
EngageOne Generate

Production Guide

Version 6.6 Service Pack 11

1 - Preface

Conventions used in this guide5

2 - Working with Generate

About Generate...8
Using segmented resources..................................8
Code page support..9
Return codes...9
Messages..9
Legacy support..10
OPS file...11
Using symbols...27
Running Generate under z/OS............................29
Running Generate under UNIX and Windows.....31

3 - Running Generate in Server
Mode

Server Mode Environment...................................34
Running Server Mode...40

4 - Running Generate as a
Started Task

Requirements..46
Defining the environment....................................47
Running Started Task..58
Extended configuration file examples..................60

5 - Programming PCE

The PCE environment...63
Function overview and script command

summary..63
Script syntax..74
PCE command reference....................................78
Composition Edit Commands............................172
Script file sample...198

6 - Running PCE

PCE resources..201
Creating an initialization file...............................203
INI section summary..205
Start the job...217

7 - Defining external keyed
images

Embedding external keyed images...................221
External key map file...221
DOC1MAKE..223
XML structure of external key map....................227
Example Keyed image XML..............................236

8 - Working with resources in
a HIP file

Extracting and manipulating resources.............239
RPU...240
DOC1ACU...248

Table of Contents

9 - Processing PDF output

DIME...252
DIME INI Reference..253
Running DOC1DIME...257

10 - Working with HTML

Deployment considerations...............................260
EDU...267

11 - User exits

Compatibility ...273
Types of user exits..273
Preparing Generate for User Exits....................274
Creating the user program................................275
Programming guidelines & function overview....277
Code samples...282
User exit API function library.............................291

12 - Structured XML journals

<ProductionJournal>...317
<CompositionDate>...318
<OutputDevices>...319
<StartOfJob>...320
<JE>..321
<Publications>...322
<Pub>..323
<PBO>...324
<PBC>...325
<Doc>..326
<DO>...327
<PG>...328
<PGO>..329
<PGC>..330
<JE>..331
<EndOfJob>..332
<JE>..333
Example ...334

13 - Output datastream
formats

Working with Designer output formats..............337
Predefined output formats.................................338
Customizing output formats...............................340

14 - Appendix A - Generate
SCP and Lookup Table
codepage Overrides

Generate SCP and lookup table override values.352

3EngageOne Generate 6.6 Service Pack 11 Production Guide

1 - Preface
This section describes typographic and naming conventions used throughout
this guide.

In this section

Conventions used in this guide ..5

Conventions used in this guide

Typographic conventions

text between square brackets are optional.[...]

parameters between curly braces represent a list
of options, one of which must be chosen.

{ opt1 | opt2 }

represents parameter data which should be
replaced with customized values.

Text in italics

text represents constant command text which
should be typed exactly as written.

UPPER CASE

space character (used only if spaces are not
apparent).

•

File naming conventions

The following conventions are expected whenever you need to specify file names in the Generate
environment.

z/OS

All files are referenced by Data Definition (DD) labels with actual datasets being assigned to these
labels in start-up JCL. Example:

Output=DD:AFPOUT

Windows

Files are referenced by path (optional) and filename. If a path name is not specified Generate will
search the current directory (from which Generate was started) for the filename. Example:

Output=C:\DOC1HOST\AFPOUT\APPLIC1.AFP

UNIX

Files are referenced by path (optional) and filename. If a path name is not specified Generate will
search the current directory (from which Generate was started) for the filename. Example:

Output=/doc1host/afpout/applic1.afp

Updates to this Guide This guide is issued in electronic format (PDF) only. It may be reissued from
time to time to include corrections or additions that have been made since the original issue. These

5EngageOne Generate 6.6 Service Pack 11 Production Guide

Preface

changes will be indicated with a change bar in the margins. The latest version of all product user
guides can be downloaded from the DOC1 Support Net website.

6EngageOne Generate 6.6 Service Pack 11 Production Guide

Preface

2 - Working with
Generate
Generate is the batch program that processes production jobs on your
chosen host system. Generate reads information about the job requirements
from a HIP file, merges the input data file it receives with your publication
designs and produces output datastreams ready for printing or presenting
on your intended output devices.

In this section

About Generate..8
Using segmented resources...8
Code page support...9
Return codes..9
Messages...9
Legacy support...10
OPS file..11
Using symbols..27
Running Generate under z/OS...29
Running Generate under UNIX and Windows..31

About Generate

The program typically has the name DOC1GEN on all platforms. You will need to run the program
from the batch environment appropriate to your host system and production process: command line,
script, JCL, etc.

The name and location of the HIP file that is to control a job is specified as a parameter to the
DOC1GEN program when it is started. Normally, all other file references will have been specified in
the production job settings that were used when the job was published in the Designer. If required
however, you can create an Override Production Settings file (OPS) in which you can specify
additional/alternative file references and other settings. Where used an OPS file is specified as a
second parameter to the DOC1GEN start-up command.

Note: On some supported platforms memory resident versions of DOC1GEN are available
(Server Mode and Started Task). These allow a Generate production environment to remain
loaded and for batches of input data passed to the defined channel to be processed
dynamically. You will need to configure the environment before running in these modes and
the launch method will differ from that described in this section. For more details see “Running
Generate in Server Mode” and “Running Generate as a Started Task” in the Production Guide.

You will need to ensure that all input files referenced in the productions settings and the OPS file
are available at the locations specified when DOC1GEN is started. For jobs running under z/OS
indirect file references using DD names are typically used in which case the start up JCL will need
to include DD cards with these labels that indicate the actual datasets.

Output files will be created with the file location/names specified in the production settings and the
OPS file. You will need to ensure that suitable disk space is available to receive the output at the
defined location. Under z/OS you will need to allocate suitable datasets either in advance or as part
of start-up JCL if DD references are used.

Using segmented resources

Where you are using independently published (segmented) resources or Active Content you should
be aware of the following:

• Generate needs to know where to find the segmented resources as they are not present in the
design HIP file specified on the command line. The resource HIP or HIP's necessary for a job must
be specified in the OPS file using the <Input> section ResourceHIP and
ActiveContentLocation keywords. One ormore ResourceHIP keywords can be used, allowing

8EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

device specific resources to be kept separate if desired. Segmented resources must be in the same
repository as the publication design.

• Generate has no control over resource versions when working in this way. It is the user’s
responsibility to ensure that all HIPs are compatible and contain the appropriate resources.

• Care must be taken if resource HIPs specified by the ResourceHIP keyword contain conflicting
device settings for the same device type. In this case the settings used by the last loaded HIP will
be used, possibly resulting in unexpected output.

• The <Output> Name keyword is specified differently when resources are published independently.
See Output in the OPS section.

Code page support

In order to read input data and configuration settings specified on your production system DOC1GEN
needs to be able to convert the data it receives into the Unicode format it expects internally. To do
this it uses a range of code page tables that define the required translations. For most Western
applications these tables are contained within DOC1GEN itself and you need to take no specific
action in the production environment. Due to their potentially large size, code page tables for
non-Western applications are stored in a separate Extended Code Page (ECP) file and you will need
to ensure this is made available to DOC1GEN by referencing it when starting the program.

Return codes

DOC1GEN always returns 0 (zero) for successful completion or where warning messages (only)
have been issued. Return code 16 is issued where a failure has occurred – i.e. where an abort
message has been issued.

Messages

Messages issued by Generate are always written to the standard output medium for the system on
which the program is running. A list of possible messages and their explanations can be found on
the EngageOne Compose Technical Support web site at https://support.precisely.com/.

9EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

https://support.precisely.com/

Legacy support

The DOC1 Series 5 production engine cannot process jobs created in a pre-Series 5 environment
without modification. However, you can use Generate to automatically launch the Series 4 production
engine (known as EMFE). To do this you need to call the DOC1GEN program with an OPS file (see
below for details) that indicates the location of the EMFE program and the relevant EMFE initialization
file. You should refer to your Suite 4 user documentation for details of the parameters and files that
are required when using this method.

10EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

OPS file

An override production settings file allows you to specify supplements and alternatives to some of
the job settings that were used when publishing a publication design.

The use of an OPS file is optional unless you have not specified all file references and license data
in the publishing task.

An OPS is a text file. Options are coded as keywords and associated parameters within several
distinct sections. Sections must be introduced with the relevant name within angle brackets, for
instance: <Journal>. If you want to include comments in the OPS file, prefix the comment line with
a semicolon character.

No sections or keywords are compulsory and you should code only those options that suit your
requirements. All missing options are assumed to have been specified as part of the publishing task.

It is important to note that doc1gen will not create folders it requires if they do not already exist. Any
folders required by doc1gen must therefore be created before execution. All file references can
include both path and file name as required. Ensure that you code all such references in a format
suitable to the operating system under which you are running the production engine.

<Generate>
ProgramLocation=Filename
EMFE=Filename
INI=Filename
ServerMode={True|False}

<Input>
DataInput=Filename
MessageLib=Filename
MessagesFile=Filename
ResourceHIP=Filename
ActiveContentLocation=Path

<Journal>
Name =Filename
Name =Filename...

<LookupTable>
Name =Filename
Name =Filename
...

<LookupTableCodePages>
Name =CodePageValue
Name =CodePageValue
...

11EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

<KeyMap>
Name =Filename
Name =Filename
...
Mode ={Cached|Runtime}

<DIJ>
Name =Filename
...

<Output>
Name =Filename[,TempFilename]
Name =Filename[,TempFilename]
...
MessageAuditTrail=Filename

<eHTML>
BarcodeImageURL=URL
BarcodeFileTemplate=Filename
GraphicImageURL=URL
GraphicFileTemplate=Filename

<trace>
Outputfile=Filename
TraceLevel={off|default|verbose|complete|timing|completetiming}
outputcodepage={UTF8|default}
memlimit=Memory
publication=Number

<Messages>
MandatoryNotPlaced=Stop|Continue|Warn
MandatoryMessageError=Stop|Continue
OptionalMessageError=Stop|Continue
CampaignDate=String
Cycle=String
MessageProcessing={Yes|No}
NoMessages=Stop|Warn

<Server>
CommandQueue= {QueueID|PIPE:QueueID| SOCK:address:port|HOST:hostname:port}
Commandnn=CommandString
CommandBefore=CommandString
CommandOK=CommandString
CommandFail=CommandString
CommandEnd=CommandString AbortOnFail= {True|False}
...

<Advanced>
ErrorFile=Filename
LogFile=Filename
Checkpointfile=Filename
CPconsole= {0|1}

12EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

ConstantShapeOffPage=Abort|Warn|Ignore
DynamicShapeOffPage=Abort|Warn|Ignore
RangeOfPublications=n
WorkSpace=Filename
SystemTempFiles={Yes|No}
SuppressMessages={NONE|ALL|INFORMATION|<comma separated message IDs>}
ReportMemoryUsage={Yes|No}
eHTMLFluidReduceImagesToFit={Yes|No}
...

<OverFlow>
OverFLowFile=Filename
OverFlowSize=Memory

<Custom>
Name=Parameter
Name=Parameter
...

Sections, keywords and parameters:

If required, use this section to specify an alternative
production engine program from that associated with the
DOC1GEN program with which OPS was launched.

<Generate>

Can be used to indicate an alternative DOC1 Series 5
engine. Where used, Filename must indicate a PCOM.DLL
file (or equivalent name depending on your production
platform) as supplied with versions of Generate.

ProgramLocation

Can be used to indicate a DOC1 Suite 4 production engine.
Where used, Filename must indicate an EMFE.EXE file (or
equivalent name depending on your production platform). If
you use this option you must also code the INI keyword to
specify an EMFE initialization file that contains the settings
for the job to be launched. If you use the EMFE keyword all
other OPS settings are ignored.

EMFE

Setting the keyword to True initiates Server Mode. Setting
the keyword to False overrides any Server Mode settings
contained in the HIP file and DOC1GEN runs in batch mode.

ServerMode

<Input>

13EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Filename specifies themain Designer input file; i.e. the keyed
record, delimited or XML file that will provide variable data
to the current job.

DataInput

Filename specifies the DOC1GEN production message
library (PCOMEng.DLL or equivalent). Use this option if the
message library file is not in the same location as the
DOC1GEN program with which the OPS is to be launched.
Also use it if the ProgramLocation or EMFE keywords are
being used to specify an alternative production engine in
which case the message file associated with the selected
engine should be specified.

MessageLib

Filename specifies the Message1/ Content Author HIM files
to be used (note that you can use wildcard characters in the
filename, e.g. re*.him). These files contain the required
messages.

MessagesFile

Filename specifies the resources file used when publishing
output definition separately. Each additional HIP specified
relates to a resources HIP targeted at a specific device.
These must pair up with entries in the <Output> section.

ResourceHIP

Used when publishing Active Content separately. Path
specifies the location of the Active Content files. Use %1 in
the path as a place holder for the Active Content HIP file
name. This name is generated automatically by Designer
when publishing the Active Content and must not be
changed. It is in the form Rxxxxxxx, where x is an
alphanumeric character, for example R000012A. If %1 is
omitted, the Active Content file name (Rxxxxxxx) will be
appended to Path. This is an acceptable format for Windows
and UNIX, but care should be taken on mainframe systems
such as z/OS.

ActiveContentLocation

This section allows you to specify or override the file
references to be used when creating journal files for the
publication. Name should be the file alias assigned to a
journal object in the publication design. Filename should
indicate the actual file to receive the journal output. You may
code as many entries as necessary to meet the number of
journals to be created by the publication.

<Journal>

14EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This section allows you to specify or override the file
references to be used with lookup table functions within the
publication. Name should be the file alias assigned to a
lookup table function in the publication design. Filename
should indicate the actual file containing the lookup table
data. You may code as many entries as necessary to meet
the number of lookup tables referenced by the publication.

<LookupTable>

This section allows you to associate code page values to
lookup table assignments defined in the <LookupTable>
section. Refer toGenerate SCP and lookup table override
values on page 352 for details on lookup table code page
override values.

<LookupTableCodePages>

This section allows you to specify or override the settings
used with key maps within the External Key Maps section
of a production job or Publish Wizard.

<KeyMap>

The file alias assigned to a key map in the publication design.
Filename should indicate the actual file containing the key
map data. You may code as many entries as necessary to
meet the number of key maps referenced by the publication.

Name

Specifies how the key map is read at run time and is applied
to all the key maps associated with a publication. For more
details, see the Publishing and Deployment section in the
Designer User’s Guide.

Mode

Cached will copy the key map into memory, making access
much faster. This is the default setting.

Runtime will access the key map externally each time. This
does not use any extra memory, but will not be as fast. You
may want to use this option if there are a great number of
entries in the map and memory is limited.

This section allows you to override the settings specified for
the Document Interchange Journal in the Output Files
section of the Publish Wizard. See Appendix C in the
Designer User’s Guide for details.

Name corresponds to the Name field which is automatically
assigned when using the Publish Wizard.

Filename corresponds to the Document Interchange
Journal field and indicates the actual DIJ file you want to
use.

<DIJ>

15EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This section allows you to specify or override the file
references to be used when creating the output datastream
files produced by the job.

<Output>

A - Use the Name for regular publishing

B- or the Device name when publishing the resources
separately.

The Name is the reference name assigned to the output file
when publishing the publication and optionally, a temporary
file.

Filename indicates the actual file containing the datastream.
If set to ‘null’ the publication will be not be generated for that
output device, e.g. output2=null.

If required, you can override the name of the temporary file
used by Generate for a specific output device using
TempFilename. This is used in preference to the
Workspace. When specifying output datastream files you
may code as many entries as necessary to meet the number
of output datastreams to be created by the publication.

Name

Filename is the file to be used for Message1 and Content
Author audit information for each message that is included
in the published documents.

If you specify %d in the file name, for example:

MessageAuditTrail=trace%d.out.txt

then %d in the file name will be replaced with the date and
time the file was generated.

MessageAuditTrail

<eHTML>

16EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

URL is the location where barcode images will be placed for
embedding in the HTML pages.

BarcodeImageURL

Filename is the base file name to be used for barcode GIF
images. It must be in a format suitable for the host platform.
Two parameters can be included to make the filename
unique – %1 is the generated filename and %2 is an index
number.

BarcodeFileTemplate

URL is the location where graphics images will be placed
for embedding in the HTML pages.

GraphicImageURL

Filename is the base file name to be used for graphics JPG
images. It must be in a format suitable for the host platform.
Two parameters can be included to make the filename
unique – %1 is the generated filename and %2 is an index
number.

GraphicFileTemplate

<Trace>

Filename is the name of the file for the trace information. If
no file is specified the output is sent to the standard output
medium of the Generate host environment (e.g. command
prompt window, system log, etc.).

If you specify %d in the file name, for example:

OutputFile=traceouput%d.txt

then %d in the file name will be replaced with the date and
time the file was generated.

OutputFile

This controls the amount of trace information that is output.
Offwrites nothing i.e. turns trace off.Default shows the path
that Generate took when the error occurred. This is in the
form of a tree structure. This enables the error to be tracked
down to a particular object in the publication design.

Verbose and Complete modes include additional information
such as internal references and the instructions that are
being executed. These settings are used by Precisely
Support to help troubleshoot when necessary.

The Timing modes adds additional information to the trace
on the relative time taken to execute parts of the logic. The
times are measured in ticks, which are machine-dependent
units of time.

TraceLevel

17EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This allows you to change the code page for the output file
from the default host code page to the general Unicode
UTF8 code page.

OutputCodePage

Controls the maximum amount of memory that the trace
module can use for buffering trace information. A value of
‘0’ means no limit.

MemLimit

Allows the user to specify the number of a publication to be
traced in addition to the first publication that causes the error.
This will only be traced if it occurs before the publication with
the error (that causes the trace to stop processing).

Publication

<Messages>

Select the action you want Generate to take when a
mandatory message cannot be included in a document for
which it was intended. The default is to Stop processing,
otherwise you can ignore the error and Continue or issue
aWarning and continue.

MandatoryNotPlaced

Select the action you want Generate to take when a
mandatory message has unresolved links – typically when
a font used by the message is not included in the resource
pack or when a data field used has not been mapped. The
default is to Stop processing or you can ignore the error and
Continue processing.

MandatoryMessageError

As above but for non-mandatory messages.OptionalMessageError

Specifies the date to be used when selecting messages
using the activation and expiration attributes as defined within
the Message1 and Content Author environments. Options
are:

Auto – the current system date

Auto+|-<n><d|w|m> – the current system date plus or minus
the specified number of days, weeks or months, e.g
Auto+10d, Auto-3w dd/mm/yyyy ormm/dd/yyyy – a specific
date

CampaignDate

String defines which cycle (defined in the Message1 and
Content Author environments) to use. If defined, only
messages belonging to this cycle will be selected.

Cycle

18EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Allows details for message rejections to be output to the
standard output medium for the system onwhich the program
is running. The default is No.

MessageProcessing

Specify the Generate action to be taken if messages are
expected, but none can be found in the Messages file. The
default is to Stop processing, or you can ignore the error,
issue aWarning and continue.

NoMessages

Setting this to Yes will ensure that any mappings that have
been applied to fonts used in a publication in the Designer
(i.e. are in the HIP file) will also be applied to the same fonts
used in messages created in Content Author or Message1.
The default is No.

FontMappingFromHip

The keywords in this section are used with the Server Mode
method of running DOC1GEN under UNIX and Windows.
For more details on Server Mode, refer to Running
Generate in Server Mode on page 33 .

<Server>

Including this keyword in the OPS file initiates server mode.
QueueID – is the name of the communication channel in
the format applicable to the operating system. Under UNIX
this is the name of the existing pipe and under Windows this
is the name of a pipe which will be set up automatically when
Server mode is initiated. This must always use the following
conventions: \\.\pipe\name address:port – is the name
of a communication channel specified as a TCP/IP 'dot'
address and an associated port number, such as
10.133.54.202:5000 hostname:port – is the name of
a communication channel specified as a host name known
to the current system and an associated number, such as
spa02:5000

CommandQueue

– The number nn is used to reference the command when
the DOC1SBMT program is executed. The command string
can pass up to nine parameters which can be user defined
or predefined elements of the Server Mode environment.
The predefined elements are identified by fixed symbols as
in the following list (assumes that defaults are being used,
i.e. a ValuePrefix of “&” and ValueSuffix of “.”): &I. – input
file name &Pn. – print file name (where n is the file alias
assigned to the output file when publishing a publication, i.e.
&POutput1. &POutput2.)

Commandnn

19EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

&R. – server mode return code…

0 job OK

10 PAGE 1 of N overflow threshold exceeded

15 error executing system command specified by the user

25 failed during processing of job

30 failed during termination of job

50 failed during initialization of processing. Most likely input
or print filenames were invalid

&S. – job submission comment generated automatically by
Server Mode to identify the process uniquely &Jn. – journal
file (where n is the file alias assigned to a journal object,
e.g. &JDOCJ1. &JDOCJ2.) &Dn. – Document Interchange
Journal (where n is the file alias assigned to a DIJ object,
i.e. &Ddij1.)&C. – pages generated to the point at which the
command is called

Optionally identifies a system command that will be executed
prior to the start of processing application data with
DOC1GEN. See Commandnn for more information.

CommandBefore

Optionally identifies a system command to be executed only
after the application data has been processed successfully
by DOC1GEN. See Commandnn for more information.

CommandOK

Optionally identifies a system command to be executed only
when the application data fails to be processed successfully
by DOC1GEN. See Commandnn for more information.

CommandFail

Optionally identifies a system command to be executed only
after the application data has been processed successfully
by DOC1GEN. See Commandnn for more information.

CommandEnd

This defines the behavior of DOC1GEN if a print job run in
Server Mode fails. The default True will abort Server Mode,
while False gets Server Mode to attempt to discard the failing
print job and await further commands.

AbortOnFail

<Advanced>

20EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This option is used to specify the file that will receive any
publication datasets that cannot be processed by Generate
when a production job is run. It will override the file specified
in the Data record file option in the Publish Wizard.The
filename must be in the required format for the operating
system.

ErrorFile

This option is used to specify the file that will receive any
error or warning messages issued by Generate. The
filename must be in the required format for the operating
system.

LogFile

This option is used to specify the file that will receive the
messages that indicate which publication data set is currently
being processed.

Checkpointfile

Checkpointing messages can be reported to the standard
output medium of the Generate host environment
(e.g. command prompt window, system log). Set to 0 – do
not report messages (default) 1 – switch reporting on.

CPconsole

When this is included after Generate has failed, it will restart
and continue processing from the last checkpoint using the
information in the checkpoint file. See also the Publish
Wizard checkpoint progress option in the Designer User’s
Guide. This can be included anywhere in the OPS file.

#Restart

This is used if you want Generate to process only a subset
of the publication data sets available in the input data file.
You may want to do this if you need to rerun portions of a
production job without creating a new input data file. You
can indicate the sequential numbers of the publication data
sets to be processed as follows:

27,280,674 – specific publications

100-1000 – publications between 100 and 1000 1000+ –
all publications after the first 1000 366,500-1000,2000+
– combinations.

RangeOfPublications

21EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Defines the action Generate should take if graphic objects
(including text boxes) positioned using constant values for
both X and Y offsets are positioned all or in part outside the
active logical page area. Options are:

• Abort – Generate aborts immediately. Any output files
that have been created by the job are deleted (if this is
permitted by the host operating system).

• Warn – a warning message is issued for each object that
is found to be positioned outside the logical page area.
Processing of the job continues as normal. The off page
object is included in the output datastream; the effect of
this in the printer/browser environment will depend on the
device type.

• Ignore – as above but no warning message is issued.
This is the default for objects placed using constant values.

ConstantShapeOffPage

As above but this option applies to graphic objects positioned
using variable data for either offset.

DynamicShapeOffPage

This option specifies a file template used by Generate to
create temporary files at runtime. Refer to the section on
creating a host object in the Designer User’s Guide for further
information Use either the %1 or %2 placeholders to create
unique filenames, refer to the Publish Wizard checkpoint
progress option in the Designer User’s Guide for further
information. This option is not for use on z/OS. However you
can define a temporary file explicitly when specifying the
output file, see output file for details.

WorkSpace

When set to Yes the host operating system will allocated
temporary files for Generate to use at runtime. Note that
either this option or the Workspace option should be used
to manage temporary files.

SystemTempfiles

Use this setting to indicate the level message suppression
used by Generate for your production job. You can either
indicate the category of messages to be suppressed or
indicate specific messages that you do not want to be
reported. Choose from one of the options that follows:

• NONE - No messages suppressed
• INFORMATION - All information messages suppressed
• ALL - All warning and information messages suppressed
• A list of comma separated message IDs to suppress (e.g.
121,420) When using this option you must specify only
the identifier that appears before each message when
issued.

SuppressMessages

22EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This option causesGenerate to produce amessage reporting
the total amount of memory in bytes allocated during the
production run.

The message is reported on the command line and in any
logfile specified. Valid options are Yes and No; note that the
default is No.

ReportMemoryUsage

When set to Yes, this setting allows images in Generate
HTML for e-mail (eHTML) output to be sized in accordance
with the resizing of the e-mail client.

eHTMLFluidReduceImagesToFit

These options are used to override the Limit composed
pages in memory settings on theMemory Handling page
in the Publish Wizard. For details, see the section on error
handling in the PublishWizard options of the Designer User’s
Guide.

<Overflow>

When set to No – the default value – the OverflowFile and
OverflowSize settings only take effect if the Limit
composed pages in memory option is specified in the
Publish Wizard. When set to Yes, the OverflowFile and
OverflowSize settings always take effect.

OverflowEnabled

This option designates the temporary file to which the
composed files are written.

OverFlowFile

This option specifies the memory limit at which the process
of writing to the overflow file begins. The default memory
value is 4 megabytes. You can use the suffix K to indicate
kilobytes, M to indicate megabytes or if no suffix is used the
value will be in bytes.

OverFlowSize

This section allows you to specify any temporary settings
that may be required as part of problem resolution. The
keyword Name and associated Parameter will be provided
directly by Precisely Support as required. You may code as
many entries in this section as necessary.

<Custom>

The following Custom overrides relate to Input file caching and may be used to resolve memory handling issues where
appropriate.

This option designates the temporary file to which data fields
are written.

DataFieldBufferFile

23EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

This option designates the temporary file to which text data
from data fields is written.

DataTextBufferFile

This option determines how much memory is used by data
fields before caching to disk.

DataBufferThreshold

This option determines how much of the disk cache is read
in to memory per read.

ReadAheadThreshold

Note: that DataBufferThreshold and ReadAheadThreshold assignments default to byte values. Alternatively,
you can use “K” (for Kilobytes) and “M” for “Megabytes” e.g 100K , 10M, etc. Refer to the example that follows for further
details.

Example

<Generate>
ProgramLocation=\\servnet\mt\doc1gen.exe

<Input>
MessageLib=\\servnet\mt\doc1msg.dll
ResourceHIP=C:\Resources\Default pdf.hip
ResourceHIP=C:\Resources\myafp240.hip
ActiveContentLocation=C:\Resources\%1

<Journal>
J1=\trace\docj1.txt
J1=\trace\docj2.txt
J1=\trace\docj3.txt

<LookupTable>
tsub=\\servnet\mt\lookups.txt
tsub=\\servnet\mt\lookups1.txt

<LookupTableCodePages>
tsub=UTF8
tsub1=iso-8859-1

<KeyMap>
kmap1=\\resnet\gjk\km1.xml mode=Runtime

<DIJ>
Output1=\doc\edm\doca.jrn

<Output>
Output1=eas21.afp

24EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Output2=eas21.pdf,temp.pdf
Output3=C:\PDF\test1.pdf
Output4=C:\AFP\test1.afp

<ehtml>
BarcodeImageURL=http://doc/html/resources/
BarcodeFileTemplate=Bar%1-%2.gif
GraphicImageURL=http://doc/html/resources/
GraphicFileTemplate=Graphic%1-%2.jpg

<Trace>
Outputfile=trace.out
TraceLevel=default output
codepage=utf8
memlimit=0
publication=3

<Messages>
MandatoryNotPlaced=Warn
MandatoryMessageError=Continue
OptionalMessageError=Continue
CampaignDate=12/07/2007
Cycle=AC02
MessageProcessing=Yes
NoMessages=Warn

<Server>
CommandQueue=HOST:spa02:5001
Command00=¨sndmsg msg('DOC1GEN processed &I.') tousr(*requester)¨
Command01=¨sndmsg msg('&0.') tousr(*requester)¨
CommandBefore=¨time /t >> start.log¨
CommandOK=¨time /t >> OK.log¨
CommandFail=¨time /t >> Fail.log¨
CommandEnd=¨time /t >> End.log¨
AbortOnFail=False

<Advanced>
ErrorFile=doc\backups\june21err.txt
LogFile=trace04.out
Checkpointfile=check.out
CPconsole=1
RangeOfPublications=100-350
ConstantShapeOffPage=Warn
DynamicShapeOffPage=Warn
WorkSpace=d:\process\work\b%1xml
SystemTempfiles=yes
ReportMemoryUsage=Yes
eHTMLFluidReduceImagesToFit=Yes

#restart
<OverFlow>
OverFlowFile=doc\memerror.txt
OverFlowSize=48m

25EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

<Custom>
PTF5690=¨Type1¨
DataFieldBufferFile=path\DataFieldBuffer_filename.buf
DataTextBufferFile =path\DataTextBuffer_filename.buf
DataBufferThreshold=10M
ReadAheadThreshold=100K

26EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Using symbols

You can dynamically define parameters used in an OPS file by using symbols when starting a
Generate job. The value assigned to a symbol is substituted wherever it is referenced in the OPS
file and can be used to provide part or all of any parameter.

Where used, symbols must be defined after any other parameters in the start-up syntax. Under
Windows for example, you could specify the following on the command line:

doc1gen j1.hip ops=j1.ops ext=txt

where ext is a symbol name. When referenced in the OPS file the symbol names must be enclosed
in percent (%) characters. For example:

<Journal>
J1=\trace\docj1.%ext%
J1=\trace\docj1.%ext%
...

Symbol names are case sensitive. Where a symbol is referenced in the OPS but no value is assigned
it is treated as an empty string.

Note that the following must not be used as symbol names: ops, mode, ecp, mmgx

Symbols may also be defined within the OPS file itself by coding them in an <OPS> section prior to
where they need to be referenced. The format is as follows:

<Symbols>
Name =Parameter
Name =Parameter
...

If the same symbol name is specified both in start-up parameters and in the OPS itself then the
start-up parameter will override. For example; in the OPS:

<Symbols>
RunName=run
BaseDir=\doc

<Journal>
J1=%BaseDir%\trace\docj1.txt
J2=%BaseDir%\trace\docj2.txt
J3=%BaseDir%\trace\%RunName%j3.txt

<Output>
Output1=%RunName%1.afp
Output2=%RunName%1.pdf

27EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

and on the Windows command line:

doc1gen in.hip OPS=OFile RunName=tst

the ‘J3’ journal name will be specified as \trace\tst.txt.

28EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Running Generate under z/OS

A DOC1GEN job is typically submitted to the system via
standard JCL.

The JOBLIB and STEPLIB concatenation must reference
themain Generate load library andmessage library datasets.
You may also need to include references to the IBM
Language Environment (LE) run-time libraries if these are
not known to system libraries.

The HIP file that controls the job plus an OPS file (where
used) are specified as parameters on the EXEC card.
However, these normally indicate DD references that are
resolved to dataset names in subsequent DD cards.

The JCL must also include DD cards for all other files that
have been identified using DD references in the HIP or OPS.

No two output files should be members of the same dataset.

Preparation:

EXEC card syntax:

EXEC PGM=DOC1GEN,PARM=('DD:HipRef [,OPS=DD:OpsRef] [,ECP=DD:EcpRef]
[,SCP=CodePage] [,#restart] [,symbols]')

Parameters:

is the DD label indicating the HIP file that will control the job.HipRef

is the DD label indicating an override production settings file
if appropriate.

OpsRef

is the DD label indicating the Extended Code Page file which
will be required for most non-Western applications. The ecp
file must be placed in a fixed block dataset.

EcpRef

is the number of a host code page to be used instead of the
default code page – US (37). Refer to Generate SCP and
lookup table override values on page 352 for details on
host code page numbers

CodePage

29EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

restart the job from the last checkpoint position. See the
Publish Wizard checkpoint progress option in the Designer
User’s Guide.

#restart

See Using symbols on page 27.symbols

Example JCL

//DOCJOB6 JOB '5438','JDOE',CLASS=F,REGION=2M
//DOC1GEN EXEC PGM=DOC1GEN,
// PARM='DD:DOCHIP,OPS=DD:DOCOPS,ECP=DD:DOC1ECP'
//*Generate load libraries. You may need to add run-time libs
//STEPLIB DD DISP=SHR,DSN=PROD.DOC.LOAD
// DD DISP=SHR,DSN=PROD.DOC.MSGS
//*HIP & OPS files
//DOCHIP DD DISP=SHR,DSN=PROD.DOC.RUN(JOB6HIP)
//DOCOPS DD DISP=SHR,DSN=PROD.DOC.RUN(NEWFILES)
//*Extended Code Page file
//DOC1ECP DD DISP=SHR,DSN=PROD.DOC.RUN(DOC1ECP)//*Input data (as per
DD ref in HIP or OPS)
//DOCINPT DD DISP=SHR,DSN=PROD.DOC.DATA
//*Lookup tables (as per DD refs in HIP or OPS)
//DOCTL1 DD DISP=SHR,DSN=PROD.DOC.RUN(JOB6TL1)
//DOCTL2 DD DISP=SHR,DSN=PROD.DOC.RUN(JOB6TL2)
//*Output datastreams (as per DD refs in HIP or OPS)
//AFPOUT1 DD SYSOUT=X,DCB=LRECL=8205
//AFPOUT2 DD SYSOUT=X,DCB=LRECL=8205
//*Journals (as per DD refs in HIP or OPS)
//DOCJRN1 DD DISP=SHR,DSN=PROD.DOC.RUN(JOB6JRN1)
//DOCJRN2 DD DISP=SHR,DSN=PROD.DOC.RUN(JOB6JRN2)

30EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Running Generate under UNIX and Windows

DOC1GEN is executed from the command prompt.

The HIP file that controls the job plus an OPS file (where
used) are identified as parameters to the start up command.

All other references to files to be used or created by
Generate are defined within the HIP or OPS files. You will
need to ensure that these are available (or creatable) at the
locations indicated.

Preparation:

Syntax:

doc1gen HipRef [ops=OpsRef] [ecp=EcpRef] [SCP=Codepage] ”#restart”
[symbols]

Parameters:

is the path/file name of the HIP file that will control the job.HipRef

if an override production settings file is being used this is
the path/file name of the OPS.

OpsRef

is the path/file name of the Extended Code Page file which
will be required for most non-Western applications.

EcpRef

is the number of a host code page to be used as an override
for the Application Data code page. Refer toGenerate SCP
and lookup table override values on page 352 for details
on host code page numbers

Codepage

restart the job from the last checkpoint position. See the
Publish Wizard checkpoint progress option in the Designer
User’s Guide. Note that the quotes are only required when
running under UNIX.

#restart

See Using symbols on page 27.symbols

31EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

Examples

For Windows:

C:\doc\run\doc1gen job6.hip ops=C:\doctemp\newfiles.ops ecp=doc1ecp

For UNIX:

/doc/run/doc1gen job6.hip ops=C/doctemp/newfiles.ops ecp=doc1ecp

32EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with Generate

3 - Running Generate in
Server Mode
Server Mode is a method of running DOC1GEN under UNIX and Windows
so that the program responds to appropriate commands to process
application data and, optionally, to execute associated system commands.

Such associated commands can be specified to be executed before Server
Mode has processed a batch of application data, if it completes successfully
or if it fails to complete successfully. They can be any commands that you
can pass to the appropriate operating system from the command line. This
allows a great deal of flexibility as you can use them, for instance, to log
information, send the output to a network location or delete files after printing.

In this section

Server Mode Environment..34
Running Server Mode...40

Server Mode Environment

The Server Mode environment is configured by settings in the <Server> section of an Override
Production Settings (OPS) file used when launching DOC1GEN, for details seeOverride production
settings (OPS) File. Once initiated, it will then remain active waiting for application data to be
submitted to it for processing.

Note: For a detailed summary on running DOC1GEN and using OPS files, see “Running
Generate” in the Designer User’s Guide.

You can execute multiple instances of DOC1GEN Server Mode at the same time with each instance
having a different environment loaded according to the OPS file used.

Server Mode executes the standard DOC1GEN program in a memory-resident format. You do not
require a different version of the DOC1GEN program to be able to use it in Server Mode.

Command Queue

Server mode uses a command queue to receive commands and application data. These are more
commonly known as "pipes" under UNIX andWindows. The command queue can be specified either
as a named pipe or a TCP/IP socket.

Where used, the TCP/IP socket must specify a port number that is not already being used on the
target system. Generally speaking, a port number <6000 will be unused but if you are unsure you
should contact your system administrator.

When using a TCP/IP socket or a pipe under Windows the queue is set up and removed automatically
by Server mode.

When using a named queue under UNIX it must be set up in advance by the user and must always
be specified as FIFO (first in, first out) format. The mknod utility is used to initiate a UNIX pipe. Details
of this utility follow later in this section.

Note that if you are running more than one instance of DOC1GEN in Server Mode then you must
set up a different queue for each instance.

34EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Control Programs

To use DOC1GEN in Server Mode two additional programs are provided with Generate Host
distribution material:

Submits application data to a Server Mode processDOC1SBMT

Terminates a Server Mode processDOC1QUIT

Details of these programs follow later in this section.

To change the DOC1GEN environment used by a particular Server Mode process you will have to
DOC1QUIT and then restart DOC1GEN in Server Mode with new parameters.

Specifying the command queue

The command queue is specified in the CommandQueue keyword of the appropriate OPS file.

CommandQueue has three sub-keywords – PIPE:, SOCK: or HOST: – that indicate the queue
method being used.

PIPE: indicates the use of a named queue. It is assumed by default and the sub-keyword can be
omitted. Under NT pipe names used a fixed format and must be specified exactly as indicated in the
examples below, i.e. only the actual queue name (cmdqueue in the examples) can be different.
Under UNIX any valid path/file name can be used.

SOCK: indicates a TCP/IP socket identified by IP address and port number.

HOST: indicates a TCP/IP socket identified by host name and port number.

The following examples indicate the available methods for specifying the queue:

Named pipe under NT

CommandQueue=\\.\pipe\cmdqueue

Named pipe under UNIX

CommandQueue=/temp/cmdqueue

Optionally use PIPE: form for named q’s

CommandQueue=PIPE:/temp/cmdqueue

Use SOCK: form for IP address and port

CommandQueue=SOCK:10.133.54.202:6000

Use HOST: form for host name and port

35EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

CommandQueue=HOST:spa02:6000

Memory Allocation

When running in Server Mode you may not be sure of the size of the application data – and therefore
the size of system memory requirements – that is to be submitted to the Server Mode process. If
this is a concern you can use the memory settings in the publication wizard.

By default Server Mode allocates memory as required. Using the Memory Allocation settings in
the publish wizard you can choose to customize options, such as how much memory to allocate and
whether you want to abort a job if the amount of memory exceeds a predefined limit. For more
information see “Running a publishing task” in the Designer User’s Guide.

Specifying System Commands

System commands to be performed in association with the process are predefined in the Server
section of the appropriate OPS file and then referenced by DOC1SBMT program via the number
assigned to them. You can dynamically pass parameters to be used with these commands.

36EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Override production settings (OPS) File

Note that Server Mode gets the parameters for input file, print file, and journal list as part of
DOC1SBMT rather than from the OPS file as with a standard DOC1GEN process. If any these
parameters are specified in the OPS file they are ignored.

OPS file format

Syntax:

<Server>
CommandQueue= {QueueID|PIPE:QueueID|SOCK:address:port|HOST:hostname:port}
Commandnn=CommandString
CommandBefore=CommandString
CommandOK=CommandString
CommandFail=CommandString
CommandEnd=CommandString
AbortOnFail= {True|False}
...

The following details provide information on the keywords used in the server section of
the OPS file.

Keywords and parameters:

including this keyword in the OPS file initiates server mode.

QueueID – is the name of the communication channel in the format applicable to the
operating system. Under UNIX this is the name of the existing pipe and under Windows
this is the name of a pipe which will be set up automatically when Server mode is initiated.
This must always use the following conventions: \\.\pipe\name

CommandQueue

address:port – is the name of a communication channel specified as a TCP/IP 'dot'
address and an associated port number, such as 10.133.54.202:6000

hostname:port – is the name of a communication channel specified as a host name
known to the current system and an associated number, such as spa02:6000

Note: Note that the ‘&’ character is a reserved character and must not be used
when specifying paths or names.

37EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

OPS file format

the number nn is a two digit number between 00-99 used to reference the command when
the DOC1SBMT program is executed. The command string can pass up to nine
parameters which can be user defined or predefined elements of the Server Mode
environment. The predefined elements are identified by fixed symbols as in the following
list (assumes that defaults are being used, i.e. a ValuePrefix of “&” and ValueSuffix of
“.”):

Commandnn

&I. – input file name

&Pn. – print file name (where n is the file alias assigned to the output file when publishing
the publication, i.e. &POutput1. &POutput2.)

&R. – server mode return code…

• 0 job OK
• 10 PAGE 1 of N overflow threshold exceeded
• 15 error executing system command specified by the user
• 25 failed during processing of job
• 30 failed during termination of job
• 50 failed during initialization of processing. Most likely input or print filenames were
invalid

&S. – job submission comment generated automatically by Server Mode to identify the
process uniquely

&Jn. – journal file (where n is the file alias assigned to a journal object, e.g. &JDocJ1.
&JDocJ2.)

&Dn – Document Interchange Journal (where n is the file alias assigned to a DIJ object,
e.g. &Ddij1.)

&C. – pages generated to the point at which the command is called

optionally identifies a system command that will be executed prior to the start of processing
application data with DOC1GEN. See Commandnn for more information.

CommandBefore

optionally identifies a system command to be executed only after the application data has
been processed successfully by DOC1GEN. See Commandnn for more information.

CommandOK

optionally identifies a system command to be executed only when the application data
fails to be processed successfully by DOC1GEN. See Commandnn for more information.

CommandFail

optionally identifies a system command to be executed only after the application data has
been processed successfully by DOC1GEN. See Commandnn for more information.

CommandEnd

this defines the behavior of DOC1GEN if a print job run in Server Mode fails. The default
True will abort Server Mode, while False gets Server Mode to attempt to discard the
failing print job and await further commands.

AbortOnFail

38EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

OPS file format

Example:

This shows the application of user defined parameters in an OPS file with a corresponding DOC1SBMT program:

<Server>
CommandQueue=Host:wuk03.6002
Command00=echo Job &0. succeeded. Pages &C.
Command01=echo Job &0. failed

Command02=&0.

doc1sbmt -i data002.dat -p output1=job240.afp -cmdok 00 MyJob -cmdfail
01 MyJob 02 OnFailure.cmd

39EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Running Server Mode

Start-up

Submit DOC1GEN as normal. The CommandQueue keyword in the Server section of the OPS file
used when starting DOC1GEN uniquely identifies a Server Mode instance.

SeeWorking with Generate on page 7 for details of preparing and submitting a DOC1GEN
application.

Processing Application Data and Associated Commands

Note: Note that the ‘&’ character is a reserved character and must not be used when specifying
paths or names.

Use the DOC1SBMT program to submit application data to an instance of DOC1GEN in Server
Mode. Details of this program follow later in this section.

Using DOC1SBMT you must tell server mode:

• the command queue to submit to – i.e. the particular instance of DOC1GEN Server Mode
• the location/name of an application data file to be processed
• the location/name of the printstream file to be created

You may also need to tell Server Mode:

• the locations/names of any Journal files to be generated by the application
• system commands to be generated before the application data is processed; if it processes OK;
or if it fails to process

• the locations/names of files to receive overflowed datastream/journal data if using dynamic page
numbering (refer toWorking with Generate on page 7 for more information).

Stopping Server Mode

The DOC1QUIT program is used to stop a particular instance of DOC1GEN Server. Details of this
program follow later in this section.

mknod (UNIX only)

Creates a UNIX pipe which can be used with DOC1GEN Server Mode.Purpose:

40EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Although it is established in advance, the name of the pipe must also be specified in
the Server/CommandQueue keyword of the OPS file that is used when starting
Server Mode.

mknod is executed via the UNIX command line.

Preparation:

mknod QueueID pSyntax:

Parameters:

is a unique path name of the pipe to be created. IMPORTANT: this name must also
be specified in the Server/CommandQueue keyword of the OPS file that is used
when starting Server Mode.

QueueID

DOC1SBMT under UNIX or Windows

Submit application data to an instance of DOC1GEN Server Mode.Purpose:

DOC1SBMT is run from the command line of the appropriate operating system.

Note that each of the keywords for DOC1SBMT is preceded by a minus sign and
then the keyword itself (or a valid abbreviation) followed by a space and then
parameters (if any). All keywords/parameters should be on one command line,
separated by spaces if necessary.

Preparation:

Syntax:

doc1sbmt -input Name -print Outputn=Name
{-cmdqueue QueueID | -socket address:port | -host hostname:port }
[-journal JournalList -dij Name -cmdbefore Command# [ParmList] -cmdok Command# [ParmList]
-cmdfail Command# [ParmList] -cnfsetting SectionList -jobchange hip ops

Parameters:

Name identifies the path/file containing the application data to be processed. Keyword
can be abbreviated to -i.

-input

Outputn identifies to which file the printstream is being sent. The application data
can be output to multiple printstreams. Name identifies the path/file to hold the
printstream generated by this submission to Server Mode. Each entry should be
separated with a comma or a space. Keyword can be abbreviated to -p.

-print

41EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Where submission is to a Server Mode process specified as a named pipe QueueID
identifies the appropriate pipe. Keyword can be abbreviated to -queue, -cmd or -q.***

-cmdqueue

Where submission is to a Server Mode process specified as a TCP/IP socket (using
‘dot’ addressing) address:port identifies the appropriate socket. Keyword can be
abbreviated to -s. ***

-socket

Where submission is to a Server Mode process specified as a TCP/IP socket (using
‘host name’ addressing) hostname:port identifies the appropriate socket. Keyword
can be abbreviated to -ho.***

-host

JournalList identifies the journal files required by the application (if any). Each journal
is identified as a path/file and should be separated by a comma or a space. A
maximum of 8 journal files can be specified. Keyword can be abbreviated to -j.

-journal

Name identifies a file that will receive the Document Interchange Journal (DIJ) where
this index type is required by your Generate environment. Each entry should be
separated with a comma or a space.

-dij

Optionally identifies a system command that will be executed prior to processing
application data with DOC1GEN. Command# relates to the commands specified in
the Server section of the OPS file. ParmList identifies up to 10 parameters to be
passed to the command each separated by a space. Keyword can be abbreviated
to -before, -cmdb or -b.

-cmdbefore

Optionally identifies a system command to be executed only after the application
data has been processed successfully by DOC1GEN. Keyword can be abbreviated
to -ok or -cmdo. See CMDBEFORE above for more information

-cmdok

Optionally identifies a system command to be executed only when the application
data fails to process successfully by DOC1GEN. Keyword can be abbreviated to -fail,
-cmdf or -f. See CMDBEFORE above for more information.

-cmdfail

SectionList identifies additional processing parameters to be associated with the
application (if any). Each item in the SectionList corresponds to particular section in
the OPS file and is made up of Section, Keyword and Parameter settings. Refer to
the Designer User’s Guide for more information about OPS settings. Keyword can
be abbreviated to -cnfs

-cnfsetting

Optionally, instructs DOC1GEN to unload the current HIP/OPS and reload a new
HIP/OPS pair. Keyword can be abbreviated to -job

-jobchange

Optional, provides a description of the command format. Keyword can be abbreviated
to -he or ?.

-help

42EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

You must specify only one of -cmdqueue, -socket or -host parameters. This should
reference the queue name or TCP/IP socket used as the parameter for the
CommandQueue keyword in the OPS file used when starting the appropriate Server
Mode process.

Example:

Simple submission to a named pipe under UNIX for an application using no journal files and no command requirements:

doc1sbmt -input data001.dat -print
output1=gen/output/job1.out,output2=gen/output/job1.ps,output3=gen/output/job1.pdf
-cmdqueue temp/doc1genq

Same submission to a TCP/IP socket (‘dot’ addressed):

doc1sbmt -input data001.dat -print outpu1=gen/output/job1.out -socket 10.133.54.202:6000

Same submission to a TCP/IP socket (‘host name’ addressed):

doc1sbmt -input data001.dat -print output1=gen/output/job1.out -host spa02:6000

Using all keywords (with abbreviations) – most files assumed to be in current directory:

doc1sbmt -i data002.dat -p output1=job240.afp,output2=job300.afp -q doc1genq_2 -j j002.j1
j002.j2 -dij j003.jrn -b 01 date time -ok 02 -f 03 DOC1GEN SM failed -cnfs <KeyMap>map1=
km1.xml -job j001.hip j001.ops

DOC1QUIT under UNIX or Windows

Closes an instance of DOC1GEN Server Mode.Purpose:

DOC1SBMT is run from the command line of the appropriate operating system.Preparation:

Syntax:

doc1quit {-cmdqueue QueueID | -socket address:port | -host hostname:port
}

Parameters:

Where the Server Mode process is specified as a named pipe QueueID identifies
the appropriate pipe. Keyword can be abbreviated to -queue, -cmd or -q.

-cmdqueue

43EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

Where the Server Mode process is specified as a TCP/IP socket (using ‘dot’
addressing) address:port identifies the appropriate socket. Keyword can be
abbreviated to -s.

-socket

Where the Server Mode process is specified as a TCP/IP socket (using ‘host name’
addressing) hostname:port identifies the appropriate socket. Keyword can be
abbreviated to -ho.

-host

Example:

doc1quit -q /temp/doc1genq
doc1quit -socket 10.133.54.202:6000
doc1quit -ho spa02:6000

44EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate in Server Mode

4 - Running Generate as
a Started Task
In Started Task mode Generate runs continuously on a z/OS system with
a particular Generate production environment loaded. It automatically selects
and processes jobs when a dataset is passed to its defined input channel
and passes the resulting output datastream(s) to the defined output channel.
The input and output channels can be either JES output queues, MQSeries
pipes or, in the case of output only, disk datasets.

If required, new job environments can be loaded dynamically according to
controls in the input data or you can simply run multiple versions of the
Started Task with different input channels defined.

The Started Task environment is controlled via a configuration file which
identifies the required production job and input channel, and maps the
attributes of the input channel with one or more output channels.

In this section

Requirements...46
Defining the environment..47
Running Started Task...58
Extended configuration file examples...60

Requirements

These additional modules are supplied for use with Started Task:

• DOC1ST controls start-up
• LYXMSGTB contains run-time messages
• LYXPSO interfaces with the DOC1GEN program and the JES subsystem

You will also need IBM MQSeries installed if you intend to use this as an input or output channel.

The link to DOC1GEN is dynamic and you can therefore replace the DOC1GEN program with a later
version without re-linking with Started Task.

All libraries that are defined in STEPLIB for Started Task need to be included in an APF authorized
load library so that it can interface with the JES sub-system. Consult your system programmer for
more information.

46EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Defining the environment

A single configuration file supplies the settings required to initialize a Started Task. This is a text file
that can be created and edited using the standard system editor.

The configuration file must have three sections: Selection Criteria – keywords that define the attributes
by which input is selected from the channel and which provide run-time settings; Selection Groups
– one or more SELECT groups of keywords that map specific attributes in the input channel with a
named output group. Output Groups – one or more OUTPUT groups of keywords that link to an
output label and identify the required attributes of an output channel.

A simple example follows. Note the use of parenthesis around the section names and the SELECT
and OUTPUT keywords plus unique names to mark the start of specific groups.

(Selection Criteria)
CLASS=QY
(Selection Groups)
SELECT AFP
CLASS=
OutGroup=TO.AFP
SELECT AFPandPDF
CLASS=Y
OutGroup=(TO.AFP,TO.PDF)
SELECT Default
OutGroup=TO.PDF

(Output Groups)
OUTPUT TO.AFP
DDNAME=AFPOUT
CLASS=A
OUTPUT TO.PDF
DDNAME=PDFOUT
CLASS=B

The order of selection groups is significant – starting from the top the first group that matches the
criteria of the incoming dataset will be used. A ‘Default’ selection group should normally be coded
at the bottom of the section to cater for selected datasets that do not match the criteria of other
groups.

The OutGroup keyword within a selection group points to the name of one or more output groups
which determine how many types of output datastream are required. If multiple output groups are
referenced you must code them in parentheses.

Output groups themselves must contain a DDNAME keyword the value of which matches an output
label specified either at job creation time or within an OPS file used when initiating the Started Task.
This link determines the type of output datastream(s) to be generated.

47EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Depending on the output datastream being generated you may also want to add keywords that
instruct specific DCB attributes for output datasets. RECFM, LRECL and BLKSIZE are supported
for this purpose as in the following configuration file fragment:

...
(Output Groups)
OUTPUT TO.AFP
DDNAME=AFPOUT
RECFM=VBA
LRECL=8025
BLKSIZE=8025

48EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Using JES output queues

When using JES queues as an input channel the selection criteria specified in the configuration file
is used to identify the high level attributes of SYSOUT datasets intended for Started Task. The
selection groups can then be used to select datasets according to more detailed JES criteria if
required and direct the results to the appropriate output groups.

Note: Datasets that are ‘held’ will never be selected by Started Task regardless of whether
they match the selection criteria or not.

Output groups themselves define the attributes of the new SYSOUT dataset that will contain the job
output. Note that output datasets automatically adopt the job name and number of the Started Task
process when they are placed on JES queues.

Within the configuration file sections these criteria are mostly specified exactly as they would appear
as JCL attributes; for instance CLASS=A or FORM=G129A. The exceptions to this are:

• a CLASS attribute in Selection Criteria may include 1-8 classes to allow a broader initial selection.
For example CLASS=ABF1.

• most criteria in Selection Groups can include a wildcard asterisk indicating that the remaining part
of the attribute name is variable. For example DEST=ROOM1* or FORM=F1*.

• you can specify an asterisk for any attribute in an Output Groups indicating that the relevant setting
is to be the same as in the input dataset.

Summary of supported SYSOUT attributes

CLASS, EXTWTR, DEST

Where the SYSOUT API is installed you may also use: JOBNAME, FORM, PRMODE,
FCB, UCS, FLASH

Selection Criteria

CLASS, EXTWTR, DEST, JOBNAME, FORM, ROOM, CREATORSelection Groups

CLASS, FORM, EXTWTR, DEST, FCB

You may also reference an OUTPUT card specified in the JCL used to initiate Started
Task. Output attributes are then assumed from this card.

Output Groups

The following example of a configuration file summarizes these points:

(Selection Criteria)
CLASS=YZ
DEST=ROOM23
PRMODE=PAGE

49EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

(Selection Groups)
SELECT XClass
CLASS=X
FORM=INV*
OutGroup=OUT.ACLASS
SELECT YClass
CLASS=Y
JOBNAME=G1546*
OutGroup=OUT.BCLASS
SELECT Default
JOBNAME=’*’
OutGroup=OUT.REFER

(Output Groups)
OUTPUT OUT.ACLASS
DDNAME=OUTPUT1
CLASS=A
FORM=D21A
OUTPUT OUT.BCLASS
DDNAME=OUTPUT2
CLASS=B
DEST=’*’
EXTWTR=’*’
OUTPUT OUT.REFER
DDNAME=OUTPUT3
OUTPUTCARD=OUTREF

50EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Using MQSeries

When using MQSeries as an input channel you will actually need to work with two types of concurrent
MQSeries queues:

• The actual data queue(s) to which input data files are added.
• A ‘trigger’ queue which notifies Started Task that input data is ready to be processed and in which
queue it can be found.

The trigger queue must exist before initiating Started Task and it must stay active at all times. The
trigger queue is identified to Started Task using the TriggerQ keyword in the main selection criteria
of the configuration file as in the following fragment:

(Selection Criteria)
TriggerQ=MQ.INPUT

(Selection Groups)
SELECT FromMQ
OutGroup=TO.MQ

...

To notify Started Task that input data is ready to be processed a record must be added to the trigger
queue using the following format:

GEN SELECT=GroupName,QNAME=QueueName

Where: GroupName indicates a selection group in the Started Task configuration file that will handle
the data; QueueName indicates the MQSeries queue where the input data is waiting.

So, for example, your trigger record might contain:

GEN SELECT=FromMq,QNAME=DOC1INPT

You may also use an MQSeries queue to receive the resultant output datastream(s). To do this the
relevant OUTPUT group must contain the keyword MQNAME=QueueName as in the following
fragment.

...
(Selection Groups)
SELECT MQOUT
OutGroup=TO.MQ

(Output Groups)
OUTPUT TO.MQ
MQNAME=GEN.TO.MQ

...

51EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Both input and output queues must either pre-exist or be created by the client program submitting
data to Generate. Started Task will never destroy any of the Queues involved although the input and
output queues may safely be destroyed by the client program if required.

Started Task uses the notion of ‘staging files’ to temporarily hold the datasets coming from or going
to MQSeries queues. Keywords in the selection criteria section of the configuration file allow you to
specify the high level qualifier for the names of the datasets to be used for this purpose. Other
keywords allow you specify the attributes of such datasets. If these settings are not defined Started
Task will attempt to use SYSDA workspace with a default dataset HLQ of ‘DOC1’. Dataset attributes
will also assume default settings. The full list of keywords related to staging files are:

* Settings for input staging
MQIHLQ=dsn
MQIUNITS=CYL|TRK
MQIPRIMARY=nnn
MQISECONDARY=nnn
MQIUNIT=device_or_group
MQIVOL=volser
MQIBLKSIZE=nnnnn
MQIRECFM=F|V|U,B,S,T,A|M
(* Settings for output staging
MQOHLQ=dsn
MQOUNITS=CYL|TRK
MQOPRIMARY=nnn
MQOSECONDARY=nnn
MQOUNIT=device_or_group
MQOVOL=volser
MQOBLKSIZE=nnnnn
MQORECFM=F|V|U,B,S,T,A|M

When the relevant process is successfully completed the staging datasets are deleted. For input
files, if Started Task fails to process the dataset it is left on the staging location to allow the user to
take remedial action if required. You may need to manually delete such files from time to time.

The following is an example of a configuration file where Started Task is using MQSeries as both
input and output channels:

(Selection Criteria)
TRIGGERQ=MQ.INPUT
MQIHLQ='G1097.GEN.INSTAGE’
MQIUNITS=TRK
MQIPRIMARY=50
MQISECONDARY=100
MQIUNIT=DISK
MQIVOL=PR9801
MQIBLKSIZE=8205
MQIRECFM=VB
MQOHLQ='G1097.GEN.OUTSTAGE’
(Selection Groups)
SELECT SYSandMQ
OutGroup=(TO.SYSOUT,TO.MQ)

52EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

SELECT SYSOUT
OutGroup=TO.SYSOUT

(Output Groups)
OUTPUT TO.SYSOUT
CLASS=A
FORM=D21A
OUTPUT TO.MQ
MQNAME=GEN.TO.MQ

Using datasets as output channels

It is possible to write the output files created by Started Task jobs directly to new or existing datasets
if required.

To configure such output the Dataset keyword of an output group is used to identify the recipient
dataset. If a fixed dataset name is supplied Started Task will attempt to append all output to the same
file.

More usually however, you will want to use variable dataset names to add individual outputs to
separate datasets or members. To do this you will need to supply part of the dataset name string
within the first record of input data delivered to Started Task for each job. In this scenario the Dataset
keyword acts as a template for the eventual dataset name and identifies where the variable part of
the name can be located within the input data. it has the following format:

Dataset=base_name{offset,length}

Where offset and length identify the location of the bytes within the first record that contain the dataset
name variable string. For instance, in the following example dataset names in the format
G1ACC.GEN.variable will be used and the variable string is provided in bytes 6-13 of the first record
of each input file:

Dataset=G1ACC.GEN.{6,8}

If you want to create new datasets for each output you will normally also need to use a range of other
supported keywords in the output group that allow you to define their attributes. The following
configuration file fragment contains examples of all the supported attributes:

...
(Output Groups)
OUTPUT AFP.TO.DATASE
Dataset=MX2511.AFPDS.{15,8}
Status=NEW
Disp=KEEP
Units=CYLS
Primary=1
Secondary=5

53EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Blksize=8204
Volume=MXC001

...

Custom selection criteria

If you need to use very specific criteria for identifying different types of input data you can have
Started Task interrogate a value in the first record of input datasets. To use this feature two additional
keywords must be coded in the relevant selection groups in the following format:

DataPos=offset
Data=['string'|X'Hex']

Where string or hex is the value that Started Task will look for and offset is a start position in the first
input record where the value is to be found. You may code the value either as a text string or as a
series of hexadecimal characters in the format shown in the example below.

The DataPos and Data keywords must always be coded as a pair within a selection group. DataPos
may indicate a different offset in different groups.

The following configuration file fragment demonstrates how this feature might be used:

...

(Selection Groups)
SELECT Data1
DataPos=12
Data=’Type1’
OutGroup=OUT.ACLASS
SELECT Data2
DataPos=12
Data=’Type2’
OutGroup=OUT.BCLASS
SELECT Data3
DataPos=25
Data=X’D499A240C29996A695’
OutGroup=OUT.CCLASS

...

54EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Switching production jobs

Normally a particular Started Task will process a single Generate production environment. In this
case the job is specified according to the HIP file indicated in the JCL used to initiate Started Task.

If required however, you can have a single Started Task switch between production job environments
according to the selection group that is activated.

To use this feature you will need to create Override Production Settings (OPS) files for each job
environment that can be loaded. The OPS file must identify the input/output file to be used with the
job. The format of the OPS file is described in the main Designer User’s Guide.

Note: It is the users responsibility to ensure input data is suitable for the currently loaded job.

Once you have created your OPS files you must reference each of them and the required HIP files
in DD statements in the JCL used to initiate Started Task. These DD statements can then be
referenced using PARM keywords –which can have a maximum of 8 characters – within the
appropriate selection groups. When such a group is matched according to its selection criteria the
relevant production job environment will be loaded if it is not already active. It will then stay loaded
until a selection group with a different PARM is invoked.

So, for example, your JCL may contain:

//DOC1MHIP DD DSN=GEN.HIPS(HIP1)
//DOC1OPS1 DD DSN=GEN.RUN(OPS1)
//DOC1OPS2 DD DSN=GEN.RUN(OPS2)

Your selection groups might be coded as follows:

...

(Selection Groups)
SELECT Normal.Job
CLASS=X
OutGroup=OUT.ACLASS
SELECT Alternate.Job
CLASS=Y
PARM=DD:DOC1MHIP,OPS=DD:DOC1OPS1

OutGroup=OUT.BCLASS
SELECT Default

PARM=DD:DOC1MHIP,OPS=DD:DOC1OPS2
OutGroup=OUT.REFER

...

55EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Dealing with failures and specifying subsequent processing

You can use the Continue keyword in the main selection criteria of the configuration file to specify
how Started Task handles input datasets that do not process successfully.

• Continue=Yes The dataset that caused the failure is suspended; i.e. if SYSOUT it is held, if
emanating fromMQSeries the staging file is not deleted. A systemmessage is issued on the system
console and Started Task will continue processing. This is the default setting.

• Continue=No Started Task processing will be suspended (but the task will not be terminated) and
an appropriate system message issued.

• Continue=Stop Both the dataset that caused the failure and the Started Task process is suspended.

You can also use the configuration file to specify actions to be taken when a batch of data has been
processed by Started Task. A range of keywords allows Started Task to react to either successful
or unsuccessful completion of each batch by issuing a message to the system log, issuing a console
command and/or submitting a job via a JCL deck in a dataset. You may use none, any or all actions
for both conditions as required.

For example, on a failure you could issue a warning message about the condition, issue a console
command to hold the queue that Started Task normally uses for input and submit a JCL deck to run
programs that process corrective actions.

These actions are coded as optional keywords within a selection group. The available keywords and
parameters are:

OnFailureMessage='Text and substitution codes'

OnFailureCommand='Text and substitution codes'

OnFailureSubmit='DSN referencing a JCL deck'

OnCompletionMessage='Text and substitution codes'

OnCompletionCommand='Text and substitution codes'

OnCompletionSubmit='DSN referencing a JCL deck'

You may include any of the following substitution codes where appropriate to the action.

Name of job providing processed data&jobname

Job number of job providing processed data&jobid

System date (yyyymmdd)&date

System time (hhmmss)&time

56EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Hour from system time (24 hours)&hour

Minute from system time&min

Second from system time&sec

Note: Date and time values are set when a batch is initially selected from the input channel
and remains static.

In the following example an information message is issued when a batch is successfully processed.
If a failure occurs processing is suspended (Continue=No) and a clean-up job is submitted using the
OnFailureSubmit command:

(Selection Criteria)
CLASS=Q
Continue=No
(Selection Groups)
SELECT All.Jobs
CLASS=X
OutGroup=OUT.ACLASS
OnCompletionMessage=
’COMPLETED- &jobname &jobid &date’
OnFailureSubmit=’G132.GEN.FJCL’

...

57EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Running Started Task

The Started Task environment is controlled via a configuration file which identifies the required
production job and input channel, and maps the attributes of the input channel with one or more
output channels.

JCL and start-up

Start-up JCL for a Started Task application is identical to a regular DOC1GEN application with the
following exceptions:

• you do not need to specify an input file
• the Started Task configuration file must be identified using JCL label DOC1CONF
• you may need to reference multiple HIP files if you intend to switch dynamically between production
jobs.

• if you intend to use MQSeries as input or output channels you may need to reference the MQSeries
load libraries SCSQLOAD and SCSQAUTH in your STEPLIB concatenation.

• segmented resource HIP files are not supported in Started Task.

Refer toWorking with Generate on page 7 for full details of the files that make up a complete
DOC1GEN run-time environment.

If you intend to run multiple, concurrent versions of Started Task the following rules apply:

• the start-up procedures will need to be stored under different member names.
• each version must use a different configuration file.
• the selection criteria specified in any two configuration files must not be the same.

Process

Once a Started Task is initialized it will remain active until it is stopped by an operator command
(see below) or cancelled.

It will poll its input channel using the default frequency or using the frequency specified for the Interval
keyword in the selection criteria of the configuration file. For example:

(Selection Criteria)

58EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Interval=500
...

Interval is specified in terms of thousand’s of a second and is a value between 100-1800.

Input datasets are selected for processing automatically according to the selection criteria in the
configuration file. If there are multiple datasets matching the selection criteria they will be selected
one at a time.

If the generation process completes successfully the output dataset is created with attributes according
to the output group that was used. The original dataset is deleted either from the JES queues or from
the staging files if you are using MQSeries.

Operator Commands

Provided Started Task is being run from an authorized procedure library, four operator commands
allow you to control and modify the Started Task environment.

Starts a Started Task environment whose start-up JCL is stored in procedure
procname.

S procname

Stops the Started Task environment started by the above command.P procname

Temporarily suspends the selection of datasets for processing by Started Task.F procname, STOP

Restarts input dataset selection for a Started Task that was previously suspended
manually with the above command or automatically following a problem with the
DOC1GEN run-time environment when processing an input dataset.

F procname, START

You may want to suspend processing if you are experiencing problems with the DOC1GEN run-time
environment. The "F procname, START" command re-initializes the DOC1GEN run-time environment
and any changes to this environment made since the "F procname, STOP" command was issued
will be affected by the START command. Note that this affects only the DOC1GEN environment and
that you cannot change the Started Task environment itself (i.e. that specified in the configuration
file) without stopping and restarting the procedure.

59EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

Extended configuration file examples

Started Task configuration file for JES queues

**
(Selection Criteria)
Interval=500 Polling interval is .5 of a second
Continue=No Suspend processing on error
EXTWTR=GEN* Select if writer name is prefixed’GEN’ and...
CLASS=ABY is A, B or Y class SYSOUT

(Selection Groups)
* If A class with jobname prefix of "Test" two types of output are required
SELECT A.Class
JOBNAME=TEST*
CLASS=A
OutGroup=SYSOUT.HCLASS,DISK

* All Y class invokes an alternative DOC1GEN environment
SELECT Y.Class
CLASS=Y
PARM=DD:HIP2,OPS=DD:JOB2OPS
OutGroup=SYSOUT.HCLASS

* Select if first record of input dataset contains ‘TYPE1’ at offset 10
SELECT By.Data
DATAPOS=10
DATA='TYPE1'
OutGroup=DISK

* Default group issues messages if invoked
SELECT Default
JOBNAME=*
OnCompletionMessage='Default direction successful - &Date &Time'
OnFailureMessage='Default direction FAILED - &Jobname &JobID'
OutGroup=SYSOUT.OTHER

(Output Groups)
* Send AFP output to H class & Dest R901
OUTPUT SYSOUT.HCLASS
CLASS=H
DEST=R901
DDNAME=AFPOUT
RECFM=VBA
LRECL=8025
BLKSIZE=8025

* Store PDF output on disk - dsn variable provided at offset 22 in 1st record
OUTPUT DISK
DDNAME=PDFOUT
DATASET='G1UK.GEN.AUTO.{22,8}'
DISP=KEEP
STATUS=SHR
UNITS=BLK

60EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

PRIMARY=300
SECONDARY=300
BLKSIZE=8025
VOLUME=USER95

* Copy DEST & EXTRWTR from input datasets, all other attributes from an OUTPUT
card
OUTPUT SYSOUT.OTHER
DEST=*
EXTWTR=*
OUTPUT=TESTOUT

Started Task configuration file for MQSeries pipes

**
(Selection Criteria)
TRIGGERQ=MQ.INPUT
* Set workspace for input staging files
MQIHLQ='G1097.GEN.INSTAGE'
MQIUNITS=TRK
MQIPRIMARY=50
MQISECONDARY=100
MQIUNIT=DISK
MQIVOL=PR9801
MQIBLKSIZE=256
* Set workspace for output staging files
MQOHLQ='G1097.GEN.OUTSTAGE'
MQOUNITS=CYL
MQOPRIMARY=5
MQOSECONDARY=10
MQOUNIT=DISK
MQOVOL=PR9801
MQOBLKSIZE=8205

(Selection Groups)
SELECT SYSandMQ
OutGroup=TO.SYSOUT,AFP.TO.MQ
SELECT SYSOUT
OutGroup=TO.SYSOUT

(Output Groups)
OUTPUT TO.SYSOUT
CLASS=A
FORM=D21A
OUTPUT AFP.TO.MQ
MQNAME=GEN.TO.MQ
RECFM=VBA
LRECL=8025
BLKSIZE=8025

61EngageOne Generate 6.6 Service Pack 11 Production Guide

Running Generate as a Started Task

5 - Programming PCE
The Post Composition Engine (PCE) handles the requirements of some
applications for additional manipulation of output datastreams once they
have been created by Generate. PCE is typically used for such things as
merging datastreams, reordering pages and adding new presentation objects
to existing composed pages.

In this section

The PCE environment..63
Function overview and script command summary...................................63
Script syntax...74
PCE command reference...78
Composition Edit Commands...172
Script file sample..198

The PCE environment

PCE supports the manipulation of AFP and PostScript datastreams as produced by Generate. An
individual PCE job should only attempt to manipulate one type of output datastream and all
datastreams must have been composed using the same output device settings (as specified when
publishing a job in the Designer). PCE can handle any of the file structures produced by Generate
including the VSAM formats that can be used under z/OS.

PCE's basic unit of work is a composed page within an output datastream. You can process a
datastream on a page-by-page basis or you can use journal file created by Generate to act as an
index into specific pages that need to be manipulated.

Note: See the Designer User’s Guide for information about setting up your application to
create journals.

A PCE job is programmed using a script file. A script is coded using a simple proprietary language
that can be produced in any standard text editor.

PCE also requires an Initialization File (INI) to be created and specified when starting the program.
This allows you to identify the script to be processed, the type of datastream being manipulated, plus
environmental information about the system on which the job is to run and any customization for the
output datastream if new elements or pages are being created. You can also add symbols to the INI
that can be referenced within the script.

The PCE program itself is called DOC1PCE on all platforms. You will need to execute this program
from the batch environment appropriate to your production system: command line, script, JCL etc.

Once you have created your PCE resources refer toRunning PCE on page 200 for details of actually
running the job.

Function overview and script command
summary

The PCE script language consists of a set of commands most requiring one or more parameters.
Each command starts on a new line and must be terminated by a semi-colon. Parameters can be
supplied as literal expressions or from the contents of a variable.

The highlighted words in this section indicate actual PCE commands. Details of each command can
be found in the Composition Edit Commands on page 172 .

63EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Procedures and program control

To avoid repetition script commands can be grouped into procedures. All scripts must have at least
one procedure known as 'Main'. This will be assumed to be the first procedure in a script if it is not
explicitly defined. You must use the declare procedure command to identify all procedures (including
Main) before using any procedural statements.

The start of a procedure is identified by a begin procedure on page 87 command. All statements
from this command up till the next end procedure on page 106 command are considered to be part
of the procedure.

A procedure can invoke a lower level procedure via the call procedure on page 88 command.
Procedures cannot be called recursively, i.e. they cannot call themselves or a higher level procedure.

If required, the return on page 152 command in a procedure can immediately pass control back to
the statement following the appropriate call procedure on page 88 command. Note that end
procedure on page 106 implicitly performs the same function.

Code that is used more than once, say in different applications, can be written as separate scripts
and then used in a main script by using an include on page 117 command. Include files can be
referenced anywhere in a script. At run-time the include command is replaced by the contents of the
specified file.

Loops

Standard program repeat features are available via begin loop on page 86/end loop on page 105exit
loop on page 108 and for…next on page 112 constructs.

Conditions and branching

Number values can be compared using standard operators (eq, gt, le, etc.) and text strings using
the equals on page 107 or contains on page 92 functions. The results of such comparisons produce
a TRUE/FALSE result which should be stored in a variable.

Program branching can then be achieved by using such results of part of an if…else…end if on
page 116 construct.

Variables

A variable can be used to store any type of data that is accessible to a PCE script including strings,
numbers and actual pages of composed output datastreams.

You can define arrays of variables to store multiple examples of the same data type. You may, for
instance, want to store multiple pages of output datastream under the same name but be able to
manipulate them independently.

64EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

All variables must be declaredd before they are referenced by other commands within a script. The
declare command assigns a name by which the variable is referenced in the script. All variables
have global scope and you can reference any variable within any procedure providing it has already
been declared.

Values are assigned to variables by read on page 145ing data into them from a file or by using the
Let command. You can use let to assign literal values, store the result of functions and copy values
from other variables.

Typing of variables is automatic and is assumed from the assigned data. When reading from file into
a variable the data is assumed to be text unless a complete page of output datastream is being read.
Using a function to assign a value explicitly sets the target variable to the appropriate data type.

There is no fixed size limit to a variable and the amount of memory required to store variables is
self-defined by the data assigned to them. However, PCE does not perform memory checking and
you should therefore be aware of the amount of data your script requires to be held in memory at
any one time and ensure that your system has sufficient resources to cope. You can release memory
that has been allocated by a variable using the release on page 150 command. This is particularly
useful when variables are used to many store pages of output datastream.

Up to 1900 variables can be used by a single PCE script. When specifying array variables however,
bear in mind that each array element accounts for an individual variable allocation.

Symbols

Symbols that have been defined in the PCE initialization file or on the start-up command line can be
accessed by the script file by using the symbol on page 158 command.

File handling

Files used by a typical PCE script consist of the existing output datastream files that are to be
processed, any journal files that provide indexes for the datastreams and output files to receive the
reorganized datastreams or other information.

The open on page 136 command is used to identify a file to be used by a PCE script. This assigns
a unique ID which is used to reference the file elsewhere in the script.

Note: PCE can open files for read or write but not both simultaneously. A PCE script therefore
typically involves reading from one output datastream file, manipulating in memory as required
and then outputting to a new file of the same type.

The open on page 136 command also requires two type parameters that are crucial to correct
processing of a file by PCE. The first parameter defines the record construct of the file and the second
specifies its content, i.e. what type of output datastream or other data it contains. Together these
parameters dictate howmuch data should be handled each time a read on page 145 orwrite on page
169 command is performed. For instance, an AFP file on an z/OS system should typically be opened
as type RECORD/AFPDS and a text journal under Windows will typically use LINE/PLAIN.

65EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

If the record construct of your file is not catered for by one of the predefined keywords you can use
the format parameter to indicate a custom construct.

Note: If the format parameter indicates additional block or record header data other than that
normally used for an output datastream this will be stripped from the file before the pages are
processed. When the pages are written to a new file the additional header structures will only
be applied if they are explicitly defined as part of the format parameter in the appropriate open
command, or if the default format for the file type automatically applies such headers.

Reading and writing

As indicated above, the amount of data handled by the read on page 145 or write on page 169
command depends on how it has been opened. For instance, an read/write item from a file that has
been opened as an output datastream will consists of all the data that makes up a single composed
page.

A read on page 145 command specifies the number of items to be read and a variable to contain the
results of the function. Each time the read is performed all data required to make up the required
number of items is stored in that variable. If more than one item is specified and the variable has
been declared as an array, each item will be stored in an individual array element. If not, multiple
items will be concatenated together.

Similarly the write on page 169 command copies items from a variable to an output file. Note that
multiple items can only be written by a single write command if the variable has been specified as
an array.

File pointers and offsets

Every file has a pointer that indicates the place in the data where the next read or write operation
will commence. Every time a read or write is performed the appropriate file pointer is updated.

When you are reading from file you can indicate a specific file offset at which the read should start.
You may have stored such offset information in journal file created by Generate.

When you are writing output datastream output you can use the pageoffset on page 143 command
to access the current file pointer value. This is particularly useful if you are updating pages of output
datastream and need to be aware of new offsets as the pages are written back to file.

Resource handling and file merging

Depending on the options chosen for a particular production job the font and image resources required
to actually print/present publication output may be stored:

• within the HIP file used to control a publication in the production environment
• within the file header of the actual output datastreams produced by Generate
• in both or neither of the above.

66EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Output datastreams created by the same PCE job will always reference a single set of resources. If
you are working with multiple datastreams (and in particular if you intend to merge datastreams into
a single file) it is important to define where PCE should look for resources to be used in new output
files. The get resource command is provided for this purpose.

If this is not coded PCE will use the resources stored in the first output datastream file to be read by
a script. For this reason it is imperative the get resource is coded prior to any file read commands if
you intend to use it.

Many output datastream formats reference fonts according to the order they appear in the file header.
When you are merging pages from multiple sources this order will often be different so PCE needs
to cross-reference the font references to keep a consistent order in the merged output file. If one of
the input files holds all the required font references it can act as the master font list and pages from
this file can be written to the output file without manipulation. When working with pages from other
files PCE must create a cross-reference to the master (known as a font map), look-up the relevant
font references for each page and then rewrite the page using the new references. To reduce the
impact of this you can specifically define the master input file using an extension of the get resource
command.

Using font references

When you intend to add new text to existing pages (see “Changing composed pages” on page 54)
you may want to use the font command to gather details of a specific font before attempting to
reference it. When doing so you can use the number of fonts command as part of a routine to iterate
over each available font.

Postscript Open Type Font (.OTF) font handling

When reading or writing PostScript containing PostScript Open Type fonts, the GET RESOURCES
FROM HIP commandmust be coded in the PCE script before any OPEN command to allow the correct
font references to be generated.

Note: PCE does not support the addition of text using CE =STL for PostScript Open Type
fonts.

AFP Outline Type1 fonts

When using PCE to add text using AFP Outline Type1 font references, the GET RESOURCES FROM
HIP command must be coded in the PCE script before any OPEN command to allow the correct font
references to be generated.

Journal files

When your application has a known post-processing requirement it is usual to specify one or more
journal files as part of the application design. Journals are typically used to provide an index for the
documents and pages within composed datastreams and can be used to allow you to locate particular
parts of the output that need further processing. If you include a vector environment variable within

67EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

the journal you can use this to move the file pointer associated with a datastream to a particular
document/page without the need to read all intervening data.

Note: Indexed access to datastreams stored in a VSAM formats always require the presence
of vector file offsets in the appropriate journal files so that the required pages can be located.

If you make changes to a datastream (for instance, if new presentation elements are added to pages)
you will also normally want to have PCE create a new journal to reflect the amended page offsets.

Vault & DIJ files

If your output datastream is intended to be stored in a Vault Server the application should always
generate a specialized index known as a Document Interchange Journal (DIJ). A DIJ is an XML
journal which has a fixed structure with a predefined set of elements pertaining to the documents
within the datastream. A DIJ always contains one entry for each document in the datastream with
which it is associated.

Such files must be opened as type DIJ so that PCE knows how to handle their XML structure. You
must use the read…DIJentry and write DIJentry command when performing IO with DIJ files. You
may only read and write a single DIJ record at a time.

The DIJelement command allows you to read the individual values stored within a DIJ record. If
required, you can use the change DIJelement command to update these values.

Documents that are referenced by a DIJ always have a unique identifier stored within the first page
which is used for integrity checking when the relevant datastream is loaded into the Document
Repository. If your PCE script has cause to remove or reorder the position of pages within a document
you may need to use the add document id command to ensure that page 1 of each document has
a valid identifier. The document id command enables you to read the identifier from a page if required.

Data manipulation

A range of features and functions are provided to allow you to manipulate values.

Numbers

Calculations are specified using a standard assignment statement with arithmetic operators: For
example: let <var1> = 6 * 10;

If you have a number value that has been specifically stored as a string you can convert it to a number
type using the value function.

Text

The following commands allow you to manipulate and format text strings.

atrim trims leading and trailing spaces

ltrim trims leading spaces

68EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

mixc performs mixed case conversion

mapp replaces or inserts text with substitution values from a lookup table.

rtrim trims trailing spaces

string specifically converts a value held as number type to a string type and applies text formatting
if required.

substring extracts a number of bytes from a string

symbol returns the value of a symbol from the PCE initialization file or start-up command line

translate uses a specified table in the Generate Translation Tables file to convert a text string to a
different code page.

DBCS text

You an specify a double byte character set string by using a the hex encoding format when assigning
a value to a variable. For example: let <var1> = X‘F6,E8,F9,40’;

Environment data

The following commands allow you to access system values and regional preferences as specified
in the PCE initialization file:

date the system date

day the name of a specified day of the week from PCE preferences

monthname a specified month name from PCE preferences

monthabbrev a specified month abbreviation from PCE preferences

numericconvcode the regional settings for standard punctuation characters from PCE preferences

numericpadding the regional character to be used for padding numbers from PCE preferences

ordinal the character to be used for a specified ordinal from PCE preferences

time the system time

uservalue a custom value from PCE preferences.

You can change which <Preferences> section is currently active by using the set preferences
command.

69EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Changing composed pages

Although PCE handles pages of output datastream as a whole, some restricted editing of the
presentation items they contain is possible.

Text strings within composed pages can be amended directly using the overwrite or replace
commands.

Themerge command can be used to generate a single composite page from the presentation items
from two composed pages. The move command will offset all printable items on a composed page
by the defined values.

Adding new presentation items

The begin ce/end ce command construct is used to add entirely new items to existing pages.
Commands within this construct are known as composition edit (CE) commands and, for greatest
efficiency when manipulating the actual output datastream protocol, are defined at a lower level than
regular PCE commands. As a result, CE commands have a different general format from regular
PCE commands and require greater care in ensuring the syntax and sequence of such commands
is correct. The format of CE commands is fully discussed in Composition Edit Commands on page
172.

Barcodes

Within a begin ce/end ce construct the Do Barcode command translates a text string into one of a
number of supported barcode types with user defined formatting options.

Note: that Font scaling and line drawing barcodes are not supported for PCE.

Printer controls

The add mediummap command can be used to include an AFPDS Invoke Medium Map structured
field to an existing ‘page’ of AFP output datastream.

For PostScript output files you can use the set page name command to add a page name to the
output being generated.

Error Handling and Environment Information

Syntax errors in the script and inconsistencies between the script file specifications and actual data
will result in an immediate termination of the PCE process.

70EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

For errors relating to IO functions you can control the actions to be taken by evaluating error codes.
The codes are generated by errors encountered during the processing of the open, close, read,
write, replace and overwrite commands. The on error call function allows you to specify a procedure
in the current script File that will be called whenever such a problem is encountered. To be effective
this procedure should query the nature of the error and have logic to deal with each anticipated error.
If on error call is not coded, PCE will terminate and issue a generic error message on encountering
an IO error.

You can also specify a customized value to be assigned to the return code issued on completion of
a PCE process via the predefined variable name <sys_exit_value>. The value can be assigned via
the let (number) command and must be a number in the range 0-999.

Document Groups

Some output datastreams support the notion of individual documents within the stream – two or more
pages that are associated in a group structure. When working such streams you may want to place
pages within groups or manipulate existing groups.

In the current release document groups can be created for AFPDS only.

Note: You must work with document groups if you you intend to create group level indexes
for AFP datastreams.

Normally when you read pages from a datastream any group related fields will be ignored. Pages
that need to be manipulated as a document must be specifically added to a document group while
in PCE memory. You can do this as directly or indirectly as follows:

Directly from existing pages

Use the add document name command specifying a variable that contains one or more pages. A
new group will be created containing these pages referenced by the name specified. Note that the
pages must not have formed part of an existing group otherwise results will be unpredictable – use
the document group method where this is the case (see below). Use the write command to append
the grouped pages to an output file as required.

If you do not want to read all the required pages into the group at the same time – perhaps because
of memory constraints – then you can perform partial reads and writes to build the new group. When
using this method you will need to code the read…document command specifying start, middle,
end or all keywords to let PCE know how to structure the pages within the group. You must also
code the add document name command twice using the start and end keywords at the appropriate
times before writing to the output file.

Indirectly by reading pages into a document group

Use the read…document command to copy pages into a document group. If the pages read already
form a complete group then this structure will be retained. Use the add document name command
to give the document group an identifier or overwrite an existing name.

71EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Note: Generate does NOT produce pages within document groups when it creates an output
datastream so reading the pages of a ‘document’ produced by Generate will not give you a
group structure. Use the write document command to write the grouped pages to an output
file.

72EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Support for AFPDS Indexing

Several commands allow the reading, writing andmanipulating of AFPDS Tag Logical Element (TLE)
structured fields. A TLE has a name by which it can be identified and an index value.

TLEs can be stored either within individual pages or within an AFP document header. When working
with document level TLEs you should normally read the pages of a document into a PCE document
group structure to ensure the header is included. Any number of TLEs can be present in pages or
document headers.

Page level TLEs

To read the value of an existing page level TLEs use the TLE command. Use the TLE add, TLE
delete or TLE replace commands with the page keyword to adjust the index settings for a page.

Document level TLEs

Before you can use any command related to document level TLEs youmust first read the appropriate
pages into a PCE document group (see “Document Groups” on page 55).

To read existing TLEs in the group use the document TLE command. Use the TLE add, TLE delete
or TLE replace commands with the document keyword to adjust the index settings within a document
header.

If you are using partial read/writes to create a new document group (i.e. you are specifying the start,
middle and end keywords as part of an add document name group) then you must ensure that the
TLE commands are used before the start portion is written to the output file. See the example below
for an example of the required sequence of commands.

If required you can also extract from or add pages to an existing document group by using the extract
document page andmove page commands. You may want to do this if you need to work with page
level TLEs in the original AFP pages that are to make up the group.

Example of sequencing TLE index commands for a document group

read 10 pages of document start from file <InFile> into <Group>;
add document name of "Big Group" to <Group> at start;
add document TLE of attrib "first_tle" value "Index1" to <Group>;
write 1 item to <OutFile> from <Group>;

read 10 pages of document middle from file <InFile> into <Group>;
write 1 item to <OutFile> from <Group>;
read 10 pages of document end from file <InFile> into <Group>;
add document name of "Big Group" to <Group> at end;
write 1 item to <OutFile> from <Group>;

73EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

User Exits

User exits functions are initiated via the call userexit command.

User exits of type INSTRUCTION call an external user-defined program function and, optionally,
provide a value that can provide input to the PCE script.

User exits of type PRINTSTREAM are intended to return a self-contained segment of output
datastream. You can use the insert object command to merge such segments into existing pages.

Note: user exits of type DATA_INPUT are not supported for PCE.

Script syntax

All statements are independent and compound statements are not allowed. Thus statements cannot
include or be concatenated with other statements.

Every statement must be terminated by a semicolon.

If necessary statements may span multiple lines.

Commands may be written in UPPER or lower case or a MIXture of the two.

Leading and trailing blanks are always ignored including those used in multiple line statements.

Be aware that the script file is always expected to conform to a US English code page (ANSI for
Windows and Unix, IBM500 for EBCDIC-based hosts). If your operating system is based on a different
code page you may need to make allowances for control characters such as ‘@’.

Variables and Arrays

All variables must be pre-declared. Variables are identified by token names enclosed in angle brackets.
For example:

declare <count>;
let <count> = 1;

All standard keyboard characters are valid for use as part of the token name except the space
character. Names can be any reasonable length but note that the total length of any statement
including all token names cannot exceed 999 characters.

74EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

The data type and required storage for all variables is defined implicitly by the contents assigned to
them and/or the statement used for the assignment. No explicit definition is required. If a variable
has been assigned the result of string function but the value is actually a number you can use the
value command to specifically convert it number type before using it with number functions.

To indicate that a variable is an array specify the number of elements enclosed in parenthesis
following the variable name. Reference a specific array element using the same syntax. Element
numbers can be specified using a variable if required.

For example:

declare <items>(10);
declare <count>;
let count = 2;
let <items>(<count>) = "Bread";

Assigning values

You can assign values to parameters or variables either as literals or as other variables. For example:

let <var1> = 2;
let <var2> = <var1>;
close <var2>;
close 3;

When coding text strings you must enclose the characters in double quotation marks and the text
string itself must not span more than one line; for example:

let <var2> = "Text String";

To reference the contents of variables within a string you must prefix the reference with '%@' and
enclose the token name in angle brackets as normal:

let <var3> = "Account: %@<var6>";

Control characters that form part of the script syntax itself must be treated as special cases when
used within text strings. These are: quote mark: ‘ double quote: “ left and right angle brackets: < and
> percent symbol: %. If you need to use any these characters within string assignments they must
be repeated. For example:

let <var1> = "He said ""hello""";
let <var2> = "The variable is <<var2>>";

Alternatively, use strings enclosed in single quotes. These are always assumed to be fully literal –
i.e. control characters are ignored and treated as text.

To assign a hex value you must use the X'nn,nn' format where nn is an individual hex reference. For
example:

let <var1> = X‘F6,E8,F9,40’;

75EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Calculation & concatenation

A calculation can be specified using the standard arithmetic operators: + (addition), * (multiplication),
- (subtraction) and / (division). For example:

let <var1> = 6 * 10;
let <var2> = <var1> - 20;
let <var3> = <var1> + <var2>;

Similarly concatenation of two strings is specified using the + operator:

let <var1> = "Working" + " days";
let <var2> = <var1> + " in this month";

Compound statements are supported but you should only use them to assign a value to a variable
and not as a direct part of other commands. For instance:

let <var1> = <var2> / (10 - <var3>);
let <var2> = "has " + <var1> + " days";
let <x> = (10 + <y>) * (3 + <y>);

let <st> = SUBSTRING ("abc" + "defghijk") (1 + 2) (7 - 1);

Comparing values

Comparing values results in a boolean TRUE/FALSE result which should be assigned to a variable.

Compare strings using the equals or contains functions.

Compare numbers by using these operators: eq – equal to gt – greater than ge – greater than or
equal to le – less than or equal to lt – less than ne – not equal to. For example:

let <v> = 101 ge 102; // <v> is FALSE

Existing boolean variables can be compared with each other using these logical operators and –
two variables are TRUE or – either of two variables is TRUE not – a variable is not TRUE Additionally
a variable can specifically be set to TRUE or FALSE as required. For example:

let <c1> = 6 gt 10;
let <c2> = "statement" contains "ate";
let <v> = <c1> or <c2>; // <v> is TRUE
if <v>;
let <test> = true;

else;
let <test> = false;

end if;

let <bool> = <v> OR NOT (<c1> AND <c2>);

File Names

76EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

When you use the open command you will need to code file names in the format suitable for the
platform on which the script is intended. File names must always be enclosed in double quotes.

z/OS

You can either specify fully qualified dataset names or reference datasets by Data Definition (DD)
labels with actual files being assigned to these labels in the JCL use to start PCE. Note that PCE
does not provide a mechanism for specifying dataset attributes so where open to a new output file
is specified a DD reference should normally be used so that the relevant attributes can be specified
in the JCL. Example:

open "DD:AFPDS1"...
open "USER1.PCE.INPUT"...

Windows

Files are referenced by path (optional) and filename. Example:

open "c:\doc\pceinput\bill.afp"...

UNIX

Under all supported UNIX systems, files are referenced by path (optional) and filename. Example:

open "/doc1host/pcein/afpds1.out"...

Comments

Comments that do not need to span a line are prefixed with a double slash and are assumed to
occupy the remainder of the line. They can be used within a statement that spans lines. Examples.

//Start of totals calulation
let <var1> = <var2>; //Copy old value
let <var1> = //Sum of sub-totals
var2 + <var3;

Comments that need to span lines must be prefixed with an asterisk. These must not appear within
statements and are always assumed to occupy all of the final line. Examples:

let <string> = "Acc."; * This abbreviation is used throughout
* This procedure initializes variables at each pass

77EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

PCE command reference

Conventions used in syntax diagrams Parameters between braces {…} indicate that one should be
selected from the available options which are separated by the ‘|’ delimiter. Optional parameters or
groups of parameters are set between square brackets […].

78EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

add document id

Adds (or changes) the PCE unique identifier that is assigned to the first page of documents
intended for the Document Repository component.

Function

add document id of idString to firstPage ;
Syntax

idString text; the identifier to be stored in the page

firstPage variable or array element containing the first page of a document.

Parameters

The identifier stored in idString will be inserted into the datastream page stored in firstPage. Any
existing identifier will be overwritten

Effects

firstPage must be the first page of a document.

idString must contain a valid PCE identifier otherwise an error will be raised. The only method
of getting a valid identifier string is to read one from an existing page using the document id
command.

Comments

...
//read first page from datastream containing the required
id
read 1 page from file 1 into <oldAfpPage>;
//get the document id
let <DocId> = document id in <AfpPage>;
//Read in page to be manipulated
read 1 page from file 2 into <newAfpPage>;
//copy the id into the page
add document id of <DocId> into <newAfpPage>;
//write out amended page
write 1 page into file 3 from <newAfpPage>;

Example

79EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

add document name

Places pages within a group structure and adds (or changes) the name information for such a
group.

Function

add document name of name to docGroup [at
{start|middle|end}];

Syntax

name text

docGroup variable containing/to contain a PCE document group.

Parameters

name is used as the identifier for all group related datastream fields created by this command.

If the middle keyword is specified the pages in docGroup will be enclosed in the appropriate fields
to form a complete document group.

If the start keyword is specified a field to indicate the start of a group will be inserted before the
pages in docGroup.

If the end keyword is specified a field to indicate the end of a document group will be inserted
after the pages in docGroup.

Effects

A document group can also be copied directly from input using the read…document command.

Typically the start and end keywords are used when you need to build a group from more pages
than you want to hold in memory at one time. In this scenario you will need to code multiple write
commands to build the group in the output file.

If docGroup already contains existing group name fields these will be overwritten with name.

If you want to use TLE add to add a group index reference to an AFP document you must ensure
it is coded in the appropriate sequence. For instance, if you are using multiple read/writes to form
the group the TLE add should be coded after the add document name…start but before the
group is written to the output file.

This command is only valid when working with AFP pages. Using it with other datastreams will
cause unpredictable results.

Comments

80EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

//Creating a new group from a complete set of pages in
memory
read 10 pages from <InFile> into <Group>;
add document name of "Small Group" to <Group>;
add document TLE attrib "Small_Group" value "Index1" to
<Group>;
write 1 item to <OutFile> from <Group>;

//Building a group using multiple read/writes
read 10 pages of document start from file<InFile> into
<Group>;
add document name of "Big Group" to <Group> at start;
TLE add at document of attrib "first_tle" value "Index1"
to <Group>;
write 1 item to <OutFile> from <Group>;
read 10 pages of document middle from file<InFile> into
<Group>;
write 1 item to <OutFile> from <Group>;
read 10 pages of document end from file <InFile> into
<Group>;
add document name of "Big Group" to <Group> at end;
write 1 item to <OutFile> from <Group>;

Example

81EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

add medium map

Inserts an AFPDS Invoke Medium Map structured field into an existing AFP page.Function

add medium map mapName to afpPage ;
Syntax

mapName text; a string that forms a valid AFP medium map name

afpPage a variable or array element containing a single AFP page.

Parameters

An AFPDS Invoke Medium Map structured field which references a medium map name of
mapName will be inserted into the AFP page stored in afpPage.

Effects

A medium map is a functional definition of an AFP form definition and is also known as a copy
group. Refer to your IBM AFP related documentation for more information on the uses of medium
maps.

The mediummap name used must be included in the form definition assigned to the print function
when printing AFP manipulated by this command.

Comments

...
open "DD:AFPIN" for input as file 1 record(8205)/AFPDS;
open "DD:AFPOUT" for output as file 2 record/AFPDS;
read 1 item from file 1 into <AFPPage>;
add medium map "MM1"> to <AFPPage>;
write 1 item into file 2 from <AFPPage>;

Example

82EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

atrim

Removes leading and trailing spaces from a text string.Function

let result = atrim inputString ;
Syntax

result a variable to receive the resulting text string

inputString text; the string to be adjusted.

Parameters

result is updated with the contents of inputString but with any leading and trailing spaces removed.Effects

...
let <var1> = " The quick brown fox ";
let <var2> = atrim <var1>; // <var2> = "The quick brown
fox"

Example

83EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

barcode

Converts a string to a simple barcode format.Function

let barcode = barcode
{PostNet|2of5|3of9|Code128A|Code128B|Code128C}
using input;

Syntax

barcode a variable to receive the formatted barcode string

input text; the string to be converted.

Parameters

input is converted to a new string barcode. When presented using the appropriate barcode font
the new string will produce the equivalent barcode image. Standard ‘framing’ characters will be
applied to the start and end of the barcode string depending on the type specified.

Effects

You will need to use this command in conjunction with a composition edit (CE) sequence (begin
ce/end ce) that associates the barcode string with the appropriate barcode font and includes it
in an output datastream page.

IMPORTANT: this function is mainly provided for backward compatibility. A more comprehensive
barcode formatting function is provided as the Do Barcode CE command. See Composition
Edit Commands on page 172 for details.

Comments

...
// Read page of AFP data
read 1 page from file 0 into <AFPDSPage>;
// Read barcode info from journal
read 1 items from file 1 into <JournalData>;
let <BarCode> = barcode 3of9 using <JournalData>;
begin ce into <AFPDSPage>;
=SCPP 001.500 002.500;;
=STP 90;;
=STL X0BAR3O9 %@<BarCode>;;

end ce;

Example

84EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

begin ce

Indicates the start of one or more composition edit (CE) commands which add new elements to
an existing output datastream page.

Function

begin ce into Page;
Syntax

Page an output datastream page in any supported format stored in a variable. If the variable is
currently empty then it is treated as a new page.

Parameters

All text between the begin ce and end ce statements will be interpreted as commands in the
format required for composition edit. The results of the CE commands will be merged into the
page of output datastream stored in variable Page.

Effects

CE commands are evaluated separately from regular PCE script commands and have a different
syntax. Commands are strictly order dependent and position sensitive so special care must be
take when coding CE instructions. Refer to “Composition Edit Commands” on page 157 for
details of the syntax and detailed function of these commands.

Comments

...
if <LastPage>;
begin ce into <AFPPage>;
=SCPP 001.500 002.500;;
=STP 90;;
=STL X0T055A0 This is the last page of

%@<pagecount>;;
end ce;

end if;

Example

85EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

begin loop

Indicates the start of one or more script statements that are to be processed a variable number
of times.

Function

begin loop;
Syntax

Statements between the begin loop and end loop statements will be repeatedly executed until
an exit loop statement is actioned.

Effects

Loops can be nested but the user must ensure that the correct sequence of begin loop and end
loop statements is maintained.

Comments

declare <input>;
declare <n>;
declare <done>;
begin loop;
read <n> items from file 1 into <input>;
// Exit if less than 5 items read.
let <done> = <n> ne 5;
exit loop when <done>;
...

end loop;

Example

86EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

begin procedure

Indicates the start of one or more script statements that make up a procedure.Function

begin procedure procName [as main];
Syntax

procName text; the procedure name enclosed in angle brackets.Parameters

All statements between this statement and the next end procedure statement are part of
procedure procName. If as main is coded the procedure is treated as the main PCE process.

Effects

All procedures must be declared before use – see “declare procedure” on page 81. Note that
if as main is not used in any procedure one of the procedures will be chosen at random from the
script to be used as main.

Comments

declare procedure <mainProc> as main;
declare procedure <initVars>;
begin procedure <mainProc>;
...
call procedure <initVars>;

end procedure;
begin procedure <initVars>;
let <DocTotal> = 0;
let <RecordCounter> = 1;

end procedure;

Example

87EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

call procedure

Executes a procedure coded within the script.Function

call procedure procName ;
Syntax

procName text; the procedure name enclosed in angle brackets.Parameters

The procedure with name procName is executed. On return from the procedure control passes
to the command following this statement.

Effects

All procedures must be declared before use – see declare procedure on page 97.

Procedures cannot be called recursively i.e. they cannot call themselves or a higher level
procedure.

Comments

See begin procedure on page 87.Example

88EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

call userexit

Calls an external program via the user exit feature.Function

[let result =] call userexit id [with parameter in
cell...];

Syntax

result a variable to accept a return value

id text; indicates a user exit identifier

parameter a variable or array element containing text or a page of output datastream

cell integer; indicates a PCE memory cell.

Parameters

The user defined program specified by the identifier id in the User Exit Control File assigned in
the PCE initialization file is executed. The program can be passed one or more optional
parameters values using the defined PCE memory cell.

If a value is returned by the user exit program will be stored in result if this is coded.

Effects

User exits of type PRINTSTREAM should return a self-contained segment of output datastream.
This can be included within an existing page using the insert object on page 119 command.

Parameters can only contain a STRING or PAGE data types; NUMBER and DATE data types
are not supported. The PCE memory cell for the parameter must be in the range 9900–9998 and
must match the appropriate number specified in the Generate Engine Data Exchange API function
being used with the user program. The result value, if used, will always be of type STRING.

Refer to User Exits for more information about the communication process between PCE and
user programs, returning AFP image objects and coding the User Exit Control File.

Comments

...
let <title> = "Customer_Name";
let <number> = "Customer_Number";
call userexit "WriteName" with <Title> in 9900;
let <uxResult> = call userexit "GetAddress" with <Number>
in 9901;
let <parm> = substring<UXResult> 2 5;

Example

89EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

change DIJelement

Updates the value of an element of an entry in a Document Interchange Journal (DIJ).Function

change DIJelement
{"Name"|"AddrLine1...AddrLine6"|"City"|"Region"|"PostalCode"|
"Country|Phone"|"NumberOfPages"|"SkippedPages"} value to
value in dijRecord ;

Syntax

value text; the value with which the DIJ element is updated

dijRecord a variable containing a DIJ record.

Parameters

The named element within the xmlRecord will be updated with the value contained in varValue.
Any existing value is overwritten.

Effects

The DIJ record must have been read from a file opened as type DIJ.

There are 6 possible address line elements.

Comments

declare <dijrecord>;
declare <zip>;
declare <newzip>;
// Open the journal
open "C:\gen\original\applic1.jrn" for input as file 1
line/DIJ;
open "C:\gen\new\applic1.jrn" for output as file 1
line/DIJ;
read 1 item from file 1 into <dijRecord>;
let <zip> = dijelement "PostalCode" in dijRecord;
let <newzip> = call userexit <datahygiene> with <zip> in
9901;
let <zipchange> = <newzip> ne <zip>;
if <zipchange>;

change DIJelement "PostalCode" value to <newzip> in
<dijRecord>;
end if;
write 1 item into file 2 from <dijRecord>;

Example

90EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

close

Explicitly closes a previously opened file during a PCE process.Function

close {input|output} fileRef ;
Syntax

fileRef integer; the handle of any file opened by the current script.Parameters

The file previously opened with ID fileRef is immediately closed. Code input or output to reflect
the function for which the file was opened – this is important in identifying the most efficient
manner in which to close the file

Processing of the script continues. If an error occurs a return code from this function will be stored
as system value sys_last_error. This can be queried as part of a user defined error routine via
the on error call on page 134 function.

Effects

Open files are automatically closed at the end of any PCE process. In addition, an open file with
an ID that is specified as part of a further open command will also be automatically closed.

Comments

...
on error call <ioErrorRoutine>;
...
close input 1;
close output <fileCount>;

Example

91EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

contains

Searches a string for a substring.Function

let test = stringToSearch contains stringToFind ;
Syntax

test variable to accept TRUE/FALSE

stringToSearch text; usually a variable

stringToFind text.

Parameters

test is TRUE if stringToFind is contained within stringToSearch (or is the same as it).Effects

let <verify> = "dog, cat, bird" contains "cat"; //
<verify> is TRUE

Example

92EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

convert resolution

Changes all resolution settings within a page of AFP output.Function

convert resolution in page afpPage from oldRes to newRes>;
Syntax

afpPage a variable or array element containing a single AFP page.

oldRes integer; the current resolution used in the page

newRes integer; the new resolution to be used in the page

Parameters

Within the AFPDS structured fields that make up afpPage all parameters using a resolution of
oldRes are converted to newRes.

Effects

Supported resolutions are 240, 300 and 1440Comments

declare <page>;
declare <n>;
open "in240.afp" for input as file 1 wsafp/ afpds;
open "out300.afp" for output as file 2 wsafp/ afpds;

let <n> = 1;
read <n> pages from file 1 into <page>;
convert resolution in page <page> from 240 to 300;
write <n> pages into file 2 from <page>;

Example

93EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

date

Gets the current system date.Function

let value = date [format formatCodes];
Syntax

value. a variable to receive the time string

formatCodes text; string representing a date format

Parameters

value is updated with a string representing the system date when the command is issued.
formatCodes can be used to define the format of the date as in the following table. Note that the
actual text used for date elements is customizable using <Preferences> sections within the PCE
initialization file.

Effects

INI setting to customizeOutputFormat code

Day (first three characters) Day1 – 31

01 – 31

Sun – Sat

Sunday – Saturday

d

dd

ddd

dddd

Day

MonthAbbrev MonthName1 – 12

01 – 12

Jan – Dec

January – December

m

mm

mmm

mmmm

Month

00 – 99

00 – 99

19xx – 20xx

19xx – 20xx

y

yy

yyy

yyyy

Year

94EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

INI setting to customizeOutputFormat code

Inserts a character into the date string,
e.g. \y places 'y' in the string

\c

You can change which initialization file <Preferences> section
is currently active by using the set preferences on page 155
command.

Comments

// Get and write date and time info
to output
let <nowDate> = date format
"ddmmmyyyy";
let <nowTime> = time;
let <outString> = "Date: %@nowDate
Time: %@nowTime";
write 1 item into file 0 from
<outString>;

Example

95EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

day

Gets a day name string from the active <Preferences> section of the PCE initialization file.Function

let value = day keywordRef ;
Syntax

value. a variable to receive the preferences value

keywordNum integer; a reference to the relevant day name keyword.

Parameters

value is updated with the value assigned to the keywordNumth 'Day' keyword in the currently
active <Preferences> section of the PCE initialization file. For instance, if keywordNum = 3 then
the value assigned to the Day3 keyword will be used.

Effects

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get and write the name of the 4th day
let <prefValue> = monthname 4;
write 1 item into file 0 from <prefValue>;

Example

96EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

declare procedure

Declares a procedure name.Function

declare procedure procName [as main];
Syntax

procName text; the procedure name enclosed in angle brackets.Parameters

procName is reserved as the name of a procedure to be coded within the script or referenced
by it. If as main is coded the procedure will be treated as the main PCE process.

Effects

The declared name cannot also be used as a variable name.Comments

See begin procedure on page 87Example

97EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

declare (variable)

Declares a variable name.Function

declare varName [(arrayElements)];
Syntax

varName text; the variable name enclosed in angle brackets

arrayElements integer; the number of elements contained by the variable.

Parameters

varName is reserved as the name of a variable to be coded within the script or referenced by it.
If arrayElements is coded the variable can be used as an array with arrayElements indicating
the maximum number of elements.

Effects

If you are reading from a delimited input file into a variable – i.e. each record has multiple fields
– the variable must be declared as an array and must have sufficient elements to cater for the
number of fields in each record. This is typically a requirement for journal files.

Comments

declare <count>; //Loop counter
declare <JournalData>(5); //Stores 5 journal fields

Example

98EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DIJelement

Gets index elements from a record within a Document Interchange Journal (DIJ).Function

let value = DIJelement
{"Name"|"AddrLine1...AddrLine6"|"City"|"Region"|"PostalCode"|
"Country|Phone"|"NumberOfPages"|"SkippedPages"} in
dijRecord;

Syntax

value a variable to receive the value read from the DIJ record

dijRecord a variable containing a DIJ record.

Parameters

The named element within the DIJ record dijRecord is copied into value.Effects

The file from which the record is taken must have been opened as type DIJ. There are 6 possible
'address line' elements.

Comments

See change DIJelement on page 90.Example

99EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

docoffset

Gets the file pointer of an output datastream file for the start of the last written document.Function

let value = pageoffset;
Syntax

value. a variable to receive the offset number.Parameters

value is updated with the file pointer offset indicating the start of the last document that was
written to an output datastream file. The offset value is the number of bytes from the start of the
file. Note that the offset position ignores any document header data and marks the point where
the first page within the document begins.

Effects

A document is written using the command. To qualify as a document pages must first be included
in a document group variable. This can be achieved using the read…document on page 148 or
add document name commands. Document groups are supported for AFP streams.

Use this command immediately after the write operation to the file for which it is intended to apply.
You cannot request the offset of a specific file. This command is not supported for files opened
for input.

Comments

...
open <afpInFile> for input as file 1 wsafp/afpds;
open <afpOutFile> for output as file 2 wsafp/afpds;
// Read and write first page of AFP
read 10 pages of document start from file 1 into
<afpGroup>;
write 1 item to <afpOutFile> from <afpGroup>;
//Get last offset
let <docOffset> = docoffset;

Example

100EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

document id

Retrieves the unique Generate document identifier from the first page of a document.Function

let id = document id in page ;
Syntax

id a variable to receive the identifier.

page variable or array element containing the first page of a document.

Parameters

The Generate document identifier stored in page is copied to id.Effects

Document identifiers are added to the datastream by Generate when a DIJ index is being created
for the application – i.e. when the datastream is intended to be stored in the Document Repository
component. The ID will always be stored in the first page of each document within the datastream.

If your PCE script has cause to remove or reorder the position of pages within a document you
may need to use the add document id command to ensure that page 1 of each document has
a valid identifier.

Comments

See add document id on page 79.Example

101EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

document name

Retrieves the name associated with a document group.Function

let name = document name in docGroup;
Syntax

name a variable to receive the group name

docGroup a variable containing a PCE document group.

Parameters

The reference name (if any) in the output datastream fields making up docGroup is copied into
name.

Effects

To qualify as a document pages must first be included in a document group variable. This can
be achieved using the read…document on page 148 or add document name commands.
Document groups are supported for AFP streams.

Comments

read 10 pages from <inFile> into <group>;
let <nameOfDoc> = document name in <group>;

Example

102EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

document TLE

Retrieves the AFP group level TLE information from a document group.Function

let value = document TLE name in docGroup;
Syntax

value variable to receive the TLE attribute

name text; indicates the required attribute name

docGroup variable containing a document group of AFP pages.

Parameters

The pages stored in docGroup are searched for an AFP group level index attribute name of name.
If a match is found the data stored as the attribute value will be copied to value. If a match is not
found value> will be a zero length string (which can be verified by a condition – see example).

Effects

This command searches for AFPDS Tag Logical Element (TLE) structured fields in docGroup.
This is one of the structured fields that make up AFP indexing features.

This command is only valid when working with AFP datastream stored in a document group
variable. Using it with other file formats will cause unpredictable results.

To qualify as a document pages must first be included in a document group variable. This can
be achieved using the read…document on page 148 or add document name commands.

Comments

let <firstgroupTLE> = document TLE <index1> in
<document3>;
let <OK> = Length <firstgroupTLE>;
if <OK>;

write document into file <logfile> from <document3>;
else:

trace "Index not matched";
end if;

Example

103EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

end ce

Indicates the end of PCE composition edit (CE) commands.Function

end ce;
Syntax

All statements following end ce on page 104 are treated as regular PCE statements.Effects

See begin ce on page 85.Comments

See begin ce on page 85Example

104EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

end loop

Indicates the end of statements within a loop.Function

end loop;
Syntax

Marks the end of loop statements started by begin loop on page 86.Effects

Loops can be nested but the user must ensure that the correct sequence of begin loop on page
86 and end loop on page 105 statements is maintained.

Comments

See begin loop on page 86.Example

105EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

end procedure

Indicates the end of a PCE script procedure.Function

end procedure;
Syntax

This marks the end of the procedure indicated by the previous statement.

On encountering end procedure on page 106 control will be passed back to the command following
the relevant call procedure on page 88 statement.

Effects

Note that if a return on page 152 statement is not encountered before an end procedure it is
begin procedure on page 87 assumed.

Comments

See begin procedure on page 87Example

106EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

equals

Tests for equality of two strings.Function

let test = str1 equals str2 ;
Syntax

test - variable to accept TRUE/FALSE

str1 ,str2 - text.

Parameters

test is TRUE if str1 contains the same text as str2. This operation is case sensitive.Effects

let <verify> = "John Smith" equals "john smith"; //
<verify> is FALSE

Example

107EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

exit loop

Terminates loop processing when a condition is matched.Function

exit loop when test ;
Syntax

test boolean variable; usually the result of a comparison statement – see “Comparing values”
on page 60 for details.

Parameters

If test evaluates to TRUE the loop currently being processed is exited immediately. Processing
restarts with the first statement after the current loop.

Effects

...
let <count> = 0;
begin loop;
let <count> = <count> + 1;
// Exit loop if more than 5 executions.
let <done> = <count> GT 5;
exit loop when <done>;
...

end loop;

Example

108EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

extract document page

Extracts a page from a document group containing AFP pages.Function

extract document page page in docGroup at
{start|end|pageNumber };

Syntax

page a variable that will receive the extracted page

docGroup a variable containing a document group of AFP pages

pageNumber integer; the sequence number of a page in docGroup.

Parameters

A page of output datastream is extracted from docGroup and placed in page. If pageNumber is
specified the page at the relevant position within the group is extracted. If start is specified the
first page is extracted. If end is specified the last page is extracted.

Effects

If pageNumber does not indicate a valid page within the group no page is extracted.

The original page is completely removed from the group. You can reinsert it into a document
group using the move page on page 129 command.

To qualify as a document pages must first be included in a document group variable. This can
be achieved using the read…document on page 148 or add document name commands.
Document groups are supported for AFP streams.

Comments

// Open the I/O files (containing AFP data)
open "DD:PCEIN" for input as file 1 record(8205)/afpds;
open "DD:PCEOUT" for output as file 2 record(8205)/afpds;
//
// Read all the pages into the document group
let <pageCount> = 6;
read <pageCount> document from file 1 into <document2>;
...
// Get the page from the document group
extract document page <page1> in <document2> at start;
...
// Having worked on the page, move it back into the
document group
// & write the update document group back to file
move page <page1> to <document2> at start;
write document into file 2 from <document2>;

Example

109EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

font

Returns the reference information for a font in the active font list.Function

let fontInfo = font fontNumber in {resources|datastream};
Syntax

fontInfo - an array variable of 6 elements to hold the returned information strings

fontNumber - integer; the sequence number of a font within the active font list.

Parameters

If you specify the 'resources' keyword the active font list is determined from the fonts available
in the HIP files specified in the PCE initialization file.

If you specify the 'datastream' keyword the active font list is set according to the font information
that will be used when creating any output datastream from the current script. This will have been
determined by theget resources command if this has been coded.

If you are adding text in PCE and using a font that is not in the input file, you must use the get
resources from HIP command, ensuring that the HIP file contains the required font.

The font command returns an array of 6 strings:

1. Application name: the full font name as it is known to Generate; e.g. ":120.I2.400.Times New
Roman.ANSI".

2. Device name: the name by which the font is referenced within the output datastream; e.g.
“C0G00020:T1WF1148”.

3. Alternate device name: available for some datastreams or blank where not available; e.g.
“X0G00020”

4. Encrypted name: interpretation of Application name; e.g. “TimesNewRoman-oblique.12”

5. Rotation: intended print direction (degrees) of font; will return “0”, “270” or “All”

6. Index: the reference number within the active font list. If this number has a positive value you
may use it to reference the font within composition edit commands. If it has a negative value the
font cannot be referenced in composition edit commands.

Effects

This is typically used to access available font names when adding text to existing pages (see
“Composition Edit Commands” on page 157 for details). Use it in conjunction with the number
of fonts on page 131 command to determine how many times to iterate over the active font list.

Comments

110EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

get resources from HIP;
let <maxFonts> = number of fonts in resources;
for <x> = 1 to <maxFonts>;
let <fontInfo> = font <x> in resources;
trace "Application Name '%@<fontInfo>(0)'";
trace "Device Name '%@<fontInfo>(1)'";
trace "Alternate Name '%@<fontInfo>(2)'";
trace "Encrypt Name '%@<fontInfo>(3)'";
trace "Rotation '%@<fontInfo>(4)'";
trace "Index '%@<fontInfo>(5)'";

next;

Example

111EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

for…next

Indicates script statements that are to be processed repeatedly a fixed number of times.Function

for [counter =] start to end ;
...

next;

Syntax

counter a variable to hold the loop counter

start integer; the base number of the loop counter when it is first processed

end integer; the number of the loop counter when processing is to end.

Parameters

Statements between the for and next commands will be executed the number of times indicated
by the difference between start and end. For example, 1 to 5 will execute the loop five times;
3 to 4 will execute the loop twice.

The current sequence number within the start/end range is used to update counter at the start
of each pass.

Effects

If coded, the contents of the counter variable may be referenced within the loop. It can be omitted
unless you want to nest for…next on page 112 loops in which case each must be assigned to a
different variable.

Comments

112EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

for <x> = 1 to 4;
// Get file name for <x>th

output file
// convert numeric <x> to string and append to base

file name
let <xString> = STRING <x>;
let <dataFileX> = <name> + <x>;

// open <x>th file
open <dataFileX> for output as file <x> LINE / PLAIN;

// read fields from next input file record
let <no-of-fields> = 7;
read <no-of-fields> items from file 0 into <fieldArray>;

// NOTE: arrays are indexed from 0
let <no-of-fields> = <no-of-fields> - 1;
for <n> = 0 to <no-of-fields>;

// Output fields read from <x>th record of input file
// as separate records in the <x>th output file

write 1 item into file <x> from <fieldArray>(<n>);

next; // <n>

next; // <x>

Example

113EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

get resources

Specifically defines the source for fonts and images to be included in output files.Function

get resources from {HIP|input file fileNumber } [with
fontmap from input file fileNumber];

Syntax

fileNumber is the number associated with a previously opened output datastream file.Parameters

The main keyword relates to the source from which resources to be used when creating output
files will be gathered. If 'HIP' is specified the font and images will be gathered from the one or
more HIP files as specified in the PCE INI file. If 'input file' is specified resources are gathered
from the output datastream file indicated.

If the fontmap keyword is specified the file indicated will be used to provide the master list of
fonts when merging multiple output datastream files.

Effects

Output datastreams created by the same PCE job will always reference a single set of resources.
If you are working with multiple datastreams (and in particular if you intend to merge datastreams
into a single file) use this command to define where PCE should look for resources to be used
in new output files.

If this command is not coded PCE will use the resources stored in the first output datastream file
to be read by a script. For this reason get resources on page 114 must be coded prior to any file
read commands.

The fontmap is used when you are merging pages from multiple sources. Where possible assign
the fontmap to a file that contains all the resources required in the resulting output. This will
minimize the need to rebuild pages prior to output.

Comments

114EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

declare <topOfPage>;
declare <mainPage>;
open "d:\gen\j1out.ps" for input as file 1
line/postscript;
open "d:\gen\j2out.ps" for input as file 2
line/postscript;
open "d:\gen\merge.ps" for output as file 3
line/postscript;
//Call get resources after file opens but before first
read
get resources from HIP with fontmap from input file 2;
read 1 items from file 1 into <topOfPage>;
read 1 items from file 2 into <mainPage>;
merge <topOfPage> into <mainPage>;
write 1 items into file 3 from <mainPage>;

Example

115EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

if…else…end if

Conditionally executes statements.Function

if test;
...
[else;
...]

end if;

Syntax

test boolean variable; usually the result of a comparison statement. See “Comparing values”
on page 60 for details.

Parameters

Statements between the if statement and else or end if statements (whichever appears first) will
be executed if test evaluates to TRUE.

If test evaluates to FALSE statements between the else and end if statements (if any) will be
executed.

Effects

if…else…end if constructs may be nested but you must ensure that the statements are
balanced.

Comments

...
// Check current page count
let <check> = <count> lt 1;
// Over write text as appropriate
if <check>;
overwrite "type to replace" in <StartPage> with

<HeadPage1>;
else;
overwrite "type to replace" in <StartPage> with

<HeadPage2>;
end if;

Example

116EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

include

Inserts PCE script commands from another file into the current script.Function

include file ;
Syntax

file text; the path/file name of a file containing a PCE script.Parameters

The contents of file are inserted into the calling script at the point this command is encountered.Effects

The file to be inserted must contain PCE script code. The user must ensure the commands in
the include file are in context at the point at which they inserted and that variable and procedure
names are unique and consistent throughout. Include files usually contain code that can be
reused by multiple PCE scripts, for example, common procedures.

Comments

declare procedure <mainProc> as main;
declare procedure <copyfields>;

begin procedure <mainProc>;
include "common_procs";
call procedure <copyfields>;

end procedure <mainProc>;

Example

117EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

in range

Tests to see if an integer value is within a specified range.Function

let test = queryValue in range lower..upper ;
Syntax

test variable to accept TRUE/FALSE

queryValue integer; the value to be tested

lower..upper an integer range, e.g. 1..40, -20..-1, 1000..2000, etc.

Parameters

test is TRUE if num1 contains a value in the inclusive range represented by the values numLower
and numUpper.

Effects

let <verify> = 6 in range 4..9; // <verify> is TRUE
Example

118EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

insert object

Adds a self-contained segment of output datastream to an existing page.Function

insert object {9999|object } at {start|end|objnum } of
page page;

Syntax

object a segment of output datastream valid with a user exit

objnum integer; indicates an object sequence within a page

page a variable containing a page of output datastream.

Parameters

The contents of object or the userexit return cell 9999 are inserted into page. If start is specified
it is inserted before existing data; if end is specified after existing data; if objnum is specified it
is used to sequence the object with others already in the page.

Effects

The object to be inserted is normally provided by calling a user exit of type PRINTSTREAM. Only
those objects supported by PRINTSTREAM user exits can be inserted using this command.
Refer to the User Exits section of the DOC1 Suite 4 Programmer’s Guide for details of the output
datastreams supported and the required content of an object to be used in this context.

Comments

...
read 1 page from file 0 into <AfpPage>;
let <Image> = "Image1";
let <UXResult> = call userexit <GetImage> with <Image>
in 9901;
insert object <UXResult> at start of page <currentpage;

Example

119EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

length

Returns the length of a string.Function

let result = length inputString ;
Syntax

result a variable to receive the resulting value

inputString text.

Parameters

result is updated with the number of bytes making up inputString.Effects

let <count> = length "Monthly report"; //count = 14
Example

120EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

ltrim

Removes leading spaces from a text string.Function

let result = ltrim inputString ;
Syntax

result a variable to receive the resulting text string

inputString text; the string to be adjusted.

Parameters

result is updated with the contents of inputString but with any leading spaces removed.Effects

...
let <var1> = " The quick brown fox";
let <var2> = ltrim <var1>; // <var2> = "The quick
brown fox"

Example

121EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

mapp

Replaces lookup code sequences in a text string with values from a Generate lookup table file
(also known as a text substitution file) using keys or sequence numbers.

Function

let result = mapp
"...@@{Nstr|DseqNum|Ivar|MprefNum}@@...";

Syntax

result a variable to receive the resulting text string

str text

seqNum integer; sequence number of an entry in the lookup table

var variable containing a text string or integer

prefNum integer; reference to a UserValue keyword in PCE preferences

Parameters

Any text enclosed in double @ symbols is passed as a parameter to the function. This function
performs a look-up of these parameters using the Generate lookup table (as assigned to the job
using <Files>TextSubstution keywords in the PCE initialization file). Where a match is found the
substitution value is used to replace the parameter in the original string. The new string with all
substitutions made is stored in result. The look-up can be performed using a variety of methods
as indicated by the first character within the @@ construct (which is ignored). These are as
follows:

N – str is a label used in the lookup table.

D – seqNum is the sequence number of an entry in the lookup table where 1 is the first entry, 2
is the second and so on.

I – var is an indirect reference to an entry in the lookup table. If it contains a string it is assumed
to be a label name. If it contains an integer it is assumed to be a sequence number.

M – prefNum is a literal reference to one of the 16 user value keywords in the currently active
preference section of the initialization file. 1 = UserValue1, 2 = UserValue2 and so on. The value
assigned to the keyword is used as the sequence number of an entry in the lookup table.

Effects

122EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

A lookup table file is normally a simple text file that can be created by any basic editor. The format
of the file is as follows:

keyword substitution string
keyword substitution string
keyword substitution string
...

Keywords must always be a single word without spaces or special characters and are case
sensitive. Substitution strings can contains any number of words but must remain on a single
line.

When EMFE is running under z/OS, lookup table data may optionally be stored as a Key
Sequenced VSAM file (KSDS). For this format keywords must be entered as the VSAM key field
and the associated substitution strings as the remaining record contents. Each KSDS record can
contain only a single text substitution entry. In order to use this method you must code
TextSubsMethod=VSAM in the PCE initialization file.

Comments

//These examples assume the text subs file contains:
//day Wednesday
//month June
//type Quarterly Statement

let <var1> = "The month is @@Nmonth@@";
let <var2> = mapp <var1>;
//<var2> = "The month is June"

let <var1> = "The day is @@D1@@";
let <var2> = mapp <var1>;
//<var2> = "The day is Wednesday"

let <var1> = "period";
let <var2> = "This is your @@I<var1>@@";
let <var3> = mapp <var1>;
//<var3> = "This is your Quarterly Statement"

// INI file contains <Preferences> UserValue3 = 2
let <var1> = "The month is @@M3@@";
let <var2> = mapp <var1>;
//<var2> = "The month is June"

Example

123EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

merge

Merges two pages (or a page and object where supported) and optionally resizes.Function

merge page1 into page2 [of new size xSize ySize inches]
;

Syntax

page1 a variable or array element containing a single page of output datastream or, if merging
AFP, a BCOCA object

page2 a variable or array element containing a single page of output datastream

xSize number; the required page width specified in inches

ySize number; the required page height specified in inches.

Parameters

All presentation objects in page1 are added to page2. Optionally, page2 is resized using the
xSize and ySize parameters.

Effects

Both page1 and page2 must contain output datastream of the same type. If merging AFP page1
may contain a complete BCOCA object rather than a page.

Page width and height values are relative to the top left corner of the physical page as determined
by the target output device. Consult your output device documentation for more information.

Comments

...
open "DD:INPUT1" for input as file 1 record(8205)/AFPDS;
open "DD:INPUT2" for input as file 2 record(8205)/AFPDS;
open "DD:OUTPUT" for output as file 3 record(8205)/AFPDS;
...
read 1 items from file 1 into <topOfPage>;
read 1 items from file 2 into <mainPage>;
let <x> = 7.5;
let <y> = 11;
merge <topOfPage> into <mainPage> of new size <x> <y>
inches;
write 1 items into file 3 from <mainPage>;

Example

124EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

mixc

Applies mixed case conversion to a given string in conjunction with an exception dictionary.Function

let result = mixc inputString;
Syntax

result a variable to receive the resulting text string

inputString text; the string to be adjusted.

Parameters

If this function is used the PCE initialization file used must specify a Generate exception dictionary
file. This function will search the exception dictionary for inputString ignoring all casing. If a match
is found result will be updated with the string as it appears in the dictionary – i.e. the casing of
inputString may be amended. If it is not found in the dictionary result will be updated with
inputString but with 'standard' casing applied – i.e. the first character will be upper-case and all
others lower-case.

Effects

The exception dictionary is a simple text file that can be created with any standard editor. It should
simply contain one or more text strings with the required casing correctly specified. Each text
string should appear on a separate line.

Comments

...
//The dictionary contains "PhD"
let <var1> = mixc "phd"; // <var1> = "PhD"
//The dictionary does NOT contain "PhD" (using any casing)
let <var1> = mixc "pHD"; // <var1> = "Phd"

Example

125EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

monthabbrev

Gets a month name abbreviation string from the active <Preferences> section of the PCE
initialization file.

Function

let value = monthabbrev keywordNum ;
Syntax

value. a variable to receive the preferences value

keywordNum integer; a reference to the relevant month abbreviation keyword.

Parameters

value is updated with the value assigned to the keywordNumth 'MonthAbbrev' keyword in the
currently active <Preferences> section of the PCE initialization file. For instance, if keywordNum
= 3 then the value assigned to the MonthAbbrev3 keyword will be used.

Effects

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get and write the abbreviated name of the 9th month
let <prefValue> = monthabbrev 9;
write 1 item into file 0 from <prefValue>;

Example

126EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

monthname

Gets a month name string from the active <Preferences> section of the PCE initialization file.Function

let value = monthname keywordRef ;
Syntax

value. a variable to receive the preferences value

keywordNum integer; a reference to the relevant month name keyword.

Parameters

value is updated with the value assigned to the keywordNumth 'MonthName' keyword in the
currently active <Preferences> section of the PCE initialization file. For instance, if keywordNum
= 3 then the value assigned to the MonthName3 keyword will be used.

Effects

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get and write the name of the 9th month
let <prefValue> = monthname 9;
write 1 item into file 0 from <prefValue>;

Example

127EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

move

Moves all presentation elements in a page.Function

move page by xOffset yOffset inches;
Syntax

page a variable or array element containing a single page of output datastream

xOffset number; the amount to move vertically specified in inches

yOffset number; the amount to move horizontally specified in inches.

Parameters

All presentation objects within page are moved vertically by xOffset and horizontally by yOffset.Effects

Either or both offset values may be negative if required.

It is the user’s responsibility to ensure that all presentation elements still fall within the boundaries
of the logical page following a move. Results will be unpredictable where this is not the case.

Comments

...
open "DD:INPUT1" for input as file 1 record(8205)/AFPDS;
open "DD:OUTPUT" for output as file 2 record(8205)/AFPDS;
read 1 items from file 1 into <afpPage>;
let <x> = 1.5;
let <y> = -1;
move <afpPage> by <x> <y> inches;
write 1 items into file 2 from <afpPage>;

Example

128EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

move page

Moves a page into a document groupFunction

move page page to docGroup at {start|end|pageNumber };
Syntax

page a variable or array element containing a single page of output datastream

docGroup a variable containing a PCE document group

pageNumber integer; the sequence number of an existing page in docGroup.

Parameters

page is copied into docGroup.

If start is specified the page is added as the first page in docGroup. If end is specified the page
is added as the last page in docGroup. If pageNumber is specified page is added to docGroup
following the page number indicated. If pageNumber references a non-existent page, page is
inserted at the end of docGroup

After the move the page variable is emptied.

Effects

To qualify as a document pages must first be included in a document group variable. This can
be achieved using the read…document on page 148 or add document name commands.
Document groups are supported for AFP streams.

Comments

See extract document page on page 109.Example

129EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

nop

Gets the specified NOP comment from an AFP page.Function

let value = nop in afpPage at {start|end|sequenceNum };
Syntax

value. a variable to receive the NOP string

afpPage a variable or array element containing a single AFP page.

sequenceNum integer.

Parameters

value is updated with the comment text from an AFPDS NOP (no operation) structured field within
afpPage. If start is specified the comment is read from the first such structured field. If end is
specified the last NOP field is used. If num is specified the comment is read from the
sequenceNumth NOP field. If the specified NOP is not found no value is returned.

Effects

This command is only valid when working with an AFP page. Using it with other output datastreams
will cause unpredictable results.

Comments

// pick up 2nd comment
let <comment2> = nop in <AFPpage> at 2;

Example

130EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

number of fonts

Returns the number of fonts included in the file header of an input file.Function

let fCount = number of fonts in {resources|datastream};
Syntax

fCount a variable to hold the font countParameters

If you specify the' resources' keyword the count is determined from the fonts available in the HIP
files specified in the PCE initialization file.

If you specify the 'datastream' keyword the count is set according to the font information that will
be used when creating any output datastream from the current script. This will have been
determined by theget resources command if this has been coded.

Effects

Use this command to determine howmany times to iterate over the active font list.This is typically
used in conjunction with the font on page 110 command to access available font names when
adding text to existing pages (see Composition Edit Commands on page 172 for details).

Comments

See font on page 110.Example

131EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

numericconvcode

numericconvcode

Gets the string assigned to the NumericConvCode keyword from the active <Preferences> section
of the PCE initialization file.

Function

let value = numericconvcode;
Syntax

value. a variable to receive the preferences valueParameters

value is updated with the value assigned to the 'NumericConvCode' keyword in the currently
active <Preferences> section of the PCE initialization file.

Effects

NumericConvCode is used to specify the regional equivalent of the characters: .(period) ,(comma)
+(plus sign) -(minus sign) and _(space) when formatting numeric data.

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get the numeric conversion codes
let <prefValue> = numericconvcode;

Example

132EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

numericpadding

Gets the character assigned to the NumericPadding keyword from the active <Preferences>
section of the PCE initialization file.

Function

let value = numericpadding;
Syntax

value. a variable to receive the preferences value.Parameters

value is updated with the value assigned to the 'NumericPadding' keyword in the currently active
<Preferences> section of the PCE initialization file.

Effects

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get the numeric padding character
let <prefValue> = numericpadding;

Example

133EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

on error call

Specifies a procedure to be called in the event of an IO error.Function

on error call procedureName ;
Syntax

procedureName the name of a procedure available to the script.Parameters

Once this command has been processed within a script any subsequent open on page 136, close
on page 91, read on page 145,write on page 169, or overwrite on page 141 commands that return
an error will cause procedureName to be invoked.

Effects

Only one procedure can be called in this manner during a PCE process. The command can be
specified anywhere in the script but only becomes active once it has been processed. Once
activated you cannot return to the default functionality for PCE IO errors.

Comments

The procedure acting as the error routine can query the nature of the error via the sys_last_error
system value and determine the appropriate action.

sys_last_error Meaning
21 The open command could not open an input file
22 The open command could not open an output file
23 The close command was unable to close an input file
24 The close command was unable to close an output file
25 A replace or overwrite command has failed
33 An invalid file ID has been specified
95 A non-existent file has been specified in a read or write command

126 The format of a read or write command is incorrect
129 Unable to write to an output file

Note that if the procedure does not specifically issue the quit on page 144 command PCE will
continue with the script starting with the next statement after the command that caused the error.

Before on error call is processed PCE terminates and issues a generic error message if an IO
error is encountered.

134EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

declare procedure <MainProc> as main;
declare procedure <ErrorRoutine>;
on error call <ErrorRoutine>

begin procedure <MainProc>;
...
end procedure <MainProc>;

begin procedure <ErrorRoutine>;
// Evaluate error codes and take appropriate action
let <ErrorCheck> = <sys_last_error> eq 22;
if <ErrorCheck>;
trace "Output file not opened";
let <sys_exit_value> = 12;
quit;

end if;
let <ErrorCheck> = <sys_last_error> eq 24;
if <ErrorCheck>;
trace "Unable to close output file";

end if;
let <ErrorCheck> = <sys_last_error> eq 129;
if <ErrorCheck>;
trace "Unable to write to output file";

end if;
end procedure;

Example

135EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

open

Declares and opens a file for processing.Function

open fileName for {input|output|append} [using table
tableId] as file fileNumber [recordType[/fileType]];

Syntax

fileName the path/file name of the file to be opened. Refer to “File Names” on page 61 for details
of how files are identified on the various supported operating systems

tableId integer; the ID of a table in the assigned translation tables file.

fileNumber integer; the handle by which the file is to be referenced in other commands. All such
handles must be unique within a PCE script.

recordType text; indicates the record construct of the file. See below.

fileType text; indicates what type of data is in the file. See below.

Parameters

This option may be required if you are working with PostScript data that is not encoded in ASCII
format or a regular text file that was created on a different operating system. A Generate translation
tables file may be assigned to a PCE job as part of the Initialization File. tableid indicates the ID of a
specific table that will be used to interpret text data where appropriate.

tableId

If this parameter is not specified the default settings are: Windows and UNIX: line z/OS.

If the default is not acceptable specify one of the following settings:

line A carriage return/line feed (CR/LF) at the end of each record. Use this setting for most file
types when processing on Windows or UNIX where wsafp and wsmeta do not apply. Note: if using
ASCII Postscript on EBCDIC platforms you need to code format(line).

recordType

136EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

record [(numRecSize)] The standard record format used for z/OS; an unblocked file with
variable length records. numRecSize optionally specifies the record length associated with the file.
If you are writing to a variable blocked dataset under z/OS you should specify a value greater than
the longest possible record length to be produced (e.g. 8205 for AFPDS). For fixed blocked datasets
specify the block size or greater. The read on page 145 functions will cease at end of record regardless
of length specified.

When Reading and writing EBCDIC Postscript using DOC1PCE on Z/OS , specify the equivalent
DOC1GEN (internal) Format Option when opening Postscript files for read or write:

// Open DOC1GEN EBCDIC PostScript Output For Reading as
Input by DOC1PCE
OPEN "DD:PCEIN" FOR INPUT AS FILE 1
FORMAT($BN($RV($CC,$PD,$HV(0d,25)))) / Postscript;

// Open DOC1PCE EBCDIC
PostScript Output For Writing by DOC1PCE
OPEN "DD:PCEOUT1" FOR OUTPUT AS FILE 1
FORMAT($BN($RV($CC,$PD,$HV(0d,25)))) / Postscript;
OPEN "DD:PCEOUT2" FOR OUTPUT AS FILE 2
FORMAT($BN($RV($CC,$PD,$HV(0d,25)))) / Postscript;

wsafp A predefined construct suitable for AFP under all platforms other than z/OS. If you were using
the format keyword this would equate to the parameter sequence: $BN($RV($RD))

vsamafp / ksdsafp / ksdsmtc [(numRecSize)] Predefined constructs suitable for output
datastream stored as a VSAM dataset under and z/OS.

• vsamafp – AFP in a VSAM relative record dataset (RRDS)

• ksdsafp – AFP in a VSAM keyed sequence dataset (KSDS)

The dataset has fixed length records of size numRecSize. If you do not specify a length parameter
PCE will assume a record length of 100. Notes: KSDS must use a key length of 10 bytes starting in
the first byte of the record. An output datastream page always starts at the beginning of a record ‘slot’
but may span multiple slots. The final slot occupied by a page is padded to the start of the next slot.

format(strFormatParms) Use this setting if the file does not have a record construct catered
for by the predefined keywords. Where this is the case you will need to supply details of the format
as strFormatParms. Full details of the options for this parameter can be found inOutput datastream
formats on page 336.

Unless the default setting of plain is acceptable, specify one of the following settings. Do not forget
to code the slash character before this parameter even if you are accepting the default for recordType:

plain This is the default on all platforms and indicates the file is not delimited by any of the methods
indicated below. Each read/write operation will get/put an individual record as determined by
recordType. Use this setting when reading most text files including journal files other than AFP or
DIJ types.

fileType

137EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

delimited ({SepCharacter |SepNumber} [F,K,E]) The file contains two or more fields in
each record and the fields are separated by the character specified. The field separation character
may be identified as a literal text character or as a number representing the character in the standard
code page for the relevant operating system. Each read/write operation will get/put a single field from
the file. By default, PCE will ignore any field that is empty (contains zero bytes). The following options
allow you to specify different behaviour: F – skip first field if empty, keep remaining empty fields as
a NULL string K – keep all empty fields as a NULL string Where your read command specifies more
fields than exist in a single record PCE will continue reading fields from the subsequent record by
default. Where such overflows occur any remaining data in the subsequent record is ignored. You
can specify the following option to control this: E – a read always stops at end of record regardless
of the number of items specified. Subsequent reads commence at the next record.

afpds The file contains AFP datastream. Each read/write operation will get/put the AFPDS structured
fields that make up a single composed AFP page.

postscript The file contains PostScript datastream. Each read/write operation will get/put the data
structures that make up a single composed PostScript page.

line Records are delimited by carriage return/line feed (CR/LF). Each read/write operation will
get/put one such a record.

DIJ The file contains a Document Interchange Journal. This is an XML construct which passes
document indexes to the Vault environment. Each read/write operation will get/put the index entry
related to a single document.

PCE attempts to open fileName for processing in the specified mode and, if successful, assigns a
handle of fileNumber by which it is referred to in subsequent PCE commands.

If input is specified PCE looks for an existing file with fileName and, if found, opens it for reading. If
output is specified PCE attempts to create a new file with fileName and to open it for writing. An
existing file with the same name may be overwritten if permitted by the operating system. If append
is specified PCE looks for an existing file with fileName and, if found, opens it for writing and positions
the file pointer at the end of the existing data. Note that append is not supported for files holding
output datastream.

The recordType and FileType attributes are associated with the file. Together these instruct PCE
how to read/write a file and what amount of data is required for each read/write.

If an error occurs a return code from this function will be stored as system value <sys_last_error>
which can be interrogated using the on error call on page 134 procedure.

Effects

If the attribute parameters are not coded the defaults for UNIX and NT are "line/plain" and for z/OS
"record/plain".

Comments

138EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

...
//AFP under OS/390 or z/OS using a JCL DD card reference
open "DD:AFPIN" for input as file 0 record(8205)/afpds;
//PostScript under OS/390 or z/OS using a direct PDS reference
open "USR1.PS(J1)" for output as file 1 record(300)/postscript;
//AFP under Windows
open "d:\gen\pcein\j1.afp" for input as file 3 wsafp/afpds;
//PostScript under UNIX
open "/gen/j1out.ps" for output as file 4 line/postscript;
//space delimited text journal under OS/390 or z/OS
open "USR1.JRN(J1)" for append as file 6 record(80)/delimited(64);
//space delimited text journal under Windows
open "c:\gen\j1.jrn" for output as file 7 line/delimited(" ");
//Text file with non standard record format under Windows
open "d1.txt" for input as file 8 format($BN($RV($HV(‘0A’))))/plain;

Example

139EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

ordinal

Gets an ordinal value from the active <Preferences> section of the PCE initialization file.Function

let value = ordinal keywordNum ;
Syntax

value. a variable to receive the preferences value

keywordNum integer; a reference to the relevant ordinal keyword.

Parameters

value is updated with the value assigned to the keywordNumth 'Ordinal' keyword in the currently
active <Preferences> section of the PCE initialization file. For instance, if keywordNum = 3 then
the value assigned to the Ordinal3 keyword will be used.

Effects

You can change which initialization file <Preferences> section is currently active by using the
set preferences on page 155 command.

Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get and write the ordinal represnting number 9
let <prefValue> = ordinal 9;
write 1 item into file 0 from <prefValue>;

Example

140EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

overwrite

Finds and replaces a text string within a page without affecting file offsets.Function

overwrite oldString in page with newString [once];
Syntax

oldString text; the string to be replaced

page a variable or array element containing a single output datastream page.

newString text; the string to replace oldString.

Parameters

One or more occurrences of oldString within page are overwritten with the newString. Regardless
of the content of either string the number of bytes occupied by the replacement string will always
be identical to that occupied by the original. Truncation may occur or some bytes may remain
unchanged if the two strings are of different length.

If the optional parameter once is specified only the first occurrence of oldString will be overwritten
– subsequent occurrences will not be affected.

If an error occurs, for example if the search string is not found or if the write is unsuccessful, a
return code from this function will be stored as system value <sys_last_error> which can be
interrogated using the on error call on page 134 procedure.

Effects

The string parameters of the overwrite function are case sensitive.

If you need to replace strings of different length without truncation or padding use the replace
on page 151 statement.

Specifying once will improve the performance of this command in most cases.

Comments

...
if <page1>;
let <overwriteText> = "Page 2 is next";

else;
let <overwriteText> = "Page 2 is here";

end if;
overwrite "**replace_me**" in <afpPage> with
<OverwriteText>;
on error call <ErrorProc>;

Example

141EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

page count

Gets the number of pages in a document group.Function

let pageCount = page count of docGroup;
Syntax

pageCount a variable to receive the page count value

docGroup a variable containing a PCE document group.

Parameters

The number of pages stored in the PCE document group docGroup is stored in pageCount.Effects

To qualify as a document pages must first be included in a document group variable. This can
be achieved using the read…document on page 148 or add document name commands.
Document groups are supported for AFP streams.

Comments

read 10 pages from <inFile> into <group>;
let <numberOfPages> = page count of <group>;

Example

142EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

pageoffset

Gets the file pointer of an output datastream file for the start of the last written page.Function

let value = pageoffset;
Syntax

value. a variable to receive the offset number.Parameters

value is updated with the file pointer offset indicating the start of the last page that was written
to an output datastream file. The offset value is the number of bytes from the start of the file.

Effects

Use this command immediately after the write operation for the file to which it is intended to apply.
You cannot request the offset of a specific file. This command is not supported for files opened
for input.

Comments

...
open <outputList> for output as file 0 line/plain;
open <afpInFile> for input as file 1 wsafp/afpds;
open <afpOutFile> for output as file 2 wsafp/afpds;
// Read and write first page of AFP
read <readNumber> page from file 1 into <AFPData>;
write 1 page into file 2 from <AFPData>;
//Get and write document offset to output
let <pageOffset> = pageoffset;
let <offsetOut> = string <Offset> 10 zero;
write 1 item into file 1 from <OffsetOut>;

Example

143EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

quit

Immediately terminates processing.Function

quit;
Syntax

On encountering this statement the PCE programwill terminate immediately. No further statements
in the script will be processed

Effects

All open files will be closed automatically.Comments

...
// Check that a full read took place...
let <BadRead> = <ReadNumber> lt 5;
// ... if not abort program
if <BadRead>;
quit;

end if;

Example

144EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

read

Reads one or more items from a file into a variable.Function

read [at offset] count {items|pages} from file fileRef
into var;

Syntax

offset integer; indicates the point at which reading should start (see below)

count integer; number of pages or other units of data to read

fileRef integer; handle of a file opened for reading

var a variable or array to receive the data read.

Parameters

count items are read from the file referenced by fileRef and stored in var. If offset is specified
reading begins at the file offset indicated otherwise reading begins using the file pointer as it was
last updated.

Effects

If var is not an array and more than 1 item is specified the items read will be concatenated together
in var. If var has been declared as an array and more than one item is specified each item will
be read into a separate array element.

The amount of data read for each item depends on the file type specified when the file it was
open on page 136ed. For files opened as output datastreams PCE always reads a page for each
item specified. For other file types a single record is typically read for each item specified.

offset has two different bases depending on the platform running the script. z/OS offset represents
a record count from the start of file. The first record is considered to be 1. (Note: on z/OS this
value can be used with the VSAM files as well as other file formats.)

145EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Windows & UNIX offset is a byte offset from the start of file. The first byte is considered to be
byte 0 (zero). In both cases, if the data for offset is being read from a journal file the required
values can be generated by using a vector offset environment variable as part of a journal entry
in the document design. Refer to the Designer User’s Guide for more information.

Following a successful read, the file pointer of fileRef will be updated to the position immediately
after the data read.

Reading will stop before the number of specified items if end of file is reached or if var is an array
but has less array elements than the number of items specified. If count is a variable it will be
updated to reflect the number of items actually read. If required, the variable can be queried to
ascertain how many pages have been read.

If an error occurs a return code from this function will be stored as system value <sys_last_error>
which can be interrogated using the on error call on page 134 procedure.

If you use this command to read pages from an existing document group any fields in the
datastream that control the group will be discarded. Consider using read…document on page
148 if required.

Comments

Declare <JournalData>(5);
Declare <AFPData>;
...
let <ReadNumber> = 2;
// Read from journal
read <ReadNumber> items from file 0 into <JournalData>;
// Check that a full read took place...
let <BadRead> = <ReadNumber> lt 2;
// ... if not abort program
if <BadRead>;
trace "Insufficient data in journal file";
quit;

end if;
// If the journal entry shows the type required...
let <MatchedAccount> = <JournalData>(0) equals "Type 2";
//...read the AFPDS page at the appropriate file offset
if <MatchedAccount>;
read at <JournalData>(1) 1 page from file <AFPFile>

into <AFPData>;
end if;

Example

146EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

read…DIJentry

Reads an entry from a Document Interchange Journal.Function

read count DIJentry from file fileRef into var;
Syntax

count integer; number of DIJ entries to be read. Must be 1.

fileRef integer; handle of a DIJ file opened for reading

var a variable or array to receive the data read.

Parameters

var is updated with the next entry in the DIJ file referenced by fileRef. Following a successful
read, the file pointer will be moved to the start of the subsequent entry so that further reads can
take place.

Effects

The file to be read must have been open on page 136 as type DIJ.

In the current version of PCE you may only read one entry at a time, i.e. count must be the
constant '1' or a variable containing 1.

Refer toDIJelement on page 99 for information about reading specific elements from a DIJ entry.

Comments

See change DIJelement on page 90.Example

147EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

read…document

Reads pages into a document group.Function

read [at offset] count pages of document
[{start|middle|end|all}] from file fileRef into docGroup
;

Syntax

offset integer; normally a vector offset value read from a journal

count integer; number of pages to read

fileRef integer; handle of an open output datastream file

docGroup variable to contain the resulting document group.

Parameters

count pages are read from the output datastream file referenced by fileRef into docGroup. If offset
is specified reading begins at the file offset indicated otherwise reading begins using the file
pointer as it was last updated.

Effects

If the read produces a complete document group (as indicated by group fields within the output
datastream) this will be copied without modification to docGroup. The group related fields are
automatically retained along with the pages.

If the pages were not previously a complete document but the all keyword is specified a new
document group will be created within the variable. This will be built using group fields suitable
to the type of output datastream being read.

If the start, middle or end keywords are specified it is assumed that a partial read of an existing
group is being performed. The keyword indicates which part of the group structure is expected
and hence which group related fields from the datastream should be retained. If you are using
this method you must code commands in the appropriate sequence to maintain the integrity of
the group.

offset has two different bases depending on the platform running the script. z/OS offset represents
a record count from the start of file. The first record is considered to be 1. (Note: on z/OS this
value can be used with the VSAM files as well as other file formats.)

Windows & UNIX offset is a byte offset from the start of file. The first byte is considered to be
byte 0 (zero).

148EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

In both cases, if the data for offset is being read from a journal file the required values can be
generated by using a vector offset environment variable as part of a journal entry in the document
design. Refer to the Designer User’s Guide for more information.

If an error occurs a return code from this function will be stored as system value <sys_last_error>
which can be interrogated using the on error call on page 134 procedure

This command is only supported when reading AFP output datastreams. Using it with other
datastreams will cause unpredictable results.

docGroup does not need to be declared as an array as all the pages read are stored in a single
element along with any existing group fields.

If you use a regular read on page 145 command to populate a document group the relevant group
related fields will not be included in the variable.

Comments

See add document name on page 80.Example

149EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

release

Releases memory used by the data in a variable.Function

release variable ;
Syntax

variable name of a declared variable.Parameters

Any data stored in variable is cleared and the system memory assigned to it is released. The
variable remains available and retains its properties as assigned in the declare command.

Effects

Care must be taken not to read from the variable until data has been read into it.Comments

...
declare <DocData>; // Holds groups of records.
read 10 document from file 1 into <DocData>;
write 1 item into file 3 from <DocData>;
//release the memory used by <DocData>;
release <DocData>;
//reuse the variable for new data
read 1 document from file 1 into <DocData>;

Example

150EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

replace

Finds and replaces a string in a page. String length may be changed.Function

replace oldString in page with newString [once];
Syntax

oldString text; the string to be replaced

page a variable or array element containing a single output datastream page.

newString text; the string to replace oldString.

Parameters

One or more occurrences of oldString within page are overwritten with the newString. If the space
required to stored newString is different than that required for oldString the remaining data within
page is adjusted to compensate.

If the optional parameter once is specified only the first occurrence of oldString will be overwritten
– subsequent occurrences will not be affected.

If an error occurs, for example if the search string is not found or if the write is unsuccessful, a
return code from this function will be stored as system value <sys_last_error> which can be
interrogated using the on error call on page 134 procedure.

Effects

If you need to replace strings without affecting length use the overwrite on page 141 statement.

The string parameters of the replace function are case sensitive.

If performance is an issue, use overwrite on page 141 rather than this command if possible.
Specifying once will improve the performance in most cases.

Comments

...
if <page1>;
let <replaceText> = "Page 1 needs a large text string
here";
else;
let <replaceText> = "Others do not";

end if;
replace "***replaces***" in <mtcPage> with <replaceText>;
on error call <ErrorProc>;

Example

151EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

return

Causes an immediate return from a procedure.Function

return;
Syntax

On encountering this statement processing of the current procedure will stop and control will be
passed back to the statement following that which called the procedure.

Effects

A return on page 152 is implied by the end procedure on page 106 statement. There is no need
to code the actual statement in this circumstance.

Comments

See declare procedure on page 97.Example

152EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

rtrim

Removes trailing spaces from a text string.Function

let result = rtrim inputString ;
Syntax

result a variable to receive the resulting text string

inputString text; the string to be adjusted.

Parameters

result is updated with the contents of inputString but with any trailing spaces removed.Effects

...
let <var1> = "The quick brown fox ";
let <var2> = rtrim <var1>; // <var2> = "The quick
brown fox"

Example

153EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

set page name

Defines a page name to be included in PostScript output.Function

set page name to pageName;
Syntax

pageName text; the name to be given to PostScript pages.Parameters

pageName is added as part of a "%%Page:" DSC comment whenever a PostScript page is written
to an output file. Once this command has been processed it remains in force until a further set
page name on page 154 command is encountered.

Effects

Each PostScript page generated by Generate starts with a %%Page DSC comment (Document
Structuring Conventions). Such commands provide information about the PostScript file to a
document manager or intelligent printer. %%Page has two arguments: Page Name – can be any
value. This will be updated with pageName. Page Position – the position of the page within the
PostScript file. This is automatically set.

If this command is never encountered in the script existing DSC Page comments are written
unchanged to output files.

Comments

open "\gen\transfers.ps" for input as file 2
line/postscript;
open "\gen\amended.ps" for output as file 3
line/postscript;
...
begin loop;

// extract the customer account number...
read 1 items from file 2 into <cust_account_no>;
// ...and write it into the DSC comment for PostScript

set page name to <cust_account_no>;
write 1 items into file 3 from <cust_account_no>;

end loop;

Example

154EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

set preferences

Selects which INI file preferences section is active.Function

set preferences to {prefNumber | default};
Syntax

prefNumber integer; reference to the <Preferences> section to be activated.Parameters

If prefNumber is coded the <Preferences> section in the PCE initialization file (INI) it indicates
is activated. For instance, if prefNumber = 3 then <Preferences3> becomes the active section.

If default is coded <Preferences0> becomes the active section or, if this is not coded in the INI
file, system defaults for all preferences settlings are assumed. This will also apply if prefNumber
indicates a section that is not coded in the INI file.

Effects

The active preferences settings influence the values returned by the following commands: day
on page 96,monthname on page 127,monthabbrev on page 126, numericconvcode on page
132, numericpadding on page 133, ordinal on page 140 and uservalue on page 167

Comments

...
set preferences to 3;
let <prefValue> = uservalue 7;

Example

155EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

string

Converts a number to a formatted text string.Function

let result = string inputNum format
[{left|right|zero|vector}];

Syntax

result a variable to receive the resulting text string

inputNum number; the value to be converted

format number; indicates the number of characters available when formating the text string.

Parameters

result is updated with the result of converting inputNum to a text representation of a decimal
number formatted within the number of characters indicated. format can have the following styles:
0 – (zero) use the minimum number of characters required to represent inputNum. n – represent
inputNum as an integer only with n characters (padded as necessary) n.d – represent inputNum
as a decimal number with n characters for the integral part and d characters for the fractional
part. Both parts are padded as necessary. The decimal point will be included in the output string.
Note that the minus sign is considered as part of the integral count if a negative number is specified

Effects

If format is other than zero the remaining parameters indicate how to justify the text within the
available character spaces. Left – pad with spaces to the left of the string Right – pad with spaces
to the right of the string Zero – pad with zeroes Vector – format in the style required for a journal
vector offset entry. If this option is used format must be specified as 10.

...
let <var2> = 3;
let <var1> = string <var2> 0 left; //<var1> = "3"
let <var1> = string <var2> 2.2 zero; //<var1> = "03.00"
let <var1> = string <var2> 4.2 right; //<var1> = " 3. "
let <var2> = 3.5;
let <var1> = string <var2> 6 left; //<var1> = "3 "
let <var1> = string <var2> 6 right; //<var1> = " 3"
let <var1> = string <var2> 6 zero; //<var1> = "000003"
let <var1> = string <var2> 4.2 right; //<var1> = " 3.50"
let <var1> = string <var2> 4.2 zero; //<var1> = "003.50"
let <var1> = string <var2> 1.5 zero; //<var1> = "3.5000"
let <var2> = -3.5;
let <var1> = string <var2> 6 left; //<var1> = "-3 "
let <var1> = string <var2> 6 right; //<var1> = " -3"
let <var1> = string <var2> 6 zero; //<var1> = "0000-3"
let <var1> = string <var2> 4.2 right; //<var1> = " -3.50"
let <var1> = string <var2> 4.2 zero; //<var1> = "0-3.50"
let <var1> = string <var2> 2.4 zero; //<var1> = "-3.500"

Example

156EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

substring

Extracts a substring from a text string.Function

let result = substring inputString start length ;
Syntax

result a variable to receive the resulting text string

inputString text; the string to be queried

start integer; the position in the string where the substring starts

length integer; the number of characters to be extracted.

Parameters

result is updated with length characters from inputString starting at character number start. Note
that start counts from 0.

Effects

...
let <var1> = "The quick brown fox";
let <var2> = substring <var1> 4 5; // produces
"quick"

Example

157EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

symbol

Gets a symbol value from the PCE initialization file or start-up command line.Function

let result = symbol "symbolName ";
Syntax

result a variable to receive the resulting text string

symbolName text; the name of a symbol in the PCE initialization file.

Parameters

result is updated with the value of symbol symbolName. If a symbol is used that does not have
a value, then an empty string is returned.

Effects

The symbol and its value must be defined either in the PCE initialization file or as part of the PCE
start-up command line; see Running PCE on page 200 for details.

Comments

...
//INI file contains <Symbol> runDate = "June Issue"
let <var1> = symbol "runDate"; //<var1> = "June Issue"

Example

158EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

time

Gets the current system time.Function

let value = time;
Syntax

value. a variable to receive the time string.Parameters

value is updated with a string representing the system time when the command is issued. The
format of this string is hh:mm:ss, for example: 13:06:56.

Effects

// Get and write date and time info to output
let <nowDate> = date format "ddmmmyyyy";
let <nowTime> = time;
let <outString> = "Date: %@nowDate Time: %@nowTime";
write 1 item into file 0 from <outString>;

Example

159EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

TLE

Retrieves an index value from an AFP page.Function

let value = TLE name in afpPage ;
Syntax

value a variable to receive the value of the named index attribute

name text; the name of an AFP index attribute to be retrieved

afpPage a variable or array element containing a single AFP page.

Parameters

afpPage is searched for an index attribute of name. If found, value is updated with the attribute
value. If a match is not found value will be updated with a zero length string (note: you can check
for this – see example).

Effects

This command searches for an AFPDS Tag Logical Element (TLE) structured field in the variable.
If your publication generates an AFP journal a TLE will be placed in each page where an
appropriate journal entry is included in a document design. The index attribute name is provided
by the first object associated with the journal entry and the actual value is provided by the second
object. Refer to the Designer User’s Guide for more information about creating journals.

Note that this command is only valid when working with AFPDS files. Using it with other file
formats will cause unpredictable results.

Comments

...
read 1 item from file <AFPInput> into <AFPPage>;
let <Title> = "Customer_Name";
let <Value> = TLE <Title> in <AFPPage>;
let <OK> = Length <Value>;
if <OK>;
write 1 item into file <ReportFile> from <Value>;

else;
trace "Index not matched";

end if;

Example

160EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

TLE add

Adds an index element to an AFP page or document.Function

TLE add at {page|document} of attrib name value value
[qualifier sequenceNum .levelNum] to afpPage ;

Syntax

name text; the attribute name to be assigned to the index element

value text; the value to be assigned to the index element

sequenceNum integer; sequence number to be assigned to the index element

levelNum integer; level number to be assigned to the index element

afpPage a variable containing one or more AFP pages or a PCE document group containing
AFP pages.

Parameters

An AFPDS Tag Logical Element (TLE) structured field is inserted into afpPage using name as
its attribute name and value as its index value. If the qualifier keyword is coded sequenceNum
is assigned as the index sequence number and levelNum as the level number.

If page is specified the TLE will be added within each page stored in afpPage. If document is
specified the TLE will be added immediately before the first page stored in afpPage.

Effects

If you specify document you must ensure that all the pages making up the AFP document are
stored in the variable when the TLE is added. When working at the document level you should
normally read the pages into a PCE document group to ensure the header containing the TLE
is not excluded.

The qualifier keyword expects two parameters separated by a decimal point. The value to the
left of the decimal point is treated as the index sequence number and the value to the right
becomes the level; e.g. 009.010 would produce a sequence number of 9 and a level of 10.

Comments

161EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

...
//Read document pages into document group
read 10 pages from <InFile> into <Group>;
add document name of "Report_Group" to <Group>;
//Add a new document level TLE before these pages
TLE add at document of attrib "Doc_start" value
"First_doc" qualifier 123.456 to <Group>;
//Delete any page level TLEs with name ’Phase1’
TLE delete at page of attrib "Phase1" in <Group>;
//Add new page level TLEs
TLE replace at page of attrib "Phase2" value "First_pages"
qualifier 123.456 to <Group>;
write 1 item into file <AFPOutput> from <Group>;

Example

162EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

TLE delete

Deletes an index element from an AFP page or document.Function

TLE delete at {page|document} of attrib name in afpPage;
Syntax

name text; the attribute name of the index element to be deleted

afpPage a variable containing one or more AFP pages or a PCE document group containing
AFP pages.

Parameters

AFPDS Tag Logical Element (TLE) structured fields in afpPage using name as the attribute name
are deleted. If page is specified PCE will search for and delete matching fields in the AFP page
headers. If document is specified PCE will search for and delete matching fields only from the
document header.

Effects

If you specify document you must ensure that all the pages making up the AFP document are
stored in the variable when the TLE is added. When working at the document level you should
normally read the pages into a PCE document group to ensure the header containing the TLE
is not excluded.

Comments

See TLE add on page 161.Example

163EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

TLE replace

Amends an index element in an AFP page or document.Function

TLE replace at {page|document} of attrib name value value

[qualifier sequenceNum .levelNum] in afpPage ;

Syntax

name text; the attribute name to be assigned to the index element

value text; the value to be assigned to the index element

sequenceNum integer; sequence number to be assigned to the index element

levelNum integer; level number to be assigned to the index element

afpPage a variable containing one or more AFP pages or a PCE document group containing
AFP pages.

Parameters

afpPage is searched for AFPDS Tag Logical Element (TLE) structured fields using name as the
attribute name. If found the index value is replaced by value. If the qualifier keyword is coded
sequenceNum and levelNum are used to replace the index sequence number and level number
respectively.

If page is specified the actual AFP pages are searched and, if appropriate, updated. If document
only the document header is searched.

Effects

Body TextComments

See TLE add on page 161Example

164EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

trace

Writes a message to PCE trace output.Function

trace message ;
Syntax

message text; the string to be output.Parameters

message is written to the PCE trace and log files assuming they have been assigned to the job.Effects

The message text may contain variable names provided the correct syntax rules are followed.
See “Assigning values” on page 59 for details.

See Running PCE on page 200 for information about trace and log files for a PCE job.

Comments

...
// Check the number of items read...
let <ReadResult> = <ReadNumber> lt 5;
// ... and write diagnostic message
if <ReadResult>;
trace "There were less than 5 items read";

else;
trace "There were @@<ReadNumber> items read";

end if;

Example

165EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

translate

Translates a text string using a Generate translation table.Function

translate textToTrans using table tableId ;
Syntax

textToTrans a variable containing text; the string to be translated

tableId integer; the number assigned to the required table in the translation tables file.

Parameters

The contents of textToTrans are overwritten with the results of translating each character code
point of the original string to the appropriate character code point from the Generate translation
table identified by tableId.

Effects

For details about translation tables files, refer to the “Generate Translation Tables” technical
document on the EngageOne Compose Support site.

Comments

...
translate <baseText> using table 22;
replace "*text to replace*" in <page> with <baseText>;

Example

166EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

https://www.pitneybowes.com/us/support/products/software/engageone-compose-support.html

uservalue

Gets a user defined value from the active <Preferences> section of the PCE initialization file.Function

let value = uservalue keywordNum ;
Syntax

value. a variable to receive the preferences value

keywordNum integer; a reference to the required user value keyword.

Parameters

value is updated with the value assigned to the keywordNumth 'UserValue' keyword in the currently
active <Preferences> section of the PCE initialization file. For instance, if keywordNum = 3 then
the value assigned to the UserValue3 keyword will be used.

Effects

User values are always integers. This function cannot return a string.Comments

...
// Set which INI file preferences section to use
set preferences to 3;
// Get and write 7th user value in current section
let <prefValue> = uservalue 7;
write 1 item into file 0 from <prefValue>;

Example

167EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

value

Converts a number value held as a string to a number type.Function

let result = value numberString ;
Syntax

result a variable to receive the resulting number

numberString text; a number value held as a string.

Parameters

numberString is converted to a proper number type (if possible) and stored in result.Effects

You may need to use this if you have first stored a numeric value in a variable using a text function.Comments

...
let <number> = substring "My number is 12" 14 2; //number
= "12"
let <realNumber> = value <number>;

let <intNumber> = value "99";

Example

168EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

write

Reads one or more items from a variable to a file.Function

write count {items|pages} into file fileRef from var ;
Syntax

count integer; number of data items to write

fileRef integer; handle of a file opened for writing

var variable or array containing the data to write.

Parameters

count items of data stored in var are written to the file referenced by fileRef.

If var is not an array the entire contents are written; count must always be 1 and any other value
is ignored.

Effects

If var has been declared as an array count indicates the number of array elements to be written
from the variable. You may specify the array element from which writing is to start. For example:

write 5 items into file 1 from <afpPages>(3);

will write the data from 5 array elements in <afpPages> starting with element 3. If you do not
specify an element writing is assumed to start with element 0.

If an error occurs a return code from this function will be stored as system value <sys_last_error>
which can be interrogated using the on error call on page 134 procedure.

Where multiple pages have been stored in a single array element count should be 1.

Do not use this command to write to a Document Interchange Journal (DIJ) file. Usewrite DIJentry
on page 171.

Comments

169EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Declare <afpPages>(4);
...
// Rerun for summary page (1)
if <rerunType1>;
write 1 page into file 1 from <afpData>(0);

end if;
// Rerun for details pages
if <rerunType2>;
let <pageCount> = <baseCount> + 2;
write <pageCount> pages into file 1 from <afpData>(1);

end if;

Example

170EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

write DIJentry

Writes a Document Interchange Journal entry to file.Function

write DIJentry into file fileRef from dijRecord ;
Syntax

fileRef integer; handle of a file opened for writing

docGroup variable contain a DIJ entry.

Parameters

dijRecord is written to fileRef.

If an error occurs a return code from this function will be stored as system value <sys_last_error>
which can be interrogated using the on error call on page 134 procedure.

Effects

The file to be receive the DIJ entry must have been open on page 136ed as type DIJ. You may
only write one entry at a time, i.e. dijRecord must contain a single DIJ entry.

Comments

See change DIJelement on page 90.Example

171EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Composition Edit Commands

This section details the composition edit (CE) commands that may be used with the begin ce/end
ce construct within a PCE script file. CE commands allow you to add a limited set of new presentation
elements to an existing composed page of output datastream. They have a different format from the
main PCE script file statements that reflects the specialized nature of their function.

Positioning Concepts

All composition edit positions are defined as a meeting point between an X coordinate (‘across’
direction) and a Y coordinate (‘down’ direction) on a logical page. The 'top left' corner of the logical
page is known as the logical page origin, i.e. X=0, Y=0, and is the point from which all positions are
measured.

Logical pages are positioned within a physical page definition that reflects the media to be used on
the actual output device. There may be more than one logical page on each physical page depending
on how the Generate job that produced the output being manipulated was configured.

For most datastreams the physical page origin normally coincides with the origin of the first logical
page (top left). For PostScript and PostScript variants however, the physical page origin is the bottom
left corner. When manipulating PostScript or where the datastream contains multiple logical pages
per physical page you will need to use the Set Physical Page Size (SPPS) command so that PCE
can compensate coordinates accordingly. You must call this command before using commands that
position objects on the page.

The current print position defines the position on the page where the next presentation element (text,
line, etc.) will be placed. The coordinates used to specify the current position are always relative to
the top left corner of the current logical page.

A Set Current Print Position (SCPP) command should be specified before each use of a composition
command. If this is not done PCE will assume a print position of X=0, Y=0.

The unit of measure used for all CE commands is expressed in inches only. The maximum valid
measurement for CE commands is 999.999 inches.

Resources

When adding new text or graphics to pages you need to be aware if your target output environment
expects embedded or referenced font and image resources.

If resources are not embedded fonts and images are referenced by name only within the datastream
and the required resource files (or suitable defaults) are assumed to be available on the target device.

For embedded resources you may only work with font and images that are already embedded in
one of the output datastreams you are working with or which are available in the HIP files defined
in the PCE initialization file.

172EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Assuming you have chosen to embed resources in your job options, Generate will place them in the
file header of the output datastream. If you are only working with a single datastream file as input to
your PCE script this header will, by default, automatically be copied to any output files you create.
In this scenario the existing resources are automatically available for use when creating new objects
with CE commands.

If you need to use resources that are not embedded in your input files – i.e. you want to work resources
from a HIP file – or you are intending to merge pages from different datastreams together you will
need to specifically ensure that the file header of output files contains all the required resources. In
these situations use the PCE get resources command to set the source to be used when gathering
resources.

All output datastream files created by a PCE script will always share the same list of resources.

You can refer to a resource by the any of the names by which it is known in the existing output
datastreams being manipulated and the HIP files referenced in the PCE initialization file. In most
cases this will simply be the base name of the font or image, for instance X0T05500 or PIC001.
However, when referring to fonts for PostScript or PostScript variants the font syntax can be more
complex: For example:

Arial-bold.10
Courier.12
TimesNewRoman-oblique.9

For this reason you should first code the PCE font command where possible to establish the valid
reference names. See “font” on page 94 for details.

Using Color

By default, all new elements created by CE commands will be presented in black. If you want use
other colors you must code one or more Set Color commands (COLR) in the appropriate sequence
within the script.

You may specify colors either using keywords for one of 8 'standard' colors or by specifying a RGB
value for all other colors.

Be aware that your intended output device may have limited or no color support. Specifying
unsupported colors may have unpredictable results. Note that for some datastreams colors defined
in COLR commands may be overriding or ignored by settings in the PCE initialization file.

Order of Commands

Composition edit commands must conform to the following order:

• If you intend to call image names (via the PI command) or overlay names (via PPO) you must
include a Define Image List command (DIL) and/or a Define Page Overlay List command (DPOL)
before the appropriate include commands (PI and/or PPO).

• If you are manipulating PostScript output or a datastream with multiple logical pages per physical
page you must code a Set Physical Page Size command (SPPS) before any SCPP or other
commands containing coordinates.

173EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

• If you need to create presentation elements using colors other than black you must use a Set Color
command (COLR) before the relevant presentation commands. The color specified in this command
stays in force until the next COLR is encountered.

• A Set Current Print Position command (SCPP) must precede any command that places an object
other than PI or PPO;

• If an STL command is to follow the SCPP use a Set Text Presentation command (STP) to set the
required orientation.

Syntax

All composition edit commands have a fixed structure and are position sensitive. All commands are
introduced with an equals sign (=) in column 1 and are terminated with a double semicolon (;;).
Continuation records may be used if a particular command is longer than 80 bytes.

Commands are identified by mnemonic keywords in positions 2 - 5. All keywords must appear in
upper case. Both keywords and parameters must occupy a fixed number of positions and trailing
spaces must be used to pad the blank positions where necessary.

You can use a PCE variable as part or all of a string in any CE command. Such variables must be
prefixed with the characters %@. Where necessary, such variables must include space padding to
allow for position sensitive elements

The measurement values for positioning commands are always in inches and are expressed as a
signed number with three decimal places, i.e. a format of ±nnn.nnn. This is known as a CE
measurement. All numeric positions must be specified in full, e.g. '000.010'. The sign can be omitted
if the intended value is positive but where this is the case the position must be padded with a space.

The following examples illustrate these points. Required spaces are indicated by •:

=SCPP••001.500••002.000;;
=DHR••+003.000••000.050;;
=STP••90;;
=STL••X0T05501••var1 is %@<var1>;;
=PI•••S1LOGO••••001.000••001.000;;

174EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

COLR – Set Color

Sets the color to be used for drawing subsequent presentation elements.Function

=COLR•{doc1color|Rnnnnnn};;
Syntax

doc1Color integer; indicates one of the standard Generate colors. Choose from:

1 - Black

2 - Blue

3 - Brown

4 - Green

5 - Pink

6 - Red

7 - Cyan

8 - Yellow

Rnnnnnn RGB color; nnnnnn indicates the red, green and blue values specified as hex numbers:

Parameters

Presentation elements generated by commands following COLR will be created using the color
indicated (until a further COLR is encountered).

Effects

=COLR 1;;
=SCPP 000.500 001.500;;
=DHR +000.250 000.020;;
=COLR R0f0f0f;;
=SCPP 000.500 003.500;;
=DHR +000.250 000.020;;

Example

175EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DBX – Draw Box

Draws a box at the current print position, optionally shaded.Function

=DBX••shade •thickness •width •height ;;
Syntax

shade three digits representing a percentage (i.e. 001...100); the percentage of shading required
within the box

thickness CE measurement; the thickness of the sides of the box. If this value is set to zero no
sides are drawn.

width CE measurement; the width (X direction) of the box

height CE measurement; the height (Y direction) of the box.

Parameters

A command is inserted into the current page to draw a box of width x height dimensions and a
fill percentage of shade. Its top left corner is determined by the last SCPP command to be
processed. The box sides (if any) are drawn with a solid rule with the thickness specified. Both
box sides and shading will use the color specified in the last COLR command to be processed
or black if no such command has been encountered.

Effects

The box is drawn so that the lines are within the dimensions specified. For example, if a box is
1" in height and 0.5" in width with a rule thickness of 0.2", the total height of the box would be 1"
and the width would be 0.5".

Comments

=SCPP 001.000 001.000;;
=DBX 005 000.020 002.000 001.000;;

Example

176EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DHR – Draw Horizontal Rule

Draws a horizontal line at the current print position.Function

=DHR••length •thickness ;;
Syntax

length CE measurement; the length of the rule

thickness CE measurement; the line thickness.

Parameters

A command is inserted into the current page to draw a solid horizontal rule starting at the position
specified by the last SCPP command to be processed. If length is a positive value the rule is
drawn from left to right. If negative it is drawn from right to left.

Effects

The thickness of the rule is always drawn down the page.Comments

=SCPP 001.000 001.000;;
=DHR +003.500 000.050;;

Example

177EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DIL – Define Image List

Declares the names of image resources to be used with the current Begin CE/End CE construct.Function

=DIL••image001 •image002 •image003...;;
Syntax

image... text; the name by which an image resource is known to Generate. This should normally
be the name used for the resource in the Designer. If the name is specified as a quoted string it
may be any length. If not it must be 8 characters padded with spaces if necessary.

Parameters

The image names specified are made available for use with subsequent PI commands.Effects

Up to 127 image names may be specified, each separated by a space. Only images already
present in the HIP files being used with the PCE job may be referenced. The resource names
must match the references used in the HIP exactly.

Comments

=DIL S1LOGOA1 S1LOGO "Marketing July" %@<Img1>;;
=PI S1LOGO1 001.500 001.500;;

Example

178EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DO – Do composition function (barcodes)

Performs a predefined composition function using the input provided and outputs the result at
the current print position. In the current version of PCE this is limited to the formatting of barcode
output.

Function

179EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

=DO•••BARCODE•TYPE {•OPTION =PARM •OPTION
=PARM...}•USING•VALUE ;;

Syntax

TYPE is one of: POSTNET | PLANETCODE | 2OF5 | 3OF9 | 3OF9CHECKSUM | CODE128A
| CODE128B | CODE128C | PDF417 | DataMatrix | MaxiCode | IntMail |
InfoMail:

OPTION=PARMYoumay need to specify one or more settings depending on the type of barcode
being used. Use the tables below for reference.

VALUE the input to the function. You may include a value stored in a PCE variable by using the
format %@<VARNAME>.

Parameters

Options for PostNet, PlanetCode

DefaultParametersOption

HORIZONTALHORIZONTAL | VERTICALDirection

Options for 2of5, 3of9, 3of9Checksum, Code128n (continued)

DefaultParametersOption

HORIZONTALHORIZONTAL | VERTICALDirection

MEDIUMHIGH | MEDIUM | LOWDensity

Options for PDF417

DefaultParametersOption

180EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Options for PDF417

DefaultParametersOption

Direction HORIZONTALHORIZONTAL | VERTICAL

1:21:2 | 1:3 | 1:4 | 1:5Font Aspect

00-8Security

00-100Barcode Aspect

ALPHAALPHA | LOWER | MIXED |
PUNCTUATION | NUMBER

Start Mode

Options for DataMatrix

DefaultParametersOption

HORIZONTALHORIZONTAL | VERTICALDirection

SQUARESQUARE | FLATMode

0
IF MODE = SQUARE 0-23 IF MODE = FLAT 0-6

Security

varies – one used in inputSize in points

181EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Options for DataMatrix

DefaultParametersOption

Fontsize

Options for MaxiCode

DefaultParametersOption

none
UPS, 2-6Mode

0
0-999.999 (inches)

Border Width

noneBLACK | BLUE | BROWN | GREEN | PINK | RED
| CYAN | YELLOW | DARK BLUE | DARK GREEN |
TEAL | GRAY | MUSTARD | ORANGE | PURPLE |
WHITE Rrrggbb – RGB value with parameters as hex
codes

Background color

none
stringPostal Code

none
stringCountry Code

none
stringService Class

nonestring
Tracking Number

noneValid for Modes 2-6 only. string

182EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Options for MaxiCode

DefaultParametersOption

Origin Carrier

noneValid for UPS Mode only. string
Shipper ID

noneValid for UPS Mode only. string
Pickup Date

noneValid for UPS Mode only. string
Shipment ID

noneValid for UPS Mode only. string
Package Number

noneValid for UPS Mode only. string
Package Count

noneValid for UPS Mode only. string
Weight

noneValid for UPS Mode only. string
Street

noneValid for UPS Mode only. string
City

noneValid for UPS Mode only. string
State

183EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Options for MaxiCode

DefaultParametersOption

Address Validation YESYES | NO

A barcode of the requested type is generated using the assigned value. A command is inserted
into the current page to add the barcode using the position specified by the last SCPP command
to be processed as the 'top left' corner.

Effects

=SCPP 001.000 001.000;;
=DO BARCODE POSTNET DIRECTION=VERTICAL USING
"1234567890";;
=SCPP 005.100 001.000;;
=DO BARCODE DATAMATRIX MODE=FLAT SECURITY=6 USING
%@<BCDATA>;;

Example

184EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DPOL – Define Overlay List

Declares the names of overlay resources to be used with the current Begin CE/End CE construct.Function

=DPOL•overlay1 •overlay2 •overlay3...;;
Syntax

overlay... text; the name by which an overlay resource is known to Generate. This should
normally be the name used for the resource in the Designer. If the name is specified as a quoted
string it may be any length. If not it must be 8 characters padded with spaces if necessary.

Parameters

The overlay names specified are made available for use with subsequent PPO commands.Effects

Up to 127 overlay names may be specified, each separated by a space. Only overlays already
present in the HIP files being used with the PCE job may be referenced.

Comments

=DPOL O1OVER O1OVERXX "Response Form" %@<Over>;;
=PPO O1OVERXX 001.500 001.500;;

Example

185EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

DVR – Draw Vertical Rule

Draws a vertical rule at the current print position.Function

=DVR••length •thickness ;;
Syntax

length CE measurement; the length of the rule

thickness CE measurement; the line thickness.

Parameters

A command is inserted into the current page to draw a solid vertical rule starting at the position
specified by the last SCPP command to be processed. If length is positive the rule will be drawn
downwards (i.e. from top to bottom) from the Current Print Position. If negative it will be drawn
upwards (i.e. from bottom to top).

Effects

The thickness of the rule always goes across the page from left to right.Comments

=SCPP 001.000 001.000;;
=DVR +003.500 000.050;;

Example

186EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

NOP - No Operation

Adds a NOP Comment instruction to an AFP Page. The NOP is inserted before the Active
Environment Group.

Function

=NOP••content;;
Syntax

content text; the string to be added. This can contain references to PCE variables using the %@
introducer if required

Parameters

A NOP instruction is inserted into the current AFP page with the specified content.Effects

Comments

=NOP
My_First_Test_String%@<MyVariable>Second_String%@<MyVariable>;;

Example

187EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

OUN - Ouput User Note

Adds a NOP Comment instruction to an AFP Page. The NOP is inserted inside the Presentation
Text object.

Function

=OUN••content;;
Syntax

content text; the string to be added. This can contain references to PCE variables using the %@
introducer if required

Parameters

A NOP instruction is inserted into the current AFP page with the specified content.Effects

If no Presentation Text object is created from the CE command list, this instruction has no effect.
If you do not require the NOP to be inside Presentation Text, use the NOP command.

Comments

=OUN
My_First_Test_String%@<MyVariable>Second_String%@<MyVariable>;;

Example

188EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

PBIM – Place Barcode – Intelligent Mail

Inserts an Intelligent Mail barcode.Function

=PBIM••orientation •fullheight •trackerheight •barwidth
•density•string ;;

Syntax

orientation rotation of the barcode: 0 – 0 degrees (left to right) 1 – 90 degrees (top to bottom) 2
– 180 degrees (right to left, upside-down) 3 – 270 degrees (bottom to top)

fullheight height of the full bar in inches or fractions of an inch

trackerheight height of the tracker bar in inches or fractions of an inch

barwidth width of the bar in inches or fractions of an inch

density width of the space between the bars in inches or fractions of an inch

string string to be encoded into the barcode. Can be enclosed in double quotes.

Parameters

A command is inserted into the current page to draw an Intelligent Mail barcode starting at the
position specified by the last SCPP command to be processed.

Effects

The barcode is drawn using rectangles, so no font is required.Comments

=SCPP 005.100 001.000;;
=PBIM 0 000.125 000.039 000.015 000.012 01234567094987654321;;

Example

189EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

PI – Place Image

Inserts an image resource into a page.Function

=PI•••image [•xOffset •yOffset];;
Syntax

image text; the name by which an image resource is identified in the HIP files assigned to the
current PCE job and which has previously been declared in a DIL command. If the name is
specified as a quoted string it may be any length. If not it must be 8 characters padded with
spaces if necessary

...Offset CE measurements. The coordinates for positioning the top left corner of the image.

Parameters

A command to include image on the current page at xOffset/yOffset (or at the current print position
if these parameters are omitted) is inserted.

Effects

A command to include image on the current page at xOffset/yOffset (or at the current print position
if these parameters are omitted) is inserted.

Comments

=PI S1IMAG01 001.500 001.500;;
=PI %@<Img1> +003.000 +002.000;;

Example

190EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

PPO – Place Page Overlay

Inserts an overlay resource into a page.Function

=PPO••overlay [•xOffset •yOffset];;
Syntax

overlay text; the name by which an overlay resource is identified in the HIP files assigned to the
current PCE job and which has previously been declared in a DPOL command. If the name is
specified as a quoted string it may be any length. If not it must be 8 characters padded with
spaces if necessary

...Offset CE measurements. The coordinates for positioning the top left corner of the overlay.

Parameters

A command to include overlay on the current page at xOffset/yOffset (or at the current print
position if these parameters are omitted) is inserted.

Effects

=PPO O1OVER01 001.500 001.500;;
=PPO %@<Over> +003.000 +002.000;;

Example

191EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

SBT – Set Boxed Text

Creates a 'white' text element centered in a box.Function

=SBT••font •width •height •content ;;
Syntax

font text; the name by which a font resource is identified within the HIP files assigned to the
current PCE job. If the name is specified as a quoted string it may be any length. If not it must
be 8 characters padded with spaces if necessary

width CE measurement; the width (X direction) of the box

height CE measurement; the height (Y direction) of the box

content text; the string to be included in the box. This can contain references to PCE variables
using the %@ introducer if required.

Parameters

A command is inserted into the current page to draw a box of width x height dimensions with
solid fill. Its top left corner is determined by the last SCPP command to be processed. The fill
color will be the color specified in the last COLR command to be processed or black if no such
command has been encountered.

Content will be presented using the selected font and centered within the box. The text has no
color and will show as the current paper color unless it overlays other elements. No wrapping of
text occurs: if the font height is greater than the box height, or if the text width is greater than the
box width, the text will extend beyond the boundaries of the box.

Effects

For PostScript pages any font can automatically be reversed and therefore you may specify any
font known to the HIP file.

AFP fonts cannot be reversed automatically and customized reversed fonts are normally created
where required. In such fonts each character raster must extend to the maximum ascender and
descender of the font otherwise this function will not work properly; a symptom of this would be
white bars appearing between characters. Refer to your product supplier for more information
regarding the use of reversed fonts for AFP.

Comments

=SCPP 001.000 001.000;;
=SBT "Arial-bold.10" 005.000 001.000 "Amount to pay:
%@total";;

Example

192EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

SBTR – Set Boxed Text Right Justified

Creates a right justified 'white' text element centered in a box.Function

=SBTR•font •width •height •margin •content ;;
Syntax

font text; the name by which a font resource is identified within the HIP files assigned to the
current PCE job. If the name is specified as a quoted string it may be any length. If not it must
be 8 characters padded with spaces if necessary

width CE measurement; the width (X direction) of the box

height CE measurement; the height (Y direction) of the box

margin CE measurement; the amount content is offset from the right side of the box

content text; the string to be included in the box. This can contain references to PCE variables
using the %@ introducer if required.

Parameters

A command is inserted into the current page to draw a box of width x height dimensions with
solid fill. Its top left corner is determined by the last SCPP command to be processed. The fill
color will be the color specified in the last COLR command to be processed or black if no such
command has been encountered.

Content will presented using the selected font and will be right justified within the box offset by
margin. The text has no color and will show as the current paper color unless it overlays other
elements. No wrapping of text occurs: if the font height is greater than the box height, or if the
text width is greater than the box width, the text will extend beyond the boundaries of the box.

Effects

For PostScript pages any font can automatically be reversed and therefore you may specify any
font known to the HIP file.

AFP fonts cannot be reversed automatically and customized reversed fonts are normally created
where required. In such fonts each character raster must extend to the maximum ascender and
descender of the font otherwise this function will not work properly; a symptom of this would be
white bars appearing between characters. Refer to your product supplier for more information
regarding the use of reversed fonts for AFP.

Comments

=SCPP 001.000 001.000;;
=SBTR "Arial-bold" 005.000 001.000 "Amount to pay:
%@total";;

Example

193EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

SCPP – Set Current Print Position

Sets the position to be used when inserting subsequent presentation elements.Function

=SCPP•[+|-|•]xxx.xxx •[+|-|•]yyy.yyy ;;
Syntax

xxx.xxx, yyy.yyy CE measurements. The position coordinates in relation to the top left corner of
the logical page. Must be preceded by a sign or an extra space.

Parameters

Subsequent commands that create presentation elements will be positioned using the coordinates
specified in this command.

Effects

Negative values will result in a position outside the logical page boundary and should therefore
not be specified. An absolute position is used when no sign indicators precede the coordinates.
A relative position is used for any coordinate that contains a sign indicator. Note that when relative
coordinates are specified it is the user’s responsibility to ensure that the position is set within the
logical page boundary.

Comments

Example of setting an absolute print position:

=SCPP 001.000 004.000;;

Example of setting an absolute X print position with a relative Y print position:

=SCPP 001.000 +002.000;;

Example of setting a relative X print position with an absolute Y print position:

=SCPP +001.500 003.000;;

Example of setting a relative print position for both coordinates:

=SCPP +001.500 -002.000;;

Example

194EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

SPPS – Set Physical Page Size

Specifically defines the size of physical pages.Function

=SPPS••{width •height |name };;
Syntax

width CE measurement; the width (X direction) of the page

height CE measurement; the height (Y direction) of the page

name text; a keyword describing the page size. Valid options are: A4, B4, B5, USLETTER,
USLEGAL.

Parameters

PCE compensates positioning commands using the size information given.Effects

You will need to code this command when you are processing PostScript and PostScript variants
or where the datastream being manipulated contains multiple logical pages per physical page.

Where used, this commandmust be placed before any positioning or drawing commands, including
SCPP. If this command is not coded the default page size is A4.

Note that this command is only used when calculating the offset of new presentation elements;
it does not affect logical page sizes in any way.

Comments

=SPPS +008.500 +011.000;;
=SPPS A4;;

Example

195EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

STL – Set Text Line

Adds a text string using the specified font at the current print position.Function

=STL••font •content ;;
Syntax

font text; the name by which a font resource is identified within the HIP files assigned to the
current PCE job. If the name is specified as a quoted string it may be any length. If not it must
be 8 characters padded with spaces if necessary

content text; the string to be added. This can contain references to PCE variables using the %@
introducer if required.

Parameters

A command is inserted into the current page that will present content at the current print position
in the font specified. The text is always presented as a single line; i.e. no wrapping occurs.

The text will be presented at 0° relative to the logical page unless an STP command with a
specifying a different orientation has been processed.

Effects

If the string is too long for the available logical page space the subsequent behavior will depend
on the output device used.

Comments

=SCPP 001.000 001.000;;
=STP 270;;
=STL X0T05500 "Detach here";;

Example

196EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

STP – Set Text Presentation

Sets the orientation to be used with subsequent STL commands.Function

=STP••[0|90|270];;
Syntax

Text added using subsequent STL commands will be presented in the orientation coded.Effects

Presentation commands other than STL are not affected. An orientation of 180° is not supported.Comments

=SCPP 001.000 001.000;;
=STP 90;
=STL X0T05500 "Page 1 of 2";;

Example

197EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

Script file sample

This example of a PCE script file is intended to post-process a single AFPDS 240 datastream file.
The production system is assumed to be Windows.

The objectives of the application is to add a new box and text to the pages of an existing datastream
and split the output into two new files based on whether or not the page count is odd.

// Declare the variables needed in the program

DECLARE <Statement>; // Statement data is stored here
DECLARE <PageCnt>; // Number of pages
DECLARE <N>; // Pages (to be) read
DECLARE <Done>; // TRUE at end of file
DECLARE <Odd>; // Variable to split odd and even numbers
DECLARE <App>; // Variable to hold name of Publication
DECLARE <Infile>; // Variable to hold name of Input Publication
DECLARE <Outfile1>; // Variable to hold name of 1st Output
Publication
DECLARE <Outfile2>; // Variable to hold name of 2nd Output
Publication

// Declare the procedures
DECLARE PROCEDURE <Main> IS MAIN;

BEGIN PROCEDURE <Main>;

// Resolve Input Filename
LET <APP> = SYMBOL "APPNAME";
LET <INFILE> = <APP> + "240.afp";

//Resolve Output Filenames
LET <oUTFILE1> = <APP> + "oddpage2.afp";
LET <oUTFILE2> = <APP> + "evenpage2.afp";

// Open the input file
OPEN <INFILE> FOR INPUT AS FILE 1 WSAFP/AFPDS;

// Open output files
OPEN <OUTFILE1> FOR OUTPUT AS FILE 1 WSAFP/AFPDS;
OPEN <OUTFILE2> FOR OUTPUT AS FILE 2 WSAFP/AFPDS;

// Initialize variables
LET <PageCnt> = 0;
LET <Odd> = 0;

// Loop for each customer...
BEGIN LOOP;

198EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

// Establish if odd or even page
LET <Odd> = <Odd> NE 1;

// Quit when 21 pages processed
LET <Done> = <PageCnt> EQ 21;
EXIT LOOP WHEN <Done>;

// Read the composed print data
LET <N> = 1;

// Number of pages read is returned in <N> below
READ <N> PAGES FROM FILE 1 INTO <Statement>;
LET <Done> = <N> LT 1;

// Exit if page not read
EXIT LOOP WHEN <Done>;

// or update page count if successful
LET <PageCnt> = <PageCnt> + 1;

// Add new elements to the page via composition edit commands
// The CE commands are position sensitive
BEGIN CE INTO <Statement>;

// Set print position
=SCPP 000.500 005.700;;
// Draw box
=DBX 000 000.100 007.000 005.500;;
// Set print position
=SCPP 000.600 006.000;;
// Set text presentation
=STP 0;;
// Add text line
=STL 02 This box was added by PCE;;

END CE;

// Write to the appropriate output files
IF <Odd>;

TRACE "Copying page @@<PageCnt> statement to file 1";
WRITE 1 ITEM INTO FILE 1 FROM <Statement>;

ELSE;
TRACE "Copying page @@<PageCnt> statement to file 2";
WRITE 1 ITEM INTO FILE 2 FROM <Statement>;

END IF;

END LOOP;

END PROCEDURE;

199EngageOne Generate 6.6 Service Pack 11 Production Guide

Programming PCE

6 - Running PCE
A PCE job is controlled by its initialization file which contains resources
definitions and other control information used by the job.

In this section

PCE resources...201
Creating an initialization file..203
INI section summary...205
Start the job..217

PCE resources

A PCE job uses the following resources:

Script file

Mandatory – this is the program code that describes what PCE is to do when a job is run. Refer to
Programming PCE on page 62 for details.

Initialization file

Mandatory – this provides information about the PCE environment including regional and system
settings.

Output datastream(s)

The file(s) to be manipulated by PCE. Files that are input to PCE must have been produced by
Generate. During a typical PCE process, pages from the datastreams are read tomemory, manipulated
as required and then output to a new file. Both input and output files are identified using an open
command in the PCE script itself.

Journal files

Many publications create one or more journal files to act as an index into the pages created in the
output datastream. PCE can use these to locate and extract specific pages. It can also write new or
updated journal information if required. Journal files are identified using an open command in the
PCE script itself.

HIP file

This is the file containing the instructions and resources for a publication as created by the Designer.
If you intend to add new presentation objects to pages you will need to identify the HIP file that was
used when the output datastream was initially created by Generate. This is specified in the <Files>
section of the initialization file.

Translation tables file

Mandatory – this contains tables that are used when PCE converts text data. A standard translation
tables file is provided with product distribution material. Custom files may be supplied in some
circumstances. The file to be used is referenced in the <Files> section of the initialization file.

Messages file

Mandatory – this contains the text of the diagnostic messages that may be issued by PCE and is
supplied with product distribution material. It must be referenced in the <Files> section of the
initialization file.

201EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

User exit control file

If you need to call functions from external programs as part of the PCE process you will need create
this file to identify the modules required and specify the type of each function to be called. The control
file itself is referenced in the <Files> section of the initialization file.

Text substitution file

If you want to use the PCEmapp command this file provides the text strings to be returned according
to the parameter used. It is referenced in the <Files> section of the initialization file. See mapp on
page 122 for more information.

Exception dictionary

If you want to use the PCE mixc command this file includes the correct casing for non-standard text
strings. It is referenced in the <Files> section of the initialization file. Seemixc on page 125 for more
information.

202EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

Creating an initialization file

A PCE initialization file (INI) is a text file that can be created using any standard text editor.

The file format consists of several distinct sections in which can be coded a range of keywords and
their associated parameters. Section names are enclosed in angle brackets. All code following a
section name is considered to belong to that section until the next section name is encountered. For
example:

<Files>
Messages=messages.dat
Input=gen\pce\scripts\job1.txt
TranslationTable=c:\gen\doc1ttab.ett
TextSubs=c:\gen\resource\myets.ets
HIP=c:\dochost\billjob.hip

<System>
AsciiToAfpds=27
;other System values in this include file
#include doc1static.ini

<Afpds>
DisableColor=DOWNGRADE

<Preferences1>
Day1=Dimanche

Sections and keywords within sections can be coded in any order. Most keywords have default
parameters that are used if the keyword is not coded in the file.

Parameters are normally coded as literal values but can be specified dynamically if required by
defining them wholly or partly as symbols. Values can be assigned to such symbols when starting
the DOC1PCE program. Within the INI file symbols are referenced by coding the name to be used
within percentage signs as in the example above. Symbol names can also be referenced within the
PCE script itself by using the symbol command.

You can also use an #include statement to add the contents of an existing INI file to another. This
allows you to reuse common INI settings. The contents of an include file are added at the point where
the #include statement is encountered.

Note that If sections or keywords are repeated within an INI file or #include files the last element to
be encountered will be used (working top-to-bottom).

Text following a semi-colon up to the start of the next line is as a comment.

At minimum a PCE INI must contain:

• a <Files> section with at least the Messages and Input keywords

203EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

• a <PrintDevice> section with at least the PrintStream and Resolution keywords

If your script uses functions that return regional information (such as date, day or monthname) you
may often want to create one or more <Preferences> sections to indicate how the values are to be
formatted. You may include up to 10 different sections: <Preferences0>, <Preferences1> …
<Preferences9>.

If your script adds presentation objects to existing pages the INI will also often contain a section that
allows you to customize some aspects of the output datastream being manipulated (for instance
<AFPDS> or <PostScript>) and a <System> section for non-standard environment settings.

204EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

INI section summary

The following pages provide a reference for all available INI sections and their associated keywords.

205EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<AFPDS>

This section contains customizable settings related to AFP datastreams. They are used only when PCE is adding
presentation objects to existing pages.

Syntax and defaults:

<AFPDS>
DisableColor={YES|NO|DOWNGRADE} ;default NO
MaxPtxRecordSize=Number ;default 8200
MaxRuleThickness=Number ;default 32
BuildDefaultFormdef={YES|NO} ;default YES
UseExtendedMediumMap={YES|NO} ;default YES

Keywords and parameters:

By default, Generate includes color commands in AFP that conform to the specification
for a full color AFP environment. If you are using an older AFP environment you may
need specify either: YES – do not include any color commands; DOWNGRADE –
use AFP commands suitable for a 16 standard color environment.

DisableColor

Number is an integer and indicates the maximum size of PTX structured fields used
when adding new text to a datastream.

MaxPtxRecordSize

Number is an integer and indicates the maximum number of PELs to be used in
individual commands when drawing new lines and boxes.

MaxRuleThickness

The default option Yes includes the form definition, F1G1DFLT, in resources that are
built from hip files listed in the <Files> section. The form definition is not included if
the option is set to No.

BuildDefaultFormdef

The default option Yes includes input tray and output bin settings with medium maps
when they are embedded into the AFP datastream. If No is used the input tray and
output bin settings are ignored.

UseExtendedMediumMap

206EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

Example:

<AFPDS>
DisableColor=YES
MaxPtxRecordSize=32000
MaxRuleThickness=64
BuildDefaultFormdef=YES
UseExtendedMediumMap=YES

207EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<Exception>

This section defines the level of exception messages to be issued by PCE.

Syntax and defaults:

<Exception>
SuppressWarnMsg={YES|NO} ;default NO
SuppressInfoMsg={YES|NO} ;default NO

Keywords and parameters:

If YES PCE will not issue any messages classed as warnings.SuppressWarnMsg

If YES PCE will not issue any messages classed as information.SuppressInfoMsg

Example:

<Exception> SuppressWarnMsg=YES SuppressInfoMsg=YES

208EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<Files>

This section identifies the standard PCE files to be used. Note that output datastream files to be manipulated by the job
and their associated journal files are specified using an open command in the PCE script itself. File reference should be
coded in the format required on the system that will run PCE; for example:

Windows

Input=c:\gen\pce\scripts\job1.txt

UNIX

Input=/gen/pce/scripts/job1.txt

z/OS

Input="GEN.PCE.SCRIPTS(JOB1)"
Input=DD:PCESCRPT

Syntax and defaults:

<Files>
Input=File ;mandatory, no default
Messages=File ;mandatory, no default
TranslationTable=File ;mandatory, no default
TextSubs=File ;optional
HIP=File ;optional
UserExit=File ;optional
ExceptionDictionary=File ;optional
TraceInfo=File ;optional
LogInfo=File ;optional
DOC1ecp=File ;optional

Keywords and parameters:

File is the PCE script to be used by the job. This keyword must always be specified.Input

File is the PCE diagnostic messages file as provided with product distribution material.
If possible code this keyword as early as possible in the INI file. Always ensure the
correct version of the file is used. This keyword must always be specified.

Messages

209EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

File is a PCE translation tables file. Typically this will be the generic file provided with
product distribution material although custom files may be provided in some
circumstances. This keyword must always be specified.

TranslationTable

File is a Generate lookup table file (also known as a text substitution file). This is
required if the PCE script includes the mapp command. See the mapp section of the
PCE command reference on page 78 for more information including how to create
a text substitution file.

TextSubs

File is a HIP file as created as part of a Publish task on the Designer. The HIP file(s)
specified in the INI will need to contain all font and image resources that are referenced
by the PCE script. You may code this keyword multiple times or use wild cards in the
parameter to indicate multiple files.

HIP

File is a user exit control file that provides linkages to external functions. This file is
required if the PCE script includes the call userexit command – See the call userexit
section of the PCE command reference on page 78 for details. For complete
information about the user exit environment including how to create a user exit control
file see User exits on page 272.

UserExit

File is a Generate exception dictionary file used to provide proper casing of acronyms
and other non-standard strings. This is required if the PCE script includes the mixc
command. See the mixc section of the PCE command reference on page 78 for
more information including how to create an exception dictionary file.

ExceptionDictionary

If specified File will receive messages issued by the current PCE job in both cases.
The trace file is always overwritten. The log file is appended.

TraceInfo/LogInfo

File is the location of the DOC1ecp file containing the DBCS code pages required to
support a PCE job on a non-ansi platform, such as in a non-Western production
environment.

DOC1ecp

Examples:

Under z/OS:

<Files>
Messages=DD:MESSAGES
Input=DD:PCESCRPT
TranslationTable='USER001.TEMP(DOC1TTAB)'

Under Windows:

<Files>
Messages=messages.txt
Input=c:\gen\pce\scripts\job1.txt
HIP=gen\resources*.hip

210EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<Postscript>

This section contains customizable settings related to PostScript.

Syntax and defaults:

<Postscript>
Symbols="Controls " ;default "{}[]!~^$|"
RecordLength=Integer ;default 255
UseFormsForImages={YES|NO} ;default NO

Keywords and parameters:

Controls indicate the nine symbols that are used as part of the syntax within the
PostScript being manipulated. Specifically these are left brace, right brace, left square
bracket, right square bracket, exclamation mark, tilde, circumflex accent, dollar sign
and vertical line. If this keyword is coded you must specify the symbols as a text
string or hex codes indicating the relevant code points. The order of symbols must
always conform to that given and the parameter must always be enclosed in quotes.
An example of the required hex format is as follows:

"x'7B',x'7D',x'5B',x'5D',x'21',x'7E',x'5E',x'24',x'7C'"

You must use the same parameter that was used when Generate originally created
the PostScript being manipulated – i.e. the default or the Control symbols setting
specified in the output device used when publishing a job.

Symbols

Integer is the maximum length of any new PostScript records created by the PCE
script. The value should be in the range 64–255 inclusive.

RecordLength

When set to Yes then images will be placed in the Postscript formspace. You must
use this when the option to cache images has been set in the Designer. The default
is No.

UseFormsForImages

Example:

<Postscript>
Symbols="()<>!~^$|"
RecordLength=200
UseFormsForImages=YES

211EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<Preferencesx>

These sections allow you to define the format of date components and other regional settings which can be referenced
by the PCE script. You can specify up to Preferences sections (0-9) which can be activated within the script. <Preferences0>
is always active when a PCE job starts. Default values for this section are configured for international English.

Syntax and defaults:

<Preferences0> ;0 is the primary definition
Ordinal1=String ;default 1st
... ;other defaults 2nd,3rd,4th,etc.
Ordinal31=String ;default 31st
MonthName1=String ;default January
... ;other defaults February,March,etc.
MonthName12=String ;default December
MonthAbbrev1=String ;default Jan
... ;other defaults Feb,Mar, etc..
MonthAbbrev12=String ;default Dec
Day1=String ;default Sunday
... ;other defaults Monday,Tuesday, etc.
Day7=String ;default Saturday
NumericConvCode=String ;default ".,+-_"
NumericPadding=Char ;default ‘,’
UserValue1=Number ;default 0
...
UserValue16=Number ;default 0

<Preferences1> ;first alternate definition
...
<Preferences9> ;ninth alternate definition
...

Keywords and parameters:

String is the text to return when an ordinal command is processed in the PCE script.
The value of Ordinal1 will be returned where the script parameter is 1, Ordinal2 when
the parameter is 2 and so on. The default values for Ordinal1-Ordinal31 in sequence
are: 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, 16th,
17th, 18th, 19th, 20th, 21st, 22nd, 23rd, 24th, 25th, 26th, 27th, 28th, 29th, 30th, 31st.

Ordinal1…31

String is the text to return when a monthname command is processed in the PCE
script. The value of MonthName will be returned where the script parameter is 1,
MonthName when the parameter is 2 and so on. The default values for
MonthName1-MonthName12 in sequence are: January, February, March, April, May,
June, July, August, September, October, November, December.

MonthName1…12

212EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

String is the text to return when a monthabbrev command is processed in the PCE
script. The value of MonthAbbrev1 will be returned where the script parameter is 1,
MonthAbbrev2 when the parameter is 2 and so on. The default values for
MonthAbbrev1-MonthAbbrev12 in sequence are: Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec.

MonthAbbrev1…12

String is the text to return when a day command is processed in the PCE script. The
value of Day1 will be returned where the script parameter is 1, Day2 when the
parameter is 2 and so on. The defaults value for Day1-Day7 in sequence are: Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

Day1…7

String is a list of five characters to return when a numericconvcode command is
processed in the PCE script. These represent the regional number punctuations for
period, comma, plus sign, minus sign and space. The defaults are “.,+- ”. Where
used, the parameter must be a single string representing each character in the
sequence listed and without additional spaces.

NumericConvCode

Char is a character to be returned when a numericpadding command is processed
in the PCE script. This should be a single printable character.

NumericPadding

Number is the value to return when a uservalue command is processed in the PCE
script. The value of UserValue1 will be returned where the script parameter is 1,
UserValue2 when the parameter is 2 and so on. By default 0 (zero) is returned for
all keywords.

UserValue1…16

Example:

;Preferences0 defaults (English) are fine. Define 1 user value
<Preferences0>
UserValue1=10

;Preferences1 definition handles French
<Preferences1>
MonthName1=Janvier
Monthname2=Fevrier
;***etc.***
MonthsAbbrev1=Jan
MonthsAbbrev2=Fev
;***etc.***
Day1=Dimanche
Day2=Lundi
;***etc.***
NumericConvCode=".,+-_"
NumericPadding="."

213EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<PrintDevice>

This section allows you to indicate the type of output datastream to be processed by a PCE script.

Syntax and defaults:

<PrintDevice>
PrintStream={AFPDS|POSTSCRIPT|NONE} ;default AFPDS
Resolution=Dpi ;defaults vary
PCC = {ANSI|ASCII|MACHINE|NONE} ;default ANSI

Keywords and parameters:

Indicates the type of output datastream to be processed. If you specify NONE no
datastream output is expected. This option can be used when a PCE script has no
datastream inputs or outputs to process. When specifying NONE you must set the
Resolution keyword value to 0.

PrintStream

You will need to code this keyword if the resolution of the output datastreams to be
processed by PCE do not conform to the default Generate settings. These are: AFPDS
– 240 PostScript – 72 . If you choose to use this keyword you must code the same
parameter that was used when Generate originally created the output datastream(s)
being manipulated – i.e. the default or the Resolution setting specified in the output
device used when publishing a job.

Resolution

Indicates the coding system to be used when inserting printer carriage control (PCC)
bytes into a datastream if new presentation objects are being created.

PCC

Example:

<PrintDevice>
PrintStream=AFPDS
Resolution=1440
PCC=MACHINE

214EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

<System>

This section specifies settings that govern the way in which some PCE internal functions operate. Only include this section
if you need to customize the standard system set-up; in most situations the default settings provide the optimal environment.

Syntax and defaults:

<System>
AsciiToAfpds=TableRef ;default 27
EbcdicToAfpds=TableRef ;default 0 (no translation)
AsciiToMetacode=TableRef ;default 20
EbcdicToMetacode=TableRef ;default 16
AsciiToPostscript=TableRef ;default 0 (no translation)
EbcdicToPostscript=TableRef ;default 0 (no translation)
AsciiToPdf=TableRef ;default 0 (no translation)
EbcdicToPdf=TableRef ;default 4
AsciiToVps=TableRef ;default 0 (no translation)
EbcdicToVps=TableRef ;default 0 (no translation)
PostscriptToHost=TableRef ;default 0 (no translation)
ResPackToHost=TableRef ;default 3 for EBSCDIC platforms, 0 for others
SystemCodePage=Integer ;default 37
TextSubsMethod=HASH|VSAM ;default HASH
VSAMKeyLength=Integer ;default 10
ConsolidateFonts={YES|NO} ;default YES

Keywords and parameters:

Is a reference to the sequence number of a table within a Generate translation tables
file (as assigned in the <Files> section). A setting of 0 (zero) indicates no translation
should occur. You should refer to Precisely Support for information about the most
suitable table for your environment. A standard translation tables file is provided with
product distribution material. Custom files may be supplied in some circumstances.

TableRef

These keywords allow you to adjust the translation table that is used when creating
new text elements within output datastreams. You may need to use these options if
you are creating text that includes characters that are not typically available to fonts
based on international English. You should use the keyword that matches your
configuration of platform and output datastream; for example, use the AsciiToAfpds
keyword if PCE is to run under Windows or Unix and the output datastream to be
manipulated is AFPDS or EbcdicToPostScript when manipulating PostScript on an
z/OS

platform. See TableRef above for information about the parameter.

ASCII/EBCDIC…

215EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

If this option is other than 0 (zero), PostScript output will have an additional translation
applied before being output. This is typically used when running PCE under z/OS
and where PostScript output is required to be

printed/presented directly in an ASCII based environment. If the default is used
PostScript commands are produced in a text format suitable for reading on the actual
production platform. See TableRef above for information about the parameter.

PostscriptToHost

In some scenarios parts of the HIP file need to be translated so that textual data it
contains is suitable for the production host. The amount and relevance of textual data
will depend on the output datastream for which it is intended. Most streams require
only binary data and the HIP file is therefore not translated, but this can particularly
be an issue with Postscript fonts when the production environment is EBCDIC based.
Integer is the index number of the table in the Translation Tables file to be used for
such translations.

ResPackToHost

Integer is the number of a host code page to be used instead of the default code
page – US (37).

SystemCodePage

Indicates the method used for reading a Generate lookup table (also known as a text
substitution file) if the mapp command is used in the PCE script. Options are: HASH
– text substitution strings are held in a text file. VSAM – text substitution strings are
held in a VSAM structure (valid for z/OS systems only). If you code VSAM you should
also code the VsamKeyLength keyword. See the mapp section of the PCE command
reference on page 78 for details of text substitution file formats.

TextSubsMethod

Integer indicates the length of the key field used to contain the lookup labels. It is
only used if the lookup table file is a VSAM structure otherwise it is ignored.

VsamKeyLength

With the default setting Yes PCE will interpret each line in a file to determine if there
is a font reference that needs remapping.Nowill not interpret each line and can result
in faster PCE processing times.

ConsolidateFonts

Example:

<System>
EbcdicToAFPDS=0
TextSubsMethod=VSAM
VSAMKeyLength=16
ConsolidateFonts=NO

216EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

Start the job

The following pages provide a reference for all available INI sections and their associated keywords.

Starting the job

The following pages detail the start-up methods for PCE on all supported platforms.

Return Codes

DOC1PCE always returns 0 (zero) for successful completion or where warning messages (only)
have been issued. Return code 16 is issued where a failure has occurred – i.e. where an abort
message has been issued.

DOC1PCE under z/OS

PCE is submitted to the system via standard JCL.

The standard file requirements for PCE are normally assigned by DD statements in
the JCL. However, the actual DD labels required are defined within the PCE
initialization file.

Files specific to the application are defined within the PCE script file. They can be
specified either as fully qualified dataset names or as a reference to DD labels used
in PCE start-up JCL. Note that the PCE script file language does not provide a
mechanism for specifying dataset attributes so where a new output file is required a
DD reference should normally be used.

No two files to be written by PCE (including the log and trace files) should be members
of the same dataset.

Preparation:

EXEC card syntax:

EXEC PGM=DOC1PCE,PARM=('INI=DD:IniDD [symbol=val,symbol=val...]')

Parameters:

is the DD label in the JCL that indicates the PCE INI file to be used.IniDD

indicates a value to be used to replace a symbol in the INI file. This is optional and
may be repeated as many times as required.

symbol=val

217EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

Examples:

Specifying initialization file:

//DOC1PCE EXEC PGM=DOC1PCE,PARM='INI=DD:DOC1INIT'

Specifying initialization file and symbols:

//DOC1PCE EXEC PGM=DOC1PCE,PARM=('INI=DD:DOC1INIT Prefix=APP1,X=1')

Sample JCL

//Jobname JOB (xxx) ...(Rest of Job Card parms)
//DOC1PCE EXEC PGM=DOC1PCE,
// PARM='/INI=DD:PCEINI'
//*Load lib for PCE + run-time libs if req’d
//STEPLIB DD DISP=SHR,DSN=PROD.GEN.LOAD
//*PCE Script file
//PCECONT DD DISP=SHR,DSN=PROD.GEN.CNTL
//*Initialization file (DD referenced in EXEC)
//PCEINI DD DISP=SHR,DSN=PROD.GEN.RUN(A1INI)
//*Lookup tables file (DD referenced in INI)
//DOC1TSUB DD DISP=SHR,DSN=PROD.GEN.RUN(A1TSUB)
//*Translation tables file (DD referenced in INI)
//DOC1TTAB DD DISP=SHR,DSN=PROD.GEN.RES(DOC1TT)
//*GENERATE messages file (DD referenced in INI)
//DOC1MSG DD DISP=SHR,DSN=PROD.GEN.MSG(MESSAGES)
//*Trace file (DD referenced in INI)
//EMFETRAC DD SYSOUT=C
//*Log file (DD referenced in INI)
//EMFELOG DD DISP=SHR,DSN=PROD.GEN.LOG
//*Datastream input (DD referenced in script)
//PRININ DD DISP=SHR,DSN=PROD.GEN.PCEHOLD(AFP19)
//*Journal relating to PRININ (DD referenced in script)
//DOC1JRN1 DD DISP=SHR,DSN=PROD.GEN.RUN(A1J1)
//*Datastream outputs (DDs referenced in script)
//PRINOUT1 DD SYSOUT=X,DCB=LRECL=8205
//PRINOUT2 DD SYSOUT=X,DCB=LRECL=8205
//*

DOC1PCE under Windows and UNIX

218EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

PCE is executed as a batch program started via the native command line of the
relevant operating system interface, e.g. under Windows NT, type the start-up
command in a command prompt window.

All files other than the initialization file itself are specified directly as part of the
initialization file format or within the PCE script file being used.

Preparation:

Syntax:

doc1pce ini=IniFile [symbol=value symbol=value ...]

Parameters:

identifies the path/filename of the PCE INI file to be used.IniFile

indicates a value to be used to replace a symbol in the INI file. This is optional and
may be repeated as many times as required.

symbol=value

The start-up syntax assumes that the DOC1PCE program is in the current ‘directory’
or ‘path list’ as these terms relate to the appropriate operating system.

Notes:

Examples:

For Windows:

C:\DOC1HOST\RUN\DOC1PCE INI=C:\DOC1INI\JOB1.INI PATH=JOB1 X=1

For UNIX:

/doc1host/run/doc1pce ini=/doc1ini/job1.ini path=job1 x=1

219EngageOne Generate 6.6 Service Pack 11 Production Guide

Running PCE

7 - Defining external
keyed images
The keyed object feature allows you to select some types of presentation
objects dynamically according to variable criteria or ‘keys’. When you are
working with keyed image resources you can import the relevant files into
Designer where they can be referenced directly in a keymap and be included
in a HIP file ready for use with Generate.

It is not always practical to import all the required image files into the
Designer however, and to deal with this scenario Designer & Generate
support an external key map.

Note that you can also create a user exit program that directly returns the
image to be placed when a key is used. See “Coding a Key Map user exit”
on page 257 for details

The images you reference using an external key map can optionally be
copied from a defined location and embedded in the output datastreams at
production run-time. Where this is not the case the resources are assumed
to be printer resident and only the image references are included in the
datastream.

In this section

Embedding external keyed images..221
External key map file..221
DOC1MAKE...223
XML structure of external key map...227
Example Keyed image XML...236

Embedding external keyed images

When embedding external keyed images no conversion takes place so you must ensure that the
format of the images to be used is already compatible with the output datastreams being generated.
The following table shows which image formats are supported for each datastream.

Supported resource formatOutput device

Page Segment (FS45 & FS10 IOCA) and for printers with the relevant object container
support, JPG, EPS, GIF, PDF Page Objects, TIF, BMP

AFPDS

PCL bmp – note that this is a proprietary format which is not generally available. Please
contact Precisely Support for more information.

PCL

EPSPostscript

Not applicableLine Data

Any, all images are referencedHTML

JPG and BMP – note that CMYK JPGs generated by products such as Adobe
Photoshop may have had their color inverted so you must invert the colors of the image
again using a similar product.

scr 70619 - this anomally is now handled correctly in Designer (using Imagemagik),
just not here

PDF

PNGRTF

External key map file

An external key map is an XML file conforming to a predefined construct. It provides information
about the keys to be used, the images associated with each key and information about image
attributes.

An external key map must directly reference one or more output files by the reference name they
are given when a publication is published in the Designer. If the key map is intended for use with

221EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

publications generating multiple outputs you can associate different images to a single key – one for
each output type.

images/KeyedObjectsOutputFiles.png

• Use the References in the Name column

The external key map also supports aWildcard option that allows you to reference multiple images
using a single entry. Where this option is used the images must be in the same location and have
the same attributes – size, type etc.

The key map file can either be created manually or by a script you write yourself, or you can use the
DOC1MAKE utility. DOC1MAKE interrogates the resources that are identified, extracts the required
attributes from images and generates a key map file based on this information.

222EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

DOC1MAKE

Running DOC1MAKE (Windows only)

DOC1MAKE is provided with Designer distribution material and is executed from a
Windows command prompt.

This utility is only available for Windows. If this is not your production platform you
will need to transfer the resources to a location available to the utility. Where this is
not possible consider creating the key map file manually perhaps using the wildcard
option where many similar images are involved.

DOC1MAKE has multiple modes of operation:

Mode D is the all-inclusive method and directly generates an external key map from
all the images stored in a defined directory. The keys and the image names are based
on the file names within the directory with any extension removed. You may need to
edit these later if the default names do not match the keys specified in the Designer
or the actual file names on your production platform.

You may need to use the other modes where you cannot build the key map in a single
operation or where you need to append information about new resources to an existing
map.

Mode I appends an entry to an intermediate key map (which is created if necessary)
for a single image file.

Mode X creates an external key map file from an existing intermediate file.

Mode S generates a schema for an existing external key map file.

DOC1MAKE and HTML output

Using the /H parameter ensures that keymap's resourcename is identical image's
filename and is compatible for use with HTML output. If this parameter is not used,
the image's filetype is omitted from the filename. Refer to the /H definition below for
detailed information.

Preparation:

223EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

Syntax:

DOC1MAKE /M=D Input Output

/N=OutputName [/R=dpi /T=Type /E=EmbedFlag /D=DisposalOption /S=Schema
/H /P=FormSpace /ecp=ECPFile]

DOC1MAKE /M=I Input Output
/N=OutputName /K=Key [/R=dpi /T=Type /I=Name /F=Filename /E=EmbedFlag
/D=DisposalOption /H /P=FormSpace /C=Delimiter /ecp=ECPFile]

DOC1MAKE /M=X Input Output
[/C=Delimiter /S=Schema /P=FormSpace /ecp=ECPFile]

DOC1MAKE /M=S [/S=Output /P=FormSpace /ecp=ECPFile]

Keywords & Parameters:

Create external key map directly: Input is a directory containing image files from
which an external key map is to be created. Output is the path/file name of an external
key map (XML) which is created if it does not exist.

/M=D

Create intermediate key map: Input is the path/file name of a single image file. Output
is an intermediate key map file to which an entry will be appended for the image and
which is created if it does not exist.

/M=I

Create external key map from intermediate file: Input is an intermediate key map file.
Output is an external key map file (XML) which is created if it does not exist.

/M=X

/S see below./M=S

Specifies the OutputName with which the key(s) will be used. See “External key
map file” on page 200 for details.

/N

Specifies the Key to be associated with an image./K

dpi specifies a resolution for an image where this cannot be ascertained from the
image itself.

/R

Specifies an image Type where this cannot be ascertained from the image itself. See
XML structure of external key map on page 227 for details of supported types and
keywords.

/T

Specifies the Name by which the image is to be referenced in the output datastream
where this is different from the base name of the input file.

/I

224EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

Filename is the path/file name of the image on the production system where required.
By default, the input file name at the current location is assumed.

/F

If EmbedFlag = Y the image will be embedded in the output datastream when
referenced by a publication. EmbedFlag = N (the default) indicates the image will not
be embedded (i.e. it is printer resident).

/E

DisposalOption can be one of: 0 = Generate should retain the image in memory after
use (default) 1 = free the image from memory as soon as it has been used 2 = free
the image from memory when the Generate job is finished.

/D

Used when working with HTML output:

• where the resource name must be the same as the physical filename
• and where the resource name uses the exact case of the image filename and file
type instead of the standard capitalized reference.

Note that the /H parameter is applicable for use when DOC1MAKE is run in Directory
(\M=D) and Intermediate (/M=I) modes only.

/H

FormSpace is used to indicate that EPS images that should be placed in the Form
Space structure at the beginning of the Postscript output datastream rather than
being inlined within the actual document pages. This may significantly reduce the
size of the output file but as such images are referenced in printer memory be aware
of constraints on your intended output device when deciding which images to include.
Can be: TRUE = all EPS images are processed by this command) FALSE = no EPS
images are processed by this command.

/P

Delimiter specifies the character to be used to separate entries in an intermediate
key map file. You may need to specify this if the default (comma ‘,’) clashes with the
kay map content

/C

Schema is the path and filename of an XML schema to be created or to be referenced
(depending on the mode of operation).

/S

ECPFile is an ecp file containing the DBCS code pages required to support an RPU
job on a non-ansi platform, such as in a non-Western production environment.

/ecp

225EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

Example:

Generate a key map “keys.xml” for all the images in directory “.\graphics” for use when Generate is creating an output
file with reference name “Output1”:

doc1make /M=D /E=Y graphics keys.xml /N=Output1

Add an entry for image "blackcat.bmp" with key “key1” to the intermediate file "temp.txt":

doc1make /M=I blackcat.bmp temp.txt /K=key1 /N=Output1

Generate a key map “keys.xml” from the intermediate file “temp.txt”:

doc1make /M=X temp.txt keys.xml

Copy the XML key map schema to “kms.xsd” in the \temp directory:

doc1make /M=S /S=c:\temp\kms.xsd

226EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

XML structure of external key map

All parameters are specified as quoted strings. You may include other valid XML statements within
the structure if desired.

227EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<ExternalKeyedImages> top level structure

<ExternalKeyedImages>
Label=string
Version=string
<ImageDefaults>
</ImageDefaults>
<Keys>
<KeyEntry Key>
<Image>
<ImageDeviceInfo>
</ImageDeviceInfo>
...
</Image>
<Image>
...
</KeyEntry>
...
</Keys>
</ExternalKeyedImages>

Structure

Label reference name of the file

Version the XML file version (initially version 1).

Attributes

Parent: None

Contains: <ImageDefaults>, <Keys>

Comments

228EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<ImageDefaults> section

This section specifies default attributes for all images referenced in the key map. These will be
used when the relevant attribute is not specified for an individual image. Note that all the attributes
are required.

Function

<ImageDefaults>
Width=string
Height=string
Resolution=string
Embed=string
Disposal=string
</ImageDefaults>

Structure

Width width of the image in pixels

Height height of the image in pixels

Attributes

Resolution resolution of the image in pixels per inch

Embed the image can be embedded in the output datastream

True – embed the image

False – don’t embed the image

The option to embed an image varies depending on the output device you are using as follows:

AFPDS – True or False allowed.

Postscript – True or False allowed.

HTML – False only allowed.

PDF – True only allowed.

RTF – True only allowed.

Disposal this option indicates how Generate should manage the systemmemory associated with
the image files. Retaining images in memory may allow Generate to run significantly faster but
where the same external images are used repeatedly in an application but this may impose an
unacceptable burden on system resources where many or large images are involved. Can be:
Retain – keep images in memory indefinitely.ClearAfterUse – free memory as soon as an image
has been used. ClearAfterJob – free memory at the end of the job.

Parent: <ExternalKeyedImages>Comments

229EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<ImageDefaults
Width="100"
Height="100"
Resolution="72"
Embed="true"
Disposal="Retain" />
</ImageDefaults>

Example

230EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<Keys> section

The section is a container for all <KeyEntry> sections. It has no keywords.Function

<Keys>
<KeyEntry>
...
</KeyEntry>
</Keys>

Structure

NoneAttributes

Parent: <ExternalKeyedImages>

Contains: <KeyEntry> (at least one)

Comments

See <KeyEntry>Example

231EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<Image>

An image referenced by a key. You may want to add several images, typically each one for a
different output device.

Function

<Image>
Width=string
Height=string
Resolution=string
<ImageDeviceInfo>
...
</ImageDeviceInfo
</Image>

Structure

Width width of the image in pixels

Height height of the image in pixels

Resolution resolution of the image in pixels per inch.

Attributes

Parent: KeyEntry

Contents: ImageDeviceInfo (any number, but at least one)

The image dimensions are only used at design time to place the image on the page and flow text
around it. If the dimensions of the actual images referred to by the key are different then the
behavior in Generate will be unpredictable, for example, the driver may overprint.

Comments

<Image>
Width="100"
Height="120"
Resolution="72"
<ImageDeviceInfo>
...
</ImageDeviceInfo>
</Image>

Example

232EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<ImageDeviceInfo>

Information about the image for the output device.Function

<ImageDeviceInfo>
Device=string
ResourceName=string
FileName=string
ImageType=string
Embed=string
Disposal=string
PDFPixelHeight=string
PDFPixelWidth=string
FormSpace=string
</ImageDeviceInfo>

Structure

Device this attribute is compulsory and indicates the reference name of the output file with which
the key will be used. See “External key map file” on page 200 for details.

ResourceName this attribute is compulsory and indicates the name of the image in the output
stream. For multiple images, where the name includes the key, use the wildcard character to
represent the key in the base part of the image name.

Attributes

FileName this attribute is compulsory and indicates the path and name of the image file (including
extension if appropriate). For multiple images, where the name includes the key, use the wildcard
character to represent the key in the base part of the image name.

233EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

ImageType this attribute is compulsory and indicates the image format – can be:

PSG – AFP bitmap

F45 – AFP IOCA FS45

BMP – Bitmap

JPG – Joint Photographic Experts Group Format

GIF – Graphical Interchange Format

TIF – Tagged Interchange Format

PNG – Portable Network Graphics

EPS – Encapsulated Postscript image

PS – For PostScript output this indicates that only a reference to an image resource should be
placed in the stream. The image type is undefined. It is the users responsibility to ensure the
relevant resource is available to the target output environment and is compatible with the output
type and document designs.

Embed optional. Refer to <ImageDefaults> section on page 229 for details.

Disposal optional. Refer to <ImageDefaults> section on page 229 for details.

PDFPixelHeight the height of the image in pixels. This option is only valid when the
ImageType=JPG and the intended output device is PDF.

PDFPixelWidth the width of the image in pixels. This option is only valid when the
ImageType=JPG and the intended output device is PDF.

FormSpace indicates that an EPS image that should be placed in the Form Space structure at
the beginning of Postscript output datastream rather than being included within the actual
document pages. This may significantly reduce the size of the output file but as such images are
referenced in printer memory be aware of constraints on your intended output device when
deciding which images to include: True – place image in form space False – don’t place image
in form space This option is only valid when the ImageType=EPS and the intended output device
is Postscript.

ColorSpace defines the output color space for JPEG images, omitting this value may produce
invalid PDF. This option is only valid when the ImageType=JPG and the intended output device
is PDF.

• Attribute values can be:

• Greyscale – value of 2
• CMYK – value of 12
• RGB - value of 1
• Undefined – value of 0

Parent: Image

Contents: None

Comments

234EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

<ImageDeviceInfo>
Device="Output1"
Embed="true"
Disposal="Retain"
ImageType="PSG"
ResourceName="rn1"
FileName="/usr/home/images/myimage1.psg"
</ImageDeviceInfo>
<ImageDeviceInfo>
Device="Output2"
Embed="true"
Disposal="Retain"
ImageType="F45"
ResourceName="img%"
FileName="C:\Customers\KeyIms\AFP\img%.F45"
</ImageDeviceInfo>

Example

235EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

Example Keyed image XML

This example of XML for external keyed images has three keys with images defined for different
devices.

<?xml version="1.0" encoding="UTF-8"?>
<ExternalKeyedImages Label="MyFile" Version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="extkeyim.xsd"

<ImageDefaults Width="100" Height="100" Resolution="72" Embed="true"
Disposal="Retain" />
<Keys>

<KeyEntry Key="100101">
<Image Width="123" Height="123" Resolution="72">

<ImageDeviceInfo
Device="Output1"
Embed="true"
Disposal="Retain"
ImageType="PSG"
ResourceName="rn1"
FileName="/usr/home/images/myimage1.psg"/>

<ImageDeviceInfo
Device="Output2"
Embed="true"
Disposal="Retain"
ImageType="BMP"
ResourceName="rn2"
FileName="/usr/home/images/myimage1.bmp"/>

</Image>
</KeyEntry>

<KeyEntry Key="100102">
<Image Width="456" Height="456" Resolution="96">

<ImageDeviceInfo
Device="Output3"
Embed="false"
Disposal="Retain"
ImageType="EPS"
ResourceName="rn3"
FileName="/usr/home/images/myimage3.eps"/>
FormSpace="TRUE"

<ImageDeviceInfo
Device="Output4"
Embed="true"
Disposal="ClearAfterUse"
ImageType="BMP"
ResourceName="rn4"
FileName="/usr/home/images/myimage3.bmp"/>

236EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

</Image>
</KeyEntry>

<KeyEntry Key="100103">
<Image>

<ImageDeviceInfo
Device="Output5"
ImageType="EPS"
ResourceName="rn5"
FileName="/usr/home/images/rainbow.eps"/>

</Image>
</KeyEntry>

</Keys>
</ExternalKeyedImages>

Note:

• A key can have serveral images, each for a different output device.
• The size of the actual images must match the dimensions defined in the image attributes,for
example:

<Image Width="456" Height="456" Resolution="96">

• The Device name must match the name defined in the Publish Wizard Input/Output section,
for example:

Device="Output4"

This XML example defines multiple images.

<?xml version="1.0" encoding="UTF-8"?>
<ExternalKeyedImages Label="MyFile" Version="1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="extkeyim.xsd"
<ImageDefaults Width="1240" Height="500" Resolution="600" Embed="false"
Disposal="Retain"
/>

<Keys>
<KeyEntry Wildcard="%">

<Image>
<ImageDeviceInfo

Device="Output1"
ImageType="BMP"
ResourceName="img%sm"
FileName="/usr/home/images/img%sm.bmp"/>

</Image>
</KeyEntry>

</Keys>
</ExternalKeyedImages>

Note: The & symbol in img%sm.bmp will be substituted with the key value at run time.

237EngageOne Generate 6.6 Service Pack 11 Production Guide

Defining external keyed images

8 - Working with
resources in a HIP file
Along with all the other resources required to process a publication in the
production environment, a HIP file contains all the font and image resource
files required actually to print or present the output datastreams it produces.

Such resources will automatically be embedded into the output datastream(s)
produced by Generate unless your intended output datastream does not
support resource embedding or you explicitly override embedding when
publishing a publication.

In this section

Extracting and manipulating resources..239
RPU..240
DOC1ACU..248

Extracting and manipulating resources

The DOC1RPU utility provides the ability to extract and manipulate resources within a HIP file. You
may need to use it in the following situations:

Extracting resources You may want to extract the resources into separate files and then pass them
independently to your output device environment. This is often done to reduce the size of output
datastream files or to improve printer performance where the datastream supports the use of external
resources.

Resident resources If you are extracting resources as above or if the intended output device already
has access to all the resource files referenced by the publication you may want to indicate to Generate
that specific resources are resident and therefore do not need to be embedded in the output
datastream.

Customizing the use of external documents for PostScript output If a publication design contains
external documents and you are generating PostScript these will have been created as EPS resources
within the HIP. You may want to specify how such resources are used within the actual output
datastream (in the Form Space file header or inline within the actual document pages) as this may
significantly affect the size of the output file.

Customizing PostScript for Xerox devices In some Xerox environments you may want to indicate
that resources are to be deleted from printer memory after they have been used.

Support for OnDemand DBCS fonts

AFP DBCS fonts produced by Generate are based on a custom code page. Fonts for use with IBM
OnDemand must conform to a specific code page or must be mapped using code page information
in the HIP file. This information can then be integrated into existing configuration files in the OnDemand
environment.

DOC1ACU (AFPCodepage Utility) reads the HIP file and creates the necessary code page information
to be integrated into IBM OnDemand for viewing the generated AFP. Note that the DOC1ACU
program runs in a Windows environment only.

239EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

RPU

RPU is controlled by an initialization file (INI) which can be prepared using any standard text editor.
Details for coding the INI and instructions for starting the DOC1RPU program are provided in the
sections that follow.

You must always specify the InputHip keyword to indicate the HIP file to be processed. If you are
adjusting the settings of resources within the HIP you may also want to specify the OutputHip keyword
to receive the amended file.

As a HIP file can contain resources for several output devices you must always code the
ResourceType and Resolution keywords in the <OutputDevice> section of the INI to identify the
specific set of resource files to be used.

When extracting resources they are normally output as individual files to the locations specified by
the …Mask keywords in the <Files> section of the INI. However Note that if OutputStream is coded
all …Mask options are ignored.

RPU initialization file reference

RPU initialization file format

The INI consists of keywords and parameters coded within sections. The sections
must be introduced with the relevant string within angle brackets, for instance:
<Files>.

Parameters are normally coded as literal values but can be specified dynamically if
required by defining them wholly or partly as symbols. Values can be assigned to
such symbols when starting the DOC1RPU program. Within the INI file symbols are
referenced by coding the symbol name to be used within percentage signs. For
example: InputHip=%HipName%

240EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

Syntax:

<Files>
Messages=Filename
InputHip=Filename
OutputHip=Filename.
OutputStream=Filename
FontMask=location
CharSetMask=location
CodePageMask=location
ImageMask=location
OverlayMask=location
DOC1ecp=Filename

<OutputDevice>
ResourceType={AFP|HTML|POSTSCRIPT|PDF} ;default AFP
Resolution=dpi ;default 240
Format={STANDARD|BARR400|BARRPC|CRLF|KSDSAFP|LINE|PP4235|RDW|RECORD|RRDSAFP|
RRDSMTC|SPUR|VSAMAFP|WSAFP|FormatParms}
PCC = {ANSI|ASCII|MACHINE|NONE} ;default ANSI

<Commands>
Extract={ALL|NONE|ResName} ;default ALL
MarkResident={ALL|NONE|ResName} ;default ALL
List={ALL|NONE|ResName} ;default ALL
Delete={ALL|NONE|ResName} ;default NONE
DeleteAfterExtract={TRUE|FALSE} ;default FALSE

<AFP>
UsePageSegment = {TRUE|FALSE};default FALSE

<PostScript>
MarkForFormSpace={ALL|NONE|ResName} ;default NONE
MarkFormForDeletion={ALL|NONE|ResName} ;default ALL
UnmarkFormForDeletion={ALL|NONE|ResName} ;default NONE

<System>
SystemCodePage=Integer ;default 37
OutputDataFormat={STREAM|RECORD} ;default (Platform dependent)

Data types:

is a path/file name or label conforming to the conventions of the operating system
that will run RPU.

Filename

241EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

is a reference to a file location in the format required by the host operating system.
For Path parameters the wildcard (%1) should be included to indicate the position of
the actual filenames in the path structure.

Examples:

Windows – c:\gen\prtfiles\%1.FNT

UNIX – /gent/prtfiles/%1.FNT

z/OS – DD:FNTFILES(%1)

Location

an integer indicating an output device resolution, e.g 72, 96, 240, 300 etc.dpi

is a string of alphanumeric characters or their representation as in hexadecimal
notation (e.g. "X'A1D390B2B1'") depending on the option selected.

TString

identifies a resource known to be present in the HIP file. Specify the name of the
resource as it known to the Designer without extension.

ResName

is a string of alphabetic characters enclosed in quotes.String

is a comma separated list of keywords.KeywordList

Using ALL, NONE or resource names

Several keywords have these options.

ALL – all resources are processed by this command

NONE – no resources are processed by this command

ResName – identifies a specific resource within the Pack to be processed. Use the
List option to establish the required resource names if required.

Note: If you are specifying individual resources you may code the command
as many times as required.

Keywords and parameters:

<Files>

FileName is the utilities message text file. Youmust specify the Messages file provided
for use with your current version of the Generate production environment. Where
possible code this keyword as the first entry in the INI.

Messages

FileName identifies an existing Generate HIP file on which RPU will act.InputHip

If RPU is to modify the contents of the HIP file, FileName identifies the file which will
receive the modified data. If you do not specify this keyword the file specified as
InputHip will be modified.

OutputHip

242EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

Where it is possible for the extracted resources to be used as a single stream (e.g.
not for AFP environments) use this keyword to specify the FileName to receive the
merged resources. If you omit this keyword the resources will be extracted as separate
files in the appropriate …Mask locations.

OutputStream

When extracting resources to individual files this keyword specifies a location to
receive font resources. For AFP resources this location will always be used for coded
font files. It will also be used for character sets and code pages unless the
CharSetMask and CodePageMask keywords are coded. For all other resource types
all font files are created at this location.

FontMask

When extracting AFP resources to individual files this keyword specifies a location
to receive character set resources. If it is not coded such resources will be created
at the FontMask location.

CharSetMask

When extracting AFP resources to individual files this keyword specifies a location
to receive code page resources. If it is not coded such resources will be created at
the FontMask location.

CodePageMask

When extracting resources to individual files this keyword specifies a location to
receive image resources.

ImageMask

When extracting AFP resources to individual files this keyword specifies a location
to receive overlay resources.

OverlayMask

FileName is the DOC1ecp file containing the DBCS code pages required to support
a RPU job on a non-ansi platform is located, such as in a non-Western production
environment.

DOC1ecp

<OutputDevice>

Indicates the type of output device for which resources are to be extracted.ResourceType

dpi indicates the resolution of resources to be extracted. This works in conjunction
with ResourceType to identify the required set of resources within the HIP.

Resolution

If the resources are being output as a stream this optional parameter allows you to
define the structure of its logical records. You will need to use this option if the default
record structure generated by Generate is not suitable for your requirements. The
defaults are: Metacode on all platforms other than z/OS – RDW All others –
STANDARD Refer to Output datastream formats on page 336 for a detailed
discussion about logical records and formatting options including examples.

Format

If the resources are being output as a stream this optional parameter to define the
coding system to be applied to the printer carriage control (PCC) byte if this is being
used in the output. Options are: ANSI ASCII MACHINE

PCC

<Commands>

243EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

Use this keyword to indicate what resources (if any) you require to be extracted from
the HIP. Options: see Using ALL, NONE or resource names.

Extract

Use this keyword to indicate what resources (if any) you require to be marked as
resident within the Pack. When this is done a flag is set within the Pack to inform
Generate to not embed such resource in the output datastream when the Pack is
used by the main application. If you are marking individual resources you may code
MarkResident asmany time as required. Options: seeUsingALL, NONE or resource
names.

MarkResident

RPU can output the names of the resources within the Pack file along with attribute
information. Use this keyword to indicate if this option is required. If you are Listing
individual resources you may code List as many time as required. Options: seeUsing
ALL, NONE or resource names.

List

Use this keyword to indicate what resources (if any) you require to be permanently
deleted from the Pack. If you are deleting individual resources you may code Delete
as many time as required. Options: see Using ALL, NONE or resource names.

Delete

If TRUE all resources identified in Extract keywords will also be deleted from the pack
once they have been extracted. Note that if Delete keywords are specified they may
override this setting.

DeleteAfterExtract

<AFP>

If TRUE FS45 and FS10 images, when extracted, will be within a page segment.
Note that the default for this setting is FALSE, where FS45 and FS10 images are not
within a page segment when extracted.

UsePageSegment

<PostScript>

This keyword is only used if the HIP file contains EPS resources used for external
documents in a PostScript environment. Use this keyword to indicate that the EPS
resources that should be placed in the Form Space structure at the beginning of the
PostScript output datastream rather than being inlined within the actual document
pages. This may significantly reduce the size of the output file but as such resources
are referenced in printer memory be aware of constraints on your intended output
device when deciding which fonts to include. Options: see Using ALL, NONE or
resource names.

MarkForFormSpace

This keyword is used only in relation to PostScript Forms generated by Xerox Decomp
Services. The resources indicated will be flagged for deletion from printer memory
once the output datastream in which they are embedded has been printed. This is
only relevant when the printer environment supports this concept. Options: seeUsing
ALL, NONE or resource names.

MarkFormForDeletion

Where Xerox PostScript Forms within a HIP file have previously been marked for
deletion using the keyword above you can use this keyword to reverse the setting,
i.e. the resources will not be flagged for deletion within the output datastreams in
which they are embedded. Options: see Using ALL, NONE or resource names.

UnmarkForm…

244EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

<System>

Integer is the number of a host code page to be used instead of the default code
page – US (37).

SystemCodePage

Use this keyword to specify the type of output for your operating platform. Options:
OS390 = RECORD, all other platforms = STREAM.

OutputDataFormat

Example:

Extracting individual AFP resources under Windows, UNIX, etc.:

<Files>
Messages=messages.dat
InputHip=\gen\resources\jobin.hip
OutputHip=jobout.hip
FontMask=\afpres\codefont\%1.icf
CharSetMask=\afpres\charsets\%1.ibb
CodePageMask=\afpres\codepage\%1.icp
ImageMask=\afpres\pagesegs\%1.psg
OverlayMask=\afpres\overlays\%1.ovl<OutputDevice>
ResourceType=AFP
Resolution=300<Commands>
Extract=X0FONT01
Extract=X0FONT02
Extract=IMG01
MarkResident=ALL
DeleteAfterExtract=TRUE

Marking EPS resources so they are placed and referenced in the PostScript Form Space:

<Files>
Messages=messages.dat
InputHip=\gen\resources\jobin.hip
OutputHip=jobout.hip
<OutputDevice>
ResourceType=PostScript
Resolution=300
<PostScript>
MarkForFormSpace=IMGSIG1
MarkForFormSpace=IMGSIG2
MarkForFormSpace=IMGSIG3
MarkFormForDeletion=ALL

245EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

FS45 and FS10 images are placed within a page segment:

<Files>
Messages=messages.dat
InputHip=\gen\resources\jobin.hip
OutputHip=jobout.hip
<OutputDevice>
ResourceType=AFP
Resolution=300
<AFP>
UsePageSegment=TRUE

246EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

Running DOC1RPU

Running DOC1RPU under Windows and UNIX

Create an RPU INI file using a standard text editor such as Windows Notepad. See
RPU initialization file reference on page 240.

DOC1RPU is run from the command line of an appropriate operating systemwindow.

Preparation:

Syntax:

doc1rpu ini=RpuIni [symbol=value symbol=value ...]

Parameters:

RpuIni is the path/filename of the RPU INI file to be used.ini

indicates a value to be used to replace a symbol in the INI file. This is optional and
may be repeated as many times as required.

symbol=value

Example:

doc1rpu ini=\doc1host\run\rpuj1.ini Extract=ALL

Running DOC1RPU under z/OS

Create an RPU INI file using the standard text editor. See “RPU initialization file
format” on page 216.

DOC1RPU is submitted using standard JCL. The DD statements required in the JCL
will depend on the file related keywords specified in the INI.

Preparation:

EXEC card syntax:

EXEC PGM=DOC1RPU,PARM=('INI=DD:IniDD [,symbol=value,symbol=value,...]')

Parameters:

247EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

IniDD is the DD label in the JCL that indicates the RPU INI to be used.INI

indicates a value to be used to replace a symbol in the INI file. This is optional and
may be repeated as many times as required, each instance separated by a comma.

symbol=value

Examples:

//DOC1RPU EXEC PGM=DOC1RPU,PARM='INI=DD:DOC1INIT'
//DOC1RPU EXEC PGM=DOC1RPU,PARM=('INI=DD:DOC1INIT,EXTRACT=ALL')

Sample JCL:

//Jobname JOB (xxx) ...(Rest of Job Card parms)
//DOC1RPU EXEC PGM=DOC1RPU,
// PARM='/INI=DD:RPUINI'
//*Load lib for PCE + run-time libs if req’d
//STEPLIB DD DISP=SHR,DSN=PROD.GEN.LOAD
//*Initialization file (DD referenced in EXEC)
//RPUINI DD DISP=SHR,DSN=PROD.GEN.RUN(A1INI)
//*Generate messages file (DD referenced in INI)
//DOC1MSG DD DISP=SHR,DSN=PROD.GEN.MSG(MESSAGES)
//*Input HIP file (DD referenced in INI)
//INHIP DD DISP=SHR,DSN=PROD.GEN.HIPS(JOB10)
//*Output HIP file (DD referenced in INI)
//OUTHIP DD DISP=SHR,DSN=PROD.GEN.HIPS(JOB10A)
//*Dataset to contain extracted fonts (DD referenced in INI)
//FONTMASK DD DISP=SHR,DSN=PROD.GEN.HIPS
//*Other DDs may follow as required
//*

DOC1ACU

ACU provides the ability to extract configuration information required to view Generate AFP output
using custom code pages in a third party viewer such as that provided in the IBM On Demand
environment.

Youmust ensure thatBuild fonts for IBMOnDemand output device has been enabled for DOC1ACU
to process the HIP file correctly. Refer to the Designer User’s Guide for further information.

ACU reads the HIP file and creates a number of configuration files as follows: coded.fnt – describes
any DBCS fonts found in the HIP file, mapping the coded font to code page and character set
identifiers found in cpdef.fnt and csdef.fnt. cpdef.fnt – maps the code page in the coded.fnt record

248EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

to a Windows character set or custom character set. csdef.fnt – maps the character set in coded.fnt
to the font family of the installed Windows font to be mapped to. 65280.ucm – the Unicode Character
Map (UCM) file is based on code page identifiers from cpdef.fnt

The information in all the above files except 65280.ucm must be merged into corresponding
OnDemand control files.

Note that DOC1ACU assumes that all font Typeface / language pairings use the same code page.
Only fonts generated through the 'default' code page setting in the Resource Map associated to
output device can be processed by DOC1ACU.

Instructions for starting the DOC1ACU program are provided in the sections that follow.

You must always specify the InputHip keyword to indicate the HIP file to be processed. When
DOC1ACU is initially run it will create a configuration file specified by the ConfigFile keyword. This
file contains code page and font information based on custom code pages found in the HIP file.
Information held in this file is reused by ACU on subsequent runs.

Running DOC1ACU under Windows

DOC1ACU is run from the command line in operating system window.Preparation:

Syntax:

doc1acu ConfigFlie InputHip AFPResolution [Outputdir][doc1ecp]

Parameters:

contains code page and font identification information. Existing values can be used
by DOC1ACU, new values read from the HIP file

ConfigFile

identifies an existing Generate HIP file on which ACU will process.InputHip

the resolution of the AFP output datastream as defined in the Generate production
job. Specify 240, 300 or 600.

AfpResolution

indicates the location for the output from ACU to be stored. The local directory is
used if this keyword is not specified.

Outputdir

is the path/file name of the Generate Extended Code Page file which will be required
for most non-Western applications. The doc1ecp file in the local directory is used if
this keyword is not specified.

doc1ecp

249EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

Example:

doc1acu config.dat myafp.hip 300

250EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with resources in a HIP file

9 - Processing PDF
output
PDF output data can be created by Generate as a single compound stream
containing all the documents processed.When this type of output datastream
is initially created it is not readable by a PDF reader such as Acrobat Reader,
nor can it be distributed by e-mail.

Note that if you are working in an e2 environment PDF output created by
Generate can be loaded directly into the Document Repository.

In this section

DIME...252
DIME INI Reference...253
Running DOC1DIME..257

DIME

DOC1DIME (Dynamic Internet Mailing Engine) is a utility that allows the extraction of individual
documents from the compound PDF output produced by Generate. It can then either:

• write the extracted data as files to a specified location;
• send the documents using an API to a locally available e-mail client.

An initialization file (INI) is used to customize the required environment for a particular execution of
DIME.

If the <Files>OutputFileMask keyword is not specified in the INI file DIME will assume that e-mailing
is required. If you need to extract both documents and e-mail then you will need to run DIME twice.

You will also need to include your license keycode details for Generate in the <LicenseInfo> section
of the INI file.

Extracting to File

If the <Files>OutputFileMask keyword is specified then DIME will assume that the extracted
compound PDF documents are to be saved as individual files.

When using this option the OutputFileMask keyword specifies a template for the path/filenames that
will contain the individual documents. The %1 code in the parameter supplied indicates the position
of file base names within the path structure. This will be replaced by a unique 7 character id (based
on incremental hex values) for each extracted document. The %2 code in the parameter acts the
same as the %1 code, except that the unique 7 character id is based on decimal values.

You will need to specify the %1/%2 in a path structure suitable for the operating system under which
DIME is to run. On operating systems where file extensions are supported, the required extension
must be consistent and must be coded as part of the reference. Under z/OS, %1/%2 represents all
but the first character of member names to be generated in a partitioned dataset which must be
identified as a fully qualified name (not a DD label).

E-Mailing

The mailing function of DOC1DIME is available only under Windows. It uses one of two Windows
APIs to interface to the e-mail client available on the system on which it is running: – Common
Messaging Calls (CMC) – Messaging Application Programming Interface (MAPI)

252EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

The selected API must be installed and configured under Windows for the mailing feature to be used
– refer to your Microsoft documentation for more information.

Note that if you are using the e-mail template option (defined as a document attribute in Designer),
the MAPI API must be used

The PDF documents are despatched as attachments to the e-mails. The subject title and message
used with mailings is customizable but is the same for every recipient of a particular DIME process.
The e-mail address or address book identifier used for mailing must be embedded within the PDF
file. Generate produces such addresses when the Document Attribute/e-mail Address
object has been created within the appropriate Document Layout when designing the application
using the Designer. You must therefore ensure that the object exists and has logic that will generate
the required addresses. Refer to the DOC1User’s Guide for more information.

The text of the e-mail message to which the PDF file is attached must be entered in a separate file
which is then referenced in the Initialization File. The message file must contain unformatted ASCII
text only. Other attributes of the e-mail – the subject title and the name used to reference the attached
PDF – are defined directly in the INI file.

By default, DIME will assume a generic internet mail server is being used – i.e. the mail addresses
have the format SMTP:address. If you are using a mail server that needs a specific address format
you will need to code the AddressMask INI option to specify it. For example:
AddressMask=NOTES:%1 for a Lotus Notes mail server AdressMask=EX:%1 for a Microsoft
Exchange mail server.

DIME INI Reference

DIME initialization file format

The DIME INI file specifies the environment for a particular execution of the
DOC1DIME PDF extract utility.

It contains four sections that must be introduced with the relevant string within angle
brackets, for instance: <Files>. Each section can contain a range of keywords and
their associated parameter as listed below.

Parameters are normally coded as literal values but can be specified dynamically if
required by defining them wholly or partly as symbols. Values can be assigned to
such symbols when starting the DOC1RPU program. Within the INI file symbols are
referenced by coding the symbol name to be used within percentage signs. For
example: Input=%FName%

If the <Files>OutputFileMask keyword is specified DIME will assume that the PDF
documents are to be output as files. If it is not specified DIME assumes that the
documents are to be e-mailed.

253EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

Syntax:

<Files>
Messages=Filename ;mandatory
Input=Filename ;mandatory
OutputFileMask=Location
LogInfo=Filename ;defaults to none

;This section is required only when e-mailing
<e-mail>
SubjectText="String"
AttachmentName="String"
API={CMC|MAPI} ;default CMC
UseAddressBook={YES|NO} ;default NO
AddressMask=AddressMask ;default SMTP:%1
ProcessingTrace={YES|NO} ;default NO
DeleteAfterSend={YES|NO} ;default NO

<Exception>
SuppressWarnMsg={YES|NO} ;default NO
SuppressInfoMsg={YES|NO} ;default NO
SuppressDumpMsg={YES|NO} ;default YES
OnMapiError={CONTINUE|STOP} ;default STOP

Data types:

is a path/file name or label conforming to the convention required for the host operating
system. The Preface on page 4 section of this manual contains guidelines for the
expected naming conventions for all supported platforms.

Filename

is a reference to a file location in the format required by the host operating system.
This is a template for the path/filenames to be created by the extraction process. It
which must always include a %1 code to indicate the position of file base names
within the path structure. This will be replaced by a unique 7 digit name based an
incremental hex values as the PDF documents are generated. You will need to specify
the %1 in a path structure suitable for the operating system under which DIME is to
run. On operating systems where file extensions are supported, the required extension
must be consistent and must be coded as part of the reference. Under z/OS, %1
represents all but the first character of member names to be generated in an existing
partitioned dataset which must be identified as a fully qualified name (not a DD label).
Examples:

Windows:

c:\gen\pdfout\%1.pdf UNIX – /gen/pdfout/%1.pdf z/OS –
DD:PDFOUT(%1)

Location

is a string of alphanumeric charactersString

254EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

is a string which includes the code ‘%1’ which will be resolved with the existing e-mail
address within the PDF documents.

AddressMask

Keywords and parameters:

<Files>

FileName is the diagnostic message text file. You must specify the Messages file
provided for use with your current version of the Generate production environment.
You are advised to code this keyword as the first entry in all Initialization Files as any
errors found while processing the Initialization File itself can only be reported once
the Diagnostic Messages File has been identified and loaded.

Messages

FileName is a PDF file previously produced by Generate. Note that PDF produced
by other applications is not supported by DIME.

Input

For DIME only. If this keyword is coded DIME will assume that the documents
extracted from a PDF file are to be written to individual files. If it is not coded DIME
assumes that internet mailing is required. Location specifies a template for the
path/filenames that will contain the individual documents. The %1 is replaced by an
8 digit value coded in hex. For example, %1 will be 00000001 for the first document,
0000000A for the 10th document, 0000001F for the 31st document and so on. The
%2 code can be used in the parameter and acts the same as the %1 code, except
that the unique 7 character id is based on decimal values. You must ensure that the
template allows valid filenames to be generated.

OutputFileMask

If ProcessingTrace = YES, FileName will be appended with trace information from
the current execution of DIME.

LogInfo

<E-mail>

String is the text that will be used in the subject field of each mail message.SubjectText

String is the name by which the attached PDF document is referenced within the
e-mail.

AttachmentName

Indicates the type of API to be used calling e-mail functions.Options are: CMC – use
the Common Messaging Calls API (this is the default) MAPI – use the Messaging
Application Programming Interface API. This API must be used if you are using the
e-mail template option.

API

If YES is specified, the address book available with the local e-mail client will be used
to translate the address in the PDF document to an alias before it is despatched. If
no address book is found this option is ignored.

UseAddressBook

255EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

Permits modifications to the e-mail addresses generated by Generate to reflect the
mail server being used. The default is SMTP:%1 which is suitable for use with generic
internet mail servers. You will need to specify a different value if you are using a
specific mail server. Possible parameters include: NOTES:%1 for Lotus Notes mail
server EX:%1 for Microsoft Exchange mail server.

AddressMask

If YES is specified, messages received from processing e-mail will be written to file
identified by Files/LogInfo if coded.

ProcessingTrace

If YES e-mail will be deleted from the Outlook outbox after it is sent. If the default NO
is specified the e-mail will remain in the outbox until deleted manually.

DeleteAfterSend

<Exception>

If YES is specified Generate will not issue any messages classed as warnings, i.e.
those with suffix 'W'.

SuppressWarnMsg

If YES is specified Generate will not issue any messages classed as information, i.e.
those with suffix 'I'.

SuppressInfoMsg

If NO is specified, Generate can issue a dump format that may help to isolate the
application data record/field being processed at the time the warning was issued.
Set this option to NO if you need to see such dumps.

SuppressDumpMsg

If the default STOP is specified then the e-mailing process will terminate when it
encounters an invalid e-mail address. If CONTINUE is specified then the process will
send e-mails to the valid addresses, ignoring the invalid addresses.

OnMapiError

Example:

<Files>
Messages=/doc1host/messages.dat
Input= /doc1host/emfeout.pdf
LogInfo=/doc1host/pdftrail.txt

<e-mail>
SubjectText="Your statement for October"
AttachmentName="Oct2001"
API=MAPI
UseAddressBook=YES
AddressMask=NOTES:%1
ProcessingTrace=YES
DeleteAfterSend=YES

<Exception>
SuppressWarnMsg=YES
SuppressInfoMsg=YES
SuppressDumpMsg=NO
OnMapiError=CONTINUE

256EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

Running DOC1DIME

DOC1DIME under Windows and UNIX

Extracts individual PDF documents from a compound printstream file created by
Generate and, optionally for Windows only, mails them to appropriate e-mail
addresses.

Purpose:

DOC1DIME is run from the command line of an appropriate operating systemwindow.Preparation:

Syntax:

doc1dime ini=IniFile [symbol=value symbol=value ...]

Parameters:

is the path/filename of the DIME INI file to be used.IniFile

indicates a value to be used to replace a symbol in the INI file. This is optional and
may be repeated as many times as required.

symbol=value

Example:

doc1dime ini=\doc1host\run\dimej1.ini val1=earlyrun

DOC1DIME under z/OS

Extracts individual PDF documents from a compound printstream file created by
Generate and stores them in separate files.

Purpose:

PDF documents are extracted as the members of a partitioned dataset as specified
in the DIME INI being used. The records making up the PDF documents will be sized
according to the LRECL although we recommend a minimum length of 256.

DOC1DIME is submitted to the system using standard JCL.

Preparation:

257EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

EXEC card syntax:

EXEC PGM=DOC1DIME,PARM=('INI=DD:IniDD [,symbol=value,symbol=value,...]')

Parameters:

is the DD label in the JCL that indicates the DIME INI to be used.IniDD

indicates a value to be used to replace a symbol in the DIME file. This is optional and
may be repeated as many times as required, each instance separated by a comma.

symbol=value

Examples:

Specifying initialization file:

//DOC1DIME EXEC PGM=DOC1DIME,PARM='INI=DD:DOC1INIT'

Specifying initialization file and symbols:

//DOC1DIME EXEC PGM=DOC1DIME,PARM=('INI=DD:DOC1INIT,VAL1=EARLY')

Sample JCL:

//Jobname JOB (xxx) ...(Rest of Job Card parms)
//DOC1DIME EXEC PGM=DOC1DIME,
// PARM='/INI=DD:DIMEINI'
//*Load lib for PCE + run-time libs if req’d
//STEPLIB DD DISP=SHR,DSN=PROD.GEN.LOAD
//*Initialization file (DD referenced in EXEC)
//DIMEINI DD DISP=SHR,DSN=PROD.GEN.RUN(A1INI)
//*Generate messages file (DD referenced in INI)
//DOC1MSG DD DISP=SHR,DSN=PROD.GEN.MSG(MESSAGES)
//*Input PDF file (DD referenced in INI)
//PDFIN DD DISP=SHR,DSN=PROD.GEN.HIPS(JOB10))
//*

258EngageOne Generate 6.6 Service Pack 11 Production Guide

Processing PDF output

10 - Working with HTML
HTML output produced by Generate includes some features of the DHTML
(dynamic HTML) specification which is a development of the original HTML
tags incorporating cascading style sheets, layers, dynamic fonts and other
programmable options.

Note: that not all internet browsers can display DHTML and standards
can vary between those that can. Generally speaking the DHTML
produced by Generate should be compatible with any browser
supporting cascading style sheets such as the 4.0 or later versions
of Internet Explorer and Netscape Communicator.

As with all other datastreams produced by Generate HTML output is
produced by as a single stream containing all the documents generated by
the application. The individual HTML pages cannot be browsed without
subsequent manipulation. The HTML output is actually an XML structure
known as a PAK file which provides a structured container for the HTML
pages and their associated resources.

If you intend to pass the HTML output to Vault this format is automatically
interpreted and you need only pass the entire stream to the download
directory for processing. For other applications you will need to use an
extraction utility to separate the pages and objects within the PAK file and
make them available to your presentation system.

The DOC1EDU program is provided as a simple file-based example of an
extraction utility for a Generate HTML PAK file. See “EDU” on page 243
for more information.

In this section

Deployment considerations..260
EDU..267

Deployment considerations

Extract and deployment systems need to do at least the following:

• Extract the HTML pages from the PAK file to separate files on your database/file store and log the
relevant identifiers so they can be indexed by your web server system.

• Extract any native chart data objects as separate files to your database/file store. This must match
the location specified in the Chart data location output device setting used when publishing the
job from Designer.

• Extract the line and box vector graphics to your file store at the location specified by the Resource
location output device setting.

• Make any static image files referenced by the application available to the web server at the location
defined in the Image location output device setting.

• Access the relevant HTML pages via their logged identifiers when a display request is made.

Note that where native charts are used the DOC1 Graphics Applet will also need to be stored in the
resource location defined by the Applet location option so that it can be downloaded on demand.

Refer to the Output, media and resources section of the Designer User’s Guide for detailed information
regarding HTML output device settings.

260EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

DHTML deployment model

For each HTML page created the deployment system will need to extract three different object types
from the PAK file as indicated in the diagram.

The HTML pages themselves can be extracted to the location required by your presentation system.
The two types of dynamically generated resources also created within the PAK must be extracted
to the locations indicated by the relevant output device options.

Static images and the DOC1 Graphics Applet used to present native charts are assumed by the
HTML to be already present at the location indicated by the Resource location output device option.

The extraction routine will also need to build an index to the HTML files so they can be located by
your presentation system. You can use the group, document and page ID attributes within the XML
elements to do this, or use a journal file to supply additional references.

261EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

PAK file structure

The HTML PAK file created by Generate is an XML construct providing a container for HTML pages
and associated resources along with a Data Type Definition (DTD) that describes the file structure.

The use of XML and the DTD means that the PAK file can easily be parsed using a range of publicly
available utilities.

HTML pages within the PAK file are grouped at two levels:

• The HTML pages produced by a single publication data set are stored within a document group.
• One or more document groups are stored within an ‘account’ group. All sequential documents
sharing the same XML attribute groupID will be placed in the account same group. The groupID
attribute can be specified as the keyword parameter of the document attributes object when
designing the application in the Designer. If this is omitted a default groupID is assigned by
DOC1GEN and each document will be stored in an individual account group.

All elements of the PAK file have unique identifier attributes which you can use to cross-reference
and further customize your system as required.

262EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

HTML PAK file elements and attributes

The overall structure of HTML PAK file. Will always contain one or more group
elements.

dhtmlpak

This will describe the environment in which the PAK was generated.

Attributes:

date – system date time – system time platform – operating platform for which the
resources are intended. One of: Windows, UNIX, z/OS.

jobdata

The ‘account’ level group structure. Will contain zero or more document elements.
May also contain other elements which are intended for future expansion: cpage,
fpage, and docmap. All sequential documents that share the same groupID attribute
will be contained within the same group. If no groupID is available an account level
group will be created for each individual document. Attributes:

groupUID – a unique identifier for the group generated dynamically be DOC1GEN.
This can be used to access the group by the extract mechanism.

groupID – the group identifier. If the publication included a document attributes object
the keyword provided as part of this will be used as the groupID. If not a unique
identifier will automatically be assigned by DOC1GEN.

group

The document level group structure. Will contain one or more dhtmlpage elements.
Can also contain zero or more img and jdata elements.

Attributes:

docUID – a unique identifier for the document generated dynamically be DOC1GEN.
This can be used to access the document by the extract mechanism.

docID – a reference indicating the sequence of the document within the group. There
may be other attributes relating to specific cross application requirements.

document

Contains individual HTML pages.

Attribute: pageID – a reference indicating the sequence of the page within the
document.

dhtmlpage

Contains individual line and box images as generated by DOC1GEN. Attributes:
imUID – a unique reference for the image url – the URL reference (built using
ResourceURL INI setting) datalen – contains the number of bytes making up the img
element (excluding carriage returns)

graphic

Contains the data to be used as parameters when constructing a native chart object
with the DOC1 Graphics Applet.

Attributes:

jdUID – a unique reference for the object datalen – contains the number of bytes
making up the jdata element (excluding carriage returns)

jdata

263EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

Appears at the end of each document when document section bookmarks have been
defined for the document. When used for Vault it is used to build a page navigator
for documents. Otherwise it can be used to generate a bookmark structure for those
intending to build their own web site map. Consists of Bmark tags which themselves
contain these attributes:

name – is a reference name

pageid – which page within doc

lref – position on the page

TOC

Future expansion only. No relevant content at this time.cpage, fpage, docmap

264EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

Graphics handling

Unlike other datastreams supported by Generate, HTML has no concept of vector drawing and
special methods need to be employed to deliver such elements to the client system.

Lines and boxes

Native lines and boxes required by the application are created as independent vector graphic files
(of type GIF) and included in the XML PAK as independent objects. A single object is not repeated
and can be referenced by any number of HTML pages.

The HTML pages will reference these files at the URL specified as the Resource Location output
device setting.

Static images

In Generate terms these are the referenced elements that can be included in documents.

Images used in your design are converted to png format. By default, these images are identified by
their original base name together with an automatically generated identifier. Use the resource mapping
facility if you wish to override the generated name. Refer to the resource maps section of the Designer
User’s Guide for further information.

As with lines and boxes the HTML pages will reference these files at the URL specified as the
Resource Location output device setting.

Designer native chart feature

Native chart graphics are rendered dynamically on the client system by a Java applet supplied with
product distribution material. The parameter data is passed to the applet either as meta-data within
the HTML page itself or, where large amounts of data is involved, via a chart data object that is
generated within the XML PAK by DOC1GEN. The decision to produce an independent object is
based on the Chart threshold output device setting which specifies an upper size limit under which
inline data will be used. The chart data objects need to be extracted to database or file store locations
that have been anticipated in the Locate chart data by and Chart data location output device
settings.

Locate chart data by can be either: URL – indicating a URL path Query – indicating a query string
(for database look-up etc.)

The examples below show possible Chart data location settings:

Locate chart data by set to URL:

http://gen/resources/&jdUID.dat

Uses fully qualified path and jdUID as file name

&jdUID.dat

265EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

Uses current path/default location

http://gen/&docUID/&pageUID/&jdUID.dat

Use several unique IDs to provide full path

Locate chart data by set to Query:

http://gen/scripts/getcd.cgi?&jdUID

Calls a cgi script in the defined location using the jdUID attribute as the sole parameter.

DataURL = getcd.asp?/&pakUID&docUID&jdUID

Calls an asp script in the current path/default location using several unique IDs as parameters.

266EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

EDU

The DOC1EDU (Extract and Deployment utility) program is provides as a simple file-based example
of an extraction utility for an HTML PAK file. Note that this is recommended as a tool to assist with
your application development; production systems will typically require a custom deployment utility.

EDU interrogates a PAK file and extracts the individual HTML pages and the resources required to
present them to the file locations you specify. EDU is controlled by an initialization file (INI) that
identifies the input file and locations for output files.

The EDU (Extract and Deployment Utility) can extract the HTML pages and associated resources
from the PAK file and store them as individual files. These can then be viewed by an Internet browser.

EDU index

EDU optionally produces an index to the HTML pages and associated resources that have been
extracted during execution. This contains some informational sections followed by a listing of each
page or resource as shown in this fragment:

267EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

EDU Initialzation file format

The Initialization file specifies the environment for a particular execution of DOC1EDU.

Parameters are normally coded as literal values but can be specified dynamically if
required by defining them wholly or partly as symbols. Values can be assigned to
such symbols when starting the DOC1EDU program. Within the INI file symbols are
referenced by coding the symbol name to be used within percentage signs. For
example: Input=%FName%

Syntax:

<Files>

Input=Location

PageFileMask=Location%1

ResourceFileMask=Location%1

IndexFile=Location

DtdFile=Location

Messages=Location

Data types:

is a reference to a file location in the format required by the host operating system.
For file mask parameters the wildcard (%1) should be included to indicate the position
of the actual filenames in the path structure. Examples: Windows –
c:\doc1host\dhtmlout\%1UNIX – /doc1host/dhtmlout/%1 z/OS –DD:DHTMLOUT(%1)

The Preface of this manual contains guidelines for the expected naming conventions
for all supported platforms.

Location

Keyworda and parameters:

Location is the path/filename of a HTML PAK file (as produced by DOC1GEN) which
is to be input to EDU.

Input

Location is the path where the individual HTML pages will be output. The%1 wildcard
will be substituted by a unique reference by EDU.

PageFileMask

268EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

Location is the path where resource file associated with the HTML pages will be
output. These may be either: vector graphic files (of type GIF) which are created for
each line or box shape required by the HTML pages native chart data files containing
parameters to be passed to the DOC1 graphics applet so that charts can be rendered
The %1 wildcard will be substituted by a unique reference in both cases. If
ResourceFileMask is omitted the Location specified for PageFileMask will be used

ResourceFileMask

Location is the path/filename which will receive the index produced by EDU. Size will
vary according to number of pages and resources produced by the application. Allow
approximately 50 bytes per page or resource.

IndexFile

Location is the path/filename which will receive the XML Data Type Definition (DTD)
that describes the PAK input file. This keyword is optional – if omitted the DTD is not
extracted.

DtdFile

Location is the path/filename of the EMFE error messages file (messages on z/OS
or messages.dat on Windows, Unix etc). This keyword is mandatory.

Messages

Example:

Under Windows, UNIX, etc.:

<Files>
Input=html.pak
PageFileMask=c:\doc1host\dhtmlout\%1
ResourceFileMask=c:\doc1host\dhtmlout\resource%1
IndexFile=c:\doc1host\dhtmlout\pakindex.dat
Messages=c:\doc1host\dhtmlout\messages.dat

Under z/OS:

<Files>
Input=DD:DHTMLPAK
PageFileMask=DD:DHTMLOUT(%1)
ResourceFileMask=DD:DHTMLOUT(%1)
IndexFile=DD:DHTMLINX
Messages=DD:MESSAGES

269EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

Running DOC1EDU

Running DOC1EDU under UNIX & Windows

Extracts HTML pages and associated resources from a Generate HTML PAK file.Purpose:

DOC1EDU is run from the command line of an appropriate operating systemwindow.Preparation:

Syntax:

doc1edu ini=Ini

Parameters:

Ini is the path/filename of the EDU Initialization File to control this execution of
DOC1EDU.

INI

Example:

doc1edu ini=\doc1host\run\edu.ini

Running DOC1EDU under z/OS

Extracts HTML pages and associated resources from a Generate HTML PAK file.Purpose:

It is anticipated that the HTML and resource locations will be partitioned datasets.
The directory block allocation must allow for all expected files.

Note that the DD labels are examples only – the actual label required are specified
in the INI file being used.

Preparation:

270EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

JCL:

///Jobname JOB (Rest of Job Card parms)
//DOC1EDU EXEC PGM=DOC1EDU,PARM='INI=DD:IniDD'
//STEPLIB DD DISP=SHR,DSN=EDU Load Library
//* Other run time libraries as required (if any)
//IniDD DD DISP=SHR,DSN=Dataset containing EDU INI file
//HTMPAGES DD DISP=SHR,DSN=Dataset to receive HTML pages
//HTMRES DD DISP=SHR,DSN=Dataset to receive related resources
//HTMINDEX DD DISP=SHR,DSN=Dataset to receive index of pages/resources
//HTMDTD DD DISP=SHR,DSN=Dataset to receive XML DTD for the input file
//*

Parameters:

identifies the DD name used to define the dataset containing the EDU Initialization
File to control this execution of DOC1EDU.

IniDD

All references other than that for the Initialization file itself are coded in the EDU
Initialization file.

DD References:

271EngageOne Generate 6.6 Service Pack 11 Production Guide

Working with HTML

11 - User exits
A user exit allows Generate to initiate a user–defined program and for the
program to return data to the Generate production job if appropriate.
Theoretically, a user exit can perform any function but in practice they are
limited by the interfaces provided by Generate and the return data it expects.

In this section

Compatibility ..273
Types of user exits..273
Preparing Generate for User Exits...274
Creating the user program..275
Programming guidelines & function overview..277
Code samples...282
User exit API function library..291

Compatibility

The user exit mechanism discussed in this section is only available with the Series 5 DOC1GEN
production engine. If you need to use user exits with DOC1PCE these will continue to use the
mechanism provided with the DOC1 Suite 4 environment. You should refer to any version of the
Programmer’s Guide provided with DOC1 Suite 4 for information about how such exits are coded
and implemented. Contact your Precisely support for further information.

Types of user exits

At present four types of user exit are supported:

• A File user exit allows you to replace the I/O function of a specific file used by Generate. You may
want to use such an exit to pre-process input sources before delivering blocks of data to Generate
or to direct blocks of output data to a third party handling mechanism such as an API or messaging
system

• A Data Input user exit allows you to completely replace the Generate mechanism for accessing
input data. Unlike a file exit, the user program takes responsibility for creating the appropriate data
structure expected by an entire publication before passing it to Generate. You may want to use
this type of exit if you need to merge input sources dynamically or access databases during the
actual Generate production process.

• A Key Map user exit allows you to access custom sources to insert images where an external
keyed object has been used in a publication design. For more information see “Defining external
keyed images” on page 215.

• A Lookup Table user exit allows you to access custom sources to substitute strings when lookup
table functions are used in a publication design. Rather than use fixed tables the exit allows the
user program to respond dynamically to each call made to a lookup table function.

Where used, a user exit must completely replace the function it relates. For instance, if you code a
File exit it will be required to handle all calls that Generate may make in relation to the files including
open, close, read, write and so on.

273EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Preparing Generate for User Exits

User exits are notified to Generate by coding the keyword USEREXIT(name) for the appropriate
setting in the Override Production Settings file (OPS) as used by Generate. For example:

Output1=USEREXIT(SendToArchive)

Note: For:

• Data Input exits: use this format with the DataInput keyword.
• File exits: use with any input or output keyword.
• Key Map exits: use with any entry in the <KeyMap> section.
• Lookup Table exits: use with any entry in the <LookupTable> section.

The name used (‘SendToArchive’ in the example above) must match the external name specified
in the appropriate DuxRegister… function within the user program itself.

A <UserExit> section is required to identify the object modules containing the referenced user
programs.

If required, you can pass parameters to the user program either by accessing symbols defined in
the OPS file or by extending the parameters in the USEREXIT keyword. The
DuxGetOpsSymbolValue and DuxGetInvokeParameter API functions allow you to retrieve
these values within the user program.

The format of these commands is demonstrated in the OPS example below.

Note: refer to the Designer User’s Guide for general information about creating and using an
OPS file.

Sample OPS settings for user exits

;replace input data with a user exit
<Input>
DataInput=USEREXIT(BWDI)

;The user exit will provide keyed images
<KeyMap>
Map1=USEREXIT(AKM)

;replace a lookup table with a user exit
;the user program expects 2 parameters
<LookupTable>
Table1=USEREXIT(BWLT,15,2004)

;this declares the user program modules

274EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

<UserExit>
1=DOC1IN.DLL
2=DOC1KMAP.DLL
3=DOC1LTAB.DLL

Creating the user program

The user program interfaces with Generate using the DUX API (User Exit) which is an external
function library supplied with the Generate distribution material. This object module must be included
in the link dependencies when the user program is built. A header file declaring the available functions
is also supplied and this must be included in the source code for the user program.

The API is written in standard C and this is also the language expected in the user program. C++
programs can also access the interface but note that no C++ classes are provided.

Note:

• If the program calls modules in other languages it is the users responsibility to ensure that
all inter-language linking issues are properly resolved.

• Under z/OS you may only initiate one user exit function for each load module.
• Under Windows all user exit functions called by a single Generate program should be
contained within a single DLL to prevent memory fragmentation.

Program structure

All user exit programs must consist of at least:

A DOC1REG function (the name is fixed) which registers the user program with Generate. Within
DOC1REG you will need to include a call to the relevant DuxRegister… API function which defines
the type of user exit to Generate, supplies a name by which the exit is identified externally and names
a further function that will carry out the actual user exit activity.

The user exit function which must be coded to respond to each of the request types that may be
made by Generate. The list of possible requests vary according to the type of exit.

Note: See “Code Samples” on page 284 for examples of this program structure as it relates
to specific types of user exit.

275EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Multi-threading & user exit handles

User exits support multi-threading – i.e. the same user function can be called multiple times within
the same Generate process. This in turn allows the exit to be used in scenarios where Generate
needs to execute multiple instances of its engine. To allow multi-threading, each time a user exit is
called fromGenerate it is automatically passed a handle (hdux) that uniquely identifies that particular
instance of the exit. This handle is then used as a parameter when the user exit program makes any
calls to API functions.

The user program itself should not use any techniques that would prevent multi-threading. In particular
the use of static data should be avoided wherever possible. You may use the pvUser structure to
pass global data between user exit events if required. You should also check the relevant information
for your production platform and compiler for advice on programming for a multi-threaded environment.

Preparing input data

Where applicable, the user program must deliver input data in the structure and sequence that
Generate expects; i.e. it must conform to the data format that was assigned to the application in the
Designer.

276EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Compilation & run-time requirements

The DUXAPI object module is supplied separately for each supported platformwith product distribution
material. Your user program must be linked to the appropriate object module.

Windows

The user program must be exported as a DLL. At run time it must be in the same directory as
DOC1GEN or a path identified in a system environment setting.

UNIX

User programs must be generated as UNIX shared objects or equivalent. On most supported UNIX
platforms shared object status is achieved by using an appropriate link option:

OptionUnix platform

-G -K pic -lelfSun

Under AIX the module must be exported. For example:

-bE:name.exp -bM:SREAIX

z/OS

The user program and DUX API object modules must be included in the load library concatenation
in the STEPLIB statement of the appropriate Generate start-up JCL or in a library in the active link
list.

Programming guidelines & function overview

This section summarizes the way the user exit program should be coded and the DUX API functions
that must be used. For full details of each API function see “DUX API function library” on page 259.
You may also want to refer to “Code Samples” on page 285 for practical examples of the required
program structure for each type of exit.

A DOC1REG function must be included in every program to be used as a user exit. It must use the
following prototype:

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)

277EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

It must include at least a DuxRegister… function which defines the type of user exit to Generate,
supplies a name by which the exit is identified externally and names a further function that will carry
out the actual user exit activity. You may also want to code DuxRegister…Event calls to identify other
user functions to be called in response to the start and end of the Generate job.

The user exit function name must match that specified in the registration function. Its parameters
will vary depending on the type of exit being used.

Interfaces & job control

To access symbols defined in the OPS file or the parameters in the USEREXIT keyword use the
DuxGetOpsSymbolValue and DuxGetInvokeParameter functions.
DuxGetInvokeParameterCount returns the number of available parameters.

The user programmay output operator messages using the standard Generate reporting mechanism.
Use the DuxInformUser and DuxWarnUser to output messages with an information or warning
level respectively.

Note: information and warning messages may be suppressed by settings assigned to the
production job.

In some circumstances the user exit program may encounter an error condition requiring processing
to be halted. This situation can be handled using the DuxStopJob function which allows you to issue
an abort level message and makes a request to Generate to stop the job.

Note: Generate may still need to call the user program again after DuxStopJob has been
called – for example, a file user exit may be requested to close its virtual file – and so should
be written to cater for such scenarios.

Note: If DuxStopJob is called when Generate is configured in server mode just the job is
stopped and not the process. The user program will be called again when the next job is
available for processing.

Return codes
The user exit function will be expected to issue a return code. Additionally, return codes are issued
by many DUX API functions for query be the user program if required. All valid return code values
are defined as constants in the user exit header file as supplied.

278EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Working with data types

To ensure compatibility with the internal data types required by Generate you must first store strings
and numbers in data objects before passing them to DUX API functions.

String objects can contain either 8-bit or 16-bit characters. You can allocate a string object using
DuxStrAlloc or both allocate and assign data using the appropriate DuxStrAllocWithString…
function. You can update the contents of a string object using DuxStrSet… functions and retrieve
a string from an object using DuxStrGet… functions. Use DuxStrFree to free the memory assigned
to a string object if required.

Use number objects to store numeric or currency values. Note that when updating number objects
you will need to specify the whole and fractional parts as separate values. Allocate a number object
using DuxNumAlloc and assign a value using DuxNumStore. Use DuxNumFree to free the memory
assigned to a string object if required.

Code page management

Generate interprets strings using a code page which will be assumed from the production platform.
You may need to instruct Generate to use a different code page particularly when dealing with text
based on multiple languages. The range of supported code pages are defined in the user exit header
file as supplied.

Use the DuxGetCodePage function to return the code page currently being used as the default. You
can set a new default code page using DuxSetCodePage. You can also set the code page to be
used with specific string objects using DuxStrCodePage.

Coding a File or Data input user exit

The DOC1REG function must include a call to the relevant registration API function:

• DuxRegisterFileInputExit for a file exit to handle input data;
• DuxRegisterFileOutputExit for a file exit to handle output data;
• DuxRegisterDataInputExit for a data input exit.

These functions specify the name of the actual user exit function. The user exit function itself should
be declared using the following prototype:

DUXRC name (HDUX hdux, DUXDATAACTION action, void *pvUser)

Where:

279EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

• name is the name of the function as identified as part of the DuxRegister… call in the DOC1REG
function;

• hdux receives the unique handle to the user exit session fromGenerate; action will receive requests
from Generate in the form of constants defined in the user exit header file;

• pvUser may be used to pass private data between user exit events if required.

Defining file types
For file exits you will need to be aware of the expected access method for the file and the type of
data to be read/written.

Generate supports two access methods: record or stream. Record based files are delimited either
using native record structures under z/OS or with carriage return or carriage return/line feed bytes
on other platforms. Reading or writing to stream based files simply deals with un-delimited blocks of
data and is typically used with binary data.

This information is passed to Generate using the flFlags parameter of the relevant
DuxRegisterFile…Exit function.

Handling requests
For these types of exit Generate will issue a range of requests – or actions – to the user program.
The user exit function must be coded to respond to each of the following actions and include the
appropriate API functions.

File exits must respond to the following actions:

DUXFA_Open requests that the relevant file be opened.

DUXFA_Read requests data from the file (input exits only). The user program will normally use the
DuxSetFile… functions to access the Generate file buffer and return a record or block of data
(according to how the exit was defined in DuxRegisterDataInputExit).

DUXFA_Write requests that data be written to the file (output exits only). The user program will
normally use the DuxGetFile… functions to access the Generate file buffer and get access to each
record or block of available data (according to how the exit was defined in
DuxRegisterDataInputExit).

Note: Generate automatically grows the I/O buffer to accommodate the data when using the
functions discussed above. Other API functions allow you to specifically control the buffer size
but note that incorrect control of the buffer will cause Generate to fail.

DUXFA_Tell requests the user program to provide the current file offset. Use DuxGetFileOffset
to return the current position.

DUXFA_Seek requests the user program to move the file pointer to a particular position. This is based
on a specified offset from the last position indicated by DuxGetFileOffset. Use
DuxSetFileOffset to move to the required position in the file.

280EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DUXFA_IsEndOfFile requests the user program to check the availability of data. The user program
should return DUXRC_DataAvailable or DUXRC_EndOfData as appropriate. DUXFA_Close
requests the user program to close the file.

Data input exits must respond to the following actions:

DUXDA_VirtualOpen requests the data source to be opened in preparation for input. Typically the
user program will establish a database connection, open files or similar.

DUXDA_ReadPublication requests the user program to assemble the data structure required by
the next publication to be processed. You will need to use the API functions to build your data into
the structure defined by the data format being used. You can establish the required structure using
the Data Format Editor in the Designer.

Typically you will need to define an instance of a each expected input record using DuxAddRecord
and then add field values to the records using the relevant DuxAdd…Field function.

All records other than a start of publication record must have the appropriate parent record defined
in the DuxAddRecord call. For start of publication records the parent parameter should be NULL.

DUXDA_IsEndOfData queries the availability of further data from the user program. The user exit
function must issue a return code of DUXRC_DataAvailable or DUXRC_EndOfData in response.

DUXDA_VirtualClose requests the data source to be closed, usually when there is no more data
available, or when an error has occurred.

Coding a Key Map user exit

The DOC1REG function must include a call to the DuxRegisterKeyMapExit API function. Caching
is used to improve performance and is normally handled automatically by Generate. If you need to
use a custom caching you should set the appropriate flag in the registration function. The user exit
function itself should use DuxStrGetChars to access the key being queried and should use
DuxStrSetString and DuxNumFromINT to return the image and its properties.

Note: See the Key Map User Tutorial document on the website for detailed technical
information.

Coding a Lookup Table user exit

The DOC1REG function must include a call to the DuxRegisterLookupTableExit API function.
Caching is used to improve performance and is normally handled automatically by Generate. If you
need to use a custom caching you should set the appropriate flag in the registration function. The
user exit function itself should use DuxStrGetChars to access the lookup key being queried and
DuxStrSetString to return the substitute value.

281EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Code samples

This section contains samples of the various user exit types supported by Generate. It should be
noted that these samples are for your guidance as the design of the user exit is completely at your
discretion.

The sample code extracts provided in this section do not show the entire program required to
implement the particular user exit functionality, as it focusses on the key program structures required
to implement the chosen user exit type.

282EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Data input user exit example

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
//
// Register our data input user exit with the name 'BWDI'.
//
DuxStrSetString (hdux, pstr, "BWDI");
DuxRegisterDataInputExit (hdux, pstr, MyDataInputExit, mydata);
//
// Register when Generate terminates so I know when to free 'mydata'.
//
DuxRegisterTerminateEvent (hdux, FreeMyData, mydata);
//
// Let the user know that we've been loaded.
//
DuxStrSetString (hdux, pstr, "Boardwalk Database Interface ready for use.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
return DUXRC_OK;
}
extern "C" DUXRC MyDataInputExit (HDUX hdux, DUXDATAACTION action, void *pvUser)
{
DUXRC rc = DUXRC_OK;
switch (action)
{
//
// Generate is requesting a data source to be opened in preparation for input.
//
case DUXDA_VirtualOpen:
{
PMYDATA pmydata = (PMYDATA)pvUser.
// If database opens fails
if (pmydata->precdata->Open () == 0)
{
pmydata->fEof = TRUE; // So we don't try to fetch data.
rc = DUXRC_Failed; // Have Generate abend.
}
else
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
// Just let user know that we've connected to database.
DuxStrSetString (hdux, pstr, "Boardwalk Database connection success.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
pmydata->fEof = FALSE;
}
}
break;
//
// Generate is requesting a data source be closed as it is no longer required.
//
case DUXDA_VirtualClose:
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
pmydata->precdata->Close();
DuxStrSetString (hdux, pstr, "Boardwalk database Closed");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
}
break;
//
// Generate is asking if there is any more publication's worth of data.
//
case DUXDA_IsEndOfData:
if (pmydata->fEof)
rc = DUXRC_EndOfData;
else
rc = DUXRC_DataAvailable;

283EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

break;
// Generate is asking for a publications worth of data.
//
case DUXDA_ReadPublication:
// Create the publication record.
//
DuxStrSetString (hdux, pstrKey, "1000");
precPub = DuxAddRecord (hdux, NULL, pstrKey);
// Add the account details.
//
DuxStrSetString (hdux, pstrName, "Acct No");
DuxStrSetString (hdux, pstrValue, pmydata->precdata->m_AcctNum);
DuxAddStringField (hdux, precPub, pstrName, pstrValue);
DuxStrSetString (hdux, pstrName, "Cust Name");
DuxStrSetString (hdux, pstrValue, pmydata->precdata->m_CustName);
DuxAddStringField (hdux, precPub, pstrName, pstrValue);
DuxStrSetString (hdux, pstrName, "Addr 1");
DuxStrSetString (hdux, pstrValue, pmydata->precdata->m_Addr1);
DuxAddStringField (hdux, precPub, pstrName, pstrValue);
// Create the summary details record.
//
DuxStrSetString (hdux, pstrKey, "1500");
prec = DuxAddRecord (hdux, precPub, pstrKey);
// Add the details.
//
DuxStrSetString (hdux, pstrName, "Current Total");
DuxStrSetString (hdux, pstrValue, pmydata->precdata->m_CurrentTotal);
DuxAddStringField (hdux, prec, pstrName, pstrValue);
DuxStrSetString (hdux, pstrName, "Amount Last Paid");
DuxStrSetString (hdux, pstrValue, pmydata->precdata->m_AmountLastPaid);
DuxAddStringField (hdux, prec, pstrName, pstrValue);
break;
default:
rc=NoParm;
break;
}}
return rc;
}

284EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

File user exit example

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
DUXINT32 nFlags;
//
// Set the flags indicating the type of IO we support. This user exit just
// supports reading of record mode interface.
//
//
nFlags = DUXFF_Read | DUXFF_RecordMode | DUXFF_Binary;
//
// Register our File Input User Exit with the name 'BWFI'. It doesn't need to
// be the same name as the DLL. It just happens to be.
//
DuxStrSetString (hdux, pstr, "BWFI");
DuxRegisterFileInputExit (hdux, pstr, nFLags, MyFileInputExit, mydata);
//
// Register when Generate terminates so I know when to free 'mydata'.
//
DuxRegisterTerminateEvent (hdux, FreeMyData, mydata);
//
// Let the user know that we've been loaded.
//
DuxStrSetString (hdux, pstr, "Boardwalk File Input Interface ready for use.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
return DUXRC_OK;
}
extern "C" DUXRC MyFileInputExit (HDUX hdux, DUXFILEACTION action, void *pvUser)
{
DUXRC rc = DUXRC_OK;
switch (action)
//
// Generate is requesting the file to be opened.
//
case DUXFA_Open:
{
PMYDATA pmydata = (PMYDATA)pvUser.
//
// Ensure there are two parameters specified when we are invoked.
// If not, tell the user what they need to do.
//
if (DuxGetInvokeParameterCount (hdux) < 2)
{
...
rc = DUXRC_Failed;
}
//
// Otherwise we’ll open up the two files specified and raise an error
// if we can’t find them.
//
else
{
PDUXSTRING pstrFile1 = DxGetInvokeParameter (hdux, 1);
PDUXSTRING pstrFile2 = DxGetInvokeParameter (hdux, 2);
...
}
}
break;
//
// Generate is requesting to read a record from the file.
//
case DUXDA_Read:
{
FILE *pfToUse = null;
// Figure out which file to use for the read.
if (!feof (pmydata->pfFile1))
pfToUse = pmydata->pfFile1;

285EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

else if (!feof (pmydata->pfFile2))
pfToUse = pmydata->pfFile2;
// If we have a file with data in it...
if (pfToUse != NULL)
{
char *pchEol = NULL;
// Read data from file.
fgets (pmydata->szBuffer, sizeof (pmydata->szBuffer)-1, pfToUse);
// Remove the end of line character. Generate doesn’t want it and will
// treat it as data.
puchEol = strchr (pmydata->szBuffer, '\n');
if (puchEol != NULL)
*puchEol = '\0';
// Give Generate the record data.
DuxSetFileData (hdux, pmydata->szBuffer, strlen (pmydata->szBuffer));
}
// Otherwise we don’t have anymore data.
else
rc = DUXRC_EndOfData;
break;
//
// Generate is asking if there is any more data to read.
//
case DUXDA_IsEndOfData:
if (feof (pmydata->pfFile1) && feof (pmydata->pfFile2))
rc = DUXRC_EndOfData;
else
rc = DUXRC_DataAvailable;
break;
//
// Generate is requesting that the file be closed.
//
case DUXDA_VirtualClose:
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
fclose (pmydata->pfFile1);
fclose (pmydata->pfFile2);
DuxStrSetString (hdux, pstr, "Boardwalk File Input Exit Closed");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
}
break;
*/
}
return rc;
}

286EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Keymap user exit example

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
KUXDATA* pData = KUxDataNew ();
//
// Register our Keymap User Exit with the name 'AKM'. It doesn't need to
// be the same name as the DLL. This is the name by which it is referred to
// in the hip file - USEREXIT(AKM)
//
DuxStrSetString (hdux, pstr, "AKM");
DuxRegisterKeyMapExit (hdux, pstr, DUXLTF_NoCacheResults, KUxPdfDataEntry, pData);
//
// Register when Generate terminates so that 'pData'can be freed.
//
DuxRegisterTerminateEvent (hdux, KUxDataDelete, pData);
//
// Let the user know that we've been loaded.
//
DuxStrSetString (hdux, pstr, "Key Map User Exit Interface is ready for use.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
return DUXRC_OK;
}
extern "C" DUXRC KUxPsDataEntry (
HDUX hdux, // IN
PDUXSTRING pstrKey, // IN
PDUXNUMBER pnumSeq, // IN/OUT
PDUXSTRING pstrName, // OUT
PDUXSTRING pstrResult, // OUT
PDUXSTRING pstrResType, // OUT
PDUXNUMBER pnumWidth, // OUT
PDUXNUMBER pnumHeight, // OUT
PDUXNUMBER pnumResolution, // OUT
PDUXSTRING pstrDevice, // OUT
void *pvUser)
{
DUXRC rc = DUXRC_OK;
UXDATA* pData = (KUXDATA*)pvUser;
char *pszKey;
int nWidth, nHeight, nResolution, nSeq;
string strName, strValue, strResType, strDevice;
// Initialize if database is not initialised,
if (!pData->fInit)
{
// Any user initialization
// On failure return DUXRC_Failed
pData->fInit = TRUE;
KUxKeyMapNew ();
}
// Get key value.
pszKey = DuxStrGetChars (hdux, pstrKey);
nSeq = DuxNumToINT (hdux, pnumSeq);
//
// Lookup value in database

//
if (KUxKeyMap (pszKey, nSeq, strName, strValue, strResType, nWidth, nHeight,
nResolution, strDevice))
{
// Store the result.
// The name used to reference the image
DuxStrSetString (hdux, pstrName, strName.c_str ());
// The actual image e.g. bitmap drawing instructions
DuxStrSetString (hdux, pstrResult, strValue.c_str ());
// The resource type eg bmp for bitmaps
DuxStrSetString (hdux, pstrResType, strResType.c_str ());
// The device eg ps for postscript
DuxStrSetString (hdux, pstrDevice, strDevice.c_str ());

287EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

// Width of the image
DuxNumFromINT (hdux, pnumWidth, nWidth);
// Height of the image
DuxNumFromINT (hdux, pnumHeight, nHeight);
// Image resolution
DuxNumFromINT (hdux, pnumResolution, nResolution);
// Sequence count in case this DLL serves more than one type of image
DuxNumFromINT (hdux, pnumSeq, nSeq);
return DUXRC_DataAvailable;
}
else
{
return DUXRC_EndOfData;
}
}
//===
//
// A user exit handling routine to retrieve a bitmap. It can have almost any name.
// The 'DOC1REG' function at the bottom of the module will tell DOC1GEN
// what it is called.
//
//===
extern "C" DUXRC KUxPdfDataEntry (
HDUX hdux, // IN
PDUXSTRING pstrKey, // IN
PDUXNUMBER pnumSeq, // IN/OUT
PDUXSTRING pstrName, // OUT
PDUXSTRING pstrResult, // OUT
PDUXSTRING pstrResType, // OUT
PDUXNUMBER pnumWidth, // OUT
PDUXNUMBER pnumHeight, // OUT
PDUXNUMBER pnumResolution, // OUT
PDUXSTRING pstrDevice, // OUT
void *pvUser)
{
DUXRC rc = DUXRC_OK;
KUXDATA* pData = (KUXDATA*)pvUser;
char *pszKey;
int nWidth, nHeight, nResolution;
string strName, strResType, strDevice;
bytevec bvValue;
DUXINT32 nSeq;
//
// If database is not initialised,
//
if (!pData->fInit)
{
// Any user initialization
// On failure return DUXRC_Failed
pData->fInit = TRUE;
KUxKeyMapNew ();
//
// Get key value.
//
pszKey = DuxStrGetChars (hdux, pstrKey);
nSeq = DuxNumToINT (hdux, pnumSeq);
//
// Get value from database.
//
if (KUxKeyMap (pszKey, nSeq, strName, bvValue, strResType, nWidth, nHeight,
nResolution, strDevice))
{
//
// Populate the parameters that return the image and its properties
//
// The name used to reference the image
DuxStrSetString (hdux, pstrName, strName.c_str ());
// The actual image. This is a binary image but it is returned
// as a string. The receiving end knows it is a binary image and
// will treate it accordingly
PDUXUINT8 pbValue = &bvValue[0];
PCDUXCHAR8 pcValue = (PCDUXCHAR8) pbValue;
DUXUINT32 nValueLen = (DUXUINT32)bvValue.size ();
DuxStrSetChars (hdux, pstrResult, pcValue, nValueLen);
// The resource type

288EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxStrSetString (hdux, pstrResType, strResType.c_str ());
// The device type
DuxStrSetString (hdux, pstrDevice, strDevice.c_str ());
// Assign value to image width return value
DuxNumFromINT (hdux, pnumWidth, nWidth);
// Height of the image
DuxNumFromINT (hdux, pnumHeight, nHeight);
// Image resolution
DuxNumFromINT (hdux, pnumResolution, nResolution);
// Sequence count in case this DLL serves out more than one type of image
DuxNumFromINT (hdux, pnumSeq, nSeq);
return DUXRC_DataAvailable;
}
else
{
return DUXRC_EndOfData;
}
}

289EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

Lookup table user exit example

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
//
// Register our Lookup Table User Exit with the name 'BWLT'.
//
DuxStrSetString (hdux, pstr, "BWLT");
DuxRegisterLookupTableExit (hdux, pstr, DUXLTF_CacheResults,
MyLookupTableExit,
mydata);
//
// Register when Generate terminates so I know when to free 'mydata'.
//
DuxRegisterTerminateEvent (hdux, FreeMyData, mydata);
//
// Let the user know that we've been loaded.
//
DuxStrSetString (hdux, pstr, "Boardwalk Lookup Table Interface is ready for
use.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
return DUXRC_OK;
}
extern "C" DUXRC MyLookupTableExit (HDUX hdux, PDUXSTRING pstrKey, PDUXSTRING
pstrResult, void *pvUser)
{
DUXRC rc = DUXRC_OK;
PMYDATA pmydata = (PMYDATA)pvUser.
char *pszKey;
char szValue[MAX_ValueLength] = "";
//
// Get key value.
//
pszKey = DuxStrGetChars (hdux, pstrKey);
//
// Get value from database.
//
GetValueFromDatabase (pmydata, pszKey, szValue);
//
// Store the result.
//
DuxStrSetString (hdux, pstrResult, szValue);
Return DUXRC_OK;
}

290EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

User exit API function library

This section lists the functions in the user exit API function library, detailing the function's:

• purpose
• usage
• parameters
• description
• return value(s)

291EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxAddCounterField Function

Adds a field of type Counter to a Data Input record and
assigns a value.

Function:

DUXRC DuxAddCounterField (HDUX <hdux>,
PDUXPARENT <pParent>, PDUXSTRING <pstrName>,
DUXUINT32 <nVal>)

Prototype:

hdux handle to the user exit service.

pParent pointer to parent record.

pstrName string; name of the counter field to be added.
nVal number object.

Parameters:

This function is used only for Data Input user exits. A field
defined as type Counter (integer) is appended to the parent
record (as created by the previous call to DuxAddRecord)
and is assigned the value in the number object.

Description

DUXRC_InvalidName: field name is invalid for parent.

DUXRC_InvalidType: field's definition is not compatible
with type counter.

Returns

292EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxAddDateField Function

Adds a field of type Date to a Data Input record and
assigns a value.

Function:

DUXRC DuxAddDateField (HDUX <hdux>,
PDUXPARENT <pParent>, PDUXSTRING <pstrName>,
UINT <nDay>, UINT <nMonth>, UINT <nYear>,
DUXCALENDER <cal>)

Prototype:

hdux handle to the user exit service.

pParent pointer to parent record.

pstrName string; name of the counter field to be added.

nDay number; day portion of date field to be added.

nMonth number; month portion of date field to be added.

nYear number; Year portion of date field of date field to be
added.

Parameters:

This function is used only for Data Input user exits. A field
defined as type Date is appended to the parent record (as
created by the previous call to DuxAddRecord) and is
assigned the date represented by the values in the three
number objects. Note that Generate does not perform any
validation on date values.

Description

DUXRC_InvalidName: the field is invalid for the parent
record.

DUXRC_InvalidType: the field's definition is not compatible
with a date.

Returns

293EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxAddNumberField Function

Adds a field of type Number to a Data Input record and
assigns a value.

Function:

DUXRC DuxAddNumberField (HDUX <hdux>,
PDUXPARENT <pParent>, PDUXSTRING <pstrName>,
PDUXNUMBER <pnumVal>)

Prototype:

hdux handle to the user exit service.

pParent pointer to parent record.

pstrName string; name of the counter field to be added.

pnumVal pointer to number object.

Parameters:

This function is used only for Data Input user exits. A field
defined as type Number (signed or unsigned decimal number
with floating point) is appended to the parent record (as
created by the previous call to DuxAddRecord) and is
assigned the value in the number object.

Description

DUXRC_InvalidName: the field is invalid for the parent
record.

DUXRC_InvalidType: the field's definition is not compatible
with a number.

Returns

294EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxAddRecord Function

Adds a record to the current Data Input publication being
prepared

Function:

PDUXPARENT DuxAddRecord (HDUX <hdux>,
PDUXPARENT <pParent>, PDUXSTRING <pstrKey>)

Prototype:

hdux handle to the user exit service.

pParent pointer to parent record.

pstrName string; key for the record to be added.

Parameters:

This function is used only for Data Input user exits. A record
with the key name indicated is added to the publication data
being prepared in response to a DUXDA_ReadPublication
request. Unless this is the first record to be added (and is
therefore not the ‘start of publication’ record) you should
indicate this records parent.

Description

This function returns the pointer to the record to be added.
If NULL is returned, either the definition matching the
specified record key was not found, or the record is not a
valid child of the parent record.

Returns

295EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxAddStringField Function

Adds a field of type String to a Data Input record and
assigns a value.

Function:

DUXRC DuxAddStringField (HDUX <hdux>,
PDUXPARENT <pParent>, PDUXSTRING <pstrName>,
PDUXSTRING <pstrVal>)

Prototype:

hdux handle to the user exit service.

pParent pointer to parent record.

pstrName string; name of field to be added..

pstrVal string; pointer to string field to be added.

Parameters:

This function is used only for Data Input user exits. A field
defined as type String is appended to the parent record (as
created by the previous call to DuxAddRecord) and is
assigned the value in the string object.

Description

DUXRC_InvalidName: field name is invalid for parent
record.

Returns

296EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetCodePage Function

Gets the name of the code page currently set.Function:

DUXCP DuxGetCodePage (HDUX <hdux>)Prototype:

hdux handle to the user exit service.Parameters:

Generate interprets strings using a code page. The range
of supported code pages are defined as constants in the
user exit header file. The default code page is assumed from
the production platform but you can change this using
DuxSetCodePage. This function returns the name of the
code page (the header file constant) that is currently being
used.

Description

This function returns the code page identifier.Returns

297EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetFileByteBuffer Function

Gets pointer to Generate file buffer.Function:

PDUXBYTE DuxGetFileByteBuffer (HDUX <hdux>)Prototype:

hdux handle to the user exit service.Parameters:

Used in conjunction with DuxGetFileByteDataSize to
access binary data in the Generate buffer within a File user
exit. Note that the value of the pointer should not be saved
and re-used as it may change between invocations of the
user exit or whenever DuxSetFileByteDataSize is called.
Care should be taken to avoid writing beyond the number
of bytes returned by DuxGetFileByteDataSize.

Description

This function returns a pointer to the Generate file buffer. 0
(zero) is returned when binary mode was not specified in
the DuxRegisterFile…Exit function, when the exit is not
of type File, or where the function is called in response to a
request other than DUXFA_Read or DUXFA_Write.

Returns

298EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetFileByteDataSize Function

Gets size of file buffer used by Generate.Function:

DUXINT32 DuxGetFileByteDataSize (HDUX <hdux>)Prototype:

hdux handle to the user exit service.Parameters:

Used in conjunction with DuxGetFileByteBuffer to binary
data in the Generate buffer within a File user exit.

Description

This function returns the size of the Generate file buffer. 0
(zero) is returned when binary mode was not specified in
the DuxRegisterFile…Exit function, when the exit is
not of type File, or where the function is called in response
to a request other than DUXFA_Read or DUXFA_Write.

Returns

299EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetFileOffset Function

Returns current file offset to Generate.Function:

DUXRC DuxGetFileOffset (HDUX <hdux>,
PDUXUINT32 <pofs>)

Prototype:

hdux handle to the user exit service.

pofs pointer to offset value.

Parameters:

Used with File user exits to respond to a DUXFA_Tell
request from Generate.

Description

DUXRC_OK DUXRC_OutOfContext: the function was called
from a user exit not of type File or in response to a request
other than DUXFA_Tell.

Returns

300EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetFileOpenMode Function

Gets file open flags set by caller of user exit.Function:

DUXRC DuxGetFileOpenMode (HDUX <hdux>,
PDUXUINT32 <pnFlags>)

Prototype:

hdux handle to the user exit service.

pnFlags pointer to variable which contains contains file
access attributes.

Parameters:

Used with File user exits. This function gives access to the
file settings specified in the flFlags parameter of the
relevant DuxRegisterFile…Exit function.

Description

DUXRC_OK DUXRC_OutOfContext: the function was called
from a user exit not of type File or in response to a request
other than DUXFA_Tell.

Returns

301EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetInvokeParameter Function

Gets a parameter from the USEREXIT job command.Function:

DUXRC DuxGetInvokeParameter (HDUX hdux,
PDUXSTRING pstr, UINT nParam)

Prototype:

hdux handle to the user exit service.

pstr pointer to a string object in which the parameter will
be stored.

nParameter sequence number of the required parameter.

Parameters:

You can pass parameters to the user program by extending
the parameters in the appropriate USEREXIT command
within the OPS file with which Generate was launched. Use
this function to access these parameters. The reference
name of the user exit is excluded from the available
parameters so a sequence number of 1 returns the second
parameter and so on. Use in conjunction with
DuxGetInvokeParameterCount if you are unsure of the
number of available parameters.

Description

DUXRC_OK

DUXRC_BadParameter: nParameter is out of range.

Returns

302EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetInvokeParameterCount Function

Gets the number of parameters specified in the USEREXIT
job command.

Function:

DUXUINT32 DuxGetInvokeParameterCount (HDUX
hdux)

Prototype:

hdux handle to the user exit service.Parameters:

You can pass parameters to the user program by extending
the parameters in the appropriate USEREXIT command
within the OPS file with which Generate was launched. Use
this function to identify the number of available parameters.
Use in conjunction with DuxGetInvokeParameter.

Description

Number of parameters specified.Returns

303EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxGetOpsSymbolValue Function

Gets symbol value is stored from the Generate OPS file.Function:

BOOL DuxGetOpsSymbolValue (HDUX hdux,
PDUXSTRING pstrName, PDUXSTRING

Prototype:

hdux handle to the user exit service.

pstrName pointer to DUXSTRING containing name.
pstrValue pointer to DUXSTRING where value is stored.
pstrDefault pointer to DUXSTRING to use as default
value if symbol is undefined. If NULL, empty string will be
returned as default.

Parameters:

You can pass parameters to the user program by extending
the parameters in the appropriate USEREXIT command
within the OPS file with which Generate was launched. Use
this function to identify the number of available parameters.
Use in conjunction with DuxGetInvokeParameter.

Description

Number of parameters specified.Returns

304EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxInformUser Function

Outputs an information message through Generate.Function:

Void DuxInformUser (HDUX hdux, PDUXSTRING
pstrMsg)

Prototype:

hdux handle to the user exit service.

pstrMsg pointer to message to display.

Parameters:

The exact mechanism used by Generate to output the
message depends on platform and configuration. The
message is defined as type ‘Information’ to Generate and
therefore does not trigger any exception handling.

Description

DUXRC_OKReturns

305EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxNumAlloc Function

Allocates a number object.Function:

PDUXNUMBER DuxNumAlloc (HDUX hdux)Prototype:

hdux handle to the user exit service.Parameters:

You must create a number object to hold numeric data that
needs to be passed between Generate and the user exit
program.

Description

DUXRC_OKReturns

306EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxNumFree Function

Releases a number object.Function:

PDUXNUMBER DuxNumFree (HDUX hdux, PDUXNUMBER
pnum)

Prototype:

hdux handle to the user exit service.

pnum pointer to number object.

Parameters:

The memory associated with the object is freed.Description

DUXRC_OKReturns

307EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxNumFromINT Function

Converts an integer for use in a User Exit.Function:

VOID DuxNumFromINT (HDUX hdux, PDUXNUMBER
pnum, DUXINT32 nint);

Prototype:

hdux handle to the user exit service.

pnum pointer to number object.

nint the integer to be converted

Parameters:

Converts an integer to the internal number format
(DUXNUMBER) used by the User Exit Interface.

Description

NothingReturns

308EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxNumStore Function

Stores a value in a number object.Function:

DUXRC DuxNumStore (HDUX hdux, PDUXNUMBER
pnum, PDUXSTRING pstrWhole, PDUXSTRING
pszFraction)

Prototype:

hdux handle to the user exit service.

pnum pointer to number object.

pstrWhole whole part of number. Spaces, commas and
decimal points are ignored. Maximum length is 24 digits.

pszFraction fraction part of number. Maximum length is
8 digits.

Parameters:

The value must be coded using two separate strings, one
to represent the whole and one to represent the fractional
part of the number. Both strings must convert to an actual
numbers value.

Description

DUXRC_OK

DUXRC_InvalidWhole

DUXRC_InvalidFraction

Returns

309EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRaiseWarning Function

Outputs a warning message through Generate.Function:

Void DuxRaiseWarning (HDUX hdux, PDUXSTRING
pstrMsg)

Prototype:

hdux handle to the user exit service.

pstrMsg pointer to message to display.

Parameters:

The exact mechanism used by Generate to output the
message depends on platform and configuration. The
message is defined as type ‘Warning’ to Generate and
therefore does not trigger any exception handling.

Description

DUXRC_OKReturns

310EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRegisterDataInputExit Function

Registers a data input user exit.Function:

DUXRC DuxRegisterDataInputExit (HDUX hdux,
PDUXSTRING pstrName, PDUXDATAINPUTFN pfn,
void* pvUser)

Prototype:

hdux handle to the user exit service.

pstrName name of the user exit. It may not contain the
characters ' (' or')' .

pfn pointer to function that Generate will use to call exit.

pvUser pointer to user data. The pointer is passed back to
the user when 'pfn' is called.

Parameters:

When coding a Data Input user exit you must call this
function within the DOC1REG portion of the user program.

Description

DUXRC_OK

DUXRC_InvalidWhole

DUXRC_InvalidParameter

Returns

311EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRegisterFileInputExit Function

Registers a file input user exit.Function:

DUXRC DuxRegisterFileInputExit (HDUX hdux,
PDUXSTRING pstrName, DUXUINT32 flFlags,
PDUXFILEFN pfn, void* pvUser)

Prototype:

hdux handle to the user exit service.

pstrName name of the user exit. It may not contain the
characters ' (' or')' .

flFlags this must be passed as a concatenation of
constants (as defined in the API header file) that together
indicate the file contents and access method.

you must include the constant DUFF_Read
in this function.

Mode

include DUFF_Record to indicate record input
or DUFF_Stream for stream input.

Type

include DUFF_Binary to indicate binary
contents or DUFF_Text for text.

Format

pvUser pointer to user data. The pointer is passed back to
the user when pfn is called.

Parameters:

When coding a File user exit to replace an input file you must
call this function within the DOC1REG portion of the user
program.

Description

DUXRC_OK

DUXRC_InvalidWhole

DUXRC_InvalidParameter

Returns

312EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRegisterFileOutputExit Function

Registers a file output user exit.Function:

RegisterFileOutputExit (hdux, pstrName,
flFlags, pfn, pvUser)

Prototype:

hdux handle to the user exit service.

pstrName name of the user exit. It may not contain the
characters ' (' or')' .

flFlags this must be passed as a concatenation of
constants (as defined in the API header file) that together
indicate the file contents and access method.

you must include the constant DUFF_Read
in this function.

Mode

include DUFF_Record to indicate record input
or DUFF_Stream for stream input.

Type

include DUFF_Binary to indicate binary
contents or DUFF_Text for text.

Format

pvUser pointer to user data. The pointer is passed back to
the user when pfn is called.

Parameters:

When coding a File user exit to replace an output file you
must call this function within the DOC1REG portion of the user
program.

Description

DUXRC_OK

DUXRC_InvalidWhole

DUXRC_InvalidParameter

Returns

313EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRegisterJobEndingEvent Function

Identifies a function to be called when the Generate job ends.Function:

DUXRC DuxRegisterJobEndingEvent (HDUX hdux,
PDUXJOBENDINGFN pfn, void*

Prototype:

hdux handle to the user exit service.

pfn pointer to function to be called.

pvUser pointer to user data. The pointer is passed back to
the user when pfn is called.

Parameters:

Code this function in the DOC1REG portion of the user
program to identify a function to be called immediately before
a Generate job ends – i.e. when all input data has been
processed. In memory resident versions of Generate the
function will be called every time a batch of data is
processed. To identify a function that is only used when the
Generate process is fully closed use
DuxRegisterTerminateEvent.

Description

DUXRC_OKReturns

314EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

DuxRegisterJobStartingEvent Function

Identifies a function to be called when the Generate job
starts.

Function:

DUXRC DuxRegisterJobStartingEvent (HDUX hdux,
PDUXJOBSTARTINGFN pfn, void*

Prototype:

hdux handle to the user exit service.

pfn pointer to function to be called.

pvUser pointer to user data. The pointer is passed back to
the user when pfn is called.

Parameters:

Details Code this function in the DOC1REG portion of the user
program to identify a function to be called immediately before
a Generate job starts. In memory resident versions of
Generate note that this function is only called once when
the process is initiated.

Description

DUXRC_OKReturns

315EngageOne Generate 6.6 Service Pack 11 Production Guide

User exits

12 - Structured XML
journals
Journals are used to record the activity of publications when processed in
the production environment. This type of journal is XML based and complies
to a predefined structure. Refer to the Designer User’s Guide for further
information on using Structured XML journals.

Note that structured XML journals have a reserved Publish/Generate OPS
alias of:

<Journal>SYS_XPJ=filename

In this section

<ProductionJournal>..317
<CompositionDate>..318
<OutputDevices>..319
<StartOfJob>..320
<JE>...321
<Publications>..322
<Pub>...323
<PBO>..324
<PBC>..325
<Doc>...326
<DO>..327
<PG>..328
<PGO>...329
<PGC>..330
<JE>...331
<EndOfJob>...332
<JE>...333
Example ...334

<ProductionJournal>

Journal root elementDescription:

version version number.

runtype Identifies the Generate run type. Valid values are:
EOBatch, EONeutral, Batch.

Attributes

CompositionDate - one only.

OutputDevices - one only.

StartOfJob - optional, single occurrence if included

Publications - one only

EndOfJob - optional, single occurrence if included

Contents

<ProductionJournal>…</ProductionJournal>Example

317EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<CompositionDate>

Mandatory date of composition run.Description:

None.Attributes

DateContents

<CompositionDate>2009-11-02</CompositionDate>Example

318EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<OutputDevices>

Mandatory output devices element.Description:

None.Attributes

One or more output device elements for each output
datastream.

Contents

<OutputDevices>…</OutputDevices>Example

319EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<StartOfJob>

Optional start of job journal entry. Note that this journal entry
is set at publication level in the Designer

Description:

NoneAttributes

JE - one or more.Contents

<StartOfJob>…</StartOfJob>Example

320EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<JE>

Journal entryDescription:

name - journal entry name

type -data type, as configured in the publication logic

Attributes

NoneContents

<JE type="dat"
name="StartOfJobJournal">2009-11-02</JE>

Example

321EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<Publications>

Publication root elementDescription:

NoneAttributes

Pub - one or more.Contents

<Publications>…</Publications>Example

322EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<Pub>

Publication elementDescription:

name - publication logic map label

instanceId - document instance ID

Attributes

PBO - one or more

PBC - one or more

Contents

<Pub name="Pub1"
instanceId="AD0F4956BAE7044391CEB6FA4D30B179">

Example

323EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<PBO>

Publication offsetDescription:

idx - output device index number

totalPages - total physical page count

totalPagesRecto - front-side page count

filename - output file containing publication

Attributes

NoneContents

<PBO idx="1" totalPages="8"
totalPagesRecto="4"
filename="out.pdf">0</PBO>

Example

324EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<PBC>

Publication content componentDescription:

NoneAttributes

JE - one or more

Doc - one or more

Contents

<PBC>…</PBC>Example

325EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<Doc>

Each document in the publication is represented by a Doc
element

Description:

name - the name applied to the document in the publication
logic

Attributes

DO - one or more

PG - one or more

Contents

<Doc>…</Doc>Example

326EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<DO>

Document offset element. Contains the offset of the
document from the start of the output datastream

Description:

idx - output device index numberAttributes

NoneContents

<DO idx="2">324922</DO>Example

327EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<PG>

Page entry. A single page entry element exists for each page
in the document.

Description:

NoneAttributes

PGO - one or more

PGC - optional, single occurrence

Contents

<PG>…</PG>Example

328EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<PGO>

Page offset. This element the offset of the page from the
start of the output datastream. A single PGO element exists
for each output device.

Description:

idx - output device index number

jpn - job page number

ppn - publication page number

dpn - document page number

Attributes

NoneContents

<PGO idx="1" jpn="1" ppn="1" dpn="1">72</PGO>Example

329EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<PGC>

Publication content componentDescription:

NoneAttributes

idx - one or more

Doc - one or more

Contents

<PGC>…</PGC>Example

330EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<JE>

Journal entryDescription:

name - journal entry name

type - data type, as configured in the publication logic

Attributes

NoneContents

<JE type="int" name="AC2">7</JE>Example

331EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<EndOfJob>

End of job journal entriesDescription:

NoneAttributes

JE - one or moreContents

<EndOfJob>…</EndOfJob>Example

332EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

<JE>

Optional start of job journal entry. Note that this journal entry
is set at publication level in the Designer

Description:

name - identifies the output datastream

type - data type, as configured in the publication logic

Attributes

NoneContents

<JE type="dat"
name="StartOfJobJournal">2009-11-02</JE>

Example

333EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

Example

extern "C" __declspec(dllexport) DUXRC DOC1REG (HDUX hdux)
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
DUXINT32 nFlags;
//
// Set the flags indicating the type of IO we support. This user exit just
// supports reading of record mode interface.
//
//
nFlags = DUXFF_Read | DUXFF_RecordMode | DUXFF_Binary;
//
// Register our File Input User Exit with the name 'BWFI'. It doesn't need to
// be the same name as the DLL. It just happens to be.
//
DuxStrSetString (hdux, pstr, "BWFI");
DuxRegisterFileInputExit (hdux, pstr, nFLags, MyFileInputExit, mydata);
//
// Register when Generate terminates so I know when to free 'mydata'.
//
DuxRegisterTerminateEvent (hdux, FreeMyData, mydata);
//
// Let the user know that we've been loaded.
//
DuxStrSetString (hdux, pstr, "Boardwalk File Input Interface ready for use.");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
return DUXRC_OK;
}
extern "C" DUXRC MyFileInputExit (HDUX hdux, DUXFILEACTION action, void *pvUser)
{
DUXRC rc = DUXRC_OK;
switch (action)
//
// Generate is requesting the file to be opened.
//
case DUXFA_Open:
{
PMYDATA pmydata = (PMYDATA)pvUser.
//
// Ensure there are two parameters specified when we are invoked.
// If not, tell the user what they need to do.
//
if (DuxGetInvokeParameterCount (hdux) < 2)
{
...
rc = DUXRC_Failed;
}
//
// Otherwise we’ll open up the two files specified and raise an error
// if we can’t find them.
//
else
{
PDUXSTRING pstrFile1 = DxGetInvokeParameter (hdux, 1);
PDUXSTRING pstrFile2 = DxGetInvokeParameter (hdux, 2);
...
}
}
break;
//
// Generate is requesting to read a record from the file.
//
case DUXDA_Read:
{
FILE *pfToUse = null;
// Figure out which file to use for the read.

334EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

if (!feof (pmydata->pfFile1))
pfToUse = pmydata->pfFile1;
else if (!feof (pmydata->pfFile2))
pfToUse = pmydata->pfFile2;
// If we have a file with data in it...
if (pfToUse != NULL)
{
char *pchEol = NULL;
// Read data from file.
fgets (pmydata->szBuffer, sizeof (pmydata->szBuffer)-1, pfToUse);
// Remove the end of line character. Generate doesn’t want it and will
// treat it as data.
puchEol = strchr (pmydata->szBuffer, '\n');
if (puchEol != NULL)
*puchEol = '\0';
// Give Generate the record data.
DuxSetFileData (hdux, pmydata->szBuffer, strlen (pmydata->szBuffer));
}
// Otherwise we don’t have anymore data.
else
rc = DUXRC_EndOfData;
break;
//
// Generate is asking if there is any more data to read.
//
case DUXDA_IsEndOfData:
if (feof (pmydata->pfFile1) && feof (pmydata->pfFile2))
rc = DUXRC_EndOfData;
else
rc = DUXRC_DataAvailable;
break;
//
// Generate is requesting that the file be closed.
//
case DUXDA_VirtualClose:
{
PDUXSTRING pstr = DuxStrAlloc (hdux);
fclose (pmydata->pfFile1);
fclose (pmydata->pfFile2);
DuxStrSetString (hdux, pstr, "Boardwalk File Input Exit Closed");
DuxInformUser (hdux, pstr);
DuxStrFree (hdux, pstr);
}
break;
*/
}
return rc;
}

335EngageOne Generate 6.6 Service Pack 11 Production Guide

Structured XML journals

13 - Output datastream
formats
By default, Generate produces an output datastream with a file and record
structure considered to be the most suitable for its type and the platform on
which it was produced. You may need to adjust these structures to suit your
output environment particularly if datastreams need to be transferred to
other platforms or pass through additional media before actually being
printed/presented on the output device.

In this section

Working with Designer output formats..337
Predefined output formats..338
Customizing output formats..340

Working with Designer output formats

Designer has a range of predefined output datastream formats that cater for the most common of
these requirements. These are specified by selecting or entering the relevant keyword plus any
required parameters either within an Output Device object in the Designer or as part of an open
command in a PCE script. If the predefined formats do not produce the file and record structures
suitable for your environment you can use specific formatting codes to indicate the precise structure
required. These are coded in place of the regular keywords as above. See “Customizing output
formats”.

Note: For more information about where to use the keywords or formatting codes: see “open”
on page 135 for PCE jobs; for Generate see the information about output device objects in
the Designer User’s Guide.

337EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Predefined output formats

standard

No special file blocking or record structures. This equates to formatting codes:

$BN($RV($CC,$PD))

barrpc

Suitable for Xerox 'online' emulation via a BARR server with output produced by Generate on a PC
host. This equates to formatting codes:

$BN($RV($PS(M,2,9),$HV(00,00),$PS(M,2,5),$HV(00,00),$CC,$PD))

crlf or line

Each record is ended with the standard ASCII text record ‘new line’ format (carriage return/line feed).
This equates to formatting codes:

$BN($RV($CC,$PD,$HV(0D,0A)))

ksdsafp (length)

Used for AFPDS records within a VSAM KSDS table under z/OS. length indicates the record length
of the recipient dataset. This equates to formatting codes:

$BK(80,00,$PD)

KSDS notes

This format is supported for AFP output only. Suitable KSDS datasets must be defined as type
'INDEXED' with a key length of 10 bytes starting in the first byte of the record. The following is an
example of the Define Cluster command syntax that would generate a KSDS dataset supported by
Designer (assumes a length of 1000):

DEFINE CLUSTER -
NAME(MYUSER.DOC.KSDS) -
INDEXED -
KEYS(10 0) -
SPEED -
SHR(1 3) -
FREESPACE(0 10) -
RECORDSIZE(1010 1010)) -
DATA -
(NAME(MYUSER.DOC.KSDS.DATA) -
VOLUMES(VOLSER01) -

338EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

TRACKS(10 5) -
CONTROLINTERVALSIZE(1024)) -
INDEX -
(NAME(MYUSER.DOC.KSDS.INDEX) -
VOLUMES(USER91) -
CONTROLINTERVALSIZE(1024))

pp4235

Suitable for Xerox 4235 printers when attached via a parallel port. This equates to formatting codes:

$BN($RV($HV(35),$PS(L,1,1),$PD,$CC))

rdw

Each record has a 2 byte header field which stores the record length. This equates to formatting
codes:

$BN($RV($PS(L,2,1),$CC,$PD))

record [(length, {T |F})]

An unblocked file with variable length records under z/OS. length optionally specifies the record
length associated with the file.

• T – indicates that the record will be trimmed (the default setting)

• F – the record will not be trimmed.

If you are writing to a variable blocked dataset under z/OS you should specify a length greater than
the longest possible record length to be produced (e.g. 8205 for AFPDS). For fixed blocked datasets
specify the block size or greater.

rrdsafp (length)

Used for AFPDS records within a VSAM RRDS table under z/OS. length indicates the record length
of the dataset. This equates to formatting codes:

$BR(80,00,$PD)

RRDS notes

This format is supported for AFP output only. Each page in the datastream always starts at the
beginning of a record slot but may span multiple slots. The final slot occupied by a page is padded
to the start of the next slot. Suitable RRDS datasets are defined as type 'numbered'. The following
is an example of the Define Cluster command syntax that would generate an RRDS dataset supported
by Designer (assumes a length of 100):

DEFINE CLUSTER -
(NAME(DATA.FOR.PCE) -
RECORDSIZE(100 100) -
VOLUMES(VSER01) -

339EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

TRACKS(10 5) -
NUMBERED)

spur

Suitable for some configurations of Xerox online emulation via a SPUR server. This equates to
formatting codes:

$BN($RV($HV(1F,4A),$CC,$PS(M,2,0),$PD)

wsafp

Suitable for most AFP datastreams when the production platform is not z/OS. The AFPDS is produced
as a true stream and has no special blocking or record formatting. This equates to formatting codes:

$BN($RV($RD))

Customizing output formats

The file formatting codes described in this section allow you to customize the structure of output
datastream files used in the Designer environment. Typically the codes are used to define block and
record header structures that supplement the output datastream data.

File Blocking

File blocking (i.e. where keywords $BV, $BR or $BF are used) relates to the use of Block Descriptor
Words (BDWs) to separate the output datastream into logical packets of user defined size. Most
typically blocking is used to generate an interim file format compatible with data transfer software
such as that used with some tape devices. If your output does not require blocking specify the $BN
keyword.

Note: On z/OS system the logical file blocking provided by Generate supplements any blocking
provided by the native features of the operating system. If file blocking is specified the block
controls will be created in addition to the those generated by the operating system.

Logical Records

An output datastream is considered to be made up of logical records. The structure of such records
and the amount of data they contain depends on the type of output datastream being used:

a logical record is:For:

the data that makes up a single AFPDS structured field.AFP

340EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

the escape sequence(s) required for a single print operation
(write line, write text, etc.).

PCL

As with file blocking, Generate’s concept of logical records should not be confused with the physical
record constructs used by z/OS. However, you should be aware of the default methods of how the
generated output datastreams work within such physical records.

Note: Specifically under z/OS For AFPDS and LineData, all logical records are written as
individual physical records; for other datastreams all logical records are written as a continuous
stream, i.e. they can span individual physical records. For all datastream types other than
LineData, all logical records are written as a continuous stream; for LineData all logical records
are written as individual physical records.

Command Syntax

Formatting codes are a sequence of keywords and associated parameters that fall into four categories:

• Output Description and Record keywords - contain control information for (respectively) the
blocks and records making up the file.

• Block Data and Record Data keywords - define the actual structure of a output datastream file,
i.e. the relative positions of carriage controls, block and record headers and the actual output
datastream logical records themselves (the $PD keyword).

The syntax of formatting codes is illustrated in the diagram on the following page. Each keyword can
be followed by parameters enclosed in parenthesis. The order of parameters must match that specified
in the diagram. Keywords and parameters must always be separated by commas.

File blocking

File Blocking

File blocking (i.e. where keywords $BV, $BR or $BF are used) relates to the use of Block Descriptor
Words (BDWs) to separate the output datastream into logical packets of user defined size. Most
typically blocking is used to generate an interim file format compatible with data transfer software
such as that used with some tape devices. If your output does not require blocking specify the $BN
keyword.

Note: On z/OS system the logical file blocking provided by Generate supplements any blocking
provided by the native features of the operating system. If file blocking is specified the block
controls will be created in addition to the those generated by the operating system.

341EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Logical records

An output datastream is considered to be made up of logical records. The structure of such records
and the amount of data they contain depends on the type of output datastream being used:

a logical record is:For:

the data that makes up a single AFPDS structured field.AFP

the escape sequence(s) required for a single print operation
(write line, write text, etc.).

PCL

As with file blocking, Generate’s concept of logical records should not be confused with the physical
record constructs used by z/OS. However, you should be aware of the default methods of how the
generated output datastreams work within such physical records.

Note: Specifically under z/OS For AFPDS and LineData, all logical records are written as
individual physical records; for other datastreams all logical records are written as a continuous
stream, i.e. they can span individual physical records. For all datastream types other than
LineData, all logical records are written as a continuous stream; for LineData all logical records
are written as individual physical records.

Command Syntax

Formatting codes are a sequence of keywords and associated parameters that fall into four categories:

• Output Description and Record keywords - contain control information for (respectively) the
blocks and records making up the file.

• Block Data and Record Data keywords - define the actual structure of a output datastream file,
i.e. the relative positions of carriage controls, block and record headers and the actual output
datastream logical records themselves (the $PD keyword).

The syntax of formatting codes is illustrated in the diagram on the following page. Each keyword can
be followed by parameters enclosed in parenthesis. The order of parameters must match that specified
in the diagram. Keywords and parameters must always be separated by commas.

342EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Command syntax schematic

343EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Keywords

Output Description

Output description keywords are mutually exclusive and you must code one of the following:

$BN – unblocked data

The file does not use BDWs to separate data packets. This keyword must be followed by Record
keywords as appropriate.

$BV – variable blocked data The file includes BDWs at the beginning of each data packet. The data
packets are of variable size. This keyword must be followed by max size and span flag parameters
in sequence followed by Block Data keywords as appropriate.

$BF – fixed block data The file includes BDWs at the beginning of each data packet. The data packets
commence at fixed offsets from the start of file. This keyword must be followed by block size, span
flag and pad byte parameters in sequence followed by Block Data keywords as appropriate.

$BR – VSAM RRDS data The file is stored as a VSAM relative record dataset (RRDS) under z/OS.
The dataset has fixed length records of size record length. See “RRDS notes” on page 322 for more
information. This keyword must be followed by record size and pad byte parameters in sequence
followed by Record Data keywords as appropriate.

$BK – VSAM KSDS data The file is stored as a VSAM keyed sequence dataset (KSDS) under z/OS.
The dataset has fixed length records of size record length. See “KSDS notes” on page 321 for more
information. This keyword must be followed by record size and pad byte parameters in sequence
followed by Record Data keywords as appropriate.

Block Data

For file types $BN and $BV you must code one $BD keyword. You may also code one or more $BS,
$BC and $HV keywords as appropriate to the file. The order of these keywords to match a typical
block data construct will be any occurrences of $BS, $BC and $HV (typically making up the file
header information) followed by $BD. This is not a restriction however and youmay code the keywords
in any order.

$BS – block size. Each block has a field that contains its size (in bytes). This keyword must be
followed by byte order flag, word size and additional increment parameters in sequence.

$BC – block sequence. Each block has a field containing a sequence number. When generated by
Generate this sequence number will start at 1 and be incremented by 1 for each block. This keyword
must be followed by byte order flag, word size and additional increment parameters in sequence.

$HV – additional header data. Each block has the hex value(s) specified as additional header data.
Each hex value specified represents a byte in the header information. Multiple values are separated
by commas.

$BD – block data. This keyword marks the relative position of the data contained in the block itself
(as distinct from the fields/data indicated by other keywords in the block data section). The $BD

344EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

keyword must be followed by the multiple record flag parameter followed by a Record keyword as
appropriate.

Record

All file descriptions must contain either the $RF or $RV keywords.

$RV – variable length records. The file has records of individual length appropriate for the amount
of data stored. No parameters are required or allowed. This keyword must be followed by Record
Data keywords as appropriate.

$RF – fixed length records. All records in the file are the same length. The record length is explicitly
specified. This keyword must be followed by record size, pack flag and pad byte parameters in
sequence followed by Record Data keywords as appropriate.

Record Data

You must code the $PD keyword for all file types. You may also code one or more $CC, $PS, $RC
and $HV keywords as appropriate to the file.

$PD – output datastream record. This keyword marks the relative position of the output datastream
logical record itself (as distinct from any carriage controls or other fields specified as record data).

$CC – carriage control. This keyword marks the relative position of a carriage control byte and should
only be coded for output datastream using such controls, i.e. LineData. If this is coded for an output
datastream to be generated by Generate but the output datastream does not support carriage controls
it is ignored.

$PS – record size. Each record has a field that contains the size (in bytes) of the output datastream
record. Note that this value will not include the size of any additional data that has been added via
$CC and $HV keywords unless you specifically include it as the additional increment value. This
keyword must be followed by byte order flag, word size and additional increment parameters in
sequence. Also see span flag parameter below.

$RC – record sequence. Each record has a field containing a sequence number. When generated
by Generate this sequence number will start at 1 and be incremented by 1 for each record. This
keyword must be followed by byte order flag, word size and additional increment parameters in
sequence.

$HV – additional data Each record has hex value(s) as an additional field at the position indicated
by the sequence. Each hex value specified represents a byte in the field. Multiple values are separated
by commas.

345EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Parameters

additional increment: for output files this parameter indicates a number that will be added or
subtracted from the value that would otherwise be generated as the appropriate record ($PS) or
block size ($BS). The value is ignored for input files but the parameter must still be specified.

block size: the size of all blocks in a fixed block file ($BF). A value of up to 2,147,483,647 may be
specified. Note that block size should not include the length of any additional increment parameters
if these are also specified.

byte order flag: indicates the order in which the bytes making up the value in an additional field
value are stored. If the flag is set to ‘L’ the word(s) are written/read in Least Significant Byte (‘little
endian’) fashion as required by operating systems such as Windows. If the flag is set to ‘M’ the
word(s) are written/read in Most Significant Byte (‘big endian’) fashion as required by operating
systems such as z/OS

hex value: is a representation of one or more hex values (e.g. ‘0A’) that will be used to supplement
header data. Where multiple values are specified each must be separated by a comma. Each value
specified adds one byte to the file for each logical record.

max size: the largest block size used/to be used for a variable blocked file ($BV). A value of up to
2,147,483,647 may be specified.

multiple record flag: for blocked files this flag indicates whether or not multiple records are
present/permitted within a single block. If the flag is set to ‘N’ a single record only will be written/read
from each block. If set to ‘Y’ records will span blocks where necessary.

pack flag: when dealing with output datastream to a fixed length record structure, this flag indicates
whether or not each physical record can contain multiple datastream ‘records’. If ‘N’ is specified a
single datastream record is written/read to each physical record. If ‘Y’ is specified as many datastream
records as possible will be written/read from each physical record.

pad byte: is a representation of a hex value (e.g. ‘0A’) that has/will be used to pad out any bytes not
used for data.

record length: as part of the $RF keyword, the number of bytes in each record. As part of the $BR
or $BK keywords, the record size of a VSAM RRDS or KSDS dataset. The value specified is the
equivalent of the parameters supplied to the RECORDSIZE keyword as part of the VSAM Define
Cluster Command. Refer to the IBM document “VSAM Catalog Administration: Access Method
Services Reference” for details of acceptable maximum values for this format.

span flag: indicates whether individual records within blocked files can span multiple blocks.

Values:

• Y – spanning is used i.e. block boundaries will be ignored when writing/reading records.

346EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

• N – spanning is not used i.e. write operations will fit as many whole records as possible within a
block then restart following the next block boundary. Unused space thus created will be padded
with the specified pad byte (see above).

• L – same as N except that, where the formula also includes the $PS keyword, the size field of
records immediately prior to the block boundary will automatically include the number of pad bytes
used. Note that this applies to $BF formulas only and not $BV formulas.

word size: the size (in bytes) of the space reserved/allocated for the appropriate parameter.

347EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Examples

The following examples show some typical file formatting requirements and how they can be specified
using Generate file formatting codes.

Standard

Unblocked file. Unpacked variable length records. A carriage control byte is included in position 1 if
appropriate to the datastream.

$BN($RV($CC,$PD))

Fixed length

Unblocked file. Unpacked 300-byte fixed length records padded with ASCII ‘space’ characters.

$BN($RF(300,N,20,$PD))

Packed

Unblocked file. Logical records are packed across 300-byte fixed length physical records and are
padded with ASCII space characters.

$BN($RF(300,Y,20,$PD))

Intel or Xerox style Record Descriptor Word

Unblocked file. Unpacked variable length records each with record size stored as a leading header
field comprising 2 bytes with 'Least Significant Byte' format. No increment to the standard record
size is required. A carriage control byte is included in position 1 if appropriate to the datastream. It
is typically used when software controlling external media requires a header in this format.

348EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

$BN($RV($PS(L,2,1),$CC,$PD))

IBM-style Record Descriptor Word

Unblocked file. Unpacked variable length records each with a header comprising a two byte record
size field in 'Most Significant Byte' format plus two bytes of null padding (x’00’). The standard record
size is incremented by four to account for this. No carriage control is required. This format is typically
used for output datastreams generated under Windows or UNIX when software controlling external
media requires a header in this format. It is not normally required in an z/OS environment.

$BN($RV($PS(M,2,4),$HV(00,00),$PD))

IBM style Block and Record Descriptor Words

Blocked file with 8209 byte maximum block size, each with a header comprising a two byte block
size field in 'Most Significant Byte' format plus two bytes of null padding (x'00'). Records are unpacked
with variable length and each with a header comprising a two byte record size field in ‘Most Significant
Byte’ format plus two bytes of null padding (x’00’). To account for these headers the block sizes are
incremented by eight and the record sizes by four. No spanning of blocks takes place and therefore
there is always one record per block. No carriage control is required.

$BV(8209,N,$BS(M,2,8),$HV(00,00),$BD(Y,$RV($PS(M,2,4),$HV(00,00),$PD)))

Carriage Return/Line Feed

349EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

Unblocked file. Unpacked variable length records each with a two-byte terminator code in the format
of ASCII carriage return/line feed (x'0D', x'0A'). A carriage control byte is included in position 1 if
appropriate to the datastream.

$BN($RV($CC,$PD,$HV(0D,0A)))

VSAM RRDS for AFP

File has VSAM blocking structure with 80-byte blocks padded with x’00’ where necessary. Blocks
may store multiple records where possible. Records are variable length. No carriage control is
required. Refer to your VSAM documentation for more information about such structures.

$BR(80,00,$PD)

Xerox online emulation via a BARR server

The file is unblocked in the normal sense but for the purposes of BARR software is considered to
always have one record per block with the block always containing a single Generate record. Records
are unpacked and of variable length. A header comprising a 2-byte record size field headers in ‘Most
Significant Byte’ format plus two bytes of null padding (x’00’) appears twice with the first version
acting as the ‘block’ size. The standard ‘block’ size is therefore incremented by eight bytes. Similarly,
the standard record size is incremented by four bytes. A carriage control byte is included in position
1.

$BN($RV($PS(M,2,9),$HV(00,00),$PS(M,2,5),$HV(00,00),$CC,$PD))

350EngageOne Generate 6.6 Service Pack 11 Production Guide

Output datastream formats

14 - Appendix A -
Generate SCP and
Lookup Table codepage
Overrides
This section lists the host code page numbers to be used as an override for
the application data code page.

In this section

Generate SCP and lookup table override values...................................352

Generate SCP and lookup table override values

Generate SCP (Set Code Page) Override

Specify the required Override codepage using the number in the SCP Number column from the table
below.It is important to note that code page values marked with Asterisk *, or Cardinal # indicate that
these numbers have different definitions between Z/OS and Windows / UNIX or, different values
between Windows/UNIX Single-Byte and Double Byte Operating Systems.

Lookup Table Override

Use the values in the Lookup table OPS values column to designate the code page association
defined in the <LookupTableCodePages> of your OPS file, refer to OPS file on page 11 for details.

Codepage NameLookup table OPS valuesSCP
Number

Unicode (UTF-8)UTF-80

AdobeKor1_2 Adobe Korean1 Supplement2Adobe-Koraen1-212

AdobeGB1_4 Adobe GB1 Supplement4Adobe-GB1-414

AdobeJap1_6 Adobe Japan1 Supplement6Adobe-Japan1-616

Ibm037 IBM EBCDIC - U.S./Canadaibm-03737

Ibm273 IBM EBCDIC - Germanyibm-273273

Ibm277 IBM EBCDIC - Denmark/Norwayibm-277277

Ibm278 IBM EBCDIC - Finland/Swedenibm-278278

Ibm280 IBM EBCDIC - Italyibm-280280

Ibm284 IBM EBCDIC - Latin America/Spainibm-284284

Ibm285 IBM EBCDIC - United Kingdomibm-285285

Ibm297 IBM EBCDIC - Franceibm-297297

352EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

* Ibm300 IBM 300 - IBM DBCS Japaneseibm-300300

* Ibm300_037 IBM 300+037 - IBM MBCS Japaneseibm-300-037300

Ibm420 IBM EBCDIC - Arabicibm-420420

Ibm423 IBM EBCDIC - Greekibm-423423

Ibm424 IBM EBCDIC - Hebrewibm-424424

Win437 DOS (US)windows-437437

Ibm500 IBM 500ibm-500500

Win708 ASMO 708windows-708708

Win720 DOS 720 (Transparent ASMO)windows-720720

Win737 PC 737 (PC 437G)windows-737737

Win775 DOS 775windows-775775

Ibm833 IBM 833 - IBM SBCS Koreanibm-833833

Ibm834 IBM 834 - IBM DBCS Koreanibm-834834

Ibm835 IBM 835 - IBM DBCS Traditional Chineseibm-835835

Ibm836 IBM 836 - IBM SBCS Simplified Chineseibm-836836

Ibm837 IBM 837 - IBM DBCS Simplified Chineseibm-837837

Ibm838 IBM EBCDIC - Thaiibm-838838

850 Win850 DOS 850windows-850850

852 Win852 PC 852windows-852852

353EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

Win855 IBM 855ibm-855855

Win857 IBM 857ibm-857857

Win858 DOS 858 (DOS Latin 1 (Euro))windows-858858

Win860 DOS 860windows-860860

Win861 DOS 861windows-861861

Win862 DOS 862windows-862862

Win863 DOS 863windows-863863

Win864 Arabic (DOS 864)windows-864864

Win865 DOS 865windows-865865

Win866 DOS 866windows-866866

Win869 DOS 869windows-869869

Ibm870 IBM EBCDIC - 870 Multilingual/ROECE (Latin-2)ibm-870870

Ibm871 IBM EBCDIC - Icelandicibm-871871

Win874 Windows 874 (DOS 8windows-874874

Ibm875 IBM EBCDIC - Greek (Modern)ibm-875875

Ibm880 IBM EBCDIC - Cyrillic (Russian)ibm-880880

Ibm891 IBM 891 - IBM SBCS Koreanibm-891891

Ibm903 IBM 903 - IBM SBCS Simplified Chineseibm-903903

Ibm904 IBM 904 - IBM SBCS Traditional Chineseibm-904904

354EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

Ibm905 IBM EBCDIC - Turkish (Latin-3)ibm-905905

Ibm926 IBM 926 - IBM DBCS Koreanibm-926926

Ibm927 IBM 927 - IBM DBCS Traditional Chineseibm-927927

Ibm928 IBM 928 - IBM DBCS Simplified Chineseibm-928928

Ibm930 IBM 930 - IBM MBCS Japanese (290+300)ibm-930930

Ibm932 IBM 932 - IBM MBCS Japanese (897+301)ibm-932932

* Win932 Windows 932 (SHIFTJIS)windows-932932

Ibm933 IBM 933 - IBM MBCS Korean (834+833)ibm-833933

Ibm934 IBM 934 - IBM MBCS Korean (891+926)ibm-834934

* Ibm936 IBM 936 - IBM MBCS Simp. Chinese (903+928)ibm-936936

* Win936 Windows 936 (GB2312)windows-936936

Ibm938 IBM 938 - IBM MBCS Trad. Chinese (904+927)ibm-938938

Ibm939 IBM 939 - IBM MBCS Japanese (1027+300)ibm-939939

* Ibm943_2000 IBM943 (2000) - IBMMBCS Japanese (1041+941)ibm-943-2000943

* Ibm943_2003 IBM943 (2003) - IBMMBCS Japanese (1041+941)ibm-943-2003943

Ibm944 IBM 944 - IBM MBCS Koreanibm-944944

Ibm946 IBM 946 - IBM MBCS Simplified Chineseibm-946946

Win949 Windows 949 (Korean)windows-949949

* Ibm950 IBM 950 - IBM MBCS Traditional Chineseibm-950950

355EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

* Win950 Windows 950 (No UDC)windows-950950

* Win950_UDC Windows 950 (UDC)windows-950-udc950

* Win950hkscs Windows 950 + HKSCSwindows-950-hkscs950

Ibm951 IBM 951 - IBM DBCS Koreanibm-951951

Ibm954 IBM 954 - EUC-JPibm-954954

Ibm955 IBM 955 - IBM JIS X 208ibm-955955

Ibm955_L1 IBM 955 - IBM JIS X 208 (+Latin1)ibm-955-L1955

Ibm970 IBM 970 - EUC-KRibm-970970

Ibm1025 IBM EBCDIC - Cyrillic (Serbi)ibm-10251025

Ibm1026 IBM EBCDIC - Turkish (Latin-5)ibm-10261026

Ibm1043 IBM 1043 - IBM SBCS Traditional Chineseibm-10431043

Ibm1047 IBM EBCDIC - Latin 1/Open Systemsibm-10471047

Ibm1088 IBM 1088 - IBM SBCS Koreanibm-10881088

Ibm1140 IBM EBCDIC - U.S./Canada (Euro)ibm-11401140

Ibm1141 IBM EBCDIC - Germany (Euro)ibm-11411141

Ibm1142 IBM EBCDIC - Denmark/Norway (Euro)ibm-11421142

Ibm1143 IBM EBCDIC - Finland/Sweden (Euro)ibm-11431143

Ibm1144 IBM EBCDIC - Italy (Euro)ibm-11441144

Ibm1145 IBM EBCDIC - Latin America/Spain (Euro)ibm-11451145

356EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

Ibm1146 IBM EBCDIC - United Kingdom (Euro)ibm-11461146

Ibm1147 IBM EBCDIC - France (Euro)ibm-11471147

Ibm1148 IBM EBCDIC - International (Euro)ibm-11481148

Wolf1148 DOC1 EBCDIC - Internationalibm-11481148

Ibm1149 IBM EBCDIC - Icelandic (Euro)ibm-11491149

Ibm1153 IBM EBCDIC - 1153 Multilingual/ROECE (Latin-2) with
Euro

ibm-11531153

Ibm1155 IBM EBCDIC - Turkish (1155 Latin-5 + EURO)ibm-11551155

Ibm1156 IBM EBCDIC - Baltic Multilingual (1156 + Euro)ibm-11561156

Ibm1164 IBM EBCDIC - Vietnamese (1164 + Euro)ibm-11641164

Win1250 Windows 1250 (Latin 2)windows-12501250

Win1251 Windows 1251windows-12511251

Win1252 Windows 1252@ISO Latin 1windows-12521252

Win1253 Windows 1253windows-12531253

Win1254 Windows 1254windows-12541254

Win1255 Windows 1255windows-12551255

Win1256 Windows 1256windows-12561256

Win1257 Windows 1257windows-12571257

Win1258 Windows 1258windows-12581258

Win1361 Windows 1361windows-13611361

357EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

Ibm1383 IBM 1383 - EUC-CNibm-13831383

Ibm5031 IBM 5031 - IBM MBCS Simp. Chinese (837+836)ibm-50315031

Ibm5033 IBM 5033 - IBM MBCS Trad. Chinese (835+037)ibm-50335033

Win20105 Western European (IA5)windows-2010520105

Win20106 German (IA5)windows-2010620106

Win20107 Swedish (IA5)windows-2010720107

Win20108 Norwegian (IA5)windows-2010820108

Win20866 KOI8-Rwindows-2086620866

Win21866 KOI8-Uwindows-2186621866

Ibm25524 IBM 25524 - IBM MBCS Trad. Chinese (1043+927)ibm-2552425524

Ibm25525 IBM 25525 - IBM MBCS Korean (1088+951)ibm-2552525525

Win28591 ISO Latin 1 (iso-8859-1)iso-8859-128591

Win28592 ISO Latin 2 (iso-8859-2)iso-8859-228592

Win28593 ISO Latin 3 (iso-8859-3)iso-8859-328593

Win28594 Baltic (ISO) (ISO Latin)iso-8859-428594

Win28595 Cyrillic (ISO) (iso-8859-5)iso-8859-528595

Win28596 Arabic (ISO) (iso-8859-6)iso-8859-628596

Win28597 Greek (ISO) (iso-8859-7)iso-8859-728597

Win28598 Hebrew (ISO-Visual) (iso-8859-8)iso-8859-828598

358EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Codepage NameLookup table OPS valuesSCP
Number

Win28599 Turkish (ISO) (iso-8859-9)iso-8859-928599

Win28605 Latin 9 (ISO) (iso-8859-15)iso-8859-1528605

Win38598 Hebrew (ISO-Logical) (iso-8859-8-i)iso-8859-8-i38598

359EngageOne Generate 6.6 Service Pack 11 Production Guide

Appendix A - Generate SCP and Lookup Table codepage Overrides

Notices

Copyright © 1993, 2021 Precisely. All rights reserved

This publication and the software described in it is supplied under license and may only be used or
copied in accordance with the terms of such license. The information in this publication is provided
for information only, is subject to change without notice, and should not be construed as a commitment
by Precisely. To the fullest extent permitted by applicable laws Precisely excludes all warranties,
representations and undertakings (express or implied) in relation to this publication and assumes
no liability or responsibility for any errors or inaccuracies that may appear in this publication and shall
not be liable for loss or damage of any kind arising from its use.

Except as permitted by such license, reproduction of any part of this publication by mechanical,
electronic, recording means or otherwise, including fax transmission, without the express permission
of Precisely is prohibited to the fullest extent permitted by applicable laws.

Nothing in this notice shall limit or exclude Precisely liability in respect of fraud or for death or personal
injury arising from its negligence. Statutory rights of the user, if any, are unaffected.

*TALOHyphenators and Spellers are used. Developed by TALOB.V., Bussum, Netherlands Copyright
© 1998 *TALO B.V., Bussum, NL *TALO is a registered trademark ®

Encryption algorithms licensed from Unisys Corp. under U.S. Patent No. 4,558,302 and foreign
counterparts.

Security algorithms Copyright © 1991-1992 RSA Data Security Inc

Datamatrix and PDF417 encoding, fonts and derivations - Copyright ©DL Technology Ltd 1992-2010

Barcode fonts Copyright © 1997 Terrapin Solutions Ltd. with NRB Systems Ltd.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

Artifex and the Ghostscript logo are registered trademarks and the Artifex logo and Ghostscript are
trademarks of Artifex Software, Inc.

This product contains the Regex++ library Copyright © 1998-2000 Dr. John Maddock

PostScript is a trademark of Adobe Systems Incorporated.

PCL is a trademark of Hewlett Packard Company.

Copyright (c) 2000 - 2015 The Legion of the Bouncy Castle Inc. (http://www.bouncycastle.org)

PStilldll (c) Dipl.-Ing. Frank Siegert, 2005-2018

PStill is a trademarked term, registered with the German patent and trademark office

This product contains RestSharp, version number 105.2.3, which is licensed under the Apache
License, version number 2.0. The license can be downloaded from

http://www.apache.org/licenses/LICENSE-2.0. The source code for this software is available from
http://restsharp.org.

This product contains Json.NET, version number 9.0.1, which is licensed under the MIT License.
The license can be downloaded from

361EngageOne Generate 6.6 Service Pack 11 Production Guide

Copyright

http:// github.com/JamesNK/Newtonsoft.Json/blob/master/LICENSE.md. The source code for this
software is available from http://www.newtonsoft.com/json.

ICU License - ICU 1.8.1 and later Copyright (c) 1995-2006 International Business Machines
Corporation and others All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the
above copyright notice(s) and this permission notice appear in supporting documentation.

This product contains Elasticsearch, which is licensed under the Apache license, version number
2.0. The license can be downloaded from http://www.apache.org/licenses/. The source code for
this software is available from https://github.com/elastic/elasticsearch.

This product contains Elasticsearch.Net, which is licensed under the Apache license, version number
2.0. The license can be downloaded from http://apache.org/licenses/. The source code for this
software is available from https://github.com/elastic/elasticsearch-net.

This product contains NEST, which is licensed under the Apache license, version number 2.0. The
license can be downloaded from http://apache.org/licenses/. The source code for this software is
available from https://github.com/elastic/elasticsearch-net.

This product contains Antlr4cs Runtime, which is licensed under the BSD-3-Clause. The license can
be downloaded from
https://raw.githubusercontent.com/tunnelvisionlabs/antlr4cs/master/LICENSE.txt. The source
code for this software is available from http://www.antlr.org.

This product contains Log4net. The license for log4net can be downloaded from
https://www.apache.org/licenses/LICENSE-2.0. The source code for this software is available
from https://logging.apache.org/log4net/download_log4net.cgi .

Otherwise all product names are trademarks or registered trademarks of their respective holders.

Support
Click here for full EngageOne Compose documentation and access to your peers and subject matter
experts on the Knowledge community.

362EngageOne Generate 6.6 Service Pack 11 Production Guide

Copyright

http://www.apache.org/licenses/
https://github.com/elastic/elasticsearch
http://apache.org/licenses/
https://github.com/elastic/elasticsearch-net
http://apache.org/licenses/
https://github.com/elastic/elasticsearch-net
https://raw.githubusercontent.com/tunnelvisionlabs/antlr4cs/master/LICENSE.txt
http://www.antlr.org/
https://www.apache.org/licenses/LICENSE-2.0
https://logging.apache.org/log4net/download_log4net.cgi
https://support.precisely.com/

1700 District Ave Ste 300
Burlington MA 01803-5231
USA

www.precisely.com

© 1993, 2021 Precisely. All rights reserved.

	Table of Contents
	Preface
	Conventions used in this guide

	Working with Generate
	About Generate
	Using segmented resources
	Code page support
	Return codes
	Messages
	Legacy support
	OPS file
	Example

	Using symbols
	Running Generate under z/OS
	Running Generate under UNIX and Windows

	Running Generate in Server Mode
	Server Mode Environment
	Command Queue
	Control Programs
	Memory Allocation
	Specifying System Commands
	Override production settings (OPS) File

	Running Server Mode

	Running Generate as a Started Task
	Requirements
	Defining the environment
	Using JES output queues
	Using MQSeries
	Using datasets as output channels
	Custom selection criteria
	Switching production jobs
	Dealing with failures and specifying subsequent processing

	Running Started Task
	JCL and start-up
	Process
	Operator Commands

	Extended configuration file examples

	Programming PCE
	The PCE environment
	Function overview and script command summary
	Procedures and program control
	Variables
	File handling
	Resource handling and file merging
	Journal files
	Data manipulation
	Environment data
	Changing composed pages
	Printer controls
	Error Handling and Environment Information
	Document Groups
	Support for AFPDS Indexing
	User Exits

	Script syntax
	Variables and Arrays

	PCE command reference
	add document id
	add document name
	add medium map
	atrim
	barcode
	begin ce
	begin loop
	begin procedure
	call procedure
	call userexit
	change DIJelement
	close
	contains
	convert resolution
	date
	day
	declare procedure
	declare (variable)
	DIJelement
	docoffset
	document id
	document name
	document TLE
	end ce
	end loop
	end procedure
	equals
	exit loop
	extract document page
	font
	for…next
	get resources
	if…else…end if
	include
	in range
	insert object
	length
	ltrim
	mapp
	merge
	mixc
	monthabbrev
	monthname
	move
	move page
	nop
	number of fonts
	numericconvcode
	numericpadding
	on error call
	open
	ordinal
	overwrite
	page count
	pageoffset
	quit
	read
	read…DIJentry
	read…document
	release
	replace
	return
	rtrim
	set page name
	set preferences
	string
	substring
	symbol
	time
	TLE
	TLE add
	TLE delete
	TLE replace
	trace
	translate
	uservalue
	value
	write
	write DIJentry

	Composition Edit Commands
	COLR – Set Color
	DBX – Draw Box
	DHR – Draw Horizontal Rule
	DIL – Define Image List
	DO – Do composition function (barcodes)
	DPOL – Define Overlay List
	DVR – Draw Vertical Rule
	NOP - No Operation
	OUN - Ouput User Note
	PBIM – Place Barcode – Intelligent Mail
	PI – Place Image
	PPO – Place Page Overlay
	SBT – Set Boxed Text
	SBTR – Set Boxed Text Right Justified
	SCPP – Set Current Print Position
	SPPS – Set Physical Page Size
	STL – Set Text Line
	STP – Set Text Presentation

	Script file sample

	Running PCE
	PCE resources
	Creating an initialization file
	INI section summary
	<AFPDS>
	<Exception>
	<Files>
	<Postscript>
	<Preferencesx>
	<PrintDevice>
	<System>

	Start the job

	Defining external keyed images
	Embedding external keyed images
	External key map file
	DOC1MAKE
	XML structure of external key map
	<ExternalKeyedImages> top level structure
	<ImageDefaults> section
	<Keys> section
	<Image>
	<ImageDeviceInfo>

	Example Keyed image XML

	Working with resources in a HIP file
	Extracting and manipulating resources
	RPU
	RPU initialization file reference
	Running DOC1RPU

	DOC1ACU
	Running DOC1ACU under Windows

	Processing PDF output
	DIME
	Extracting to File
	E-Mailing

	DIME INI Reference
	Running DOC1DIME

	Working with HTML
	Deployment considerations
	DHTML deployment model
	PAK file structure
	HTML PAK file elements and attributes

	Graphics handling

	EDU
	EDU Initialzation file format
	Running DOC1EDU

	User exits
	Compatibility
	Types of user exits
	Preparing Generate for User Exits
	Creating the user program
	Program structure
	Multi-threading & user exit handles
	Preparing input data
	Compilation & run-time requirements

	Programming guidelines & function overview
	Interfaces & job control
	Return codes

	Working with data types
	Code page management
	Coding a File or Data input user exit
	Defining file types
	Handling requests

	Coding a Key Map user exit
	Coding a Lookup Table user exit

	Code samples
	Data input user exit example
	File user exit example
	Keymap user exit example
	Lookup table user exit example

	User exit API function library
	DuxAddCounterField Function
	DuxAddDateField Function
	DuxAddNumberField Function
	DuxAddRecord Function
	DuxAddStringField Function
	DuxGetCodePage Function
	DuxGetFileByteBuffer Function
	DuxGetFileByteDataSize Function
	DuxGetFileOffset Function
	DuxGetFileOpenMode Function
	DuxGetInvokeParameter Function
	DuxGetInvokeParameterCount Function
	DuxGetOpsSymbolValue Function
	DuxInformUser Function
	DuxNumAlloc Function
	DuxNumFree Function
	DuxNumFromINT Function
	DuxNumStore Function
	DuxRaiseWarning Function
	DuxRegisterDataInputExit Function
	DuxRegisterFileInputExit Function
	DuxRegisterFileOutputExit Function
	DuxRegisterJobEndingEvent Function
	DuxRegisterJobStartingEvent Function

	Structured XML journals
	<ProductionJournal>
	<CompositionDate>
	<OutputDevices>
	<StartOfJob>
	<JE>
	<Publications>
	<Pub>
	<PBO>
	<PBC>
	<Doc>
	<DO>
	<PG>
	<PGO>
	<PGC>
	<JE>
	<EndOfJob>
	<JE>
	Example

	Output datastream formats
	Working with Designer output formats
	Predefined output formats
	Customizing output formats
	File blocking
	Logical records
	Command Syntax
	Command syntax schematic

	Keywords
	Parameters
	Examples

	Appendix A - Generate SCP and Lookup Table codepage Overrides
	Generate SCP and lookup table override values

	Copyright

