
EnterWorks Advanced VTL Mapping Guide

Page 1 of 44 Revised 10/2/2020

EnterWorks Advanced VTL Mapping Guide

Revised 10/2/2020

Winshuttle
19820 North Creek Pkwy #200

Bothell, WA 98011

EnterWorks Advanced VTL Mapping Guide

Page 2 of 44 Revised 10/2/2020

© Winshuttle
19820 North Creek Pkwy #200
Bothell, WA 98011

1.888.242.8356 (Sales and General Information)
1.888.225.2705 (U.S. Support)
http://www.enterworks.com

EnterWorks® Classic Administration Guide

Copyright © 2020 EnterWorks, Inc., a Winshuttle Company. All rights reserved.

Law prohibits unauthorized copying of all or any part of this document. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in FAR 52.227-14.

“EnterWorks” and the “EnterWorks” logo are registered trademarks and “Enable PIM”, “EnterWorks
PIM”, “EnterWorks Process Exchange” and “EnterWorks Product Information Management” are
trademarks of EnterWorks, Inc.

Windows, .NET, IIS, SQL Server, Word, and Excel are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Java and all Sun and Java based trademarks are trademarks or registered trademarks of the Oracle
Corporation in the United States and other countries.

Oracle is a registered trademark and Oracle 10g is a trademark of Oracle Corporation.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

JBoss is a registered trademark of Red Hat, Inc.
All other trademarks and registered trademarks are the property of their respective holders.

All icons and graphics, with the exception of the "e." logo, were obtained from West Coast Icons and
Design at http://www.bywestcoast.com. EnterWorks, Inc. retains copyrights for all graphics unless
otherwise stated. All other trademarks and registered trademarks are the property of their respective
holders.

This document is furnished for informational purposes only. The material presented in this document is
believed to be accurate at the time of printing. However, EnterWorks Acquisition, Inc. assumes no
liability in connection with this document except as set forth in the License Agreement under which this
document is furnished.

EnterWorks Advanced VTL Mapping Guide

Page 3 of 44 Revised 10/2/2020

Table of Contents

1 Document Conventions .. 5

2 Document Terminology .. 6

3 Customer Support ... 7

4 About this Guide ... 8

5 Velocity Template Language (VTL): An Introduction .. 8

5.1 Comments .. 9

5.2 References .. 10

5.3 Variables ... 10

5.4 Properties ... 11

5.5 Methods ... 11

5.6 Strict References Setting .. 15

5.7 Case Substitution .. 16

5.8 Directives .. 17

5.9 Conditionals .. 21

5.10 Loops ... 23

5.11 Include .. 25

5.12 Parse ... 26

5.13 Stop ... 26

5.14 Evaluate .. 27

5.15 Define.. 27

5.16 Getting Literal ... 27

5.17 VTL: Formatting Issues .. 31

5.18 Other Features and Miscellany... 32

5.18.1 Math .. 32

5.18.2 Range Operator ... 33

5.18.3 Advanced Issues: Escaping and ! ... 34

6 Summarized VTL Guide ... 36

6.1 General ... 36

6.2 Directives .. 38

6.3 Comments .. 43

EnterWorks Advanced VTL Mapping Guide

Page 4 of 44 Revised 10/2/2020

EnterWorks Advanced VTL Mapping Guide

Page 5 of 44 Revised 10/2/2020

1 Document Conventions

This EnterWorks document uses the following typographic conventions:

Convention Usage

pathnames Pathnames are shown with backslashes, as for Windows systems.

Courier New

font

Denotes sample code, for example, Java, IDL, and command line
information. May be used to denote filenames and pathnames,
calculations, code samples, registry keys, URLs, messages displayed
on the screen.

If italicized and in angle brackets (< >), it denotes a variable.

Calibri Font (bold) When used in body text, it denotes an object, area, list item, button,
or menu option within the graphical user interface; or a database
name or database-related object. (Examples: the Save button; the
Product tab; the Name field; the SKU repository)

Can also be used to denote text that is typed in a text box. (Example:
Type “trackingNo” in the Name field)

Blue underlined
text

Words, phrases or numbers in blue are active links that can be
clicked. Clicking these active links will bring the user to the required
information, steps, pages chapters, or URL.

http://www.enterworks.com/
http://www.enterworks.com/

EnterWorks Advanced VTL Mapping Guide

Page 6 of 44 Revised 10/2/2020

2 Document Terminology

This document uses the following terminology:

Convention Usage

“EnterWorks” and “Enable” The EnterWorks Enable product is now referred to
simply as “EnterWorks”. Some system components and
images in this document may still retain the name
“Enable”.

EnterWorks Advanced VTL Mapping Guide

Page 7 of 44 Revised 10/2/2020

3 Customer Support

EnterWorks provides a full spectrum of customer support. Check your maintenance contract for
details about the level of support purchased. A customer identification number will be issued
the first time customer support is contacted. Keep this number for future reference when using
the EnterWorks customer support service.

How to reach us Comments

On the Web:
https://enterworkssupport.zendesk.com

Our knowledge base includes solutions to
common issues and is available 24 hours a
day, 7 days a week.

Create a Support Request Ticket:
https://enterworkssupport.zendesk.com/hc/en-
us/requests/new

You can generate a Support Request ticket
at any time. The Winshuttle Support team
addresses Support Request tickets during
our normal business hours:

• 5 AM – 5 PM Pacific Time
• Monday-Friday

Postal mail:
Winshuttle
Customer Support Team
19820 North Creek Pkwy #200
Bothell, WA 98011
USA

Please include your preferred contact
information, as well as a description of your
request.

https://enterworkssupport.zendesk.com/
https://enterworkssupport.zendesk.com/hc/en-us/requests/new
https://enterworkssupport.zendesk.com/hc/en-us/requests/new

EnterWorks Advanced VTL Mapping Guide

Page 8 of 44 Revised 10/2/2020

4 About this Guide

This guide is for users who are creating and editing advanced Enterworks layout mapping
definitions using the open source Velocity Template Language (VTL). Velocity can be used to
generate Web pages, SQL, PostScript and other output forms. EnterWorks incorporates the
Velocity engine for the complex transformation of source content (such as product information)
to the form used in target publications.

5 Velocity Template Language (VTL): An Introduction

The Velocity Template Language (VTL) is meant to provide the easiest, simplest, and cleanest
way to incorporate dynamic content for the mapping of publication content. Even a user with
little or no programming experience should be able to use VTL to incorporate dynamic content
in a publication layout mapping.

EnterWorks uses VTL to reference, concatenate, and embed dynamic content (PIM attributes)
along with scripting logic to control output mappings. Here is an example of a VTL statement
that could be embedded in a mapping statement:

#set ($a = "Velocity”)

Like all VTL statements, this statement begins with the # character and contains a directive: set.
When an online visitor requests your Web page, the Velocity Templating Engine will search
through your Web page to find all # characters, then determine which mark the beginning of
VTL statements, and which of the # characters that have nothing to do with VTL.

The # character is followed by a directive, set. The set directive uses an expression (enclosed in
brackets) -- an equation that assigns a value to a variable. The variable is listed on the left hand
side, and its value is listed on the right hand side; the two are separated by an = character.

In the example above, the variable is $a and the value is Velocity. This variable, like all
references, begins with the $ character. String values are always enclosed in quotes, either
single or double quotes. Single quotes will ensure that the quoted value will be assigned to the
reference as is. Double quotes allow you to use Velocity references and directives to
interpolate, such as "Hello $name", where the $name will be replaced by the current value
before that string literal is assigned to the left hand side of the =

The following rule of thumb may be useful to better understand how Velocity works:

References begin with $ and are used to get something. Directives begin with # and are used
to do something.

In the example above, #set is used to assign a value to a variable. The variable $a can then be
used in the template to output “Velocity.”

EnterWorks Advanced VTL Mapping Guide

Page 9 of 44 Revised 10/2/2020

5.1 Comments

Comments allows descriptive text to be included that is not placed into the output of the
template engine. Comments are a useful way of reminding yourself and explaining to others
what your VTL statements are doing, or any other purpose you find useful. Below is an example
of a comment in VTL.

This is a single line comment.

A single line comment begins with ## and finishes at the end of the line. If you’re going to write
a few lines of commentary, there’s no need to have numerous single line comments. Multi-line
comments, which begin with #* and end with *#, are available to handle this scenario.

This is text that is outside the multi-line comment.

Online visitors can see it.

#*

 This begins a multi-line comment. Online visitors won't

 see this text because the Velocity Templating Engine will

 ignore it.

*#

Here is text outside the multi-line comment; it is visible.

Here are a few examples to clarify how single line and multi-line comments work:

This text is visible. ## This text is not.

This text is visible.

This text is visible. #* This text, as part of a multi-line

comment, is not visible. This text is not visible; it is also

part of the multi-line comment. This text still not

visible. *# This text is outside the comment, so it is visible.

This text is not visible.

There is a third type of comment, the VTL comment block, which may be used to store any sort
of extra information you want to track in the template (such as Javadoc-style author and
versioning information):

#**

This is a VTL comment block and

may be used to store such information

EnterWorks Advanced VTL Mapping Guide

Page 10 of 44 Revised 10/2/2020

as the document author and versioning

information:

@author

@version 5

*#

5.2 References

There are three types of references in VTL: variables, properties, and methods. As a designer
using VTL, you and your developers must come to an agreement on the specific names of
references so you can use them correctly in your templates.

5.3 Variables

The shorthand notation of a variable consists of a leading “$” character followed by a VTL
Identifier. A VTL Identifier must start with an alphabetic character (a ... z or A ... Z). The rest of
the characters are limited to the following types of characters:

• alphabetic (a .. z, A .. Z)

• numeric (0 .. 9)

• hyphen (“-“)

• underscore (“_”)

Here are some examples of valid variable references in the VTL:

$foo

$mudSlinger

$mud-slinger

$mud_slinger

$mudSlinger1

When VTL references a variable, such as $foo, the variable can get its value from either a set
directive in the template, or from the Java code. For example, if the Java variable $foo has the
value bar at the time the template is requested, bar replaces all instances of $foo on the Web
page. Alternatively, if you include the statement

#set ($foo = "bar”)

The output will be the same for all instances of $foo that follow this directive.

EnterWorks Advanced VTL Mapping Guide

Page 11 of 44 Revised 10/2/2020

5.4 Properties

The second category of VTL references is properties, which have a distinctive format. The
shorthand notation consists of a leading $ character followed a VTL Identifier, followed by a dot
character (“.”) and another VTL Identifier. These are examples of valid property references in
the VTL:

$customer.Address

$purchase.Total

Take the first example, $customer.Address. It can have two meanings. It can mean look in the
hashtable identified as customer and return the value associated with the key Address. But
$customer.Address can also be referring to a method (references that refer to methods will be
discussed in the next section); $customer.Address could be an abbreviated way of writing
$customer.getAddress(). When your page is requested, Velocity will determine which of these
two possibilities makes sense, and then return the appropriate value.

5.5 Methods

Methods are references that consist of a leading “$” character followed a VTL Identifier,
followed by a VTL Method Body. A VTL Method Body consists of a VTL Identifier followed by a
left parenthesis character (“(“), followed by an optional parameter list, followed by right
parenthesis character (“)”). These are examples of valid method references in VTL:

$customer.getAddress()

$purchase.getTotal()

$page.setTitle("My Home Page")

$person.setAttributes(["Strange", "Weird", "Excited"])

The first two examples -- $customer.getAddress() and $purchase.getTotal() -- may look similar
to those used in the Properties section above, $customer.Address and $purchase.Total. If you
guessed that these examples must be related some in some fashion, you’re correct!

VTL Properties can be used as a shorthand notation for VTL Methods. The Property
$customer.Address has the exact same effect as using the Method $customer.getAddress(). It is
generally preferable to use a Property when available. The main difference between Properties
and Methods is that you can specify a parameter list to a Method.

The shorthand notation can be used for the following Methods:

$sun.getPlanets()

$annelid.getDirt()

$album.getPhoto()

EnterWorks Advanced VTL Mapping Guide

Page 12 of 44 Revised 10/2/2020

We might expect these methods to return the names of planets belonging to the sun, feed our
earthworm, or get a photograph from an album. Only the long notation works for the following
Methods.

$sun.getPlanet(["Earth", "Mars", "Neptune"])

Can't pass a parameter list with $sun.Planets

$sisyphus.pushRock()

Velocity assumes I mean $sisyphus.getRock()

$book.setTitle("Homage to Catalonia")

Can't pass a parameter

As of Velocity 1.6, all array references are now “magically” treated as if they are fixed-length
lists. This means that you can call java.util.List methods on array references. So, if you have a
reference to an array (let’s say this one is a String[] with three values), you can specify:

$myarray.isEmpty()

$myarray.size()

$myarray.get(2)

$myarray.set(1, 'test')

Also new in Velocity 1.6 is support for vararg methods. A method like:

public void setPlanets(String... planets)

or even just:

public void setPlanets(String[] planets)

(if you are using a pre-Java 5 JDK), can now accept any number of arguments when called in a
template:

$sun.setPlanets('Earth', 'Mars', 'Neptune')

$sun.setPlanets('Mercury')

$sun.setPlanets()

EnterWorks Advanced VTL Mapping Guide

Page 13 of 44 Revised 10/2/2020

Will just pass in an empty, zero-length array

Property Lookup Rules

As was mentioned earlier, properties often refer to methods of the parent object. Velocity is
quite clever when figuring out which method corresponds to a requested property. It tries out
different alternatives based on several established naming conventions. The exact lookup
sequence depends on whether the property name starts with an upper-case letter. For lower-
case names, such as $customer.address, the sequence is

1. getaddress()
2. getAddress()
3. get(“address”)
4. isAddress()

For upper-case property names like $customer.Address, it’s slightly different:

1. getAddress()
2. getaddress()
3. get(“Address”)
4. isAddress()

Rendering
The final value resulting from each and every reference (whether variable, property, or
method) is converted to a String object when it is rendered into the final output. If there is an
object that represents $foo (such as an Integer object), then Velocity will call its .toString()
method to resolve the object into a String.

Formal Reference Notation
Shorthand notation for references is used in the examples above, but there also is a formal
notation for references:

${mudSlinger}

${customer.Address}

${purchase.getTotal()}

In almost all cases, you’ll use the shorthand notation for references, but in some cases the
formal notation is required for correct processing.

Suppose you’re constructing a sentence on the fly where $vice is used as the base word in the
noun of a sentence. The goal is to allow someone to choose the base word and produce one of
the two following results: “Jack is a pyromaniac.” or “Jack is a kleptomaniac.” Using the
shorthand notation would be inadequate for this task. Consider the following example:

EnterWorks Advanced VTL Mapping Guide

Page 14 of 44 Revised 10/2/2020

Jack is a $vicemaniac.

There is ambiguity here, and Velocity assumes that $vicemaniac, not $vice, is the Identifier that
you mean to use. Finding no value for $vicemaniac, it will return $vicemaniac. Using formal
notation can resolve this problem.

Jack is a ${vice}maniac.

Now Velocity knows that $vice, not $vicemaniac, is the reference. Formal notation is often
useful when references are directly adjacent to text in a template.

Quiet Reference Notation
When Velocity encounters an undefined reference, its normal behavior is to output the image
of the reference. For example, suppose the following reference appears as part of a VTL
template.

<input type="text" name="email" value="$email"/>

When the form initially loads, the variable reference $email has no value, but you prefer a
blank text field to one with a value of “$email”. Using the quiet reference notation circumvents
Velocity’s normal behavior; instead of using $email in the VTL you would use $!email. So the
above example would look like the following:

<input type="text" name="email" value="$!email"/>

Now when the form is initially loaded and $email still has no value, an empty string will be
output instead of “$email”.

Formal and quiet reference notation can be used together, as demonstrated below.

<input type="text" name="email" value="$!{email}"/>

EnterWorks Advanced VTL Mapping Guide

Page 15 of 44 Revised 10/2/2020

5.6 Strict References Setting

Velocity 1.6 introduces the concept of strict references, which is activated by setting the
velocity configuration property ‘runtime.references.strict’ to true. With this setting references
are required to be either placed explicitly into the context or defined with a #set directive, or
Velocity will throw an exception. References that are in the context with a value of null will not
produce an exception. Additionally, if an attempt is made to call a method or a property on an
object within a reference that does not define the specified method or property then Velocity
will throw an exception. This is also true if there is an attempt to call a method or property on a
null value.

In the following examples $bar is defined, but $foo is not, and all these statements will throw
an exception:

$foo ## Exception

#set($bar = $foo) ## Exception

#if($foo == $bar)#end ## Exception

#foreach($item in $foo)#end ## Exception

Also, the following statements show examples in which Velocity will throw an exception when
attempting to call methods or properties that do not exist. In these examples $bar contains an
object that defines a property ‘foo’ which returns a string, and ‘retnull’ which returns null.

$bar.bogus ## $bar does not provide property bogus, Exception

$bar.foo.bogus ## $bar.foo does not provide property bogus,

Exception

$bar.retnull.bogus ## cannot call a property on null, Exception

In general, strict reference behavior is true for all situations in which references are used,
except for a special case within the #if directive. If a reference is used within a #if or #elseif
directive without any methods or properties, and if it is not being compared to another value,
then undefined references are allowed. This behavior provides an easy way to test if a
reference is defined before using it in a template. In the following example, where $foo is not
defined, the statements will not throw an exception.

#if ($foo)#end ## False

#if (! $foo)#end ## True

#if ($foo && $foo.bar)#end ## False and $foo.bar will not be

evaluated

#if ($foo && $foo == "bar")#end ## False and $foo == "bar" will not be

evaluated

EnterWorks Advanced VTL Mapping Guide

Page 16 of 44 Revised 10/2/2020

#if ($foo1 || $foo2)#end ## False $foo1 and $foo2 are not

defined

One additional note: undefined macro references will also throw an exception with the strict
reference setting.

5.7 Case Substitution

Now that you are familiar with references, you can begin to apply them effectively in your
templates. Velocity references take advantage of some Java principles that template designers
will find easy to use. For example:

$foo

$foo.getBar()

is the same as

$foo.Bar

$data.setUser("jon")

is the same as

#set($data.User = "jon")

$data.getRequest().getServerName()

is the same as

$data.Request.ServerName

is the same as

${data.Request.ServerName}

These examples illustrate alternative uses for the same references. Velocity takes advantage of
Java’s introspection and Bean features to resolve the reference names to both objects in the
Context as well as the objects methods. It is possible to embed and evaluate references almost
anywhere in your template.

Velocity, which is modeled on the Bean specifications defined by Sun Microsystems, is case
sensitive; however, its developers have strived to catch and correct user errors wherever
possible. When the method getFoo() is referred to in a template by $bar.foo, Velocity will first
try $getfoo. If this fails, it will then try $getFoo. Similarly, when a template refers to $bar.Foo,
Velocity will try $getFoo() first and then try getfoo().

Note: References to instance variables in a template are not resolved. Only references to the
attribute equivalents of JavaBean getter/setter methods are resolved (i.e. $foo.Name does
resolve to the class Foo's getName() instance method, but not to a public Name instance
variable of Foo).

EnterWorks Advanced VTL Mapping Guide

Page 17 of 44 Revised 10/2/2020

5.8 Directives

References allow template designers to generate dynamic content for Web sites, while
directives -- easy to use script elements that can be used to creatively manipulate the output of
Java code -- permit Web designers to truly take charge of the appearance and content of the
Web site.

Directives always begin with a #. Like references, the name of the directive may be bracketed
by “{” and “}” symbols. This is useful with directives that are immediately followed by text. For
example the following produces an error:

#if($a==1)true enough#elseno way!#end

In such a case, use the brackets to separate #else from the rest of the line.

#if($a==1)true enough#{else}no way!#end

#set

The #set directive is used for setting the value of a reference. A value can be assigned to either
a variable reference or a property reference, and this occurs in parentheses:

#set($primate = "monkey")

#set($customer.Behavior = $primate)

The left hand side (LHS) of the assignment must be a variable reference or a property reference.
The right hand side (RHS) can be one of the following types:

• Variable reference

• String literal

• Property reference

• Method reference

• Number literal

• ArrayList

• Map

These examples demonstrate each of the aforementioned types:

#set($monkey = $bill) ## variable reference

EnterWorks Advanced VTL Mapping Guide

Page 18 of 44 Revised 10/2/2020

#set($monkey.Friend = "monica") ## string literal

#set($monkey.Blame = $whitehouse.Leak) ## property reference

#set($monkey.Plan = $spindoctor.weave($web)) ## method

reference

#set($monkey.Number = 123) ##number literal

#set($monkey.Say = ["Not", $my, "fault"]) ## ArrayList

#set($monkey.Map = {"banana" : "good", "roast beef" : "bad"})

Map

NOTE: For the ArrayList example the elements defined with the [..] operator are accessible
using the methods defined in the ArrayList class. So, for example, you could access the first
element above using $monkey.Say.get(0).

Similarly, for the Map example, the elements defined within the { } operator are accessible
using the methods defined in the Map class. So, for example, you could access the first element
above using $monkey.Map.get(“banana”) to return a String ‘good’, or even
$monkey.Map.banana to return the same value.

The RHS can also be a simple arithmetic expression:

#set($value = $foo + 1)

#set($value = $bar - 1)

#set($value = $foo * $bar)

#set($value = $foo / $bar)

If the RHS is a property or method reference that evaluates to null, it will not be assigned to the
LHS. Depending on how Velocity is configured, it is usually not possible to remove an existing
reference from the context via this mechanism. (Note that this can be done by changing one of
the Velocity configuration properties). This can be confusing for newcomers to Velocity. For
example:

#set($result = $query.criteria("name"))

The result of the first query is $result

#set($result = $query.criteria("address"))

The result of the second query is $result

If $query.criteria("name") returns the string "bill", and $query.criteria("address") returns null,
the above VTL will render as the following:

The result of the first query is bill

The result of the second query is bill

EnterWorks Advanced VTL Mapping Guide

Page 19 of 44 Revised 10/2/2020

This tends to confuse newcomers who construct #foreach loops that attempt to #set a
reference via a property or method reference, then immediately test that reference with an #if
directive. For example:

#set($criteria = ["name", "address"])

#foreach($criterion in $criteria)

 #set($result = $query.criteria($criterion))

 #if($result)

 Query was successful

 #end

#end

In the above example, it would not be wise to rely on the evaluation of $result to determine if a
query was successful. After $result has been #set (added to the context), it cannot be set back
to null (removed from the context). The details of the #if and #foreach directives are covered
later in this document.

One solution is to pre-set $result to false. Then if the $query.criteria() call fails, you can check.

#set($criteria = ["name", "address"])

#foreach($criterion in $criteria)

 #set($result = false)

 #set($result = $query.criteria($criterion))

 #if($result)

 Query was successful

 #end

#end

Unlike some of the other Velocity directives, the #set directive does not have an #end
statement.

Literals

When using the #set directive, string literals that are enclosed in double quote characters will
be parsed and rendered, as shown:

#set($directoryRoot = "www")

EnterWorks Advanced VTL Mapping Guide

Page 20 of 44 Revised 10/2/2020

#set($templateName = "index.vm")

#set($template = "$directoryRoot/$templateName")

$template

The output will be:

www/index.vm

However, when the string literal is enclosed in single quote characters, it will not be parsed:

#set($foo = "bar")

$foo

#set($blargh = '$foo')

$blargh

This renders as:

bar

$foo

By default, this feature of using single quotes to render unparsed text is available in Velocity.
This default can be changed by editing velocity.properties such that
stringliterals.interpolate=false.

Alternatively, the #literal script element allows the template designer to easily use large chunks
of uninterpreted content in VTL code. This can be especially useful in place of escaping multiple
directives:

#literal()

#foreach ($woogie in $boogie)

 nothing will happen to $woogie

#end

#end

Renders as:

#foreach ($woogie in $boogie)

 nothing will happen to $woogie

#end

http://velocity.apache.org/engine/devel/user-guide.html#EscapingVTLDirectives

EnterWorks Advanced VTL Mapping Guide

Page 21 of 44 Revised 10/2/2020

5.9 Conditionals

If / ElseIf / Else

The #if directive in Velocity allows for text to be included when the web page is generated, on
the conditional that the if statement is true. For example:

#if($foo)

 Velocity!

#end

The variable $foo is evaluated to determine whether it is true, which will happen under one of
two circumstances: (i) $foo is a boolean (true/false) which has a true value, or (ii) the value is
not null. Remember that the Velocity context only contains Objects, so when we say “boolean,”
it will be represented as a Boolean (the class). This is true even for methods that return
boolean - the introspection infrastructure will return a Boolean of the same logical value.

The content between the #if and the #end statements becomes the output if the evaluation is
true. In this case, if $foo is true, the output will be: “Velocity!” Conversely, if $foo has a null
value, or if it is a boolean false, the statement evaluates as false, and there is no output.

An #elseif or #else element can be used with an #if element. Note that the Velocity Templating
Engine will stop at the first expression that is found to be true. In the following example,
suppose that $foo has a value of 15 and $bar has a value of 6.

#if($foo < 10)

 Go North

#elseif($foo == 10)

 Go East

#elseif($bar == 6)

 Go South

#else

 Go West

#end

In this example, $foo is greater than 10, so the first two comparisons fail. Next $bar is
compared to 6, which is true, so the output is Go South.

Relational and Logical Operators

Velocity uses the equivalent operator to determine the relationships between variables. Here is a

simple example to illustrate how the equivalent operator is used:

EnterWorks Advanced VTL Mapping Guide

Page 22 of 44 Revised 10/2/2020

#set ($foo = "deoxyribonucleic acid")

#set ($bar = "ribonucleic acid")

#if ($foo == $bar)

 In this case it's clear they aren't equivalent. So...

#else

 They are not equivalent and this will be the output.

#end

Note that the semantics of == are slightly different than Java where == can only be used to test
object equality. In Velocity the equivalent operator can be used to directly compare numbers,
strings, or objects. When the objects are of different classes, the string representations are
obtained by calling toString() for each object and then compared.

Velocity has logical AND, OR and NOT operators as well. Below are examples demonstrating the
use of the logical AND, OR and NOT operators.

logical AND

#if($foo && $bar)

 This AND that

#end

The #if() directive will evaluate to true only if both $foo and $bar are true. If $foo is false, the
expression will evaluate to false; $bar will not be evaluated. If $foo is true, the Velocity
Templating Engine will then check the value of $bar; if $bar is true, then the entire expression is
true and This AND that becomes the output. If $bar is false, then there will be no output as the
entire expression is false.

Logical OR operators work the same way, except only one of the references needs to evaluate to

true in order for the entire expression to be considered true. Consider the following example.

logical OR

#if($foo || $bar)

 This OR That

#end

If $foo is true, the Velocity Templating Engine has no need to look at $bar; whether $bar is true
or false, the expression will be true, and This OR That will be output. If $foo is false, however,
$bar must be checked. In this case, if $bar is also false, the expression evaluates to false and

EnterWorks Advanced VTL Mapping Guide

Page 23 of 44 Revised 10/2/2020

there is no output. On the other hand, if $bar is true, then the entire expression is true, and the
output is This OR That

With logical NOT operators, there is only one argument:

##logical NOT

#if(!$foo)

 NOT that

#end

Here, the if $foo is true, then !$foo evaluates to false, and there is no output. If $foo is false,
then !$foo evaluates to true and NOT that will be output. Be careful not to confuse this with
the quiet reference $!foo which is something altogether different.

There are text versions of all logical operators, including eq, ne, and, or, not, gt, ge, lt, and le.

One more useful note: when you wish to include text immediately following a #else directive
you will need to use curly brackets immediately surrounding the directive to differentiate it
from the following text. (Any directive can be delimited by curly brackets, although this is most
useful for #else).

#if($foo == $bar)it's true!#{else}it's not!#end

5.10 Loops

Foreach Loop

The #foreach element allows for looping. For example:

#foreach($product in $allProducts)

 $product

#end

This #foreach loop causes the $allProducts list (the object) to be looped over for all of the
products (targets) in the list. Each time through the loop, the value from $allProducts is placed
into the $product variable.

The contents of the $allProducts variable is a Vector, a Hashtable or an Array. The value
assigned to the $product variable is a Java Object and can be referenced from a variable as
such. For example, if $product was really a Product class in Java, its name could be retrieved by
referencing the $product.Name method ($Product.getName()).

EnterWorks Advanced VTL Mapping Guide

Page 24 of 44 Revised 10/2/2020

Lets say that $allProducts is a Hashtable. If you wanted to retrieve the key values for the
Hashtable as well as the objects within the Hashtable, you can use code like this:

#foreach($key in $allProducts.keySet())

 Key: $key -> Value: $allProducts.get($key)

#end

Velocity provides an easy way to get the loop counter so that you can do something like the
following:

<table>

#foreach($customer in $customerList)

 <tr><td>$velocityCount</td><td>$customer.Name</td></tr>

#end

</table>

Velocity also now provides an easy way to tell if you are on the last iteration of a loop:

#foreach($customer in $customerList)

 $customer.Name#if($velocityHasNext),#end

#end

The default name for the “has next” variable reference, which is specified in the
velocity.properties file, is $velocityHasNext. The default name for the loop counter variable
reference, which is specified in the velocity.properties file, is $velocityCount. By default the
counter starts at 1, but this can be set to either 0 or 1 in the velocity.properties file. Here’s
what the loop counter properties section of the velocity.properties file appears:

Default name of the loop counter

variable reference.

directive.foreach.counter.name = velocityCount

directive.foreach.iterator.name = velocityHasNext

Default starting value of the loop

counter variable reference.

directive.foreach.counter.initial.value = 1

EnterWorks Advanced VTL Mapping Guide

Page 25 of 44 Revised 10/2/2020

It’s possible to set a maximum allowed number of times that a loop may be executed. By
default there is no max (indicated by a value of 0 or less), but this can be set to an arbitrary
number in the velocity.properties file. This is useful as a fail-safe.

The maximum allowed number of loops.

directive.foreach.maxloops = -1

If you want to stop looping in a foreach from within your template, you can now use the #break
directive to stop looping at any time:

list first 5 customers only

#foreach($customer in $customerList)

 #if($velocityCount > 5)

 #break

 #end

 $customer.Name

#end

5.11 Include

The #include script element allows the template designer to import a local file, which is then
inserted into the location where the #include directive is defined. The contents of the file are
not rendered through the template engine. For security reasons, the file to be included may
only be under TEMPLATE_ROOT.

#include("one.txt")

The file to which the #include directive refers is enclosed in quotes. If more than one file will be
included, they should be separated by commas.

#include("one.gif","two.txt","three.htm")

The file being included need not be referenced by name; in fact, it is often preferable to use a
variable instead of a filename. This could be useful for targeting output according to criteria
determined when the page request is submitted. Here is an example showing both a filename
and a variable:

#include("greetings.txt", $seasonalstock)

EnterWorks Advanced VTL Mapping Guide

Page 26 of 44 Revised 10/2/2020

5.12 Parse

The #parse script element allows the template designer to import a local file that contains VTL.
Velocity will parse the VTL and render the template specified.

#parse("me.vm")

Like the #include directive, #parse can take a variable rather than a template. Any templates to
which #parse refers must be included under TEMPLATE_ROOT. Unlike the #include directive,
#parse will only take a single argument.

VTL templates can have #parse statements referring to templates that in turn have #parse
statements. By default set to 10, the directive.parse.max.depth line of the
velocity.properties allows users to customize maximum number of #parse referrals that
can occur from a single template. (Note: If the directive.parse.max.depth property is absent
from the velocity.properties file, Velocity will set this default to 10.) Recursion is
permitted, for example, if the template dofoo.vm contains the following lines:

Count down.

#set($count = 8)

#parse("parsefoo.vm")

All done with dofoo.vm!

It would reference the template parsefoo.vm, which might contain the following VTL:

$count

#set($count = $count - 1)

#if($count > 0)

 #parse("parsefoo.vm")

#else

 All done with parsefoo.vm!

#end

After “Count down” is displayed, Velocity passes through parsefoo.vm, counting down from
8. When the count reaches 0, it will display the “All done with parsefoo.vm!” message. At this
point, Velocity will return to dofoo.vm and output the “All done with dofoo.vm!” message.

5.13 Stop

The #stop script element prevents any further text or references in the page from being rendered.

This is useful for debugging purposes.

EnterWorks Advanced VTL Mapping Guide

Page 27 of 44 Revised 10/2/2020

5.14 Evaluate

The #evaluate directive can be used to dynamically evaluate VTL. This allows the template to
evaluate a string that is created at render time. Such a string might be used to internationalize
the template or to include parts of a template from a database.

The example below will display abc.

#set($source1 = "abc")

#set($select = "1")

#set($dynamicsource = "$source$select")

$dynamicsource is now the string '$source1'

#evaluate($dynamicsource)

5.15 Define

The #define directive lets one assign a block of VTL to a reference.

The example below will display Hello World!.

#define($block)Hello $who#end

#set($who = 'World!')

$block

5.16 Getting Literal

VTL uses special characters, such as $ and #, to do its work, so some added care should be
taken where using these characters in your templates. This section deals with escaping these
characters.

Currency
There is no problem writing “I bought a 4 lb. sack of potatoes at the farmer's market for only
$2.50!” As mentioned, a VTL identifier always begins with an upper- or lower-case letter, so
$2.50 would not be mistaken for a reference.

Escaping Valid VTL References
Cases may arise where you do not want to have a reference rendered by Velocity. Escaping
special characters is the best way to output VTL's special characters in these situations, and this
can be done using the backslash (\) character when those special characters are part of a valid
VTL reference .

EnterWorks Advanced VTL Mapping Guide

Page 28 of 44 Revised 10/2/2020

#set($email = "foo")

$email

If Velocity encounters a reference in your VTL template to $email, it will search the Context for
a corresponding value. Here the output will be foo, because $email is defined. If $email is not
defined, the output will be $email.

Suppose that $email is defined (for example, if it has the value foo), and that you want to
output $email. There are a few ways of doing this, but the simplest is to use the escape
character. Here is a demonstration:

The following line defines $email in this template:

#set($email = "foo")

$email

\$email

This renders as:

foo

$email

If, for some reason, you need a backslash before either line above, you can do the following:

The following line defines $email in this template:

#set($email = "foo")

\\$email

\\\$email

This renders as:

\foo

\$email

Note that the \ character bind to the $ from the left. The bind-from-left rule causes \\\$email to
render as \$email. Compare these examples to those in which $email is not defined.

$email

\$email

EnterWorks Advanced VTL Mapping Guide

Page 29 of 44 Revised 10/2/2020

\\$email

\\\$email

renders as

$email

\$email

\\$email

\\\$email

Note that Velocity handles references that are defined differently from those that have not
been defined. Here is a set directive that gives $foo the value gibbous.

#set($foo = "gibbous")

$moon = $foo

The output will be: $moon = gibbous -- where $moon is output as a literal because it is
undefined and gibbous is output in place of $foo.

Escaping Invalid VTL References
Sometimes Velocity has trouble parsing your template when it encounters an “invalid
reference” that you never intended to be a reference at all. Escaping special characters is,
again, the best way to handle these situations. In these situations, the backslash will likely fail
you. Instead of simply trying to escape the problematic $ or #, you should probably just replace
this:

${my:invalid:non:reference}

with something like this:

#set($D = '$')

${D}{my:invalid:non:reference}

You can, of course, put your $ or # string directly into the context from your java code (e.g.
context.put("D","$");) to avoid the extra #set() directive in your template(s). Or, if you
are using VelocityTools , you can just use the EscapeTool like this:

${esc.d}{my:invalid:non:reference}

EnterWorks Advanced VTL Mapping Guide

Page 30 of 44 Revised 10/2/2020

Escaping of both valid and invalid VTL directives is handled in much the same manner; this is
described in more detail in the Directives section.

Escaping VTL Directives
VTL directives can be escaped with the backslash character (“\”) in a manner similar to valid VTL
references.

#include("a.txt") renders as <contents of a.txt>

#include("a.txt")

\#include("a.txt") renders as #include("a.txt")

\#include("a.txt")

\\#include ("a.txt") renders as \<contents of a.txt>

\\#include ("a.txt")

Extra care should be taken when escaping VTL directives that contain multiple script elements
in a single directive (such as in an if-else-end statements). Here is a typical VTL if-statement:

#if($jazz)

 Vyacheslav Ganelin

#end

If $jazz is true, the output is:

Vyacheslav Ganelin

If $jazz is false, there is no output. Escaping script elements alters the output. Consider the
following case:

\#if($jazz)

 Vyacheslav Ganelin

\#end

This causes the directives to be escaped, but the rendering of $jazz proceeds as normal. So, if
$jazz is true, the output is:

EnterWorks Advanced VTL Mapping Guide

Page 31 of 44 Revised 10/2/2020

 #if(true)

 Vyacheslav Ganelin

 #end

Suppose backslashes precede script elements that are legitimately escaped:

\\#if($jazz)

 Vyacheslav Ganelin

Error! Hyperlink reference not valid.

In this case, if $jazz is true, the output is:

\ Vyacheslav Ganelin

\

To understand this, note that the #if(arg), when ended by a newline (return), will omit
the newline from the output. Therefore, the body of the #if() block follows the first “\”,
rendered from the “\\” preceding the #if(). The last \ is on a different line than the text
because there is a newline after “Ganelin”, so the final \\, preceding the #end is part of the
body of the block.

If $jazz is false, the output is:

\

Note that things start to break if script elements are not properly escaped.

\\\#if($jazz)

 Vyacheslave Ganelin

\\#end

Here the #if is escaped, but there is an #end remaining; having too many endings will cause a
parsing error.

5.17 VTL: Formatting Issues

Although VTL in this user guide is often displayed with newlines and whitespaces, the VTL
shown below:

EnterWorks Advanced VTL Mapping Guide

Page 32 of 44 Revised 10/2/2020

#set($imperial = ["Munetaka","Koreyasu","Hisakira","Morikune"]

)

#foreach($shogun in $imperial)

 $shogun

#end

is equally valid as the following snippet that Geir Magnusson, Jr. posted to the Velocity user
mailing list to illustrate a completely unrelated point:

Send me #set($foo=["$10 and ","a pie"])#foreach($a in

$foo)$a#end please.

Velocity’s behavior is to gobble up excess whitespace. The preceding directive can be written
as:

Send me

#set($foo = ["$10 and ","a pie"])

#foreach($a in $foo)

$a

#end

please.

or as:

Send me

#set($foo = ["$10 and ","a pie"])

 #foreach ($a in $foo)$a

 #end please.

In each case the output will be the same.

5.18 Other Features and Miscellany

5.18.1 Math

Velocity has a handful of built-in mathematical functions that can be used in templates with the
set directive. The following equations are examples of addition, subtraction, multiplication and
division, respectively:

EnterWorks Advanced VTL Mapping Guide

Page 33 of 44 Revised 10/2/2020

#set($foo = $bar + 3)

#set($foo = $bar - 4)

#set($foo = $bar * 6)

#set($foo = $bar / 2)

When a division operation is performed between two integers, the result will be an integer, as
the fractional portion is discarded. Any remainder can be obtained by using the modulus (%)
operator:

#set($foo = $bar % 5)

5.18.2 Range Operator

The range operator can be used in conjunction with #set and #foreach statements. Useful for its
ability to produce an object array containing integers, the range operator has the following
construction:

[n..m]

Both n and m must either be or produce integers. Whether m is greater than or less than n will
not matter; in this case the range will simply count down. Examples showing the use of the
range operator as provided below:

First example:

#foreach($foo in [1..5])

$foo

#end

Second example:

#foreach($bar in [2..-2])

$bar

#end

Third example:

#set($arr = [0..1])

#foreach($i in $arr)

$i

#end

Fourth example:

[1..3]

EnterWorks Advanced VTL Mapping Guide

Page 34 of 44 Revised 10/2/2020

Produces the following output:

First example:

1 2 3 4 5

Second example:

2 1 0 -1 -2

Third example:

0 1

Fourth example:

[1..3]

Note that the range operator only produces the array when used in conjunction with #set and
#foreach directives, as demonstrated in the fourth example.

Web page designers concerned with making tables a standard size, but where some will not
have enough data to fill the table, will find the range operator particularly useful.

5.18.3 Advanced Issues: Escaping and !

When a reference is silenced with the ! character and the ! character preceded by an \ escape
character, the reference is handled in a special way. Note the differences between regular
escaping, and the special case where \ precedes ! follows it:

#set($foo = "bar")

$\!foo

$\!{foo}

$\\!foo

$\\\!foo

This renders as:

$!foo

$!{foo}

$\!foo

$\\!foo

Contrast this with regular escaping, where \ precedes $:

EnterWorks Advanced VTL Mapping Guide

Page 35 of 44 Revised 10/2/2020

\$foo

\$!foo

\$!{foo}

\\$!{foo}

This renders as:

$foo

$!foo

$!{foo}

\bar

EnterWorks Advanced VTL Mapping Guide

Page 36 of 44 Revised 10/2/2020

6 Summarized VTL Guide

6.1 General

Variables

Notation:

$ [!][{][a..z, A..Z][a..z, A..Z, 0..9, -, _][}]

Examples:

• Normal notation: $mud-Slinger_9

• Silent notation: $!mud-Slinger_9

• Formal notation: ${mud-Slinger_9}

Properties

Notation:

$ [{][a..z, A..Z][a..z, A..Z, 0..9, -, _]* .[a..z, A..Z][a..z, A-Z, 0..9, -, _]* [}]

Examples:

• Regular Notation: $customer.Address

• Formal Notation: ${purchase.Total}

VTL Properties can be used as a shorthand notation for VTL Methods that take get and set.

Either $object.getMethod() or $object.setMethod() can be abbreviated as $object.Method. It is

generally preferable to use a Property when available. The main difference between Properties

and Methods is that you can specify a parameter list to a Method.

EnterWorks Advanced VTL Mapping Guide

Page 37 of 44 Revised 10/2/2020

Methods

Notation:

$ [{][a..z, A..Z][a..z, A..Z, 0..9, -, _]* .[a..z, A..Z][a..z, A..Z, 0..9, -, _]*([opional

parameter list...]) [}]

Examples:

• Regular Notation: $customer.getAddress()

• Formal Notation: ${purchase.getTotal()}

• Regular Notation with Parameter List: $page.setTitle("My Home Page")

EnterWorks Advanced VTL Mapping Guide

Page 38 of 44 Revised 10/2/2020

6.2 Directives

#set - Establishes the value of a reference

Format:

#set($ref = [", ']arg[", '])

Usage:

• $ref - The LHS of the assignment must be a variable reference or a property

reference.

• arg - The RHS of the assignment, arg is parsed if enclosed in double quotes,

and not parsed if enclosed in single quotes.

Examples:

• Variable reference: #set($monkey = "bill")

• String literal: #set($monkey.Friend = "monica")

• Property reference: #set($monkey.Blame = $whitehouse.Leak)

• Method reference: #set($monkey.Plan = $spindoctor.weave($web))

• Number literal: #set($monkey.Number = 123)

• Object array: #set($monkey.Say = ["Not", $my, "fault"])

The RHS can also be a simple arithmetic expression, such as:

• Addition: #set($value = $foo + 1)

• Subtraction: #set($value = $bar - 1)

• Multiplication: #set($value = $foo * $bar)

• Division: #set($value = $foo / $bar)

• Remainder: #set($value = $foo % $bar)

EnterWorks Advanced VTL Mapping Guide

Page 39 of 44 Revised 10/2/2020

#if / #elseif / #else - output conditional on truth of statements

Format:

#if([condition]) [output] [#elseif([condition]) [output]]* [#else [output]] #end

Usage:

• condition - If a boolean, considered true if it has a true false; if not a boolean,

considered true if not null.

• output - May contain VTL.

Examples:

• Equivalent Operator: #if($foo == $bar)

• Greater Than: #if($foo > 42)

• Less Than: #if($foo < 42)

• Greater Than or Equal To: #if($foo >= 42)

• Less Than or Equal To: #if($foo <= 42)

• Equals Number: #if($foo = 42)

• Equals String: #if($foo = "bar")

EnterWorks Advanced VTL Mapping Guide

Page 40 of 44 Revised 10/2/2020

#foreach - Loops through a list of objects

Format:

#foreach($ref1 in $ref2) [statement...] #end

Usage:

• $ref1 - The first variable reference is the item.

• $ref2 - The second variable reference is the list that holds the items.

• statement - What is output each time Velocity finds a valid item ($ref1) in the

list ($ref2).

Velocity provides an easy way to get the loop counter so that you can do something like the

following:

<table>

#foreach($customer in $customerList)

 <tr><td>$velocityCount</td><td>$customer.Name</td></tr>

#end

</table>

The default name for the loop counter variable reference, which is specified in the

velocity.properties file, is $velocityCount. By default the counter starts at 1, but this can be set

to either 0 or 1 in the velocity.properties file. Here’s what the loop counter properties

section of the velocity.properties file appears:

Default name of the loop counter

variable refernce.

counter.name = velocityCount

Default starting value of the loop

counter variable reference.

counter.initial.value = 1

EnterWorks Advanced VTL Mapping Guide

Page 41 of 44 Revised 10/2/2020

#include - Renders local file(s) that are not parsed by Velocity

Format:

#include(arg[, arg2, ... argn])

• arg - Refers to a valid file under TEMPLATE_ROOT.

Examples:

• String: #include("disclaimer.txt", "opinion.txt")

• Variable: #include($foo, $bar)

#parse - Renders a local template that is parsed by Velocity

Format:

#parse(arg)

• arg - Refers to a template under TEMPLATE_ROOT.

Examples:

• String: #parse("lecorbusier.vm")

• Variable: #parse($foo)

Recursion permitted. See parse_directive.maxdepth in velocity.properties to change from parse

depth. (The default parse depth is 10.)

EnterWorks Advanced VTL Mapping Guide

Page 42 of 44 Revised 10/2/2020

#stop - Stops the template engine

Format:

#stop

Usage:

This will stop execution of the current template. This is good for debugging a template.

#macro - Allows users to define a Velocimacro (VM), a repeated segment of a
VTL template, as required

Format:

#macro(vmname $arg1[, $arg2, $arg3, ... $argn]) [VM VTL code...] #end

• vmname - Name used to call the VM (#vmname)

• $arg1 $arg2 [...] - Arguments to the VM. There can be any number of

argumentss, but the number used at invocation must match the number specified

in the definition.

• [VM VTL code...] - Any valid VTL code, anything you can put into a template,

can be put into a VM.

Once defined, the VM is used like any other VTL directive in a template.

#vmname($arg1 $arg2)

VMs can be defined in one of two places:

1. Template library: can be either VMs pre-packaged with Velocity or custom-

made, user-defined, site-specific VMs; available from any template

2. Inline: found in regular templates, only usable when

velocimacro.permissions.allowInline=true in velocity.properties.

EnterWorks Advanced VTL Mapping Guide

Page 43 of 44 Revised 10/2/2020

6.3 Comments

Comments

Comments are not rendered at runtime.

Single Line Example:

This is a comment.

Multi-line Example:

#*

This is a multiline comment.
This is the second line
*#

EnterWorks Advanced VTL Mapping Guide

Page 44 of 44 Revised 10/2/2020

References:

 Ja-Jakarta Project Velocity Users Guide, HTTP://www.jajakarta.org., Copyright © 1999-2002,
The Apache Software Foundation

Ja-Jakarta Project VTL Reference, HTTP://www.jajakarta.org., Copyright © 1999-2002, The
Apache Software Foundation

EnterWorks Users Guide, HTTP://www.enterworks.com., Copyright © 2010, EnterWorks Inc.

http://www.jajakarta.org/
http://www.jajakarta.org/
http://www.enterworks.com/

