

Precisely EnterWorks

EnterWorks 10.4.8 Change Notification
Administration Guide

Version 10.4.8

EnterWorks 10.4.8 Change Notification Administration Guide

2

Notices
Copyright 2007, 2022 Precisely.

Trademarks

"EnterWorks" and the "EnterWorks" logo are registered trademarks and "Enable PIM", "EnterWorks
PIM", "EnterWorks Process Exchange" and "EnterWorks Product Information Management" are
trademarks of Precisely.

Third-party Acknowledgments

Windows, .NET, IIS, SQL Server, Word, and Excel are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Java and all Sun and Java based trademarks are trademarks or registered trademarks of the Oracle
Corporation in the United States and other countries.

Oracle is a registered trademark and Oracle 10g is a trademark of Oracle Corporation.

Pentium is a registered trademark of Intel Corporation in the United States and other countries.

JBoss is a registered trademark of Red Hat, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

All icons and graphics, with the exception of the "e." logo, were obtained from West Coast Icons and
Design at http://www.bywestcoast.com.

EnterWorks 10.4.8 Change Notification Administration Guide

3

Table of Contents

Change Notification .. 5

Overview ... 5

Architecture .. 5

Installation and Initial Configuration .. 6

Integrate Change Notification Trigger .. 7

Registering the Change Notification Trigger ... 7

Updating an Existing Trigger for a Repository .. 7

Managing Multi-Language Attributes in Existing Trigger.. 9

Registering Change Notification as a PreSave Validation Rule ... 10

Activating Debug Logging .. 10

CN_Registry Repository .. 10

Summary Tab .. 11

Conditions Tab .. 12

Attributes Tab ... 13

Update Tab .. 16

Transformation Tab .. 18

Log Tab .. 20

Translation Tab ... 23

Email Tab ... 24

Workflow Tab .. 27

CN_Log Repository .. 29

Reporting Using Scheduled Exports .. 30

Transformation Extension ... 33

Overview ... 33

CN_Transformation_Repository ... 33

Summary Tab .. 33

Target Tab ... 35

Condition Tab .. 37

Future Tab ... 41

SQL Expressions .. 41

Example Transformations ... 42

Rollup Attribute... 42

EnterWorks 10.4.8 Change Notification Administration Guide

4

Cascade Attribute.. 47

Language Translation Extension ... 50

Overview ... 50

Change Notification Translation Registry ... 51

Summary Tab .. 51

Attributes Tab ... 53

Change Notification Translation Queue .. 54

Change Notification Translation Log Repository .. 56

Translation Request File .. 58

Translation Request Scheduled Export ... 60

Translation Request Log Update Scheduled Import ... 63

Translation Queue Cleanup Scheduled Export ... 65

Translation Queue Update Scheduled Import .. 65

Translation Queue Update Response Template ... 69

Translation Language Update Import Templates ... 70

SQL-Based Reports .. 70

Reports Using the CN_Reports Repository and Scheduled Export ... 71

CN_Reports Repository ... 72

Summary Tab .. 72

Attributes Tab ... 74

Report Scheduled Export .. 75

Launch Report Scheduled Export .. 75

Report Scheduled Export .. 76

Change Report Processing .. 76

EnterWorks 10.4.8 Change Notification Administration Guide

5

Change Notification

Overview
The Change Notification module provides the ability to track changes made to designated attributes in
designated repositories and take one or more of the specified notification actions:

- Update designated attributes with the specified values in the changed record
- Log change details to the Change Notification Log
- Send e-mail to the designated addressee(s)
- Launch work items in designated workflows
- Facilitate sending Language Translation Requests to an external language translating service.
- Update designated attributes with the specified values in target repository records associated to

the changed record
- Facilitate transformations to designated attributes based on values and conditions defined in a

Change Notification Transformations repository
- Create, update, delete repository records based on the changed record

Architecture
The following diagram illustrates the Change Notification architecture:

Change
Notification

Registry

Monitored RepositoryMonitored RepositoryMonitored Repository Monitored Repository

Change Notification Log

Change
Notification
Processing

Change
Notification

Queue

Change
Notification

Queue
Processor

Email Queue

U
pd

at
es

C
ha

ng
es

Email Queue
Processor

EnterWorks 10.4.8 Change Notification Administration Guide

6

The Change Notification Registry identifies which repositories and attributes are to be monitored and
what actions are to be taken when changes are detected. The Change Notification Processing is invoked
any time a repository record is created, modified or deleted. It uses the details in the Change
Notification Registry to determine if any action needs to be taken.

• Email - notifications are placed into the Email Queue (table). The Email Queue Process (EPX
workflow) retrieves the queued messages and packages them into e-mails based on common To
address and Subject text.

• Log - The Change Notification Queue is used to log the details of the changes in order to
minimize the performance impact of the original operation that invoked the Change Notification
Processing. Since a single update to a repository record could result in multiple updates to the
change log (one for each changed attribute), inserts into a SQL table are significantly faster than
inserts into an Enable repository. A background (EPX) process monitors the Change Notification
Queue for new records and moves them to the Change Notification Log repository(ies). In high-
volume change scenarios (e.g., large file imports or mass edits), there may be a backlog of
pending changes in the Change Notification Queue that takes a while to move to the Change
Notification Log repository(ies).

• Update – the specified updates are made to the record that triggered the change notification

• Work Item – work item requests are placed in the Work Item Queue (table). The Change
Notification Process (EPX Workflow) retrieves the queued requests and launches work items for
each on based on the details specified in the queued request

• Language Translation – identifies an entry in the language translation registry
(CN_Translation_Registry) that defines the language translation configuration for a repository.

• Transform – identifies transformations that are to be conditionally made to attributes in the
record that triggered the change notification or to attributes in a record that is linked to the
record that triggered the change notification. The conditions would be based off values in the
changed record or the record linked to the changed record. Transformations can also be
configured to create or delete records in a repository.

Installation and Initial Configuration
The following sections detail the steps necessary to install and initially configure the Change Notification
processing. The necessary files, database tables and stored procedures, and data model (profiles,
repositories, and code sets) should all be pre-installed with the Services Framework installation. The
only configuration step required is to register the Change Notification trigger with each repository in the
sharedConfig.properties file or on the Edit -> Trigger Properties operation in the Classic UI.

EnterWorks 10.4.8 Change Notification Administration Guide

7

Integrate Change Notification Trigger
The Change Notification processing requires the Change Notification Trigger be invoked (directly or
indirectly) for each repository for which Change Notification processing is to be enabled. If a repository
already has a trigger defined for it, that trigger must be updated to call the Change Notification trigger
as a final step before saving any updates to the changed record.

Registering the Change Notification Trigger
If a repository to be monitored does not currently have a trigger defined for it, the Change Notification
Trigger must be registered by performing the following steps:

1. Edit each sharedConfig.properties file for each Enable Server Tomcat and JBoss services.
2. Make sure the property allow.external.event.handler is set to “true”.
3. Add an entry to the property external.event.handlers. Entries must be separated by commas

with no spaces. The name chosen will be used in the subsequent properties (referenced in this
document as “<repo>”). For example, if the PIM_Item_Staging repository is to be monitored, an
appropriate name would be “itemStaging” and the property:
external.event.<repo>.target.repository would be defined as:
external.event.itemStaging.target.repository=PIM_Item_Staging

4. Add the following properties below the external.event.handlers property:

external.event.<repo>.type=0
external.event.<repo>.sync=true
external.event.<repo>.passInDBSessionInd=true
external.event.<repo>.classname=com.enterworks.services.changenot
ification.ChangeNotificationTrigger
external.event.<repo>.target.repository=<actualRepositoryName>

Note: In general, all triggers should be defines as synchronous
(external.event.<repo>.sync=true). If there is a need for a Tomcat trigger to be asynchronous,
set this flag to false. The JBoss triggers MUST be defined as synchronous.

5. Alternatively, edit the Trigger Properties for the repository in the Classic UI:
a. Check the Trigger Enabled checkbox.
b. Set the External Handler Class to:

com.enterworks.services.changenotification.ChangeNotificationTrigger
c. Set the External Handler PassIn DBSession Indicator to: True
d. Set the External Handler Sync to True:
e. Click Save.

6. Repeat the above steps for each repository to be monitored.

Updating an Existing Trigger for a Repository
If a repository to be monitored already has a trigger registered for it, that trigger should be updated to
call the Change Notification trigger to keep the overhead processing to a minimum. A second trigger
can be defined for the repository, but this will result possibly two new versions of the record being
created for each change.

EnterWorks 10.4.8 Change Notification Administration Guide

8

To integrate the Change Notification Trigger into an existing trigger, perform the following steps:

1. Edit the sharedConfig.properties file for each Enable Server Tomcat and JBoss service.
2. Make sure the existing trigger is configured to pass the DB session to the trigger by the

external.event.<repo>.passInDBSessionInd property being set to true. If it is not defined or is
set to false, change it to true. This will also require the trigger doWork() method to be updated.

3. Edit the source file for the existing trigger.
4. Make sure the doWork() method has the following signature:

 public void doWork(String repositoryName, long itemId, int action, ItemObject
currentItem, List diffList, org.hibernate.Session hibernateSession, Connection conn)
 throws Exception

5. Define a BsessionEpimHelper instance with the following code:

CustomRepositoryItem itemData =
(CustomRepositoryItem)currentItem;

// Change the session to admin user
Bsession bSession = EpimCustomHelper.getAdminBsession();
itemData.setCurSession(bSession);
HashMap<String, String> itemChanges = new HashMap<String,
String>();

// Create session helper using existing session and DB connection
BsessionEpimHelper bsessionEpimHelper =
BsessionEpimHelper.getInstance(bSession, conn, hibernateSession);

// Retrieves all changes including to non-default languages in
multi-language attributes:
HashMap diffMap = ChangeNotificationTrigger.getCurDiffMap(
diffList, itemData);

Note: The current session should be changed to the admin user to ensure attribute security
does not interfere with trigger operations.

6. After the existing New/Modify processing, add the following statement:

// Honor any change notifications

 itemChanges.putAll(ChangeNotificationTrigger.processChangeNotific
ations(repositoryName, itemId, itemData, action, bsessionEpimHelper,
diffMap, itemChanges, null));

EnterWorks 10.4.8 Change Notification Administration Guide

9

// Save any changes
if (itemChanges.size() > 0) {
 if (debugEnabled) appLogger.severe(
"AutoCalculateTrigger.doWork: saving changes: " + itemChanges);
 itemData.updateItemDataByFormatAttrHash(itemChanges, false);
}

7. Recompile the trigger source file
8. Repeat the above steps for each existing trigger.

Managing Multi-Language Attributes in Existing Trigger
If the existing trigger deals with non-default multi-language values, the getCurDiffMap() includes them
using the following naming convention: F_<formatAttrId>_<langExt> where <formatAttrId> is the
internal ID for the attribute and <langExt> is the language extension. This is the form the attribute name
must be in order to update a non-default multi-language attribute. The Change Notification class has a
method that provides lookup maps to facilitate dealing with multi-language attributes:

ChaneNotificationTrigger.getMultiLanguageAttributesForRepository(DBQue
ry dbQuery, String repositoryName, ArrayList<String>
multiLanguageSystemNames, HashMap<String,String>
extensionForSystemName, HashMap<String,String> attributeForSystemName,
HashSet<String>languageExtensions, HashMap<String,String>
systemNameForAttributeWithExtension);

• dbQuery – the caller must pass in a valid DBQuery object

• repositoryName – name of the repository being processed by the trigger

• multiLanguageSystemNames – empty ArrayList to be populated with the list of the system
names (e.g., F_100000_es) for all multi-language attributes.

• extensionForSystemName – empty HashMap to be populated with a lookup for the extension
for each system name (e.g, es for F_100000_es)

• attributeForSystemName – empty HashMap to be populated with a lookup for the attribute
name for each system name (e.g., Brand Name for F_100000_es)

• languageExtensions – empty HashSet to be populated with a list of only the active multi-
languages (except the default)

EnterWorks 10.4.8 Change Notification Administration Guide

10

• systemNameForAttributeWithExtension – empty HashMap to be populated with a lookup for
the system name for each user-friendly attribute name with language extension (e.g.,
F_100000_es for Brand Name_es)

Registering Change Notification as a PreSave Validation Rule
The Change Notification functionality can be invoked using a PreSave Validation rule by performing the
following steps:

1. Edit the profile of the repository for which Change Notification processing is to be enabled.
2. Add a validation rule to an attribute in the profile.
3. Set the Type to Pre-Save Callout
4. Set the Class Path to:

com.enterworks.services.changenotification.ChangeNotificationPreSaveValidation
5. Edit the Rule Properties for the repository.
6. Assign the new validation rule.
7. Clear the Data Cache

Activating Debug Logging
Debug logging for the Change Notification functions is controlled by the property
debug.ChangeNotificationEnabled being set to true in the Enterworks.properties file. Services must be
restarted for any property file changes to go into effect.

WARNING: Having the debug logging enabled may have a detrimental impact to performance.
It is recommended to rely on the debug logging while developing a Change Notification-based
solution, and then disabling the logging after development and sufficient testing has been
completed.

CN_Registry Repository
The CN_Registry repository defines the registered change notifications and their actions. Each record in
the repository represents changes being monitored and what actions are to be taken. Typically, there
will be only one registration for each monitored repository but there may be situations where having
more than one registration is warranted. For example, if different actions are needed depending upon
which attributes are changed, each different set of attributes and their actions would be specified in
separate CN_Registry records.

EnterWorks 10.4.8 Change Notification Administration Guide

11

The following sections provides detailed information on each attribute in this repository, grouped by
tabs.

Summary Tab
The Summary tab identifies the basic information for the registry entry, including registration name,
repository being monitored, whether the registry entry is active and its processing order (when multiple
registry entries are defined for the same repository):

CN_Name - is a logical name for the registry entry. If there is only one change notification registered for
a repository, the name will likely be set to match the name of the repository. If a repository has multiple
registrations, the name should reflect the nature of the registered notification. For example, if the Item
Staging repository has a set of attributes that require manager review and another set of attributes that
only need to be logged, two CN_Registry records would be created with the first having a name of “Item
Staging Review” and the second having the name “Item Staging Log Only”

CN_Description - Optional description for the registry record. It is strongly recommended that a
description be specified and kept up-to-date when changes are made to the record.

CN_Repository_Name - Name of the repository to which the registered change applies. The Drop-down
selection list shows all repositories defined in the system, but only those that have been configured for
the Change Notification trigger or pre-save validation rule will be processed.

CN_Active - The CN_Registry record is active if Yes and ignored if No.

CN_ID - Internal ID for the registered change. This value will be specified in the CN_Registry_ID for any
record in the CN_Log repository that originated from this registered change.

CN_Sequence - Determines the order registry records for the same repository are processed. The order
may be significant. For example, if one registered change updates an attribute that needs to be logged

EnterWorks 10.4.8 Change Notification Administration Guide

12

by another registered change, the update change needs to have a lower sequence number than the log
change.

CN_Validate_Record – Causes the trigger record to be validated one time (in cases where there are
multiple CN_Registry records for the same repository) before performing any Change Notification
processing if Yes. The intent of this option is to ensure the trigger record has been validated in case a
Transformation rule needs to obtain the records validation status. If this is not needed in any
Transformation rules, then this attribute should be set to No.

Conditions Tab
The Conditions tab specifies any conditions that must be met before any action is taken for a repository
record.

CN_Create_Only – Specifies that the change is only triggered on new records if Yes, otherwise it is
triggered on updates and on new records (if CN_Update_Only is not Yes). Both CN_Create_Only and
CN_Update_Only cannot be set to Yes.

CN_Update_Only – Specifies that the change is only triggered on updates if Yes, otherwise it is triggered
on updates (if CN_Create_Only is not Yes) and on new records. Both CN_Create_Only and
CN_Update_Only cannot be set to Yes.

CN_Condition_Grouping - Specifies whether the multiple conditions are grouped by AND, meaning all
conditions must be met, or OR meaning any condition must be met.

CN_Condition_Attribute_Name - Name of the attribute for which a condition is defined. The condition
must be evaluated as “true” in order for the actions in this registry record to be applied.

Conditions can only be defined on the default language – other languages cannot be specified.
Generally, the conditions determine whether the particular record is subject to a registered change

EnterWorks 10.4.8 Change Notification Administration Guide

13

notification. This would typically be an attribute (or attributes) containing a value for the default
language only.

CN_Condition_Operator - Specifies the condition operator for the CN_Condition_Attribute_Name.
Must be one of the following:

• = - The value of an attribute exactly matches the specified value
• <> - The value of an attribute does not exactly match the specified value.
• Begin With – the beginning of the value of an attribute matches the designated value.
• End With – the ending of the value of an attribute matches the designated value
• IN – the value of an attribute matches one of the values in the designated delimited list
• Is Empty – the designated attribute has no value
• Is Not Empty – the designated attribute as any value

CN_Condition_Attribute_Value - Value to be compared to the actual value of the attribute identified by
CN_Condition_Attribute_Name when the CN_Condition_Operator is =, <>, Begin With, End With or IN.
Multiple values can be specified for the IN operator by separating them with commas (no spaces).

CN_Delete_Only – specifies that the change is only triggered on deletes if Yes. Requires
CN_Create_Only and CN_Update_Only to be set to No.

Attributes Tab
The Attributes tab identifies the attributes in the repository being monitored for changes or to be logged
any time there is a change:

EnterWorks 10.4.8 Change Notification Administration Guide

14

This list of attributes excludes the multi-language attributes to be processed for language translation –
these attributes are defined in the named CN_Translation_Registry record.

CN_Attribute_All_Action - Specifies the action to be taken on all attributes in the repository. This
eliminates the need to list every attribute in the CN_Attribute_Name attribute. If a new attribute is
added to the repository, it will automatically be included:

• Changed – take action on a change being made to any attribute in the repository but only log
attributes that have actually changed. If specific attributes should always be logged, they must
be listed in the CN_Attribute_Name list with the corresponding CN_Attribute_Log_Always set to
Yes.

• Changed with Multi-Language – take action on a changed being made to any attribute in the
repository including the non-default Multi-Language extensions.

• Log Always – log the values of each attribute in the repository. If this option is set, at least one
attribute must be specified in the CN_Attribute_Name list to trigger the notification processing.

• Log Always with Multi-Language – log the values of each attribute in the repository including all
active language extensions for Multi-Language attributes. If this option is set, at least one
attribute must be specified in the CN_Attribute_Name list to trigger the notification processing.

CN_Attribute_Name - The attribute CN_Attribute_Name identifies each attribute to be monitored or
logged. Changes to attributes not in this list will be ignored unless CN_Attribute_All_Action is set.
Required if CN_Attribute_All_Action is not set.

CN_Attribute_Log_Always - Specifies whether the corresponding attribute in the CN_Attribute_Name
list is always logged (if other attributes in the list have changed) or only when there is a change. If the

EnterWorks 10.4.8 Change Notification Administration Guide

15

log always attribute has not changed, the Old Value and New Value will be the same. If
CN_Attribute_All_Action is set, attributes listed here will override the All Action setting. For example, if
CN_Attribute_All_Action is set to “Changed”, attributes will only be logged if changed, unless listed here
with CN_Attribute_Log_Always being set to “Yes”.

CN_Attribute_Language – Optionally defines the language extension for each attribute being monitored
(if it is not the default language) for multi-language attributes. For example, to monitor changes to the
Spanish version of Long Description, the CN_Attribute_Language would be set to “es”. The “All” option
indicates that all active languages are to apply. Unless the CN_Attribute_All_Action attribute is set to
“Changed with Multi-Language” or “Log Always with Multi-Language”, the only way to trigger or log
non-default language values is by explicitly listing the attribute and language extension (with All
indicating all active languages should be included):

CN_External_Attributes_SQL – Optional SQL Statement that returns a single row of additional data
(from other repositories) that is connected to the changed record. Each column in the SELECT
statement is captured and logged as additional attributes. This allows for contextual information to be
recorded at the time of the original record was changed since retrieving the linked values at report time
may be different from when the original change was logged.

The SQL statement may contain any valid SQL for a SELECT query. Data from the changed record can be
included in the statement through named references (denoted by the attribute name surrounded by
double pipe-characters). These references are resolved before the SQL statement is executed. If the
value needs to be treated as a character value in the query, it must be surrounded by single quotes.

For example, if the Enable data model has a Product repository linked to an Item repository by an
alphanumeric ID and changes to Item records need to record the Product Group Name (from the
Product record), the following SQL can be used to retrieve that information:

SELECT Product_Group_Name FROM _PIM_Product_Staging WHERE
Product_ID = '||Product ID||'

All external attributes will show the same value for the Old and New values in the log.

The external attributes are populated prior to the processing of the conditions on the Conditions tab.
This means an external attribute can be used to determine whether the CN_Registry is processed. It
also means the external attribute SQL is always executed so its performance/efficiency needs to be a
primary consideration.

If the name of a column in the query matches the name of an attribute in the monitored repository, the
external attribute should be aliased to something unique. For example, if the Product repository and
the Item repository both have a “Publication Status” attribute and both need to be logged, the SQL
statement must alias the attribute:

SELECT Publication_Status as [Product Publication Status],
Product_Group_Name FROM PIM_Product_Staging WHERE Product_ID =
'||Product ID||'

EnterWorks 10.4.8 Change Notification Administration Guide

16

If the SELECT statement may return more than one row, only the first record retrieved will be used – the
subsequent records will be ignored. If the values of the field(s) being retrieved may be different, the
SQL must be structured such that the value from the desired record is returned first in the results.

In addition to referencing any attribute in the monitored repository, the SQL may also contain the date
and time stamp of when the change was made by specifying the reserved reference
||CURRENT_DATETIME||. This is resolved to the current date and time in the format
yyyyMMddHHmmssSS. Alternative formats can be specified by using the Java class SimpleDateFormat’s
notation. For example, to only include the date in mm/dd/yyyy format, the reference must be
||CURRENT_DATETIMEMM/dd/yyyy||.

Update Tab
The Update tab specifies any attributes in the changed record that are to be updated to specified values:

CN_Update_Group – List of Groups to which an update would be applicable if the user who triggered
the change is a member of one or more the specified groups. If the user is not a member of any group,
the update does not occur. If no groups are specified, then the update occurs for all users.

CN_Update_Attribute_Name - List of attributes in the changed record to be updated on change. This
must exactly match the name (including case) in the repository.

CN_Update_Attribute_Value - The value to change the corresponding attribute. The value can be a
literal (e.g., setting the attribute “Review Record” to “Yes”) a field reference (surrounded by double
pipe-characters) or a combination of the two.

If the value of the non-external attribute has been modified by a previous CN_Registry update or an
implementation-specific trigger that was processed before invoking the Change Notification Processing,
the updated value will be used. For example, if three CN_Registry records are defined for the same
repository and the first one updates the attribute “Record Status”, references to that attribute in

EnterWorks 10.4.8 Change Notification Administration Guide

17

subsequent CN_Registry records will use the new value. The final value will be saved to the repository
record when all processing has completed.

The following field references can be specified.

Reference Description

||<attributeName>|| Replaced by the value of the specified attribute or
external attribute.

||<attributeName>_NEW_VALUE|| Replaced by the new value for the specified
attribute.

||<attributeName>_<langExt>_NEW_VALUE|| Replaced by the new value for the specified non-
default multi-language attribute for the specified
language extension.

||<attributeName>_OLD_VALUE|| Replaced by the old value for the specified attribute

||<attributeName>_<langExt>_OLD_VALUE|| Replaced by the old value for the specified non-
default multi-language attribute for the specified
language extension.

||CURRENT_DATETIME[<format>]|| Replaced by the current date and/or time. The
default format is MMDDYYYYHHmmssSS. Any valid
SimpleDtetimeFormat can be specified between
“CURRENT_DATETIME” and the ending double-pipe
characters. For example, to return just the date
with no punctuation:
||CURRENT_DATETIMEyyyyMMdd||

||CHANGED_BY|| Replaced by the login ID of the user who made the
change.

||CHANGE_DETAIL_CSV||

||CHANGE_DETAIL_HTML||

||CHANGE_DETAIL_PLAIN||

EnterWorks 10.4.8 Change Notification Administration Guide

18

Reference Description

||CHANGE_LIST_<delimiter>||

Builds a delimited list using the specified delimiter
character of the names of the attributes that have
changed. This reference should only be used in an
Update list. It is assumed the target attribute will
contain a delimited list of attribute names that were
previously changed since the last reset-event.
A pipe delimiter must be specified as “PIPE” and the
comma delimiter must be specified as “COMMA”.
If the target attribute already has a value, the new
attributes are added to the list if not already
present. The attribute should be cleared when the
appropriate event occurs, such as a Delta Export of
changed records.
For example, to build a tilde-delimited list, specify:
||CHANGE_LIST_~||. To build a comma-delimited
list, specify: ||CHANGE_LIST_COMMA||. To build a
pipe-delimited list, specify: ||CHANGE_LIST_PIPE||.

||CHANGE_LIST_RESTRICTED_<delimiter>|| Same as CHANGE_LIST_<delimiter> except the list
contains the restricted names for the attributes.

||ERROR_LIST_<delimiter>||

Builds a delimited list using the specified delimiter
character of the names of the attributes that have
validation errors (warning or severe). This reference
should only be used in an Update list. This assumes
the CN_Registry attribute CN_Validate_Record must
be set to Yes, otherwise no attributes will be listed.
A pipe delimiter must be specified as “PIPE” and the
comma delimiter must be specified as “COMMA”.
For example, to build a tilde-delimited list, specify:
||ERROR_LIST_~||. To build a comma-delimited
list, specify: ||ERROR_LIST_COMMA||. To build a
pipe-delimited list, specify: ||ERROR_LIST_PIPE||.

||InternalRecordId|| Returns the internal record ID of the trigger record

Transformation Tab
The Transformation tab identifies the transformations that are to be performed in association with the
registered change event.

EnterWorks 10.4.8 Change Notification Administration Guide

19

CN_Transformation_Name - Identifies the CN_Transformation_Registry entry to be processed. The
drop-down selection list will show all defined CN_Transformation_Registry record names, which means
the transformation registry records need to be created first. Multiple transformations may be identified
on this tab – each named transformation will be processed independent of any other in the same
Change_Notification_Registry record. For example, if three transformations are named and the first has
no conditions met for performing any transformation, the other two will still be processed. Each named
transformation may have a different target repository record that differs from the record that triggered
the change event, which merely identifies when the set of transformations are to be performed. If a
transformation target is a different repository record, it must be associated to the triggered record (i.e.,
it must be linked).

When the transformation rules reference the event trigger attributes and those attributes have been
updated by CN_Registry Update operations or prior CN_Transformation_Registry rules (for the same
event), the updated attribute values will be used. The CN_Registry Update is performed before the
Transformation. For example, if the CN_Registry Update changes the value of the attribute “Approval
Required” to “Yes”, any linked CN_Transformation_Registry rule that references ||Approval Required||
will use the value “Yes”.

Transformation Rules - The Transformation Rules list shows all linked transformation rules for the
CN_Registry record being edited. These rules are listed in the order of the rule sequence. But since
each rule might have more than one condition defined and the list can only sort on one attribute, the
conditions may not be in the defined order. To view the rules in the proper order (and to more-easily
edit them), click on the Edit Transformation Rules button above the list:

EnterWorks 10.4.8 Change Notification Administration Guide

20

The CN_Transformation_Registry tab will show only the Transformation rules linked to the CN_Registry
record being edited:

Log Tab
The Log tab controls whether changes are logged to the CN_Log repository:

EnterWorks 10.4.8 Change Notification Administration Guide

21

CN_Log_Changes - Specifies changes are to be logged to the CN_Log repository if Yes.

CN_Log_Group - Lists the applicable groups for which the changes are to be logged. If the user is not a
member of any of the specified groups, the change is not logged. If left blank, then all changes are
logged, regardless of who made the change.

CN_Log_In_Sync_Only – Change events are logged to the CN_Log repository only when the Staging
record is in Sync with Production if Yes. This has the effect of only logging the set of changes when the
Staging record is promoted to Production. Normally the log messages are placed in the queue when
changes are made to the Staging repository records and are soon dequeued and added to the CN_Log
repository. Since the Change Notification cannot operate on Production repositories (due to triggers not
being invoked during the promotion operation), delaying the dequeue and logging of change events
provides a method of logging and reporting changes made to a promoted record. When a Staging
record is promoted to production, its Record State will be changed to In Sync. At that point, any queued
change events will be logged to the CN_Log repository. The next time a report export runs, it will pick
up all of the changes made to the Production record since the last promotion. This assumes that the
reporting is run after each promotion.

If a scheduled export is set up as a delta export on the CN_Log repository for events associated with the
delayed sync option, all of the changes made to the record (with the final ones in the batch of records
reflecting the final values) in the Production repository. The following table visually illustrates the
events over a period of time:

EnterWorks 10.4.8 Change Notification Administration Guide

22

Event Sync State

Change
Notificatio
n Queue
Dequeue

Action

Attr A
Old

Value

Attr A
New
Value

Attr B
Old

Value

Attr B
New
Value

Production
Report Attr

A Old
Value

Production
Report Attr

A New
Value

Production
Report Attr

B Old
Value

Production
Report Attr

B New
Value

Record in
Sync with
Production In Sync Dequeue one one a a one one a a
Update
Staging Not In Sync Hold one two a a
Update
Staging Not In Sync Hold two three a b
Update
Staging Not In Sync Hold three four b b
Promote to
Production In Sync Dequeue one four a b
Update
Staging Not In Sync Hold four five b c
Update
Staging Not In Sync Hold five six c c
Promote to
Production In Sync Dequeue four six b c

As the table shows, once a record in Staging has been modified, it’s sync status indicates not in-sync
with Production. Any changes made to the staging record that are queued to the Change Notification
log would remain in the queue until the record is promoted. Once the record is promoted, all the
queued change events would be dequeued and inserted into the CN_Log repository.

The Change Notification dequeue operation (which is launched every 5 minutes by default) is expected
to run frequently enough that there would not be time for a staging record to have subsequent changes
after it has been promoted, which would prevent the pending records from being dequeued.

Once the records have been stored in the CN_Log repository, a SQL-based delta export can extract the
old value from the oldest new record and the new value from the newest new record for a given
attribute to obtain an accurate picture of the changes of the records in Production since the last report
was generated.

In order for all changes for a promoted record to be logged, it is essential that the Staging record not be
modified before the dequeue operation has been able to retrieve all of the queued events for the
record. This is best accomplished by either having the promotion operation run after normal business
hours.

If a Staging record is promoted to Production multiple times during a single reporting period, the report
will not identify the specific changes that were made for each promotion, only the changes made for all
promotions since the last report was generated. If there is a requirement to report the changes for each
promotion, the report must be run after each promotion (allowing sufficient time for all queued changes
to be dequeued and logged).

CN_Log – Lists the records in the CN_Log repository that were generated for the CN_Registry record
being edited. Since the number of records is likely to be quite large, it is not practical to view them in
this list. To view the log messages, click the View Log Records button:

EnterWorks 10.4.8 Change Notification Administration Guide

23

The CN_Log tab will appear, showing only the log entries that were generated for the CN_Registry
record being edited:

The list displays the entries in reverse-chronological order, with the latest entry at the top.

Translation Tab
The Translation tab identifies whether language translation is to be performed for changes to the record
and identifies the translation registry entry to be used:

EnterWorks 10.4.8 Change Notification Administration Guide

24

CN_Translation_Name - Identifies the CN_Translation_Registry entry to be processed. The drop-down
selection list will show all defined CN_Translation_Registry record names, which means the translation
registry record needs to be created first.

Translation Rules – Lists the translation rules defined for this CN_Registry record.

Translation Log – Lists the translation log messages for this CN_Registry record. It is not practical to
view the log entries from the detail editor. Clicking the View Translation Log button opens the
CN_Translation_Log repository for this CN_Registry record.

Email Tab
The Email tab specifies whether a notification e-mail should be generated and to whom it should be sent
and what it should contain:

EnterWorks 10.4.8 Change Notification Administration Guide

25

CN_Send_Email - Specifies e-mail notification should be sent if Yes

CN_Email_Group - Lists the groups to which the user making the change must be a member in order for
an e-mail to be sent. If the list is empty, then the e-mail will be sent regardless of who made the
change.

CN_Email_To - List of e-mail addresses to which the e-mail is to be sent.

CN_Email_Subject - Subject line for the e-mail.

CN_Email_Body - Message body in the e-mail.

The To, Subject and Body fields can have literal text, references to attributes (or external attributes)
surrounded by double-pipe characters. They can also include special fields including the ones defined
under the Update Tab as well as the ones below.

EnterWorks 10.4.8 Change Notification Administration Guide

26

• CHANGE_DETAIL_PLAIN – replaces the reference with the list of changes in the format:

<attribute1Name>: old=<oldValue>,
new=<newValue>;<attribute2Name>: old=<oldValue>, new=<newValue>

• CHANGE_DETAIL_CSV – replaces the reference with a CSV-formatted list:

<attribute1Name>,<oldValue>,<neValue>
<attribute2Name>,<oldValue>,<newValue>

• CHANGE_DETAIL_HTML – replaces the reference with a block of HTML table rows:

<tr><td><attribute1Name></td><td><oldValue></td><td><newValue></t
d></tr>
<tr><td><attribute2Name></td><td><oldValue></td><td><newValue></t
d></tr>

The HTML reference should be surrounded by <table></table> tags as well as <html></html>
tags. By default the generated e-mail is in plain text unless the body contains the literal value
“<html>” then HTML formatting will be processed.

For example, the following CN_Email_Body value:

<html>
<pre>
The Product Group with ID=||Product Group ID|| has the following
changes: ||CHANGE_DETAIL_PLAIN||

In CSV Form:

Attribute Name,Old Value,New Value
||CHANGE_DETAIL_CSV||
</pre>

In HTML Form:
<table border="1">
<tr><th>Attribute Name</th><th>Old Value</th><th>New
Value</th></tr>
||CHANGE_DETAIL_HTML||
</table>
</html>

Produces the following e-mail message:

The Product Group with ID=9916 has the following changes: Prod Grp
Hdr: old=Oil Burner Combustion Test Kit, new=Oil Burner Combustion Test
Kits; Prod Grp Subhdr: old=headers here, new=headers here with more
text; Applications: old=apps here, new=applications list here;

EnterWorks 10.4.8 Change Notification Administration Guide

27

Specifications: old=specs here, new=specifications; Features:
old=features here, new=list of features

In CSV Form:

Attribute Name,Old Value,New Value
Prod Grp Hdr,Oil Burner Combustion Test Kit,Oil Burner Combustion Test
Kits
Prod Grp Subhdr,headers here,headers here with more text
Applications,apps here,applications list here
Specifications,specs here,specifications
Features,features here,list of features

In HTML Form:

Attribute Name Old Value New Value

Prod Grp Hdr Oil Burner Combustion Test Kit Oil Burner Combustion Test Kits

Prod Grp Subhdr headers here headers here with more text

Applications apps here applications list here

Specifications specs here specifications

Features features here list of features

Email messages generated in rapid succession with the same recipient list and subject line may
be combined into a single e-mail message with the contents of the message bodies
concatenated into a single body.

In general, it is recommended to only use e-mail notification when the frequency of change is
relatively low.

Workflow Tab
The Workflow tab specifies whether a work item should be initiated on the designated workflow and
include the designated properties:

EnterWorks 10.4.8 Change Notification Administration Guide

28

CN_Send_Work_Item - Specifies a work item should be initiated if Yes

CN_Work_Item_Group - Lists the groups to which the user making the change must be a member in
order for a work item to be initiated. If the list is empty, then the e-mail will be sent regardless of who
made the

CN_User_Name – login of the user on whose behalf the work item should be initiated. If this should be
the user who made the record change, then ||CHANGED_BY|| can be specified for the value. This user
must be identified as a participant in the designated starting point activity.

CN_Workflow_Name – name of the EPX workflow in which the work item is to be launched

CN_Activity_Name – name of the starting point activity in the designated workflow on which the work
item is to be launched

CN_Property_Name – name of a property to be defined in the work item. A maximum of 20 properties
can be defined. Any beyond the first 20 will be ignored.

CN_Property_Value – value for the designated property to be defined in the work item

WARNING – Given that a work item will be created for each qualifying record change, it would
be very easy to overwhelm the EPX workflow engine with events that create or update many
records in a batch, such as an import or mass edit operation. This should be mitigated by
either ensuring the EPX Workflow implementation can handle high-volumes of concurrent work

EnterWorks 10.4.8 Change Notification Administration Guide

29

items or the conditions and attribute settings on the CN_Registry record limit the changes that
cause a work item to be launched.

CN_Log Repository
If logging is enabled for one or more registered change notification, records will be produced in the
CN_Log repository for each attribute that has changed (or is designated to be displayed alongside a
change):

The following table provides detailed information on each attribute in this repository:

Attribute Name Description

CN_Action

Type of action:
• 0 - Create – record was created
• 1 - Update – record was modified
• 3 - Delete – record was deleted

CN_Attribute_Language Identifies the language for which the change was made if the
attribute is multi-language, otherwise blank.

CN_Attribute_Name Name of the attribute that was modified, or specified to be logged
always or derived from an external repository.

CN_Change_ID
Sequential ID of a specific change. If more than one
monitored/logged attribute was changed, all will share the same
change ID.

EnterWorks 10.4.8 Change Notification Administration Guide

30

Attribute Name Description

CN_Changed_By Login name of the user who initiated the change.

CN_Changed_Datetime Date and time of when the change was made.

CN_Internal_Record_ID
Internal ID of the record that was changed. This value can be used
when performing SQL queries to retrieve current data from the
record.

CN_Log_ID Unique ID for each CN_Log record.

CN_New_Value The current or new value for the attribute (at the time of the
change).

CN_Old_Value
The previous value for the attribute. For “allways log”attributes
that have not changed as well as external attributes, the old and
new values will be the same.

CN_PK1, CN_PK2, CN_PK3,
CN_PK4, CN_PK5

Primary key for the modified record. The number of key fields
defined depends on the repository. Many repositories will only
have a value in the first key field.

CN_Registry_ID ID of the CN_Registry record that was used to log the change.

CN_Repository_ID Internal ID of the repository in which the record was changed.

CN_Repository_Name Name of the repository in which the record was changed.

Reporting Using Scheduled Exports
Detailed reports can be generated from the CN_Log repository contents using the View (SQL) type of
Scheduled Export. The SQL for the export can pull information from the Change Notification Registry
and Log repositories as well as from any other repository to include contextual information:

EnterWorks 10.4.8 Change Notification Administration Guide

31

Change
Notification

Registry

Monitored Repository
Monitored Repository

Change Notification Log

Scheduled
Export

E-Mail

FTP

File

The complexity of the reporting is limited to the complexity of the SQL SELECT statement or Stored
Procedure that is defined to generate that report.

For example, to generate a report that includes key business fields for each change row:

Those attributes are first defined in the Change Notification Registry as Log Always:

EnterWorks 10.4.8 Change Notification Administration Guide

32

The Change Notification log will include those attributes and their values for each logged change:

Then using the PIVOT function in SQL Server, these entries can be converted to columns in the report:

select l.CN_Changed_By as [User], CN_Changed_Datetime as [Change Date],
CN_Repository_Name as Repository,
CN_PK1 as PK1, isnull(CN_PK2, '') as PK2, isnull(CN_PK3, '') as PK3,
isnull(c.Dept, '') as Dept, isnull(c.[Vendor #], '') as [Vendor #],
isnull(c.[Mfg. #], '') as [Mfg. #], isnull(c.Product, '') as [Product (aka JS#)],
CN_Attribute_Name as Attribute, isnull(CN_Old_Value, '') as [Prior Value],
isnull(CN_New_Value, '') as [New Value]
 from CN_Log l
left outer join (Select CN_Change_ID, Dept, [Vendor #], [Mfg. #], Product from
(SELECT CN_Change_ID, CN_Attribute_Name, CN_New_Value
 FROM (select CN_Change_ID, CN_Attribute_Name, CN_New_Value
 from CN_Log where CN_Attribute_Name in ('Dept','Vendor #','Mfg.
#','Product')) e
) AS X
PIVOT
(
MAX (CN_New_Value)
FOR CN_Attribute_Name IN (Dept, [Vendor #], [Mfg. #], Product)
) AS PivotTable) c
on c.CN_Change_ID = l.CN_Change_ID
 where not (l.CN_Attribute_Name in ('Dept','Vendor #','Mfg. #', 'Product') AND
l.CN_Old_Value = l.CN_New_Value)
 order by l.CN_Change_ID, CN_Attribute_Name

The above SQL query creates a pivoted table containing the data from only the change records for the
attributes: Dept, Vendor #, Mfg. #, and Product. This data is joined to the main log by the Change ID.
The same entries are excluded from the main entry unless they have been changed. This results in each
row of the report representing a changed value:

EnterWorks 10.4.8 Change Notification Administration Guide

33

To produce a delta report, showing only the changes since the previous report, the SQL must include the
condition comparing the Created column to the [DELTA_DATETIME] field:

where not (l.CN_Attribute_Name in ('Dept','Vendor #','Mfg. #', 'Product') AND
l.CN_Old_Value = l.CN_New_Value)
 and l.Created > '[DELTA_DATETIME]'

Transformation Extension
Overview
The Transformation Extension functionality leverages the Change Notification functionality to facilitate
conditionally updating attributes in the changed record or other record(s) that are linked to the changed
record, using values from the changed record or from another record that is linked to the changed
record. The Transformation definitions are intended to be managed by business users and not require
programming skills. Basic knowledge of SQL queries is a key requirement for accessing or updating
records linked to the changed record.

Each named Transformation is referenced by a CN_Registry entry that activates it. One or more records
are defined in the CN_Transformation_Registry

CN_Transformation_Repository
The CN_Transformation repository contains the transformation rules for one or more CN_Registry
record. Each record in this repository represents a single condition on a rule for a transformation.
Multiple conditions may be defined for a single rule and multiple rules may be defined for a single
Transformation.

Summary Tab
The Summary tab identifies the Transformation Name and Rule:

EnterWorks 10.4.8 Change Notification Administration Guide

34

CN_Transformation_Name – name of the transformation. This must match the
CN_Transformation_Name value in a CN_Registry entry. All records in the CN_Transformation_Registry
repository having the same CN_Transformation_Name will be processed together whenever a
repository record is changed for which a CN_Registry record applies AND that record references the
Transformation by this name.

CN_Transformation_Description – optional description for the transformation. Likely to be defined only
the first record for the Transformation but may have different values for each record to clarify the
transformation rule or condition

CN_Transformation_Rule_Name – name of the transformation rule. Multiple CN_Transformation
records may identify the same rule for the same Transformation. Multiple rules may be defined for the
same Transformation.

CN_Transformation_Rule_Exclusive – indicates the transformation rule is exclusive if Yes. Each
exclusive rule will only be processed if no previous transformation rule for the same transformation has
its conditions met. Each rule that is not exclusive will always be applied, regardless of whether any
previous rule has its conditions met. Only one exclusive transformation rule will be processed for a
given Transformation and given change event. The Transformation_Rule_Sequence can be used to force
the processing of exclusive rules before any non-exclusive rules in case there is a dependency. The
sequence can also be used in cases where some conditions may be common to multiple rules, but some
rules have additional conditions being sequenced first.

CN_Transformation_Rule_Sequence – specifies the order in which the transformation rules are
processed. This is only important if the Transformation_Rule_Exclusive is Yes.

For each rule for which the conditions are met, log the details of the rule that was applied to the log file
and perform the update(s) identified by the corresponding Target settings.

CN_ID – unique identifier for each CN_Transformation_Registry record

EnterWorks 10.4.8 Change Notification Administration Guide

35

Target Tab
The Target tab identifies what attribute in what repository record(s) to update and with what value if
the Rule conditions are met.

CN_Target_Repository – identifies the target repository to be updated if the Transformation rules
determine any changes should be made. This will typically be the same repository identified in the
CN_Registry entry that invokes this transformation. If the target repository is not the same, there must
the specific record(s) to be updated must be identified by either the CN_Target_SQL attribute.

CN_Target_Attribute_Name – name of the target attribute to be updated by the transformation.

CN_Target_SQL - SQL expression identifying the Target record(s) to be updated with the target value.
The SQL must return the InternalRecordID of the existing record(s) to be updated. If it returns a null or a
negative number, a new record will be created with this value. If other rules identify the same
InternalRecordID, they will be included in the created record(s). The use of negative numbers allows for

EnterWorks 10.4.8 Change Notification Administration Guide

36

multiple records to be created at one time by different rules. If the query returns references to multiple
records (i.e., multiple result rows), each referenced record is to be updated according to the
Target_Attribute_Name and Target value.

By default, the identified target value will be updated in each repository record identified by the
CN_Target_SQL. Additional attributes can be updated in those records by configuring the
CN_Target_SQL to return additional columns, with their names exactly matching (including case)
attribute names in the target repository.

Note: The result columns must be defined with the attribute names, not restricted attribute names. Any
column that does not exactly match an attribute name will be ignored.

This means that linked repository records can be updated with a single Transformation rule AND each
record can be updated with dynamic information. When using just one of the Target_Value_<type>
attributes, each record identified by the CN_Target_SQL will be updated with the same value AND
multiple rules would need to be defined to populate multiple attributes in each of those records.

A practical example would be to define a Transformation rule that creates missing DAMLink records
when a repository record is created or updated or a DAMMaster record is created. The Rule Condition
can determine whether any DAMLink records are needed for the repository record and the
CN_Target_SQL can populate all fields in each of those missing records. Each of the result rows must
have a unique negative number. This can be accomplished using SQL similar to the following for SQL
Server:

select -1 * (ROW_NUMBER() OVER(ORDER BY <anyColumn> ASC)) as
InternalRecordId,

and similar to the following for PostgreSQL:

select -1 * row_number() OVER () as InternalRecordId,

Where <anyColumn> is any column accessible by the query, such as the one representing the primary
key.

Multiple attributes in the trigger record can be updated from the same CN_Target_SQL query by having
the first column be defined as: ||InternalRecordId||. This will result in those result columns being
added to the item changes being collected for the trigger record.

CN_Target_Value_Literal – specifies the value for the target attribute if the transformation rule
conditions are met. Must be blank if the target value is to come from an attribute in a linked record.
The value “[clear]” (without quotes) must be used if the target attribute is to be cleared of its value.

CN_Target_Value_Source_Repository – name of the repository containing the target value to be used.
This repository must only be specified when the source is the trigger record. Ignored if the
Target_Literal_Value is not empty

CN_Target_Value_Source_Attribute – name of the attribute in the trigger record whose value is to be
placed in the target.

EnterWorks 10.4.8 Change Notification Administration Guide

37

CN_Target_Value_Source_SQL – SQL expression returning a row of data to be used as the source for the
target value. A column name must match the Target_Value_Source_Restricted_Name (defined below).
The same SQL may be defined in multiple conditions but each referencing a different column. This
allows the data for multiple conditions to be returned and used for multiple conditions and rules with a
single execution of the query. This SQL can return calculated values as well as columns from linked
records. For example, if the target value is revising an End Date to be one day before a new record’s
start date.

CN_Target_Value_Source_Restricted_Name – restricted name of the query result column containing
the target value to be used. Ignored if the Target_Literal_Value is not empty.

CN_Target_Trigger – causes the trigger to be fired for every record that is updated by this rule if Yes.
This should be set to Yes only in cases where the updates being made to the target record(s) are subject
to change notification/transformation processing.

WARNING: Care must be taken to avoid an infinite loop where an update to a record with
CN_Target_Trigger=Yes results in another Change Notification Transformation that updates a
record with CN_Target_Trigger=Yes such that an infinite loop results. This must be prevented
by either having the CN_Target_Trigger=No or conditions on the transformation rules such that
updates happen for only one cycle.

CN_Delete_Target_From_SQL – deletes the target records identified in the CN_Target_SQL if Yes.

Condition Tab
The Condition tab defines a condition for the Transformation rule that must be met in order for the
target attribute to be updated with the target value.

EnterWorks 10.4.8 Change Notification Administration Guide

38

CN_Condition_Sequence – determines the order in which the conditions are processed when more than
one condition is defined for the same rule.

CN_Condition_Group – optional name of the group of conditions in cases where combinations of AND
and OR are needed. The conditions within a group are combined based on the Condition_AND_OR
setting on all but the first condition in that group. The condition groups are combined by the setting of
the Condition_AND_OR of the first condition of each group. Any condition that does not have a
condition group assigned will be automatically part of a DEFAULT group and will be treated as though a
group name was specified.

EnterWorks 10.4.8 Change Notification Administration Guide

39

CN_Condition_AND_OR – specifies whether the condition must be met with the other conditions
defined or

The conditions for a rule are handled in a consistent manner on a group by group basis, followed by the
results of each group. The evaluation of the conditions in the group will have the following behavior:

1. The first condition is evaluated to produce an outcome of true or false.
2. If there are no other conditions in the group, this value is used as the outcome of the group.
3. If there are additional conditions then the first condition outcome is assigned to the current

condition outcome
4. Loop for each condition

a. If the current condition outcome is true and the next condition is set to OR, it is skipped
and the value defined for the first condition is returned.

b. If the current condition outcome is true and the next condition is set to AND, it is
evaluated.

i. If the next condition is false, the false outcome is returned for the group
ii. If the next condition is true, the current condition outcome is set to true and

return to the Loop for the next condition. All conditions for the same rule must
evaluate to true in order for the rule to be applied. If this is the case, the target
value associated with the last condition will be used.

c. If the current condition outcome is false and the next condition is set to OR, return to
the Loop for the next condition

d. If the current condition outcome is false and the next condition is set to AND, the false
outcome is returned for the group.

5. If all conditions have been processed, return the current condition outcome. In summary, if the
conditions within a group are combined with OR, the first condition to evaluate to true will be
used to identify the value for the target. If the conditions within a group are combined with
AND, the last condition to be evaluated will be used to identify the value for the target
(providing all conditions to evaluate to true). If multiple condition groups are defined for a rule,
the same logic is applied to the outcome of each condition group.

CN_Condition_Repository – name of the repository containing the attribute containing the value to be
tested for the condition. This should only be set when the value to be tested is in the trigger record.

CN_Condition_Attribute – name of the attribute containing the value to be tested for the condition.
Only used if the attribute is in the Trigger record

CN_Condition_SQL - SQL expression returning the value to be applied to the left-side of the condition.
The SQL should identify a record that is linked to the change event repository record (as an alternative
to referencing the link relationship). The query must return one or more columns, of which only one will
be referenced by this condition (in the CN_Condition_Attribute_Restricted_Name attribute). Multiple
columns should be specified if different conditions need different values from the same record as the
data will be cached after the first time the SQL is executed. If multiple rows are returned, the rows after
the first are ignored.

EnterWorks 10.4.8 Change Notification Administration Guide

40

CN_Condition_Attribute_Restricted_Name – restricted name of the attribute containing the value to be
tested for the condition. Only used if the Condition_Repository and Condition_Link_Relationship, or
Condition_Link_SQL are defined.

CN_Condition_Operator – operator to be used to compare the specified attribute value against the
condition value. Supported operators are:

• = - the attribute has the same value as the Condition_Value
• <> - the attribute does not have the same value as the Condition_Value
• > - the attribute is greater (or alphabetically higher) than the Condition_Value
• >= - the attribute is greater or equal (or alphabetically higher or equal) than the Condition_Value
• < - the attribute is smaller (or alphabetically lower) than the Condition_Value
• <= the attribute is smaller or equal (or alphabetically lower or equal) than the Condition_Value
• Is One Of – the attribute matchs one of the delimited values in the Condition_Value
• Is Not One Of – the attribute doesn’t match any of the delimited values in the Condition_Value
• Is Empty – the attribute doesn’t have a value
• Is Not Empty – the attribute has a value
• Like – the attribute matches the pattern where ‘%’ and ‘_’ are wildcards
• True – always returns true. This can be used to act as a default rule for a sequence of exclusive

rules. If no other rule is met, the rule with this condition will always be

CN_Condition_Data_Type – Data type for the condition. Both sides of the condition must be of the
same type. The supported types are:

• Text – the values are to be compared as text strings
• Number – the values are to be compared as numbers
• Date – the values are to be compared as date (and optional time)

CN_Condition_Value_Literal – value used in the comparison with the Condition_Attribute. If the
Condition_Operator is Is One of or Is Not One Of, the value must be a comma-delimited list.

CN_Condition_Value_Repository – name of the repository containing the record and attribute to be
compared to the Condition_Attribute. Ignored if Condition_Value_Literal is set. The repository must be
the same as the change event repository.

CN_Condition_Value_Attribute – name of the attribute to be compared to the Condition_Attribute.
Only used if Condition_Value_Literal, Condition_Value_Repository and
Condition_Value_Link_Relationship, or Condition_Value_SQL are not set.

CN_Condition_Value_SQL – SQL expression returning a row of data to be used as the source for the
condition value. A column name must match the Condition_Value_Restricted_Attribute (defined
below). The same SQL may be defined in multiple conditions but each referencing a different column.
This allows the data for multiple conditions to be returned and used for multiple conditions and rules
with a single execution of the query. This SQL can return calculated values as well as columns from
linked records. For example, if the target value is revising an End Date to be one day before a new
record’s start date, the SQL will include an expression that subtracts one day from the snapshot view
column that contains the record’s start datae. This field is ignored if Condition_Value_Literal is set.

EnterWorks 10.4.8 Change Notification Administration Guide

41

CN_Condition_Value_Restricted_Name – restricted name of the SQL result column to be compared to
the Condition_Attribute. Ignored if Condition_Value_Literal or Condition_Value_Attribute is set

Future Tab
This tab contains some attributes that may be used in the future

CN_Target_Link_Relationship – (FUTURE – NOT YET IMPLEMENTED) optional name of the link
relationship that is to be used to identify the target record. Can be blank if the Target_Repository is the
same as the repository specified in the CN_Registry record invoking this transformation. If the target
repository is not the same, the Target_Link_Relationship must be specified

CN_Target_Value_Source_Link_Relationship – (FUTURE – NOT YET IMPLEMENTED) name of the link
relationship to be used to identify the record containing the target value as defined by the
Target_Value_Repository and Target_Value_Attribute fields. Must be defined if the
Target_Value_Repository is not the change event repository

CN_Condition_Link_Relationship – (FUTURE – NOT YET IMPLEMENTED) name of the link relationship if
the Condition_Repository is different than the change event repository

CN_Condition_Value_Link_Relationship – (FUTURE – NOT YET IMPLEMENTED) name of the link
relationship to be used to identify the record in the designated repository. Ignored if
Condition_Value_Literal is set

SQL Expressions
For each of the SQL fields listed above, the SQL expression can either be one of the following:

• Full select statement, starting with “SELECT”. If the SQL is to include dynamic information from
the triggered event record, values can be referenced by surrounding the attribute name with
double-pipe characters. This will accommodate use cases where other Change Notification
events or a trigger event on the triggered repository have modified one or more attributes that
are referenced in the SQL. The SQL statement should retrieve a superset of columns such that
the same SQL can be used for each target, source, or condition that access the same record. If
the SQL is for a link, it must return the InternalRecordId for the record. If the SQL is for a value,
it must return one more more columns which are referenced by the restricted name field.

• Stored procedure invocation, starting with “EXEC”. Dynamic information can be included as
parameters to the stored procedure in the same manner as the full select statement.

• JOIN/WHERE clauses, starting with “JOIN” relies on the SELECT and FROM clauses will be
generated automatically. The FROM clause will reference the snapshot view associated to the
repository to which the triggered event is assigned. This view will use the alias ‘v”. To join with
additional tables, the SQL should start with: “JOIN <tableOrView) v2 ON v2.<column> =
v.<column>….”. If the SQL expression is to include a WHERE clause, dynamic values from the
triggered record can be referenced by surrounding each attribute name with double-pipe
characters.

• WHERE clause, starting with “WHERE”. The trigger repository can be referenced with the “v”
alias. Dynamic values from the triggered record can be referenced by surrounding each
attribute name with double-pipe characters.

EnterWorks 10.4.8 Change Notification Administration Guide

42

Data from the changed record can be included in the statement through named references (denoted by
the attribute name surrounded by double pipe-characters). These references are resolved before the
SQL statement is executed. If the value needs to be treated as a character value in the query, it must be
surrounded by single quotes.

For example, if the Enable data model has a Product repository linked to an Item repository by an
alphanumeric ID and changes to Item records need to record the Product Group Name (from the
Product record), the following SQL can be used to retrieve that information:

SELECT Product_Group_Name FROM _PIM_Product_Staging WHERE
Product_ID = '||Product ID||'

In addition to referencing any attribute in the monitored repository, the SQL may also contain the date
and time stamp of when the change was made by specifying the reserved reference
||CURRENT_DATETIME||. This is resolved to the current date and time in the format
yyyyMMddHHmmssSS. Alternative formats can be specified by using the Java class SimpleDateFormat’s
notation. For example, to only include the date in mm/dd/yyyy format, the reference must be
||CURRENT_DATETIMEMM/dd/yyyy||.

WARNING – If Enable is using the PostgreSQL database, the double-pipe characters represent
the string concatenation operator. If the first character following the double-pipe characters is
a letter or number, the Change Notification Transformation processing assumes its an attribute
reference. If concatenating strings, the double pipe characters must be followed by a non-
alphanumeric character (e.g., a space or single quote). Alternatively, the concat() function can
be used.

Example Transformations
The following sections provide examples of common transformations.

Rollup Attribute
When a search is performed on a repository, Enable can only search on attributes in that repository or in
linked repositories one “jump” away from the repository of interest. This means it is sometimes
necessary to replicate data that is in a related repository of interest that is two or more jumps away into
an adjacent repository, or even into the repository being searched. If the nature of the data is one-to-
many where the repository of interest is the “one” and the related repository of interest is the “many”,
the different values in the “many” records need to be rolled-up into a single value and stored in a
reachable repository. The rollup-attribute needs to be updated any time the data in the “many” records
is changed. For thoroughness, the rollup-attribute can also be updated any time the record storing the
value is changed (and the computed rollup value differs from the actual rollup value).

For this example, the data model has two repositories: PRODUCT_Staging and
PRODUCT_Variant_Staging. There is a one-to-many relationship between PRODUCT_Staging (one) and
PRODUCT_Variant_Staging (many). The PRODUCT_Variant_Staging has the attribute “Product Delivery”,
which is tied to a code set. The PRODUCT_Staging repository has the attribute “Product Delivery Rollup”

EnterWorks 10.4.8 Change Notification Administration Guide

43

which must contain a delimited list of all unique Product Delivery values from the linked
PRODUCT_Staging records. In order to ensure the rollup attribute is always up to date, two change
notification transformations need to be defined: one on PRODUCT_Staging and the other on
PRODUCT_VARIANT_Staging.

The CN_Transformation_Registry repository needs an entry for each repository to perform the
transformation whenever they are invoked by their respective CN_Registry entries which are invoked
any time records in the respective repositories have been created or changed:

The Transform Product transformation needs to collect the unique Product Delivery values from the
linked PRODUCT_VARIANT_Staging records, and then compare them to the Product Delivery Rollup
value currently stored in the PRODUCT_Staging record. If the values differ, the Product Delivery Rollup
attribute must be updated with the new computed value.

The target for PRODUCT_Staging is defined as follows:

PRODUCT_Staging is identified as the CN_Target_Repository. This is the same repository that is the
trigger repository. This means the target record does not have to be identified by CN_Target_SQL or
CN_Target_Link_Relationship. The source value for the target is defined by a SQL query that produces a

EnterWorks 10.4.8 Change Notification Administration Guide

44

delimited list of the unique Product Delivery attributes in the linked PRODUCT_VARIANT_Staging
records using the following SQL Query:

select isnull(stuff((select ',' + isnull(pv.Product_Delivery, '')
as [text()]
from (select distinct Product_Delivery from
PRODUCT_VARIANT_Staging where Product_Id = ||Product ID||) pv
order by Product_Delivery
FOR XML PATH('')), 1, 1, ''), '') as Product_Delivery_Rollup

The SQL query ensures only the unique values are included (distinct) and they are sorted alphabetically.

Since the update is only necessary if the calculated list of values differs from the actual list of values, the
condition for the transformation rule compares the two and requires that they are not equal:

The attribute to be compared on the trigger record is Product Delivery Rollup. The value to be
compared is the calculated rollup value defined by the same SQL that is used to populate the target
attribute. Since the SQL for the target and condition are identical it is only executed once per event and
the cached results used for the condition compare and the target value population.

EnterWorks 10.4.8 Change Notification Administration Guide

45

The PRODUCT_VARIANT_Staging needs a similar Transformation to support the use-cases where new
records are defined, existing records are linked to a different PRODUCT_Staging record, or Product
Delivery is changed in an existing variant to a different value.

The target for PRODUCT_VARIANT_Staging is defined as follows:

PRODUCT_Staging is identified as the CN_Target_Repository. This is the not the same repository that is
the trigger repository. This means the target record has to be identified by CN_Target_SQL or
CN_Target_Link_Relationship. The target PRODUCT_Staging record for the triggered
PRODUCT_VARIANT_Staging record is identified by the following SQL:

select InternalRecordId from PRODUCT_Staging where Product_Id =
||Product Id||

The source value for the target is defined by a SQL query that produces a delimited list of the unique
Product Delivery attributes in the linked PRODUCT_VARIANT_Staging records using the following SQL
Query:

select isnull(stuff((select ',' + isnull(pv.Product_Delivery, '')
as [text()]
from (select distinct Product_Delivery from
PRODUCT_VARIANT_Staging where Product_Id = ||Product Id||) pv
order by Product_Delivery
FOR XML PATH('')), 1, 1, ''), '') as Product_Delivery_Rollup

EnterWorks 10.4.8 Change Notification Administration Guide

46

The SQL query ensures only the unique values are included (distinct) and they are sorted alphabetically.

Since the update is only necessary if the calculated list of values differs from the actual list of values, the
condition for the transformation rule compares the two and requires that they are not equal:

The attribute to be compared on the trigger record is Product Delivery Rollup. Since the condition
attribute is not in the triggered record, it must be retrieved from the PRODUCT_Staging record using the
restricted name and the following SQL:

select isnull(Product_Delivery_Rollup, '') as
Product_Delivery_Rollup from PRODUCT_Staging where Product_Id =
||Product Id||

The value to be compared is the calculated rollup value defined by the same SQL that is used to
populate the target attribute. Since the SQL for the target and condition are identical it is only executed
once per event and the cached results used for the condition compare and the target value population.

The CN_Registry repository needs an entry for each repository to associate a triggered repository record
to the appropriate Transformation:

EnterWorks 10.4.8 Change Notification Administration Guide

47

If in the future additional transformations were needed for the PRODUCT_Staging and/or
PRODUCT_VARIANT_Staging repositories, more entries would be added to CN_Transformation_Registry
using the appropriate value for the CN_Transformation_Name attribute.

Cascade Attribute
When a parent repository record shares an attribute with linked child (or grandchild) repository records,
a change to the value in the parent repository record needs to be cascaded to all of the
children/grandchildren. This may be needed to facilitate searches (to overcome the Enable limitation of
searching on attributes on the current or linked repository when the values to be searched are more
than one “jump” away. Another common use-case is when the parent and child (or grandchild) records
must have the same Taxonomy node assignment.

In such cases, the CN_Transformation_Registry record must be assigned to the parent repository and
use the CN_Target_SQL attribute to identify the record(s) to be updated with the new value in the
parent record.

For example, if the Product_Staging repository has a one-to-many relationship with Item_Staging and
both repositories have the Taxonomy attribute and the value of the Taxonomy in the Item_Staging
records must match the value of the Taxonomy in the Product_Staging record, the
CN_Transformation_Registry entry for the Product_Staging repository must identify the linked
Item_Staging records for the target:

EnterWorks 10.4.8 Change Notification Administration Guide

48

In the above example, the SQL identifies all linked Item_Staging records for which the Taxonomy value
does NOT match the Product_Staging’s Taxonomy value. If an Item_Staging record has a matching
value, then it is not updated. Since the Target SQL will only update the Item_Staging records that need
to be updated, the Condition for the rule needs only to determine if ANY Item_Staging record needs to
be updated. This can be accomplished by performing a rollup query on the linked Item_Staging records
to create a delimited list of unique values. If any Item_Staging is missing the Taxonomy value or the
value does not match the Product_Staging Taxonomy value, the computed condition value will not equal
the Product_Staging Taxonomy value:

EnterWorks 10.4.8 Change Notification Administration Guide

49

If all linked Item_Staging records have the same Taxonomy value AND that value matches the
Product_Staging Taxonomy value, then the Condition for the rule is not met and no update takes place.

EnterWorks 10.4.8 Change Notification Administration Guide

50

Language Translation Extension
Overview
The Language Translation Extension functionality leverages the Change Notification functionality to
facilitate having a third-party generate language translations for changes to data within Enable.

The following diagram shows the basic flow of data for the Language Translation process:

Change
Notification/
Translation

Registry
Repositories

Change
Notification

Translation Log

Change
Notification
Translation

Queue

Company Data
Model

Scheduled Export
(Repository/
Language)

Change Events

Translation
Requests

Translation Requests

Descriptive
Data

Translation Requests

Scheduled Import
(Repository/
Language)

Translated
Data

Translation Updates

FTP

Translation
Company

R
eq

ue
st

s

Tr
an

sl
at

io
ns

Requests

Requests

The Change Notification/Translation registry repositories identify which repositories and the attributes
within the are to be translated. When a change is made to data in the Company Data Model (data
repositories), a change event is generated. If this event is associated with a registered translation, a
Translation Request is submitted to an internal Change Notification Translation queue.

On a periodic basis, such as nightly, a Scheduled Export is launched that retrieves the most-recent
translation requests from the Change Notification Translation Queue along with optional descriptive
data from the Company data and generates two files. The first file is submitted to the Translation
Company via FTP (this can also be Email or Network file directory). The second file updates the Change
Notification Translation Log to identify which repositories, records, and attributes have been submitted
for translation.

The translation company retrieves and processes each translation file, returning a translated file to the
FTP server (or network file location or configured Email address). A scheduled import retrieves each
update file and pre-processes it into two import files. The first file updates the designated language
attributes in the Company data repository. The second file updates the Change Notification Translation
Log repository to indicate translations have been received for the requests.

EnterWorks 10.4.8 Change Notification Administration Guide

51

Change Notification Translation Registry
The Change Notification Translation Registry repository defines the details for all language translations.
A separate record must be defined for each repository requiring translation, but more than one record
may be defined for the same repository. The following sections provide the details for the repository
attributes by tab:

Summary Tab

CN_Translation_Name - Name of the translation. Used to identify the translation request files sent to
the translation company. Will usually match the repository name but may identify part number if
multiple translations are needed due to a large number of multi-language attributes. This name must be
selected on the Translation tab in a Change Notification Registry record.

EnterWorks 10.4.8 Change Notification Administration Guide

52

NOTE: When a new CN_Translation_Registry record with a new CN_Translation_Name is defined, the
data cache must be cleared before it becomes visible in the Translation tab of the CN_Registry detail
editor.

CN_Description – Optional description of translation (user information only). It is strongly
recommended that a detailed description be specified for better maintainability.

CN_Repository_Name - Name of repository containing the multi-language attributes to be translated.
While the drop-down selection list shows all repositories defined in Enable, only the ones that have
been registered with the Change Notification trigger will be processed.

CN_Active - Indicates the registry entry is active if Yes.

CN_Sequence - Sequence number to be used to control the order the registry entries are processed.

CN_ID - Sequential ID for each record.

CN_Import_Template_Name - Name of Import Template to be used to update the multi-language
attributes in the designated repository. The drop-down selection list will show all import templates
defined for the repository selected for CN_Repository_Name.

CN_Request_In_Sync_Only – Include only language translation request for records that have not been
changed since the last time they were promoted if Yes. This ensures language translation requests are
only transmitted on approved, promoted data.

EnterWorks 10.4.8 Change Notification Administration Guide

53

Attributes Tab

CN_Translate_Language - Delimited list of language extensions for the target languages for this
translation. For example, to have the attributes translated to Spanish and French, the es and fr language
extensions must be selected:

EnterWorks 10.4.8 Change Notification Administration Guide

54

At least one language must be selected if CN_Translate_Attribute_Name is empty.

CN_Translate_Language_Attribute_Name - Name of attribute in repository containing multi-language
attributes that contains a delimited list of target language extensions. This allows each record in the
repository to self-identify which language translations are needed. Required if CN_Translate_Language
is empty.

CN_Translate_Language_Attribute_Delimiter - Delimiter for the language values in the attribute
specified by CN_Translate_Language_Attribute_Name. The default delimiter is the comma.

CN_Attribute_Language - Language extension for the source language for this translation. If blank, the
default language will be used. For example, if changes to the French version of an attribute are to be
translated, this attribute must be set to French.

CN_Attribute_Selection – Specifies the source selection for the list of attributes to be translated:

• All Multi-Language – translate all multi-language attributes in the designated repository
• CN_Attribute_Name – translate only the attributes listed in the CN_Attribute_Name attribute
• CN_Attribute_Profile_Property – translate only the attributes with the BOOLEAN profile

property identified in the CN_Attribute_Profile_Property attribute set to a value of 1 (true).

CN_Attribute_Name – Names of the multi-language attributes to be translated. The names must
exactly match (including case) the names of the attributes defined in the target repository.

CN_Attribute_Profile_Property – Name of the profile property assigned to the designated repository to
be used to identify the attributes to be translated, each with a property value of 1 (TRUE)

CN_Descriptive_Attribute_Name - List of descriptive attributes to be included in translation request
files. These would typically be attributes that are not multi-language themselves, but help the
Translation Company better understand the records being translated.

Change Notification Translation Queue
The Change Notification Translation Queue is an Enable database table with the following columns.

Column Name Description

seqNumber Sequential number for each record. Primary key for table.

EnterWorks 10.4.8 Change Notification Administration Guide

55

Column Name Description

batchId

Set to the export job number for the queued records for a repository
and language. Used to process the set of records as a batch in case
additional requests are queued during the update process, which
avoids overlaps (sending the same request twice) and gaps.

translationName

Name of the Change Notification Translation Registry definition used
to populate this queue entry. In most cases, the translationName will
likely match the repositoryName. But if the repository has multiple
parts or there are different Change Notification Translation Registry
definitions for the same repository (perhaps different languages are
translated by different companies), the translation name would
uniquely identify each translation. For example, if Brand had more
than 1000 multi-language attributes, they may be split between two
parts having translationName of “Brand1” and “Brand2”.

repositoryName Name of repository for the request

internalRecordId Internal record ID for the repository record

attributeName Name of the attribute to be translated

oldTranslatedValue (FUTURE) Previous translated value

newValue New value that needs to be translated

changedby Login of the user who changed the record containing the attribute.

changedDatetime Date and time of when the change was made.

languageExt Language extension for the value being translated. Implies the default
languate (e.g., English) if null.

translateLanguageExt Target language extension

When a repository record (containing multi-language attributes registered for translation) is modified,
each registered multi-language attribute that was changed generates a record in this queue table. If the
same attribute is changed multiple times, the queue will contain multiple records – one for each change.
When these records are retrieved from the queue, only the entry with the newest date and time will be
sent to the translation company. For example, if the Long Description in the Brand repository is
registered for translation, and the Enterworks brand description is changed to “Enterworks”, then
“Enterworks Incorporated”, and finally “Enterworks Acquisition, Inc.” all in the same day, the export for
Brand will only include the “Enterworks Acquisition, Inc.” value. The same changes were made over
successive days (and the export is scheduled to run once per day), each change will have been sent to
the translation company. If the translation company has more than a one-day turnaround, it would be

EnterWorks 10.4.8 Change Notification Administration Guide

56

responsible for either translating each value received or only translating the last value received for the
same record and attribute.

The final step in the export process removes the records from the Change Notification Translation
Queue table.

Change Notification Translation Log Repository
The Change Notification Translation Log repository contains the details of each language translation
request and translated response. Each record in the repository represents a single language for a single
attribute in a repository record. The Scheduled Exports update this repository with the details about the
record, attribute, and target language, including a request status of Requested along with the date the
request was sent to the translation company. This update is accomplished by the Scheduled Export
invoking a dependent operation for a Scheduled Import that is set up to create or update the
CN_Translation_Log records for any repository for both the requests and responses.

The Scheduled Imports also update this repository, setting the request status to Updated along with the
date the update was received. The translated value is also stored in the same record. If a specific
attribute value for a specific record is changed and translated frequently, the same entry in the
Translation Log repository will be updated with alternating Request Status values of “Requested” and
“Updated.

Attribute Name Description

CN_Attribute_Language Specifies the language extension for the source attribute. Part of
the primary key.

CN_Attribute_Name Name of the multi-language attribute. Part of the primary key.

CN_Attribute_Translated_Value Translated value from the translation company

CN_Attribute_Value Source value for the attribute to be translated

CN_ID
Unique ID for the record. While not part of the primary key, this
can be used to access specific records without having to specify all
four primary key attributes.

CN_Internal_Record_ID Identifies a record in a staging repository. Part of the primary key.

CN_PK1 Repository primary key1 value.

CN_PK2 Repository primary key2 value.

CN_PK3 Repository primary key3 value.

CN_PK4 Repository primary key4 value.

EnterWorks 10.4.8 Change Notification Administration Guide

57

Attribute Name Description

CN_PK5 Repository primary key5 value.

CN_Repository_Name
Name of the repository. This attribute is not part of the primary
key since the internal record ID uniquely identifies each record,
regardless of repository.

CN_Requested_Date Date at which a translation request was sent or a translation
update was received.

CN_Request_Status

Indicates the request status for this record:
• Requested - request has been sent to the translation

company
• Updated – a translation update has been received from the

translation company.

CN_Translate_Language Language extension for the target language. Part of the primary
key.

When attributes have been submitted to the language translation company, they will have a request
status of “Requested”:

When the translation response is processed, the records are updated to show a status of “Updated” and
also shows the translated values:

EnterWorks 10.4.8 Change Notification Administration Guide

58

Translation Request File
The Translation Request File contains the translation requests for one or more attributes for one or
more records for a specific repository. The file name does not need to follow any specific naming
convention since its contents are self-identifying but it’s recommended as a best practice. Each file
name should include the following information:

• Repository Name (e.g., Brand, SKU, Item, etc.). There’s no need to distinguish between Staging
and Production since all translations should be performed on Staging only.

• Source Language Extension – if it’s possible for anything but the default language (e.g., English)
to be translated, the source language for the file should be included in the file name (e.g., fr, sp,
de, etc.)

• Target Language Extension – the extension of the target language (e.g., fr, sp, de, etc.)

• Unique Identifier – A unique identifier to make the resulting file unique (e.g., Export Job
attribute value).

An example file format would be: Brand_en_fr_12345.xlsx – which would indicate the file is for the
Brand repository and contain values in English to be translated to French.

The request file must have the following columns:

Column Name Description

CN_Translation_Name

Name of the translation. This name is defined in the
CN_Translation_Name column in the Change Notification
Translation Registry. By using this name instead of the actual
repository name, multiple translations can be defined for the same
repository. For example, this may be necessary if there are
multiple parts due to a large number of multi-language attributes
(e.g., Brand1, Brand2, etc.)

CN_Attribute_Language Extension of the source language (e.g., en, sp, de, etc.)

CN_Translate_Language Extension of the target language (e.g., en, sp, de, etc.)

<primaryKeyAttribute>
One column for each primary key attribute, the the column names
containing the attribute name (vs. the generic PK1, PK2, etc.). One
column per attribute.

<descriptiveAttribute> Optional descriptive attributes. Determined by the settings in the
Translation Registry. One column per attribute.

CN_Attribute_Name Name of the attribute to be translated

EnterWorks 10.4.8 Change Notification Administration Guide

59

Column Name Description

CN_Attribute_Value Value that needs to be translated

Old Translated Value [FUTURE] Current translated value for attribute (would be blank for
new records).

CN_Attribute_Translated_Value Translated value (populated by translation company)

The following sample file shows translation requests from French to English:

The same file format is used for the translated files returned from the Translation company. The only
difference between the two files is the request file will have an empty Translated Value column and the
translated files will have it populated:

If a request file contains more than one multi-language attribute for the same repository record, the
attributes must be in consecutive rows in the file. Otherwise the pivot pre-processing done for the
translated files will contain more than one record for the same repository record, resulting in multiple
updates, which includes multiple history records.

The Services Language Translation supports the translation of up to the number of multi-language
attributes in a single repository determined by the following formula:

1,000 – (number_of_primary_key_attributes)

For example, if the primary key for a repository being translated contains 3 primary key attributes, then
up to 997 multi-language attributes can be translated in a single group. If there are more multi-
language attributes in a repository, additional imports and exports can be defined to accommodate
them. Each part must be defined as a separate translation (e.g., Brand1, Brand2) having its own
Translation Registry entry, Scheduled Export, and Import Template. If the multi-language attributes are
category specific, the number of attributes that can be included in a single import may be further
limited.

EnterWorks 10.4.8 Change Notification Administration Guide

60

Translation Request Scheduled Export
A separate Scheduled Export must be defined for each repository and language to be translated. For
example, if the Brand repository has multi-language attributes and the active languages are English
(default), Spanish, French, German, and Chinese, there needs to be four Translation Request scheduled
exports defined to translate from English to Spanish, French, German and Chinese. If the Item
repository also contains multi-language attributes that need to be translated to the same languages,
four additional Translation Request scheduled exports must be defined.

Each Scheduled Export should have the following settings:

Attribute Name Value

Export Name Identifies the repository and language and that it is for language translation
requests. It is recommended that the name for each of these exports is
consistent and identifies the repository and language (e.g., Item Language
Translation Request French).

Export Type View

Postprocess File Yes

Postprocess Class com.enterworks.services.changenotification.ProcessLanguageTranslationRequest
Postprocess Keys
Postprocess
Values

See post process details below

Export Language Set to the requested translation language

View SQL See stored procedure details below

View Format COMMA

Export File Name
LTR_<repo>_<language>_||Export Job||.csv – all translation request file names
should follow the same pattern so the responses can be processed by the same
Scheduled import without having to rename the files.

Dependent
Operation Type

Import

Dependent
Operation

CN_Request_Translation_Log

Dependent
Operation
Immediate

Yes

Dependent Keys 1. Import FileName
2. Parameter1

EnterWorks 10.4.8 Change Notification Administration Guide

61

Attribute Name Value

Dependent
Values

1. TR_UpdateLog_||Export Job||.csv - (must match the setting in the
logFileName argument to the ProcessLanguageTranslationRequest post-
processing block)

2. ||Export Job|| - (must match the batchId parameter in the call to the
stored procedure CN_Generate_Translation_Request_File)

The com.enterworks.services.changenotificaion.ProcessLanguageTranslationRequest post-processing
block must be configured for each Scheduled Export. This post-processing block converts the exported
file into a second file to be loaded into the Change Notification Translation Log repository. This second
file contains all of the columns in the original file (described above) except for the descriptive attributes
plus the request status of “Requested” and the current date for the Request Date. The post-processing
block has the following configurable arguments:

Argument Description

fileEncoding Specifies the encoding for files. The default is UTF-8

requestFileFormat Format for the translation request file: XLSX or CSV

logFileImportTemplate

CN_Request_Translation_Log - Name of the import template used to
update the CN_Translation_Log repository. This import template must
be invoked by a Scheduled Import that is launched as a Dependent
Operation for this export.

logFileDirectoryName
Location of where the Translation Log import files are to be placed for
processing. The Scheduled Import must have this same directory name.
Example: D:/Enterworks/shared/ImportSubmissions

logFileName
TR_UpdateLog_||Export Job||.csv. Name of the Translation Log import
file. This name must match the Dependent Value for the Dependent Key
“Import File Name”

The following screen shot shows an example configuration for the ProcessLanguageTranslationRequest
post-processing arguments:

EnterWorks 10.4.8 Change Notification Administration Guide

62

Each scheduled export invokes the SQL stored procedure CN_Generate_Translation_Request_File,
passing in the following arguments:

Argument Description

repositoryName Name of the repository

languageExt Extension of the source language (default if null)

translateLanguageExt ||Export Language|| - Extension of the target language

translationName Name of the applicable translation definition in the Change Notification
Translation Registry repository

batchId ||Export Job|| - A unique number

debugInd 0 - Output debug logging if 1

The following example shows the SQL for translating French to the language defined in the Export
Language attribute for the language translation named: Graco Item Translation :

EnterWorks 10.4.8 Change Notification Administration Guide

63

When called, the stored procedure performs the following steps:

1. Tags each record in the Change Notification Transformation Queue table with matching
repository, source and destination language with the batchId.

2. Returns a result set of the newest translation for each attribute in each record being translated
including the following data:

a. repositoryName
b. internalRecordId
c. attributeName
d. oldTranslatedValue (FUTURE)
e. newValue
f. changedby
g. changedDatetime
h. languageExt
i. translateLanguageExt
j. primary key columns as defined in the B_MASTER_REPOSITORY_ITEM repository (pk1

through pk5)
k. descriptive attributes and their values from the referenced repository record

Once post-processing is complete, the original file is transmitted to the Translation Company in the
manner defined in the Scheduled Export (e.g., by FTP, network file location, or e-mail). A scheduled
import named “CN_Update_Translation_Log” to load the second file is launched to load the second file
into the Change Notification Translation Log repository.

Translation Request Log Update Scheduled Import
The scheduled import should be named “CN_Request_Translation_Log” and must be configured to
import an update file into the Change Notification Translation Log repository. It can be created from the
export that is included in the Scheduled Framework deployment folder:
<deploymentFolder>\EPIM\Scheduled Imports. It is launched by each Translation Request Scheduled
Export that completes successfully. The Scheduled Import should have the following settings:

EnterWorks 10.4.8 Change Notification Administration Guide

64

Attribute Name Value

Import Name CN_Request_Translation_Log
Import Type Template

Import Directory Name Must be the same directory specified in the Translation Request
Scheduled Export post process argument logFileDirectoryName

Import File Name <Populated by parent job>
Import Format CSV

Move Import File Yes

Skip File Check No

Template Name CN_Request_Translation_Log

Repository Name CN_Translation_Log

Dependent Operation Type Export

Dependent Operation CN_Cleanup_Translation_Queue

Dependent Operation
Immediate

Yes

Dependent Keys Parameter1

Dependent Values ||Parameter1||

This import should specify the Import Template named “CN_Request_Translation_Log”. It will be
created by the Migrate In operation during the Services Framework deployment. The import template
must have the following mapped columns:

Column Name Description Is Key

CN_Attribute_Language Extension of the source language (e.g., en, sp, de, etc.) Yes
CN_Attribute_Name Name of the attribute to be translated (KEY) Yes
CN_Attribute_Translated_Value Translated value (populated by translation company)
CN_Attribute_Value Value that needs to be translated
CN_Internal_Record_ID InternalRecordId of the repository record (KEY) Yes
CN_PK1 Repository record primary key 1
CN_PK2 Repository record primary key 2
CN_PK3 Repository record primary key 3
CN_PK4 Repository record primary key 4
CN_PK5 Repository record primary key 5

CN_Repository_Name Name of the repository

EnterWorks 10.4.8 Change Notification Administration Guide

65

Column Name Description Is Key

CN_Request_Date Date of when the request was made
CN_Request_Status Status of the request: Requested
CN_Translate_Language Extension of the target language (e.g., en, sp, de, etc.) Yes

When the referenced update file is imported, it will either create new or updating existing records in the
Change Notification Translation Log repository. Once the import has completed, the Scheduled Export
named “CN_Cleanup_Translation_Queue” is launched.

Translation Queue Cleanup Scheduled Export
The scheduled export named “CN_Cleanup_Translation_Queue” deletes the records in the Change
Notification Translation Queue that are assigned to the batch ID passed to the export. It can be created
from the export that is included in the Scheduled Framework deployment folder:
<deploymentFolder>\EPIM\Scheduled Exports. The cleanup is handled as a separate job to facilitate
troubleshooting as well as provide an opportunity to reprocess language requests if there is a failure to
transmit the translation request file to the Translation Company or the update. The Scheduled Export
should have the following settings:

Attribute Name Value

Export Name CN_Cleanup_Translation_Queue
Export Type View

View SQL EXEC CN_Cleanup_Translation_Request_Queue ||Parameter1||,0

View Format COMMA
Export File Name CN_Cleanup_Translation_Queue_||Parameter1||.csv

Target Type File

Target Path <drive>:/Enterworks/shared/Reports

Translation Queue Update Scheduled Import
A master Scheduled Import must be defined for all repositories being translated to pre-process all
inbound translation update files. The Scheduled Import will retrieve a single file from the source (e.g.,
from the designated FTP server directory) then invoke the PrepareTranslationUpdate pre-processing
block. The pre-processing block will launch a Scheduled Import Job with the proper settings and then
proceed to update the CN_Translation_Log entries to signify the response to the request has been
received and processed. The Scheduled Import should have the following settings:

EnterWorks 10.4.8 Change Notification Administration Guide

66

Attribute Name Value

Import Name CN_Language_Translation_Response
Import Type Template
Preprocess File Yes
Preprocess Class com.enterworks.services.changenotification.ProcessLanguageTranslationResponse
Preprocess Keys
Preprocess
Values

See Preprocess details below

Import Directory
Name

Directory in which the Language Translation Responses will be placed

Import File
Name

Must match the common portion of the language translation request files
generated by each Translation Request Scheduled Export. For example, if exports
are defined names in the format: LTR_<language>_<batchId>.csv, the Import File
Name should be: LTR_*.csv.

Import Format CSV

Move Import
File

Yes

Skip File Check No

Template Name CN_Translation_Request_Log

Repository
Name

CN_Translation_Log

Dependent
Operation Type

Import

Dependent
Operation

CN_Language_Translation_Response

Dependent
Operation
Immediate

Yes

The Preprocess Class ProcessLanguageTranslationResponse reads the response file, identifies the
CN_Translation_Registry for the file, pulls the Import Template from the entry and generates an import
file for that Import template to update the translation target language with the values in the file. A
separate Scheduled Import job is launched to process this file. The pre-process class also creates a
separate file for updating the CN_Translation_Log. The pre-process class has the following arguments:

EnterWorks 10.4.8 Change Notification Administration Guide

67

Argument Description

fileEncoding Specifies the encoding for files. The default is UTF-8

requestFileFormat Format for the request file: XLSX or CSV

pivotFileDirectoryName Location of where the Translation Log import files are to be placed for
processing. The Scheduled Import must have this same directory name

logFileImportTemplate
||Template Name|| - Name of the import template used to update the
CN_Translation_Log repository. This import template must be defined
as the Template Name in this Scheduled Import

logFileName TR_UpdateLog_||Import Job||.csv - Name of the Translation Log import
file.

templateScheduledImport

CN_Language_Translation_Response_Template - Name of the template
Scheduled Import to be used when creating each language translation
import. The contents of this Scheduled Import are copied to the
Scheduled Import Jobs and the particulars (e.g., file name, language,
repository name, import template name, etc.) are updated in the record
before the import job is processed.

The following example shows the configuration of the ProcessLanguageTranslationResponse pre-
processing:

The templateScheduledImport must point to a Scheduled Import template that will be the basis of all
Language Translation Response jobs.

EnterWorks 10.4.8 Change Notification Administration Guide

68

The preprocessing reads the contents of the file, identifying the associated Translation Registry entry,
which identifies the repository name and multi-language attributes. The contents of the file are pivoted
so that each row contains all multi-language columns for the same record. This file will be imported into
the target repository for the target language identified in the file using the Import Template defined in
the Translation Registry entry. A second file is created containing the updates for the Change
Notification Translation Log repository.

The first file has the following format:

Column Name Description

<primaryKeyAttributes> Up to 5 primary key columns (depending upon the repository), with the
column name being the actual primary key attribute names.

<multiLanguageAttributes> One column for every attribute listed in the referenced Translation
Registry record.

This second file contains:

Column Name Description

CN_Repository_Name Name of the repository

CN_PK1 First primary key

CN_PK2 Second primary key (empty if repository has only one primary key)

CN_PK3 Third primary key (empty if repository has fewer than three primary
keys)

CN_PK4 Fourth primary key (empty if repository has fewer than four primary
keys)

CN_PK5 Fifth primary key (empty if repository has fewer than five primary keys)

CN_Attribute_Name Name of the multi-language attribute

CN_Attribute_Language Language extension of the source value for the attribute (empty if the
default language)

CN_Translate_Language Language extension of the target language

CN_Request_Status Set to “Updated”

EnterWorks 10.4.8 Change Notification Administration Guide

69

Column Name Description

CN_Request_Date Set to the current date.

CN_Translated_Value Translation for the value.

Once pre-processing is complete, a Scheduled Import Job record is created and a job launched to
process the target repository update file. This scheduled import job is used as the basis for the new job,
but all of the appropriate attributes are updated to reflect the generated file name, target repository
name, target language, and import template name. If the job is successfully launched, this import job
proceeds to import the second file to update the Request Status in the corresponding records in the
Change Notification Translation Log repository.

Translation Queue Update Response Template
This Scheduled Import is the basis for all Scheduled Imports launched by the Translation Queue Update
Scheduled Import to update the multi-language values from the Language Translation Response. This
Scheduled Import should have some attributes pre-defined but others will be auto-populated by the
ProcessLanguageTranslationResponse pre-process based on the content of the response file and the
referenced Language Translation Registry record (the bolded values are ones overwritten by the Pre-
processing):

Attribute Name Value

Import Name CN_Language_Translation_Response_Template – the launched job
will have the name:
“TRR_<repositoryName>_<translationLanguage>”

Import Type Template
Preprocess File <set to No>
Preprocess Class <cleared>
Preprocess Keys <cleared>
Preprocess Values <cleared>
Import Directory Name <populated from value of pivotFileDirectoryName argument in

ProcessLanguageTranslationResponse pre-processer>
Import File Name <populated from the value of the response file with _PIVOT suffix

added before the extension>
Import Format CSV or XLSX
Move Import File Yes
Skip File Check No
Source Type <set to File>
Template Name <set to the template defined in the CN_Translation_Registry

record>
Saved Set <set to the same as Import File Name>
Repository Name <set to the repository name defined in the

CN_Translation_Registry record>

EnterWorks 10.4.8 Change Notification Administration Guide

70

Translation Language Update Import Templates
An Import Template must be defined to update the multi-language attributes in each repository. Only
one import template must be defined regardless of the number of target languages. Each scheduled
import for the different target languages will reference the same Import Template for the same
repository. Each import template must contain only the primary key attributes and the multi-language
attributes. Multiple import templates must be defined for the same target repository if there is more
than one Translation Registry entry for that repository, such as in cases where large numbers of multi-
language attributes are broken up into multiple parts.

For example, if the repository Product_Staging has a primary key of Product ID and the multi-language
attributes: Product Name and Product Description, the import template would have the following:

Column Name Description Is Key

Product ID Primary key for Product_Staging Yes
Product Name Name of Product No
Product Description Description of Product No

SQL-Based Reports
When the Change Notification functionality is used to log changes to the CN_Log repository, the data
can be exported based on search criteria (e.g., repository, date range, etc.) without needing to use SQL.
However, the resulting report will show referential attributes (i.e., attributes and their values that
provide context such as key business fields, but aren’t necessarily part of the change) as separate rows
in the export since they are stored that way in the CN_Log repository:

EnterWorks 10.4.8 Change Notification Administration Guide

71

A more useful format for the report is one that includes the referential fields for each change row:

To produce the above report requires creating a View (SQL) scheduled export with a PIVOT like the
following:

select l.CN_Changed_By as [User], CN_Changed_Datetime as [Change Date],
CN_Repository_Name as Repository,
CN_PK1 as PK1, isnull(CN_PK2, '') as PK2, isnull(CN_PK3, '') as PK3,
isnull(c.Dept, '') as Dept, isnull(c.[Vendor #], '') as [Vendor #],
isnull(c.[Mfg. #], '') as [Mfg. #], isnull(c.Product, '') as [Product (aka JS#)],
CN_Attribute_Name as Attribute, isnull(CN_Old_Value, '') as [Prior Value],
isnull(CN_New_Value, '') as [New Value]
 from CN_Log l
left outer join (Select CN_Change_ID, Dept, [Vendor #], [Mfg. #], Product from
(SELECT CN_Change_ID, CN_Attribute_Name, CN_New_Value
 FROM (select CN_Change_ID, CN_Attribute_Name, CN_New_Value
 from CN_Log where CN_Attribute_Name in ('Dept','Vendor #','Mfg.
#','Product')) e
) AS X
PIVOT
(
MAX (CN_New_Value)
FOR CN_Attribute_Name IN (Dept, [Vendor #], [Mfg. #], Product)
) AS PivotTable) c
on c.CN_Change_ID = l.CN_Change_ID
 where not (l.CN_Attribute_Name in ('Dept','Vendor #','Mfg. #', 'Product') AND
l.CN_Old_Value = l.CN_New_Value)
 order by l.CN_Change_ID, CN_Attribute_Name

To produce a delta report, showing only the changes since the previous report, the SQL must include the
condition comparing the Created column to the [DELTA_DATETIME] field:

where not (l.CN_Attribute_Name in ('Dept','Vendor #','Mfg. #', 'Product') AND
l.CN_Old_Value = l.CN_New_Value)
 and l.Created > '[DELTA_DATETIME]'

There may also be use cases (such as the one described in the first section) where a report needs to
extract the first old value and the last new value for each attribute from the CN_Log entries that have
been created since the last time the report ran. Generating such a report increases the complexity of
the required SQL query.

Reports Using the CN_Reports Repository and Scheduled Export
The SQL-based reports can be very complex, which limits who can create and maintain such reports to
those with advanced knowledge/experience with SQL. The CN_Reports repository in conjunction with

EnterWorks 10.4.8 Change Notification Administration Guide

72

the ProcessLaunchChangeNotificationReport Scheduled Export Post-Processor, provides the means for
users with no SQL knowledge to create and maintain reports from the CN_Log repository. The
CN_Reports identifies what is to be reported and to whom. The Scheduled Export determines when and
how.

The key features of the CN_Reports processing are:

• Reports are linked to a specific CN_Registry record, meaning only the CN_Log entries that were
saved from the CN_Registry record will be included in the report.

• Reports are defined in terms of list of selected attributes for which the old and new value are to
be displayed, the new logged value (e.g., descriptive attributes), and the values from the current
record are displayed.

• Recipients for the reports are defined in terms of Enable groups.
• Reports can be transmitted in any fashion supported by the Scheduled Exports processing.
• Repositories with ownership (where individual users are assigned to records so that they “own”

them and are the only ones who can change specific attributes). Separate files are generated
for each owner recipient. If the Report Scheduled Export is configured to send the export via
Email, each owner will receive only their version of the report.

• Reports can be configured to be full or delta

CN_Reports Repository
The CN_Reports repository contains the reports definitions. Each report links to a CN_Registry record.
Each Report Scheduled Export links to a CN_Report record.

Summary Tab
The Summary tab identifies the name of the report, what CN_Registry record it is associated to, and the
intended recipients of the report.

EnterWorks 10.4.8 Change Notification Administration Guide

73

CN_Name – name of the report. Each report must be uniquely named.

CN_Description – optional description for the report

CN_Registry_Name – identifies which CN_Log records are to be included in the report by way of which
CN_Registry entry was responsible for the generation of those records.

CN_Recipients – identifies the Enable groups that will receive the report if the Scheduled Export that
launches the report has its Target Type set to Email.

EnterWorks 10.4.8 Change Notification Administration Guide

74

Attributes Tab

CN_Owner_Attribute – Name of the attribute that is associated with a code set that contains ownership
by group. Each value in this attribute determines how many different report files are generated and
who sees them. If set, then a separate report will be generated for each owner and contain only those
records assigned to that owner. Only attributes with ownership Code Set, Hierarchy, or Taxonomy can
be selected. The processing only supports group, not user ownership. The owner must match a group
in the CN_Recipients attribute. The selected attribute must be in the snapshot table (i.e., set to
Relational).
CN_Change_Attributes – Comma-delimited list of attributes to show the old and new values for. If -All-
is selected, then all change attributes will be included in the report. A separate row is shown for each
attribute with it’s old and new values as separate columns.
CN_Descriptive_Attributes – Comma-delimited list of the attributes that were logged at the same time
as the attributes of interest were changed but to be shown as separate columns in the report.
Attributes included in this list will be ignored in the CN_Change_Attributes list. Only the new value is
displayed. The attributes included in this list will most often be the attributes flagged as Log Always in
the associated CN_Registry record.
CN_Current_Attributes – Comma-delimited list of attributes to be retrieved from the current records to
be included in the report as separate columns. If it’s necessary to report the values at the time the
change was made, the attributes must be assigned to CN_Descriptive_Attributes. Any attributes listed
here will be ignored in the CN_Descriptive_Attributes and CN_Change_Attributes lists.

EnterWorks 10.4.8 Change Notification Administration Guide

75

Report Scheduled Export
Scheduled Exports are used to launch and transmit the CN_Reports. Two Scheduled Exports must be
defined. The first is a Custom export that invokes a Post-Processing module to launch one or more
Scheduled Export Jobs based off the information in the designated CN_Report record along with the
configuration settings of the Post-Processing module. The second Scheduled Export is the template for
the actual jobs that are launched by the first Scheduled Export. The number of jobs launched is
dependent upon the settings in the CN_Reports record.

Launch Report Scheduled Export
The Launch Report Scheduled Export is a Scheduled Export of type Custom that does not export any
CN_Log data (it does produce an export containing details about the launch processing). Instead the
Scheduled Export invokes the ProcessLaunchChangeNotificationReport post-processing module that
launches the Scheduled Export jobs to actually generate one or more reports. This module has the
following configurable settings:

reportName – Identifies the CN_Reports record to process. Must match the CN_Name in a CN_Reports
record

lastExportDatetime – specifies the value to be placed in the Last Export Datetime attribute of each
launched Scheduled Export job. Must be blank if the report is not a delta. If the report is a delta, this
should be set to ||Last Export Datetime|| to pass in the date and time of the last time the launch
Scheduled Export ran (the Scheduled Export must be configured as a Delta export in order for the delta
export processing to be enabled.

templateScheduledExport – name of the template Scheduled Export that will be copied for each
launched Scheduled Export. This Scheduled Export must be of type View and be configured to have the
desired target for the generated report. Some fields will be updated for each launched job

emailBody – optional override for the Email Body attribute in each launched Scheduled Export. To pass
in the Email Body from this Scheduled Export, the parameter must be set to ||Email Body||.

EnterWorks 10.4.8 Change Notification Administration Guide

76

emailSubject – optional override for the Email Subject attribute in each launched Scheduled Export. To
pass in the Email Subject from this Scheduled Export, the parameter must be set to ||Email Subject||.

This Scheduled Export’s output is a report file, detailing the processing of launching the actual Report
Scheduled Exports that generate the reports.

Report Scheduled Export
The Report Scheduled Export generates the actual report. It must be defined as type View (SQL-based).
When launched, the following attributes are updated by the Launch Report Scheduled Export:

Export Name – name of the export – this is set to the name of the Report Scheduled Export template
plus the report group name. If no ownership is identified, then the name “CN_All_Recipients” will be
used. For example, the Launch Report Scheduled Export with a reportName of “Item Change Report”
with no ownership specified, the launched Report Scheduled Export will be “Item Change
Report_CN_All_Recipients”

Parameter1 – set to the name of the report. This can be referenced by any attribute in the Scheduled
Export by specifying ||Parameter1|| in any attribute with a text field.

Parameter2 – set to the name of the report group

View SQL – set to the dynamically-generated SQL to create the report. The SQL that is generated is
based on the settings in the CN_Reports record along with the designated Group/User information (for
Owner-based reports)

Last Export Datetime – set with the value specified in the post processing argument lastExportDatetime

Target Email – set to the email address list obtained form the report group users

Email Body – set with the value specified in the post processing argument emailBody

Email Subject – set with the value specified in the post processing argument emailSubject

Change Report Processing
Whenever a change report scheduled export is launched, the following steps will be performed:

1. Retrieve the details for each named report.
2. For each report, determine whether there is an owner attribute specified. If there is, perform

the following sub-steps:
a. Retrieve the list of unique owner groups from the code set associated with the owner

attribute. This determines how many separate report jobs are going to be run.
b. For each owner group, cross-references the users assigned to the group with the users

assigned to each recipient group defined for the report and generate a list of e-mail
recipients.

c. One report will be generated for each unique owner group
3. If there isn’t an owner attribute specified, perform the following sub-steps:

a. Retrieve the list of e-mail addresses solely from the users assigned to the designated
recipient groups.

EnterWorks 10.4.8 Change Notification Administration Guide

77

b. Only one report will be generated
4. At this point, the process knows how many reports need to be generated and who the e-mail

recipients would be.
5. Retrieve the details from the scheduled export to be used as the basis for each report job to be

launched.
6. For each report identified in the previous steps, update the base export properties with the

specifics, such as the identified e-mail targets and the specific report (including name and owner
if specified) and create a new Scheduled Export Jobs record to launch each report.

Each new Scheduled Export Job’s post-processing generates the report according to the settings in the
report definition and the specified owner group (if defined). The Scheduled Export process will then
send the file as defined in the original job (Directory, Email, or FTP).

	Change Notification
	Overview
	Architecture
	Installation and Initial Configuration
	Integrate Change Notification Trigger
	Registering the Change Notification Trigger
	Updating an Existing Trigger for a Repository
	Managing Multi-Language Attributes in Existing Trigger
	Registering Change Notification as a PreSave Validation Rule
	Activating Debug Logging

	CN_Registry Repository
	Summary Tab
	Conditions Tab
	Attributes Tab
	Update Tab
	Transformation Tab
	Log Tab
	Translation Tab
	Email Tab
	Workflow Tab

	CN_Log Repository
	Reporting Using Scheduled Exports

	Transformation Extension
	Overview
	CN_Transformation_Repository
	Summary Tab
	Target Tab
	Condition Tab
	Future Tab
	SQL Expressions

	Example Transformations
	Rollup Attribute
	Cascade Attribute

	Language Translation Extension
	Overview
	Change Notification Translation Registry
	Summary Tab
	Attributes Tab

	Change Notification Translation Queue
	Change Notification Translation Log Repository
	Translation Request File
	Translation Request Scheduled Export
	Translation Request Log Update Scheduled Import
	Translation Queue Cleanup Scheduled Export
	Translation Queue Update Scheduled Import
	Translation Queue Update Response Template
	Translation Language Update Import Templates

	SQL-Based Reports
	Reports Using the CN_Reports Repository and Scheduled Export
	CN_Reports Repository
	Summary Tab
	Attributes Tab
	Report Scheduled Export
	Launch Report Scheduled Export
	Report Scheduled Export
	Change Report Processing

