator that can be used to validate
the CustomAnalystModuleConfig.json file. The tool is simple to use, browse to it as follows:

1. Browse to
http://<InstallationURL>:8010/connect/analyst/mobile/#/customModuleValidation.
The following screen displays.

45Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Validating Your Components and Third-party Libraries

2. Choose and browse to a manually authored CustomAnalystModuleConfig.json file on the
file system. The tool will validate the file. It also shows any errors to the user

3. Once validation is complete, place the CustomAnalystModuleConfig.json file into the
customerconfigurations folder of the Spectrum Spatial Analyst installation.

The ModuleConfig validator performs semantic and syntactic validation of the
CustomAnalystModuleConfig.json, and returns any errors for missing braces, un-equal
parenthesis, missing mandatory fields, and so on. It also validates the location of modules and
external JavaScript files in the CustomAnalystModuleConfig.json file. We recommend that
you check the CustomAnalystModuleConfig.json file is valid before deploying it to Spectrum
Spatial Analyst in the customerconfigurations folder. Please refer to the tables for configuring the
CustomAnalystModuleConfig.json to check for mandatory and optional fields in the
CustomAnalystModuleConfig.json file.

Third-party Libraries and Versions

The module config validator page also provides a list of libraries that are part of the Spectrum Spatial
Analyst Extensibility Platform and its corresponding version. It is important to go over the list if you
want to onboard a new library in the Spectrum Spatial Analyst Extensibility Platform. If a library is
available in the Spectrum Spatial Analyst Extensibility Platform, you can use it directly in your
component.

Note: You cannot include two versions of the same library. If you need some feature that is
available in a later version of a library, you should request this in the next version of Spectrum
Spatial Analyst via tech support. If the library is not available in the list, you are free to onboard
it as described in “Referencing Third-party Libraries” section.

Branding Third-party Components

The Spectrum Spatial Analyst extensibility platform provides comprehensive branding/styling as part
of the brand CSS facility to customize the look and feel of Spectrum Spatial Analyst. Different brands
can be created and referenced in map projects via the map project settings. A component developer
can reference all of the branding classes in the CSS to adjust the look and feel of their components
as per the branding guidelines of Spectrum Spatial Analyst.

46Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Validating Your Components and Third-party Libraries

Path Restriction for Module or Components

It is recommended to put the components in the extensions folder in the
<ANALYST_INSTALL_PATH>/customerconfigurations/analyst/theme/extensions. It helps the
Spectrum Spatial Analyst installer in backing up and restoring these extensions during upgrades. It
ensures that during installation and upgrades, your extensions are not lost. Paths mentioned in the
CustomAnalystModuleConfig.json are static.

47Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Validating Your Components and Third-party Libraries

8 - Referencing Spectrum
Spatial Analyst APIs in
your Component

In this section

Use of Existing Services Store Actions, Selectors, and Components......49
NgRx Store...49
Openlayers...50
Useful Links..50

Use of Existing Services Store Actions, Selectors,
and Components

Use of Existing Services, Store Actions, Selectors, and Components.

This section describes how to use the existing services, store actions, selectors, and components
of the Spectrum Spatial Analyst Extensibility Platform.

NgRx Store

NgRx store is the base architecture for the Spectrum Spatial Analyst Extensibility Platform. It is the
primary mechanism to consume the resources of the Spectrum Spatial Analyst Extensibility Platform
in third-party components via the use of store actions and selectors.

For example, if you want to listen to the map click event in your custom component you will use a
selector to achieve this. Similarly, if you want to add a new layer to the map from your custom
component you will dispatch an action for this. For the store to be used in a component you need to
add it as a parameter in the component’s constructor. We have provided various examples to
showcase how it can be used.

The real power of the Spectrum Spatial Analyst Extensibility Platform comes from re-using many
services, components and third-party libraries that come out of the box with Spectrum Spatial Analyst.
For example, you can utilize the extensive set of services the platform exposes for the query features
by SQL, at an XY or within a user drawn region, rather than coding this into your component. There
are also multiple sets of utilities exposed via the Spectrum Spatial Analyst Extensibility Platform. A
complete list of these can be found in the API docs shipped with Spectrum Spatial Analyst installation.

Though API docs list all of the functionality in Spectrum Spatial Analyst components, developers are
advised to only use the public APIs or components of the Spectrum Spatial Analyst extensibility
platform. This is necessary to maintain backward compatibility. Backward compatibility is not
guaranteed when using private API, which is subject to change without notice.

49Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Referencing Spectrum Spatial Analyst APIs in your Component

Openlayers

Most third-party components are likely to need to interact with the Openlayers library that is available
out of the box with Spectrum Spatial Analyst. This may be to capture user interaction (such as map
clicks, drawing, or feature selection) or to add layers and features to the map or to move/zoom the
map.While it is entirely feasible to reference the map object and to interface directly with Openlayers,
in most circumstances.We recommend doing this via store actions.The use of store actions ensures
that the state is consistently maintained between the map and the legend panel, where actions on
one affect the other.

Useful Links

• https://angular.io/tutorial
• https://angular.io/api
• https://v2.angular.io/docs/js/latest/cookbook
• https://github.com/angular/quickstart
• https://code.visualstudio.com/download

50Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Referencing Spectrum Spatial Analyst APIs in your Component

9 - Gloassary of Terms

In this section

List of Terms...52

List of Terms

Component

Component This is an Angular 4 component written in typescript (TS) and provided to the Spectrum
Spatial Analyst Extensibility Platform to embed at run time.

Spectrum Spatial Analyst Extensibility Platform

The architecture of Spectrum Spatial Analyst that allows third-party components are dynamically
added at run-time and the set of core services that Spectrum Spatial Analyst provides for re-use by
embedded components.

SystemJS

This is the main module that Spectrum Spatial Analyst uses to boot-strap and enable run-time
embedding of third-party components in Spectrum Spatial Analyst.

CustomModulesDefinition.json

Configuration file configuring the definition of third-party components.

Module

The smallest unit of third-party code that the Spectrum Spatial Analyst Extensibility Platform can
embed. A module is an Angular 4 module of one or more components mentioned in point 1.

Store

Spectrum Spatial Analyst Extensibility Platform's front end architecture is based on the NgRx store.
Most of the services that a developer can use are available via Store actions and their corresponding
selectors. The Store is a bridge between the caller and executor. For example, if a third-party
developer wants to draw a layer on a map, then they dispatch an action with the necessary parameters
such as layerUrl/extents/center and so on via store.dispatch.

52Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Gloassary of Terms

A - Appendix

In this section

List of changes in Action payloads and Action names54
Extension points...63

List of changes in Action payloads and Action
names

Below is the list of actions whose payload have changed after upgrading the NgRx Store.

Add Layer

All actions updated in the module are listed below.

Updated payloadAction Name

type added { namedLayers: NamedLayerData[],
repositoryPaths: string[] }

AddSSNamedLayerAction

Annotations

No change in action creation except removing the new operator.

Databind

All actions updated in the module are listed below.

Updated payloadAction Name

type added {url:string}DataBindExecuteQueryAction

input/payload removedDataBindExecuteQueryFailureAction

input/payload removedRemoveDataBindAction

input/payload removedGetAllDataBindListAction

type added {databindList: DataBindList}UpdateDataBindListAction

Action added. Populates results from a databind join.
Previously only present as an action type string.

DatabindResultAction

Find My Nearest

All actions updated in the module are listed below.

Updated payloadAction Name

Removed input/payloadClearFmnStateAction

54Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

Added FmnState typeUpdateFmnStateAction

Layer Information

All actions updated in the module are listed below.

Updated payloadAction Name

removed input/payloadClearFeatureInfoAction

removed input/payloadResetCalloutFeaturesAction

Legend Module

All actions updated in the module are listed below.

Updated payloadAction Name

payload changed from any to LegendGroupUpdateLegendGroupAction

Login

All actions updated in the module are listed below.

Updated payloadAction Name

Before upgrade:GetEditPermissionTableListAction

this.store.dispatch(new
GetEditPermissionTableListAction(tablesList));

After upgrade:

this.store.dispatch(GetEditPermissionTableListAction());

Before upgrade:StoreFeatureEditTemplateMappingsAction

this.store.dispatch(new
StoreFeatureEditTemplateMappingsAction(payload));

After upgrade:

this.store.dispatch(StoreFeatureEditTemplateMappingsAction({
payload: EditTemplateMappingObject }));

Before upgrade:FeatureUpdateAction

this.store.dispatch(new FeatureUpdateAction(payload));

After upgrade:

55Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

this.store.dispatch(FeatureUpdateAction({ payload:
FeatureEditableTableObject}));

Map

All actions updated in the module are listed below.

Updated payloadAction Name

type added {layerName: string, prefix: string, type?: string}RemoveFeatureFromMapAction

type added { feature: GeometryObject, id: number | string,
featureName: string, shouldFeatureBeZoomed: boolean }

AddFeatureToMapAction

type added { featuresToHighlight?: string[],
annotationsDrawn?: string[], operation?: string }

HighlightFeaturesAction

input/payload removedCloseOverlayAction

input/payload removedMoveCopyRightInformationAction

type added SpatialLegendItem | AnnotationObject |
VectorLegendInput

UpdateLegendAction

type added { name: string, type: string, updatedLabelSources:
LabelSource[] }

UpdateLabelParamsAction

type added { name: string, type: string, color?: string,
layerList?: string[], params?:Unknown macro: {
queryResultMapJson}}

UpdateLayersParamsAction

type added {event: string, callback: Function }RegisterViewEventAction

type added {layerName: string, opacity: number}ChangeLayerOpacityAction

type added { layerName: string, visible: boolean, type?: string,
repositoryPath?: string }

ToggleLayerVisibilityAction

type added MapLayer | VectorLayerOptions |
VectorLayerVariant | RangeThematicOptions

AddLayerAction

type added { name: string, type?: string }DeleteLayerAction

input type changed to stringUpdateLayersStateActionOnDelete

input/payload removedTeleportMapInPrintContainerAction

type added { layerName?: string, layerRepositoryPath:string
}

RefreshLayerAction

input/payload removedUpdateMapSizeAction

56Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

type changed to { gMapHeight: number, gMapWidth: number
}

UpdateGoogleMapSizeAction

input/payload removedClearMapStateAction

type changed to MapBrowserEventMapClickedAction

input/payload removedClearMultiSelectFeatureGeometryAndData

input/payload removedClearMeasurementLayerAction

input/payload removedClearLegendLayersAction

MapProject/MapConfig

All actions related to MapConfig module have been moved to MapProject module.You need to
update all Import references related to MapConfig action.

Updated payloadAction Name

type added { payload?: MapProjectUIState }SaveProjectAction

type added { sName: string };OpenMapProjectSettingsAction

UpdateDataCompleteActionDataUpload

type added { payload: UploadDataDetails }

input/payload removedResetUploadDataAction

Marker Overlay

All actions updated in the module are listed below.

Updated payloadAction Name

MarkerInformationFmn type addedShowFmnMarkersAction

New Action to turn on Feature Hover stream (now disabled
by default)

StartFeatureHoverAction

New Action to turn of Feature Hover streamStopFeatureHoverAction

Print Module

All actions updated in the module are listed below.

57Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

type of payload changed from { status: true } to (payload:
EnableDisablePrintModePayload = new
EnableDisablePrintModePayload(true))

EnablePrintModeAction

class EnableDisablePrintModePayload {EnableDisablePrintModePayload

status: boolean = false;

constructor(enable: boolean)

{ this.status = enable; }

}

type changed from public payload = { status: false }; to
(payload: EnableDisablePrintModePayload = new
EnableDisablePrintModePayload(false))

DisablePrintModeAction

type of payload has been changed from { file: string, type:
string }) to LoadPrintTemplateConfig

LoadPrintTemplateConfigAction

which has been defined as :- interface
LoadPrintTemplateConfig { file: string; type: string; }

no changesCustomeAnalystModuleConfig

Query

All actions updated in the Query module are listed below.

Updated payloadAction Name

type added { queryName: string } :
this.store.dispatch(SelectQueryAction({ queryName:
'MyQuery1'}));

SelectQueryAction

Before upgrade:

this.store.dispatch(new SelectQueryAction(queryName));

After upgrade:

this.store.dispatch(SelectQueryAction({
queryName:legendGroup.name }));

type added { queryName: string }DeleteQueryAction

Before upgrade:

this.store.dispatch(new DeleteQueryAction(queryName));

After upgrade:

58Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

this.store.dispatch(DeleteQueryAction({ queryName: queryName
}));

type added { predefinedFilters:string : string[] }LoadPredefinedFiltersSuccessAction

Before upgrade:

this.store.dispatch(new
LoadPredefinedFiltersSuccessAction(predefinedFilters));

After upgrade:

this.store.dispatch(LoadPredefinedFiltersSuccessAction({
predefinedFilters: filters }));

type added { predefinedFilters: string[] }LoadVectorFiltersSuccessAction

Before upgrade:

this.store.dispatch(new
LoadVectorFiltersSuccessAction(predefinedFilters));

After upgrade:

this.store.dispatch(LoadVectorFiltersSuccessAction({
predefinedFilters: filters }));

type added { adminQueries: string[] }LoadAdminDefinedQueriesAction

Before upgrade:

this.store.dispatch(new
LoadAdminDefinedQueriesAction(adminQueries));

After upgrade:

this.store.dispatch(LoadAdminDefinedQueriesAction({
adminQueries: adminQueries }));

type added { filterName: string }SelectQueryFilterAction

Before upgrade:

this.store.dispatch(new SelectQueryFilterAction(filterName));

After upgrade:

this.store.dispatch(SelectQueryFilterAction({ filterName:
filterName }));

removed input/payloadClearQueryStateAction

Before upgrade:

this.store.dispatch(ClearQueryStateAction({}));

59Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

After upgrade:

this.store.dispatch(ClearQueryStateAction());

Resource Selector

All actions updated in the module are listed below.

Updated payloadAction Name

Before upgrade :UpdateSelectedResourcePath

this.store.dispatch(new UpdateSelectedResourcePath(path));

After upgrade :
this.store.dispatch(UpdateSelectedResourcePath({resourcePath:
path}));

Before upgrade :ToggleResourceSelectorVisibility

this.store.dispatch(new ToggleResourceSelectorVisibility(true));

After upgrade :

this.store.dispatch(ToggleResourceSelectorVisibility({toggleVisiblity:
true}));

Before upgrade :ToggleResourceSelectorLoading

this.store.dispatch(new ToggleResourceSelectorLoading(true));

After upgrade :
this.store.dispatch(ToggleResourceSelectorLoading({toggleLoading:
true}));

Before upgrade :UpdateResourceListData

this.store.dispatch(new UpdateResourceListData(data[]));

After upgrade :

this.store.dispatch(UpdateResourceListData({listViewData:
data[]}));;

Spatial Named Resources

All actions updated in the module are listed below.

Updated payloadAction Name

type changed from object to DescribeNamedMapResponseSetNamedMapDescriptionAction

60Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

types added LayerDescription | DescriptionError)SetNamedLayersDescriptionsAction

VectorTable type added to optional inputSelectVectorTableAction

optional tableId?: string addedSelectVectorColumnAction

type changed from object to {tableRef: string, data:
TableMetadata}

SetNamedTableDescriptionsAction

type changed from object to {[name: string]: TableMetadata}GetNamedTablesDescriptionAction

Thematic

All actions updated in the module are listed below.

Updated payloadAction Name

type added {tableRef: string; column: ThematicColumn;}GetThemeListAction

type added string[]CompleteThemeListAction

type added {tableRef: string;}GetGeometriesListAction

has been deprecated see CreateThematicAction or
RequestThematicLegendAction

CreateIndividualThematicAction

added. Used to request a legend to be generatedRequestThematicLegendAction

input/payload removedClearThematicStateAction

input/payload removedClearThematicLegendAction

has been deprecated see CreateThematicAction or
RequestThematicLegendAction

CreateThematicLegendAction

Used to create a generic Thematic with all known detailsCreateThematicAction

type added ThematicLegendDataCompleteThematicLegendAction

type changed to ThematicLayerAddThematicLayerAction

(ThematicLayer) included in typeGetThematicLegendsAction

User Authorization

All actions updated in the module are listed below.

Updated payloadAction Name

input/payload removedClearUserAuthorizationStateAction

type added { layerList: string[] }UpdateNamedLayersListInAuthStateAction

61Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Updated payloadAction Name

type added { folders: string[] }SetWritableFoldersForUserAction

type added { tileList: string[] }UpdateTileServiceProfilesForUserAction

type added { wmsProfiles: string[] }UpdateWMSProfilesForUserAction

type added { namedTableList: string[] }UpdateNamedTablesListInAuthStateAction

type added { namedMapList: string[] }UpdateNamedMapsListForUserAction

type added { namedTileList: string[] }UpdateNamedTilesListForUserAction

type added { wmsName: string }DescribeWMSProfileAction

type added { tileServiceName: string }DescribeTileServiceProfileAction

Left Panel Open-Layer map

All actions updated in the module are listed below.

Updated payloadAction Name

Before upgrade:ClearMultiSelectFeaturesDataInitiatedAction

this.store.dispatch(new
ClearMultiSelectFeaturesDataInitiatedAction(payload));

After upgrade:
this.store.dispatch(ClearMultiSelectFeaturesDataInitiatedAction({inputData:
payload}));

Before upgrade:ClearMultiSelectFeaturesDataCompletedAction

this.store.dispatch(new
ClearMultiSelectFeaturesDataCompletedAction(payload));

After upgrade:

this.store.dispatch(ClearMultiSelectFeaturesDataCompletedAction({inputData:
payload}));

62Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

Extension points

List of Parent Component Name

The following is a list of parentComponentName values in the Spectrum Spatial Analyst.You can
add a child component inside them to extend and customize a component.

DescriptionparentComponentName ValueNo.

Use this parent component to add a component inside
the Add panel on the right of SSA main page.

ADD_PANEL1.

Use this parent component to add component inside
overflow menu for annotation item in legend panel.

ANNOTATION_LEGEND_ITEM2.

Use this parent component to add component inside the
AnnotationLegendGroupItem.

ANNOTATION_LEGEND_GROUP_ITEM3.

This will add a component inside the Annotation tool
container.

ANNOTATION_TOOL_CONTAINER4.

This will add a component inside the
MeasurementToolContainer

MEASUREMENT_TOOL_CONTAINER5.

This will add a component inside the
BaseMapSwitcherContainer

BASE_MAP_SWITCHER_CONTAINER6.

This will add a component inside the
CalloutCardContainer

CALLOUT_CARD_CONTAINER7.

This will add a component inside the Callout container.CALLOUT_CONTAINER8.

This will add a component inside the LayerPanel.LAYER_PANEL9.

This will add a component inside the LegendContainer.LEGEND_CONTAINER10.

This will add a component inside the LeftPanelContainer.LEFT_PANEL_CONTAINER11.

This will add a component inside the
MapConfigSwitcherContainer.

MAP_CONFIG_SWITCHER_CONTAINER12.

This will add a component inside the MVTLegendItem.MVT_LEGEND_ITEM13.

This will add a component inside the QueryLegendItem.QUERY_LEGEND_ITEM14.

This will add a component inside the QueryResultsItem.QUERY_RESULTS_ITEM15.

This will add a component inside the RightPanel.RIGHT_PANEL16.

This will add a component inside the RightPanelToolbar.RIGHT_PANEL_TOOLBAR17.

63Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

DescriptionparentComponentName ValueNo.

This will add a component inside the
SearchBoxContainer.

SEARCH_BOX_CONTAINER18.

This will add a component inside the SettingsPanel.SETTINGS_PANEL19.

This will add a component inside the SpatialLegendItem.SPATIAL_LEGEND_ITEM20.

This will add a component inside the
SpatialSubLegendItem.

SPATIAL_SUB_LEGEND_ITEM21.

This will add a component inside the
ThematicLegendItem.

THEMATIC_LEGEND_ITEM22.

This will add a component inside the TMSLegendItem.TMS_LEGEND_ITEM23.

This will add a component inside the
VectorLayerLegendItem.

VECTOR_LAYER_LEGEND_ITEM24.

This will add a component inside the WMSLegendItem.WMS_LEGEND_ITEM25.

This will add a component inside the XYZLegendItem.XYZ_LEGEND_ITEM26.

This will add a component inside the
CalloutContainerComponent.

CALLOUT_CONTAINER_COMPONENT27.

This will add a component inside the
LegendContainerComponent.

LEGEND_CONTAINER_COMPONENT28.

This will add a component inside the
DataCreationComponent.

DATA_CREATION_COMPONENT29.

Spectrum Spatial Analyst have been supporting these components from the previous releases and
will continue to support them along with the new injection points.

Note: There are more injection points in addition to those listed here. The Spectrum Spatial
Analyst team will continue to add more injection points in the future.

64Spectrum Spatial Analyst 2022.1 Extensibility User Guide

Appendix

1700 District Ave Ste 300

Burlington MA 01803-5231

USA

www.precisely.com

Copyright 2007, 2022 Precisely

	Table of Contents
	Introduction
	Overview
	Static Container
	Dynamic Container
	Removable Component

	Hello World Extension Example
	Prerequisite
	Embedding Angular 11 component
	Angular Compilers
	Creating and Invoking the Hello World Extension in JIT mode
	Creating and Invoking the Hello World Extension in AOT mode

	AOT-enabled Extension Support
	Summary

	Upgrading Extensible Components
	Upgrading Extensible Components

	Setting up Extensible AoT-enabled Dev Environment
	Steps to create an Extensible AoT-enabled Dev Environment

	Configuring New Components
	Configurations
	Containers

	Advanced Configuration Option
	Referencing Third-party Libraries
	Specifying Map Configuration that Shows Components
	Adding Custom Components under the Parent Components
	Adding a Custom Component at a Specific Position
	Removing Existing Spectrum Spatial Analyst Components
	Map Project-based Component Removal
	Removing Components using Config File
	Removing Components using Functionality Profile Settings
	Component Context Parameter
	Component Initialization Parameter
	Component that Can Run at Startup
	Component Without HTML
	Reordering Left Hand Panel Menu
	Example - Adding Custom Component in Overflow Menu

	Validating Your Components and Third-party Libraries
	Overview
	Module Config Validator
	Third-party Libraries and Versions
	Branding Third-party Components
	Path Restriction for Module or Components

	Referencing Spectrum Spatial Analyst APIs in your Component
	Use of Existing Services Store Actions, Selectors, and Components
	NgRx Store
	Openlayers
	Useful Links

	Gloassary of Terms
	List of Terms

	Appendix
	List of changes in Action payloads and Action names
	Extension points

