
MapXtreme
Developer Guide

Version 9.5

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its
representatives. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, without the written permission of Precisely, 1700 District Ave Ste 300, Burlington MA 01803-5231.

© 2004, 2022 Precisely. All rights reserved.

Contact and support information is located at: http://support.precisely.com.

This product contains SpatiaLite v 3.1.0, which is licensed under GNU Lesser General Public License, Version 2.1, February 1999. The
license can be downloaded from: http://www.gnu.org/licenses/lgpl-2.1.html. The source code for this software is available from http://
www.gaia-gis.it/gaia-sins/win-binx86-test/spatialite-3.1.0b-test-win-x86.zip and http://www.gaia-gis.it/gaia-sins/win-bin-amd64-test/spatialite-
3.1.0b-test-win-amd64.zip.

This product contains Feature Data Objects v 3.6.0, which is licensed under GNU Lesser General Public License, Version 2.1, February
1999. The license can be downloaded from: http://fdo.osgeo.org/lgpl.html. The source code for this software is available from http://
fdo.osgeo.org/content/fdo-360-downloads.

This product contains HelpLibraryManagerLauncher.exe v 1.0.0.1, which is licensed under Microsoft Public License. The license can be
downloaded from: http://shfb.codeplex.com/license. The source code for this software is available from http://shfb.codeplex.com.

October 2022

Table of Contents
Table of Contents

Table of Contents 3

1 - Introduction to MapXtreme 13

Overview of MapXtreme 14
Key Features 15

Migrating to MapXtreme 17
Learning to Use MapXtreme 19

Support Resources 19

2 - Getting Started 21

Installation Requirements 22
Minimum System Requirements 23

Types of Installations 23
Development (SDK) Installations 23
Deployment (Runtime) Installations 24
Side-By-Side Installations and Use 24

Before You Install 24
Administrator Privileges 24
Install .NET Framework and Visual Studio First
24
IIS 7/8.5/10 Support 25
Default Install Directories for MapXtreme 26
Additional Installation Features 27

Installing MapXtreme in Your Environment 28
Upgrading MapXtreme 31
Migrating Web Sites to 64-bit Web Applications
32

Updating Existing Web Sites 32
Updating Existing Desktop Applications 33

Creating Applications in Visual Studio 34
Map Applications 35
ASP.NET Web Applications 37
MapXtreme Controls 39

Building ASP.NET Web Applications Without a
Template 39
Deploying Your Application 42

Deploying With the Runtime Installer 42
Deploying With Your Own Installer 43
Deploying a Web Application 48
Deploying Applications that Access Data 48
MapXtreme Web Applications Behind Proxy
Servers 48
Permissions to Temp Directory for Deployed

Web Applications 48
Application Data Files 48
Deployment Installation Troubleshooting 49

3 - Mapping Concepts 51

Mapping and MapXtreme 52
Maps 52
Tables 53
Layers 53
Features 54
Labels and Legends 54
Themes 55
Tools 56
Workspaces 56
Coordinate Systems and Projections 56

Geocoding with MapXtreme 57
Routing with MapXtreme 58

4 - Understanding the MapXtreme
Architecture 59

MapXtreme Architecture 60
Object Model Overview 61

MapInfo.Data Namespace 61
MapInfo.Data.Find Namespace 62
MapInfo.Engine Namespace 62
MapInfo.Geometry Namespace 62
MapInfo.Mapping Namespace 62
MapInfo.Mapping.Legends Namespace 62
MapInfo.Mapping.Thematics Namespace 63
MapInfo.Persistence Namespace 63
MapInfo.Raster Namespace 63
MapInfo.Styles Namespace 63
MapInfo.WebControls Namespace 63
MapInfo.Windows Namespace 63
MapInfo.Tools Namespace 64
MapInfo.Geocoding Namespace 64
MapInfo.Routing Namespace 64

Application Architectures 64
Web Application Architecture 65
Desktop Application Architecture 67

5 - Web Applications, Controls, and
MapXtreme 9.5 3 Developer Guide

MapXtreme 9.5 Developer Guide
Tools 69

Web Application Request/Response Lifecycle
70
Components of a MapXtreme Web Application
70

MapXtreme Session 70
Background Map 71
MapControl 71
Map Tools 73
State Management and Pooling Capabilities 73

MapXtreme Web Controls and Tools 74
Description of Web Controls and Tools 76

Web Control Architecture 78
Map Tools Architecture 79
How a Map Tool Works 81

Using the MapXtreme Web Controls 82
Managing Your Web Controls 83

Event Handling 83
Error Management 84
State Management 84

Creating a Custom Tool 84
Using and Distributing Custom Web Controls
87

Creating a Web Assembly 88
Adding an InfoTool to a Web Application 89
ASP.NET AJAX and MapXtreme Web
Applications 90

Adding ASP.NET AJAX Controls to a MapXtreme
Web Application 90

MapXtreme Tile Handler 92
Using the MapXtreme Tile Handler 93
Caching 95

HTML/XHTML Validation Issues 97
Migrating Post-back Web Controls to
JavaScript Web Controls 98

Loading Data 98
Replacing Controls 98
State and Event Management 99

Specialized Topics for Web Controls 99
Using Web Controls in Frames 99
Using the MapControl in Table Cells 100
Web Control Localization 100

6 - Understanding State Management
103

Overview 104
Terminology 104

What is State Management? 106
What State Management Options are Available?
106
Questions to Ask Before Writing Your Application
107

InProc Development Model 109
Pros and Cons of the InProc Development Model
110
InProc Management: A Walk-Through 110
Configuring an Application to Use the InProc
Development Model 111
Using the MapXtreme Template with the InProc
Development Model 112

State Management For Pooled Objects 113
What is Pooling? 113
Pros and Cons of Pooling 114
Saving State for Pooled Applications 114
Manual State Management: A Walk-Through
116
Configuring a Pooled Application to Use Manual
State Management 117

A Detailed Look at Manual State Management
119

Overview of the Thematics Sample 119
Application Settings 120
Implementing a StateManager 121
Serializing MapXtreme Objects in the Proper
Order 123
Automatically Deserializing MapXtreme Objects
124
Handling Initial Requests 124
Handling Subsequent Requests 125

A Closer Look at the MapXtreme Session 126
Configuring Microsoft COM+ Object Pooling 126

7 - Desktop Applications, Controls,
Dialogs, and Tools 129

Planning a Desktop Application 130
Best Practices for Desktop Applications 130
MapXtreme and COM 131
Sample Applications and Project Templates 131

MapInfo.Windows.Controls Namespace 132
Key Controls to Use in Desktop Applications
133

MapControl 134
MapToolStripButtons 135
The MapToolBar 137
Layer Control 139

MapInfo.Windows.Dialogs Namespace 141
 MapXtreme 9.5 4 Developer Guide

Table of Contents
CreateThemeWizard 142
Customizing Controls and Dialog Boxes 147
Overview of the MapInfo.Tools Namespace
147
MapXtreme Desktop Tools API 149

View Tools 150
Select Tools 150
Add Tools 151
Custom Tools 152
Shape Tools 152
Distance Map Tool 154
Using InfoTips 154

Customizing Tools 155
Tool Events 156
Editing a FeatureGeometry with the Select Tool
157

Reshaping a Feature 158
Adding Nodes 160
Reshaping and Adding Nodes Programmatically
160

8 - Working with Data 163

Overview of MapInfo.Data Namespace 164
Catalog and Tables 165

Tables 165
Catalog 170

Supported Table Types 172
Working with Catalog and Tables 175

Locating Open Tables 176
Closing a Table 177
Packing a Table 177
Listening to Table and Catalog Events 178

Table Metadata (TableInfo) 179
Examining TAB File Metadata 180
Creating a New Table 181
Adding Expression Columns to a Table 183
Data Sources 185
Choosing the Correct Data Source 185
Methods for Accessing Data 186
Data Readers, MemTables and Result Sets 187
Using an ADO.NET Data Provider 188
Data Binding 192
Making Tables Mappable 196

MapInfo ADO.NET Data Provider 199
MIConnection 199
MICommand 200
MIDataReader 202
MapInfo SQL 203

Features and Feature Collections 204

Feature 204
Feature Collections 205
Searching for Features 205
Catalog Search Methods 206
SearchInfo and SearchInfoFactory 207
Saving Opened Table as GeoJson File 211

Analyzing Data 211
Improving Data Access Performance 214

9 - Working with Core MapXtreme
Classes 215

Session Interface 216
Session Management 216
Using Session.Dispose Method 217
ISessionEventHandlers 218

Serialization and Persistence 219
Serialization 219
Persistence 220

Opening and Saving a Workspace Containing
Named Resources 221

Opening an MWS: ResolveResource() 222
Saving an MWS: GetResourceName() 222
Registering Your Implementation with
MapXtreme 222
Setting Preferences 222

Selection Class 223
Using Selection Properties 223
Selection Highlighting and Exporting 224
SelectionChangedEvent 224
ISerializable Interface on Selection and
Selections Classes 224

Selection Code Examples 225
Selecting Features Within Another Feature 225
Checking a Table for Selections 225
Returning All Columns From a Table 226
Changing the Map View Following a Selection
226

Event Arguments 226
Exceptions 227

10 - Creating Expressions 229

Expressions Overview 230
Creating Expressions 230
Where Clause – Boolean Expressions 231
Functions In Expressions 232

DateTIme and Time Expressions 232
Expression Examples 232
MapXtreme 9.5 5 Developer Guide

MapXtreme 9.5 Developer Guide
11 - Accessing Data from a DBMS 237

Accessing Remote Spatial Data 238
Accessing Remote Tables Through a .TAB File
238
Accessing Remote Tables Without a .TAB File
238
Mapping DBMS Data with X/Y Columns 239
Accessing Data from Oracle 239

Geometry Conversion 239
Oracle Support for Z and M Values 241
SDO_GEOMETRY Arc and Circle Translation
241
Visualization of Non-translatable Oracle Objects
242
Centroid Support 242
Oracle Spatial Reference Support (SRID) 242
OCI Connection Dialog 243

Accessing Data from MS SQL Server 243
SQL Server 2008 Support 243

DBMS Connection String Format 246
ODBC Connection String Format 246
ODBC Layers and Pooling in Web Applications
247
Oracle Spatial Connection String Format 248
Sample Connection Strings 248

Defining Mappable Tables in Server Table
Queries 248

The Geometry Column 249
The Key Column(s) 250

Accessing Attribute Data 251
Performance Issues 251
Working with the Cache 252

What Is the Cache? 252
How the Cache Works 252
The TableInfoServer Object and the
CacheSettings Property 253

Cache Storage Type: 256
The MapInfo_MapCatalog 256

Loading Spatial Data to DBMS 257
Manually Creating a MapInfo MapCatalog 257

Adding Rows to the MapInfo_MapCatalog 259
Per-Record Styles 264

Symbol, Pen, Brush Clause Syntax 264
Text Objects Limitation 265

Troubleshooting 266

12 - Adding Mapping Capability to

Your Applications 267

Introduction to the MapInfo.Mapping
Namespace 268
Base Mapping Classes 268

MapExport 268
Map 269
MapFactory 270
MapLoader 270
MapViewList, MapView 270
MapControl 271

Layers 271
FeatureLayer 272
Layers 272
MapLayer 272
UserDrawLayer 272
ObjectThemeLayer 273
GroupLayer 273
LabelLayer 273
GraticuleLayer 273
Layer Filters 273
IVisibilityConstraint 273
Code Example: Animation Layer 273

Labels 275
LabelLayer 276
LabelSource 276
LabelModifier 276
ILabelSourceFilter 277
LabelProperties 277
Generating Labels 277
Label Priorities 278
Label Layer Selectability 279
Code Example: Creating a LabelLayer 279
Curved Labels 280

Adornments 280
Legends 280
ScaleBar Adornment 281
Title Adornment 282

Feature Style Modifiers 282
FeatureStyleModifier 283
FeatureStyleModifiers 283
FeatureOverrideStyleModifier 283

Printing Your Map 284

13 - Finding Locations 285

Functional Overview of Find 286
The Find Process 286
Matching Address Numbers 288
Matching with a Refining Boundary Table 289
 MapXtreme 9.5 6 Developer Guide

Table of Contents
Find Results 289
Overview of the Data.Find Namespace 289

Find 290
.FindAddressRange 292
FindCloseMatch 293
FindResult 294

Fine Tuning the Find Process 297
Editing the Mapinfow.abb File 297

14 - Using Themes and Legends 305

Thematics Overview 306
Mapping.Thematics Namespace 306
Modifier Themes 306
Object Themes 307

GraduatedSymbolTheme 308
When To Use a Graduated Symbol Theme 308

PieTheme 309
When To Use a Pie Theme 309
Printing a Map Containing Pie/Bar Themes 310

BarTheme 310
When To Use a Bar Theme 310
Controlling Display Size for Pie and Bar Themes
311

RangedTheme 311
When To Use a Ranged Theme 312
Types of Ranged Values 312

RangedLabelTheme 314
When To Use a RangedLabelTheme Class 314

Ranged Themes and Serialization 315
IndividualValueTheme 315

When To Use an IndividualValueTheme Class
315

Creating an IndividualValueTheme with
Custom Bitmap Symbols 316
IndividualValueLabelTheme 317

When To Use an IndividualValueLabelTheme
Class 317

IndividualValue Themes and Serialization 318
DotDensityTheme 318

When To Use a DotDensityTheme Class 318
Bivariate Thematic Maps 319

Legends Overview 320
Theme Legends 320
Cartographic Legends 321
Formatting a Legend 322

Export/Import Theme and Style 322

15 - Stylizing Your Maps 323

Overview of the MapInfo.Styles Namespace
324

StyleFactory 325
Style Descriptions 325

AreaStyle 325
BitmapPointStyle 326
CompositeStyle 326
SimpleInterior 326
Font 327
FontPointStyle 327
GridStyle 327
RasterStyle 327
Hillshade 327
Inflection 328
SimpleLineStyle 328
BasePointStyle 328
BaseLineStyle 328
BaseInterior 328
StockStyles 328
TextStyle 329
SimpleVectorPointStyle 329

Pre-defined Styles and the StyleRepository
Class 329

StyleRepository Class 329
Using Styles 330

Styles and Layer Control 330
Creating a Custom Bitmap Style 330

Overriding Styles 331
FeatureOverrideStyleModifiers 331

16 - Spatial Objects and Coordinate
Systems 333

Introduction to MapInfo.Geometry Namespace
334
Geometries 334

Geometry Objects 335
FeatureGeometry Objects 336
Geometry Objects 341

Including Your FeatureGeometry in a Map 342
Checking for Points in Polygons 343
Coordinate Systems 345

Creating a CoordSys Object 345
Changing the Coordinate System of a Geometry
Object 346
Determining the Coordinate System of a Map in
MapControl 347
Adding Coordinate Systems to MapXtreme 347
MapXtreme 9.5 7 Developer Guide

MapXtreme 9.5 Developer Guide
17 - Working with Rasters and Grids
351

Overview of the MapInfo.Raster Namespace
352
Raster Images 352

Raster Classes 354
Raster Images and Coordinate Systems 354
Raster Reprojection 354
Raster Image Limitations 355
Code Sample: Adding a Raster Image to a Map
355

Raster Handlers 356
Raster Handler Properties 358
MRR - Multi Resolution Raster Format 358
Benefits of MRR Technology 359

Data Storage in MRR 360
MRR support in MapXtreme 362
Configuring Custom Raster Handlers 364
Grid Images 365

Grid Classes 366
Code Sample: Adding a Grid Image to a Map
366
Code Sample: Retrieving Data from a Grid Map
367

Grid Creation 368
Grid Interpolators 369

Inverse Distance Weighted (IDW) Interpolator
369
Triangulated Irregular Network (TIN) Interpolator
369
IInterpolator Interface 370

Grid Style 370
Grid Images and Inflections 371
Inflection Methods 371
Calculating Inflection Values and Colors for a
Grid Layer 372
Relief Shading 373
Grid Style Dialog 373
GridInfoForm Sample Application 376

18 - Working with Maps from Tile
Servers 377

Tile Server Images 378
Tile Caching 378
Map Behavior with a Tile Server Layer 379
Using Tile Server Images 379

QuadKey 379

LevelRowColumn 380
WMTS (Web Map Tile Service) 380
Custom Resolution Tile Service 381

Consuming Tile Layers via APIs (without .tab/
.xml file) 382

TileServerType Enumeration 386
Sample Code Snippets 386

Opening Tile Server via APIs 386
Opening WMTS via APIs 387
Opening Custom Tile Server via APIs 388

Authentication to Tile Server 389
Tile Server Settings 389

License Key for Bing Maps 389
Via the Web or Desktop Configuration File 390
Via MapInfo.Engine.TileServerSettings Class
390
Sample Code for TileServerSettings class 390

Using TableInfoTileServer Class 391
Tile Server Sample Application 391

19 - Working with GeoPackage 393

Overview 394
Opening a GeoPackage file 394
Opening a GeoPackage Tab file 396
Enable GeoPackage as cache for RDB (SQL/
Oracle) tables 396
Create and Save GeoPackage file
programmatically 397

20 - Geocoding 399

Overview of the MapInfo.Geocoding
Namespace 400
Main Geocoding Classes 401

GeocodeRequest 402
GeocodeResponse 402
GeocodeClientFactory 402
GeocodingConstraints 402
AddressCandidates 402
BaseGeocodeMatchCode and
GeocodeMatchCode 402
CandidateAddress 403

Understanding the Geocoding Model 403
Geocoding Trade-offs 403
A Few Words About Addresses 404
What are Custom User Dictionaries? 405
What is World Geocoding? 405

Geocoding a Location 405
 MapXtreme 9.5 8 Developer Guide

Table of Contents
Street Address Geocoding 406
Street Intersection Geocoding 408
Postal Code Geocoding 408
Gazetteer Type Geocoding 408
Batch Geocoding 408

Using Constraints for Accurate Geocoding 409
What are the Match Constraints? 409
Impact of Relaxing Match Constraints 412

Understanding Accuracy for Close Matches
413

Single Close Match (S Category) 414
Best Match from Multiple Candidates (M
Category) 414
Postal Code Centroid Matches (Z Category) 415
Geographic Centroid Matches (G category) 415
Non-Match Codes 415

21 - Routing 417

Overview of MapInfo.Routing Namespace 418
Main Routing Classes 418

Calculating Routes 419
Point-to-Point Routing 420
Multi-Point Routing 421
Matrix Routing 422

Advanced Route Options 423
Routing Preferences 423
Driving Directions 424
Route Geometry 426
Avoiding Points, Features, and Segments 426
Time-Based Routing 427

Iso Routing (Drive-Time and Drive-Distance)
428

Creating an IsoChrone (Drive-Time) 428
Creating an IsoDistance (Drive-Distance) 432

Updating a Request Using Routing Data 433
Returning Segment Information 434
Transient Updates 435

22 - Linear Referencing 441

What is Linear Referencing 442
Using M values for Linear Referencing 442

Measure Value Determination Methods 444
Linear Referencing Operations 444
Dynamic Segmentation Operation
(PerpendicularOffset) 445

Curve Order 446
Linear Referencing Sample Application 446

23 - Web Feature Service 449

Web Feature Service 450
Understanding WFS 1.0.0 Server Operations
451
Configuring a WFS 1.0.0 Server 455

Step 1: Create a Web.config File 456
Step 2: Create a Valid WFS Configuration File for
Hosted Features 457
Step 3: Configuring and Testing the WFS Server
459

Understanding WFS 2.0.0 Server Operations
462
Configuring a WFS 2.0.0 Server 468

Step 1: Create a Web.config File 469
Step 2: Create a Valid WFS Configuration File for
Hosted Features 470
Step 3: Configuring and Testing the WFS 2.0.0
Server 472

Using the MapXtreme WFS Client
Programmatically 475

Using Filters in WFS Queries 476
Creating a Map Layer from a WFS Response
479

24 - Web Map Service 483

Introduction to MapXtreme’s Web Map Service
484
Understanding WMS Operations 484

Using MapXtreme as a WMS Client 486
Code Example: Requesting a WMS Layer 487
WMS and Coordinate Systems 488

Map and Image Bounds 488
MapXtreme WMS and Authentication 489

Basic Authentication 489
Setting up a MapXtreme WMS Server 490

Step 1: Create a Web.config File 490
Step 2: Create a Valid WMS Configuration File
for Hosted Data 492
Step 3a: Configure and Test the WMS Server
using IIS 7/8.5/10 495
Step 3b: Configure and Test the WMS Server
with IIS7/8.5/10 496

Configuring Layer Information for a WMS
Server 499

25 - Vector Tile Service 503
MapXtreme 9.5 9 Developer Guide

MapXtreme 9.5 Developer Guide
Introduction to Vector Tiles 504
MapXtreme Vector Tile Service 504
Setting up a MapXtreme Vector Tile Server
504

Configure a Vector Tile Server 505
Step 1: Create a Web.config File 505
Step 2: Create a Valid Vector Tile Service
Configuration File for Hosted Data 506
Step 3: Configure a Vector Tile Server using IIS
7/8.5/10 507
Step 4: Testing the Vector Tile Server 509

Configuring Server Metadata Parameters 510

26 - Web Map Tile Service 513

WMTS support in MapXtreme 514
WmtsClient Class 514

27 - Workspace Manager 519

Features of the Workspace Manager 520
Workspace Format and Contents 521
Workspace Manager Menu Commands 521

File Menu Commands 521
View Menu Commands 524
Map Menu Commands 525
Tools Menu Commands 528
Extensions Menu Commands 532

Layer Control 533
Layer Control Tools 533
Layer Tree 533
Layer Control Tabs 535
Map Settings 535
Layer Settings 541
Theme Layer Settings 542
Label Layer Settings 543
Group Layer Settings 546
Style Override Settings 547
Graticule Layer Settings 547

Export/Import Theme and Style 548
Using Workspace Manager Features 549

Enhanced Rendering with GDI+ Translucency
and Anti-Aliasing 550
Creating Translucent Effects 552
Curved Labels 555
Graticule Layers 559

28 - Using the GeoDictionary

Manager 561

Using the GeoDictionary Manager 562
Changes in the GeoDictionary Manager 562
The GeoDictionary Manager’s User Interface
562

Run GeoDictionary Manager 562
The GeoDictionary File 566

Sample .dct file 566

29 - Location Intelligence API
Integration in MapXtreme 569

Overview 570
MapXtreme LIAPI Integration 570

Token Management 570
Geometry Conversion 571
Sample Application 571

A - How to Create and Deploy a
MapXtreme Application 575

Customizing MapXtreme Samples 576
Building a Desktop Application 576

Modifying Your Application 577
Building Under Release Mode 585
Packaging Your Desktop Application 586
Deploying Your Desktop Application 588

Building a Web Application 588
Running a Sample Web Application 588
Modifying Your Application 590
State Management Considerations 593
Configuring for Release Mode 594
Packaging Your Web Application 594
Deploying Your Web Application 597

B - Customizing MapXtreme 599

Customizable Classes 600
MapInfo.Data.Provider Namespace 600
ADO.NET 600
Engine.CustomProperties 600
Search 601
FeatureStyleModifier or
FeatureOverrideStyleModifier 602
UserDrawLayer 603
Windows.Controls 603
Tools 605
 MapXtreme 9.5 10 Developer Guide

Table of Contents
Styles 605
GmlFeatureCollection 607
WorkSpacePersistence and WorkSpaceLoader
607

Workspace Manager Extensions 608
Creating a Workspace Extension 608
Loading Your Extension 610
Unloading Your Extension 611
Sample Extension 611

Location of Application Data Files 613
Find Abbreviation File 615

C - Understanding the MapInfo
Workspace 617

What is the MapInfo Workspace? 618
Structure of a Workspace 619

Header Section 619
Connection Section 619
DataSource Definition Section 620
Map Definition Section 621

Creating an .MWS Workspace
Programmatically from a .GST 623
Partial Workspace Loading: 624

Enable Partial Loading Programmatically 625
Enable Partial Loading through User Interface
625

D - Extensible Data Providers 627

Introduction 628
Extensible Data Provider Overview 628
Getting Started 631
Required Components 633
Optional Building Blocks: Base Classes,
Helpers and Utilities 635
Sample: COTW (Center of the World) Data
Provider 637
Optional Interfaces 639

IDataSource 639
IDataSourceDefinition 639
ITableModifyProcessor 639

Building and Testing Your Data Provider 640
Data Provider 642

SpatiaLite Sample Data Provider 642
GeoJSON Data Provider 644

Advanced Topics / Important Considerations
645

Creating Geometries 645

Coordinate Systems 646
Styles 647
Exception Handling 648
Persistence Providers 648
Serialization 651
Authentication 655
Thread safety 659

E - Printing From MapXtreme
Applications 661

Overview 662
Understanding the Print Options in MapXtreme
663

Printing Sizes 663
Special Transparent Raster Handling 663
Special Transparent Vector Handling 664
Display Raster in True Color When Possible 664
GDI+ Translucency and Anti-Aliasing 664
Dither Method 665
Special Polygon Hole Handling 666
Scale Patterns 666
Print Directly to Device 667
Print Using Enhanced Metafile (EMF) 667

Implementing Printing in Your Application 667
General Printing Tips and Tricks 669

Printing a Legend in Your Map 669
Resolutions to Known Printing Issues 672

Platform Independent Issues 673
Platform-Specific Issues 673

F - Style Lookups 677

Fill Patterns 678
Understanding the Index Numbering Schemes
678

Line Styles 693
Vector Symbols 693

MapInfo Arrows 694
MapInfo Cartographic 694
MapInfo Miscellaneous 695
MapInfo Oil &Gas 695
MapInfo Shields 695
MapInfo Real Estate 696
Map Symbols 696
MapInfo Symbols 696
MapInfo Transportation 697
MapInfo Weather 697

Custom Symbols 698
MapXtreme 9.5 11 Developer Guide

MapXtreme 9.5 Developer Guide
MapXtreme Icons 701

G - Defining the MapInfo Codespace
705

Defining the MapInfo Codespace 706

H - Elements of a Coordinate System
715

Projections and Their Parameters 716
Projection 717

Projection Datums 723
Units 735
Coordinate System Origin 736

Datum Conversion 738
Custom Datums 739

Defining Custom Datums 739
National Transformation v. 2 (NTv2) 745
Information on Coordinate Systems and
Projections 749

I - User-Defined Metadata 751

Metadata and the MapCatalog 752
User-Defined Metadata Support for
TableInfoServer Queries 752

ColumnHints Property 752

J - Migrating to MapXtreme 757

Comparing MapXtreme’s Object Model to
MapX 758

Specific Object Model Implementation
Differences 758

K - Localization Kit 771

Localization Kit 772
System Requirement 775

How to Use the Localization Kit 775
Building the Satellite Assemblies 776
Building from the Command Line 777

Private Key Signing for Satellite Assemblies
778

L - Log Files in MapXtreme 779

Logging in MapXtreme 780
Logging Configuration Options 780
Log File Directory and Structure 781

Terms 784
 MapXtreme 9.5 12 Developer Guide

1

1 – Introduction to

MapXtreme
Welcome Developers to Precisely’s latest offering in the world of
.NET programming. In support of Microsoft’s .NET Framework
for Windows, MapXtreme reflects a single object model for
developing or extending mapping applications for the desktop,
traditional client/server environments or the Web.

MapXtreme is an application development tool for organizations
who recognize that data visualization and mapping can help you
make better business decisions and manage assets and
operations more effectively. MapXtreme is for organizations that
need to incorporate location analysis or definition into desktop,
client/server and web-based products. MapXtreme can be used
as a powerful analysis toolkit to make critical business decisions
such as optimal locations for sales offices, how to transport
products most efficiently, and how to manage and protect
assets. Developers can use MapXtreme to shorten their
development time and improve performance, reliability, and
security.

In this chapter:
 Overview of MapXtreme . 14
 Migrating to MapXtreme . 17
 Learning to Use MapXtreme. 19

Overview of MapXtreme
MapXtreme is Precisely’s premier Windows software development toolkit that allows
.NET-experienced developers to create powerful location-enhanced desktop and
client/server applications.

From this single SDK, you can develop applications using your favorite .NET
programming language, share and reuse code between desktop and web deployments,
access data from a wide variety of sources using standard protocols, and more.

This is all possible through MapXtreme’s object model, an API of 100 percent managed
code that was developed on Microsoft’s .NET Framework. The Framework’s Common
Language Runtime (CLR) provides the foundation that makes simplified development a
reality.

The following components and features are included in MapXtreme:

• Product framework: The MapXtreme Object Model is built using the Microsoft .NET
Framework 4.8. See Object Model Overview for more information.

• Development Environment Tools: A variety of templates, controls, sample code and
tools help you develop Windows Forms and ASP.NET applications within Visual
Studio. You can extend some of these components to provide more advanced
functionality available through the object model. Two data management utilities are
included for managing tables that you will use in your application (Geodictionary
Manager) and manage workspaces for ease of use and portability (Workspace
Manager). See Chapter 5 Web Applications, Controls, and Tools and Chapter 7
Desktop Applications, Controls, Dialogs, and Tools.

• Full Mapping and Analytical capabilities: Map creation and display, data access,
thematic mapping, raster and grid handling, object processing and presentation, and
more.

• Scalable Infrastructure: Session object pooling and caching capabilities offer big
performance gains for web applications. Maintain session and user information by
saving information to MapXtreme’s XML-based workspace format. See Chapter 9
Working with Core MapXtreme Classes.

• Runtime Deployment: MapXtreme uses Windows Installer technology (merge
modules) that developers can use to install or redistribute runtime components used in
deployed applications. See Deploying Your Application.

• Extensive Documentation: Product documentation is at your fingertips as integrated
components in the Visual Studio development environment. The MapXtreme Learning
Resources page keeps you connected to all product resources, including what’s new
and changed in this release. It’s available from the Start menu.
MapXtreme 9.5 Developer Guide 14

 1 – Introduction to MapXtreme
Key Features
MapXtreme is packed with features and conveniences to help you build your Windows
Forms or ASP.NET Web applications efficiently. Regardless if you are making the map
the cornerstone of your application or are adding some basic mapping functionality to
support your existing application, the framework and tools you use are the same. Here is
an overview of MapXtreme’s capabilities:

If you are new to Precisely’s mapping products, be sure to also see Chapter 3 Mapping
Concepts for additional help on the basics.

For developers upgrading to MapXtreme, see the Release Notes for what’s new and
changed in the product. See also Migrating to MapXtreme for a mapping of features in
MapX to features in MapXtreme .NET.

Feature * Purpose

Tables, Layers,
Features

Maps in MapXtreme consist of geographic features like
point locations, boundaries and street networks. The
feature information is stored in tables and display in the
map as layers.

Data access MapXtreme supports data from a wide variety of
sources, including spatial and non-spatial RDBMS, MS
Access, dBase and ASCII, as well as its own native
type the MapInfo Table (.TAB). All data operations are
carried out via the MapInfo.Data namespace.
Operations include adding and removing tables, and
inserting, updating and deleting records from a variety
of data sources.

.NET Dataset Provider support: allows any ADO.NET
dataset provider to be treated as a table in
MapInfo.Data. This will allow you to use external
non-mappable data.

Web Services MapXtreme provides clients and APIs for you to access
several popular web services: geocoding, routing,
WMS and WFS.

Selections and
Searches

This common mapping operation allows you to find just
the data that matches your criteria, by using attributes
or spatial queries.
MapXtreme 9.5 Developer Guide 15

Thematic mapping One of the most widely used ways of analyzing your
data is to show the visual relationship and underlying
data through theme maps. MapXtreme supports the
creation and use of six themes: ranged, individual
value, graduated symbol, dot density, and pie and bar
charts.

Labeling MapXtreme provides a sophisticated labeling capability
for you to label features with names or other
information (column data or expressions), and create
ranged and individual value themes on the labels
themselves to impart your message without relying on
text alone.

Map Styling Labeling is one form of map styling that you can control
on your map in nearly infinite ways. Style also refers to
the color, patterns, fonts, line styles and symbols of
map features that is used in many areas of
MapXtreme, including features, adornments (map
titles), dialog boxes and text.

Geographic processing
and analysis

This refers to making new features from existing ones,
such as combining postal code boundaries to create
sales territories. It also refers to using the feature’s
location coordinates to learn more about its relationship
to other features. For example, create a buffer around
a point that measures five miles in radius to find out
what other points fall within the buffer zone.

Projections and
Coordinate Systems

These are ways of representing locations on a
two-dimensional map. Knowing the coordinate system
of your data allows you to line up features properly for
accurate display and measurement. MapXtreme
supports a wide variety of projections and coordinate
systems and provides information for creating your
own.

* Some features or tools in this product may not be supported for some languages or in some regions.
Please consult your local customer service representative for details.

Feature * Purpose
MapXtreme 9.5 Developer Guide 16

 1 – Introduction to MapXtreme
Migrating to MapXtreme
The following is a table that compares features and functionality from MapX with that of
MapXtreme .NET. As with any new architecture of a product, note that the equivalent may
not be exact. Use the MapXtreme topics in the right column of this list to find further
details elsewhere in this Developer Guide and in the online help and object model. A full
list of the MapX object model and the equivalent functionality in MapXtreme is covered in
Appendix J: Migrating to MapXtreme.

MapX5.0 MapXtreme

Map object Map class: holds collection of Layers.

MapControl: way to view a map on a form.

MapInfo.Mapping namespace

MapXBroker Session class: starting point for all MapXtreme-based
applications.

Related topics: MICommand, Catalog, Pooling

MapInfo.Engine namespace

Layer-centric model Tablecentric model

Related topics: Table metadata (TableInfo class),
Feature class, Column class (MI_Geometry, MI_Style,
MI_Key), MapInfo ADO.NET data provider.

MapInfo.Data namespace

Datasets, data binding Add a temporary column to an Table using the
Table.AddColumns() method.

Related topic: Geodictionary Manager

MapInfo.Data namespace

Geosets. Geoset
Manager

Workspaces (.MWS): XML format. Geosets are
supported.

Related topics: Workspace Manager.

MapInfo.Persistence namespace
MapXtreme 9.5 Developer Guide 17

Annotations Adornments: a Legend, a Title, a Scalebar, or some
other similar user-defined object in a single map.

MapInfo.Mapping namespace

Thematic mapping Same thematic map types. Themes are no longer
layers.

Related topics: ModifierThemes (graduated symbol,
pie and bar themes), ObjectThemes (ranged,
individual value, dot density themes.

MapInfo.Mapping.Thematic namespace

Feature layer and
Feature Collections

FeatureGeometry: all geometries are now objects.
Includes point, multipoint, curve, multicurve, polygon,
multipolygon ring.

Geometries include rectangle, rounded rectangle,
ellipse, legacy arcs, legacy text.

Related topics: CoordSysFactory (registered
coordinate systems), object processing (see
FeatureProcessor, below)

MapInfo.Geometry namespace

FeatureFactory FeatureProcessor class: object processing Buffer,
Combine, Intersection, ConvexHull.

Related topic: Difference (formerly Erase) in
FeatureGeometry class.

MapInfo.Geometry namespace

Tools Desktop tool SelectRegion can assign to mouse
buttons and configure mouse wheel for zooming.

MapInfo.Tools namespace

MapX5.0 MapXtreme
MapXtreme 9.5 Developer Guide 18

 1 – Introduction to MapXtreme
Learning to Use MapXtreme
MapXtreme has a lot to offer beginning and experienced .NET developers alike. This
section describes several support mechanisms we have created to get you up and
running quickly and with minimal disruption in your development timetable.

Support Resources

Raster and Grid Images New table structure, RasterImageInfo, GridImageInfo.

Related topics: controllable styles: brightness,
contrast, color/grayscale, translucency, one-color
transparency.

MapInfo.Raster namespace

Label objects and Label
collections

LabelLayer: allows the separate ordering of labels and
layers. LabelSource: information from the data source
that is used for labeling.

MapInfo.Mapping namespace

Selection object Selection class: a multi-feature collection of lists of
features that are tied to a table.

MapInfo.Engine namespace

Spatial Server
connectivity

MI ADO.NET data providers, MapInfo SQL language.

MapInfo.Data namespace

Style Object Style class: new object model. Styles are now objects,
not properties of other objects; information is stored in
column MI_Style.

Related topics: FeatureStyleModifiers,
FeatureOverrideStyleModifiers in the
MapInfo.Mapping namespace.

MapInfo.Styles namespace

MapX5.0 MapXtreme
MapXtreme 9.5 Developer Guide 19

MapInfo is committed to supporting new MapInfo developers as well as our long time
customers. We provide a wide variety of tools to help you make the transition or get up
and running quickly in the Visual Studio environment with the following resources.

MapXtreme Learning Resources Page

Accessible from the Start Menu after you install MapXtreme, the Learning Resources
Page brings together a wide variety of information about MapXtreme, including best
development practices, code samples, tutorial web applications, links to all
documentation and online resources on the MapInfo website, and much more. Refer to
this page often to get comfortable with MapXtreme and as you continue to develop
mapping applications that match your business needs.

Documents and Help Systems

This MapXtreme Developer Guide provides an overview of the MapXtreme development
environment and namespaces. The Visual Studio-integrated Help System provides the
more specific API-level information you need to use these tools to develop integrated
Windows desktop and web-based applications with the MapInfo powerful mapping
components. If you have comments regarding the documentation, you can share them at
to http://support.precisely.com

 The above-mentioned email address should not be used for questions specific to
the software or clarification about subjects contained in the documentation. Please
send those questions to Technical Support (see below).

If you are new to using or developing with MapInfo mapping products, be sure to see
Chapter 3 Mapping Concepts.

To get the latest release information, be sure to download a copy of the MapXtreme
Release Notes from the Precisely website.

Technical Support

Precisely offers unparalleled technical support for users of MapInfo software products.
Our Technical Support department provides technical assistance to registered users of
MapInfo software – so you don't need to be an expert in all aspects of our products in
order to get results. See the Precisely Web site at http://support.precisely.com for
information on the tech support offerings.
MapXtreme 9.5 Developer Guide 20

http://support.precisely.com.
mailto: software.support@pb.com
http://support.precisely.com
http://support.precisely.com
http://support.precisely.com

2

2 – Getting Started
This chapter provides all the information you need to install, configure,
and deploy your first MapXtreme application.

In this chapter:

 Installation Requirements . 22
 Types of Installations . 23
 Before You Install . 24
 Installing MapXtreme in Your Environment. 28
 Upgrading MapXtreme . 31
 Migrating Web Sites to 64-bit Web Applications 32
 Creating Applications in Visual Studio . 34
 Building ASP.NET Web Applications Without a Template 39
 Deploying Your Application . 42

Installation Requirements
Precisely has tested and supports MapXtreme on the following.

Architecture • 64-bit

• 32-bit

Operating Systems • Windows 11 (x64)

• Windows 10 (x86, x64)

• Windows Server 2022

• Windows Server 2019

• Windows Server 2012 (x64)

Development Framework and

IDE Support *
• Microsoft .NET Framework 4.8

• Visual Studio 2022

• Visual Studio 2019

Browsers • Internet Explorer 10 and higher**

• Firefox 3.5 and higher

• Chrome 20 and higher

For web application and
deployment:

• IIS 10 (Windows 10, Windows Server 2012 R2)

• IIS 8 and higher (Windows 8 and 8.1)

• IIS 7 (Windows Server 2008 R2 and Windows 7)

Supported databases • Microsoft SQL Server 2019

• Microsoft SQL Server 2016

• Microsoft Access 2007 and Excel 2007

• Microsoft Access 2003

• Oracle 12C R2

• Oracle 11G (11.1.0.6.0 and 11.1.0.7.0)

• Oracle 10G, 10GR2

• Microsoft SQL Server 2014

For data access: • MDAC 2.8
MapXtreme 9.5 Developer Guide 22

 2 – Getting Started
 MapXtreme does not support the Express Editions of Microsoft Visual Studio.

Minimum System Requirements

Types of Installations
MapXtreme provides two installation types: one for Development (SDK) and one for
Deployment (Runtime). Each is selectable from the product CD Browser.

Development (SDK) Installations
The Development Installation installs the MapXtreme Software Development Kit (SDK) on
your computer. Choose this installation to develop your desktop and web applications.
Upon installation, this SDK is automatically integrated with Microsoft Visual Studio and
works in conjunction with the .NET Framework. The SDK provides C# and VB application
templates for simplified development.

* Recommended development environments (IDE). Others can be used, however, the MapXtreme installer will
not integrate its templates, samples, and help system.

** The MapXtreme Learning Resources displays in Internet Explorer automatically, regardless of your default
browser setting. This will not change your default browser setting.

Memory Windows 11: 4 GB RAM (64-bit)

Windows 10: 1 gigabyte (GB) RAM (32-bit), 2 GB RAM
(64-bit)

Windows Server 2022: 2 GB RAM

Windows Server 2019: 2 GB RAM

Windows Server 2012: 1 GB RAM

Processor Windows 11: 1 gigahertz (GHz) processor

Windows 10: 1 gigahertz (GHz) processor

Windows Server 2022: 1.4 GHz processor

Windows Server 2019: 1.4 GHz processor

Video Card Graphics card that supports at least 256 colors
MapXtreme 9.5 Developer Guide 23

For instructions on how to install the SDK, see Installing MapXtreme in Your Environment.
Instructions are also available from the Help buttons on the installation dialog boxes.

Deployment (Runtime) Installations
The Deployment installation option installs the Location Runtime Environment which lays
down the MXTRuntime.exe (or MXTRuntime.exe for software-copy protected versions of
MapXtreme). For instructions on installing the Runtime installer see Deploying With the
Runtime Installer.

Side-By-Side Installations and Use
You may have more than one version of MapXtreme installed on your system at the same
time. Each version of MapXtreme installs into its own directory.

You may also build a desktop and web application against an earlier version of
MapXtreme and run it against a later version.

You may run more than one ASP.NET application on the same computer if they are built
with different versions of MapXtreme. Create an application pool for each version of
MapXtreme and place the appropriate ASP.NET application in it. Restart IIS by issuing an
iisreset from a command prompt or recycle the application pool that the application is
assigned. When an application runs in its own process space, it will load the appropriate
version of MapXtreme.

This does not affect desktop applications created with different versions on MapXtreme.
Each desktop application always runs in its own process space.

Before You Install
The following are things to be aware of prior to installing MapXtreme.

Administrator Privileges
To install MapXtreme, you must be an Administrator on the machine or the current user
must be a member of the group Administrator. Right-click Setup.exe and choose 'Run as
administrator'. This applies to both types of installation (SDK and Runtime).

Install .NET Framework and Visual Studio First
MapXtreme 9.5 Developer Guide 24

 2 – Getting Started
Before you install MapXtreme, be sure that you have the .NET Framework and the Visual
Studio environment appropriate for the framework installed.

 You may use a different development environment than Visual Studio, however, the
templates, samples, and the online help system will not be integrated.

IIS 7/8.5/10 Support
MapXtreme supports web deployment under Internet Information Services (IIS) IIS 7, IIS
8.5 and IIS 10.

For IIS 7, the operating system requirement is Windows Server 2008 or Windows 7. For
IIS 8, the operating system requirement is Windows Server 2012 or Windows 8/8.1.
MapXtreme does not support web deployment on Windows XP.

Throughout the Developer Guide references to IIS will refer to IIS 7, IIS 8.5 and IIS 10.

IIS 7 is included (although not necessarily installed) with Windows Server 2008 and
Windows 7 Ultimate. MapXtreme supports IIS 7 and IIS 8 in both classic mode and
integrated pipeline mode.

Prior to installing MapXtreme, configure IIS 7/8.5/10 following the steps below. These
steps apply to Windows Server 2008 and Windows 7.

1. Enable Windows Authentication and Anonymous Authentication.

a. Go to Control Panel > Administrator Tools, right-click IIS and choose to “Run As
Administrator”.

b. Select Default Web Site.
c. Under the IIS group, double-click Authentication.
d. Right-click Anonymous Authentication and choose Enable. Do the same for

Windows Authentication.

2. Enable the Web Management Tools.

a. Go to Control Panel > Programs and Features.
b. Click Turn Windows features on or off. The Windows Features dialog box opens.
c. Select the Internet Information Services checkbox.
d. Double-click (or expand) Web Management Tools, and select all checkboxes below

it.

3. Enable World Wide Web Services.

a. In the Windows Features dialog, double-click (or expand) the World Wide Web
Services and check the boxes itemized below.
MapXtreme 9.5 Developer Guide 25

b. Application Development Features - select all.
c. Common HTTP Features: Default Document, Directory Browsing, HTTP Errors,

Static Content and WebDAV Publishing
d. Health and Diagnostics: HTTP Logging, Request Monitoring
e. Performance: Static Content Compression
f. Security: Request Filtering and Windows Authentication

MapXtreme Web Controls and IIS

MapXtreme's Web Controls have always modified the web.config file of your ASP.NET
automatically to include the required modules and handlers. We fully support IIS7
integrated pipeline mode, and will also auto-modify the web.config file to include the
necessary code under the system.webServer node. To maintain compatibility with
previous ASP.NET applications built to run in IIS6, or IIS7's 'Classic' pipeline mode, the
Integrated Pipeline code will only be entered into the web.config file if the
MapInfo.Engine.Session.PipelineMode property is set to 'Integrated'. This property is
added to the 'appSettings' node of the web.config file when any ASP.NET project is
loaded into Visual Studio with MapXtreme installed on your system. Initially, this property
is commented out. Simply uncomment to make the proper edits for an application running
in Integrated Pipeline mode in IIS7. Change the value to 'classic', or simply recomment
the property, to comment out the system.webServer node for backwards compatibility
with Classic Pipeline mode.

Default Install Directories for MapXtreme
MapXtreme is a 64-bit application that installs by default into C:\Program Files on 64-bit
computers or in C:\Program Files (x86) on 32-bit computers.

Both default paths are included in the Web.config files of the MapXtreme sample
applications. If you have installed MapXtreme to another location, you must edit the
Web.config files to point to that location for the samples to run properly.

 For non-English US (ENU) installations of Windows, the default installation
directory C:\Programmer\ is considered a custom install location by MapXtreme.
You must edit the samples Web.config files to point to your install directory, as the
example below shows.

<configuration>
<appSettings>
<add key="MapInfo.Engine.Session.Workspace"
 value="C:\Programmer\MapInfo\MapXtreme\9.x.x\Samples\Data\World.mws" />
</appSettings>
MapXtreme 9.5 Developer Guide 26

 2 – Getting Started
</configuration>

Additional Installation Features
MapXtreme provides online installation instructions to follow. You can also access the
instructions via the Help button on the install dialogs during installation.

MapXtreme provides free sample data for a variety of world locations. To install the data,
choose Install Sample Data from the CD Browser. You can control how much of the data
you wish to install by choosing the Custom option. The Complete option (default) will
install about 450 MB of world data sets under Program
Files\MapInfo\MapXtreme\9.x.x\Samples\Data.

 You do not need to run this data installer in order to use the sample applications
that ship with MapXtreme. Basic sample data is automatically installed to the \Data
folder for this purpose.

The MapXtreme DVD Browser also provides a link to the PDF version of this Developer
Guide.
MapXtreme 9.5 Developer Guide 27

Installing MapXtreme in Your Environment
To install MapXtreme:

1. Place the MapXtreme product media in the disk drive.

2. At the DVD Browser main page, click Install. The Install Description page appears.

3. Choose either Development Install to install the SDK or Deployment Install to install
the runtime version.

4. Choose Install SDK or Install Runtime. At the Welcome dialog box, click Next to
proceed. For deployment installations skip to step 10.

 You may also review the installation instructions and install sample data from this
page.

5. At the Installer Welcome dialog box, read the information in the panel and click Next to
proceed.

6. Choose to accept the License Agreement. Click Next. The Customer Information
dialog box appears.
MapXtreme 9.5 Developer Guide 28

 2 – Getting Started
7. At the Customer Information dialog box, enter your user name and company name in
the appropriate fields. The Setup Type dialog box appears.

8. At the Setup Type dialog box, select Complete or Custom. Choose Custom if you want
the features to be installed or to install to a location other than the default (C:\Program
Files\MapInfo\MapXtreme\9.x.x). Click Next. If you chose Complete proceed to
step 10. If you chose Custom continue to step 9.

 If you install MapXtreme to a location other than the default or on a version of
Windows XP other than the English US (ENU), you will need to edit the
web.config file of any sample web application you intend to run after installation.
See the sample web application’s ReadMe.rtf file for instructions on editing the
web.config file.
MapXtreme 9.5 Developer Guide 29

9. If you chose Custom in the previous step, select the components that you want to
install, or click the Change button to specify a new installation path. Click Next.

10.At the Ready to Install the Program dialog box, click Install.

11.The Installing MapXtreme dialog box launches.
MapXtreme 9.5 Developer Guide 30

 2 – Getting Started
12.At the InstallShield Wizard Completed dialog box, uncheck the Launch Learning
Resources checkbox if you do not wish to view the MapXtreme Learning Resources
page, and then click Finish to leave the software installer.

The MapXtreme Learning Resources page is available anytime from the Windows
Start menu from an SDK installation It is not available for a runtime installation.

Upgrading MapXtreme
MapXtreme installs into its own directory using the form
\<installdir>\MapInfo\MapXtreme\x.x.x, where x.x.x is the current release. It will not
overwrite a previous version. This allows you to maintain side-by-side installations of
different releases of the product.

Note, when using a side by side install, you must close Visual Studio before opening a
project of a different type. For web applications, you will also need to reset Internet
Information Services (IIS). Use the iisreset.exe command in a console window or from
the Start > Run menu option.
MapXtreme 9.5 Developer Guide 31

Migrating Web Sites to 64-bit Web
Applications
MapXtreme supports creating 64-bit web applications. If you have an existing Web site,
you will need to migrate them to a Web application to take advantage of 64-bit
processing. You may continue to build MapXtreme-based Web sites that are 32-bit only
(see Updating Existing Web Sites on page 32).

There is nothing specific to MapXtreme when migrating a Web site to a Web application.
For more information, see the following Microsoft topics Web Application Projects versus
Web Site Projects and Walkthrough: Converting a Web Site Project to a Web Application
Project in Visual Studio.

Updating Existing Web Sites
Follow the instructions in this section if you wish to update a 32-bit MapXtreme Web Site
to use the latest assemblies.

In order to run a Web site created with a previous release of MapXtreme, you must edit
your application’s Web.config file to point to the new versions of the assemblies.

MapXtreme assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32
and C:\Windows\Microsoft.NET\assembly\GAC_64.

At a minimum, you must include MapInfo.CoreEngine.dll,
MapInfo.CoreEngine.Wrapper.dll, MapInfo.CoreTypes.dll and MapInfo.WebControls.dll.
MapXtreme 9.5 Developer Guide 32

http://msdn.microsoft.com/en-us/library/dd547590.aspx
http://msdn.microsoft.com/en-us/library/dd547590.aspx
http://msdn.microsoft.com/en-us/library/aa983476.aspx
http://msdn.microsoft.com/en-us/library/aa983476.aspx

 2 – Getting Started
When you are finished editing, save your Web.config file and rebuild your web site.

Check that the Copy Local property for your web controls is set to False. See Set Copy
Local property to False on page 33.

Updating Existing Desktop Applications
Desktop applications created with a previous release of MapXtreme can be recompiled to
work in the current release. Controls may have to be re-added to the form.

There are several things you need to do first.

• Set Copy Local property to false

• Add new assemblies to project

• Redirect assemblies to the new assemblies

Set Copy Local property to False

Verify that the Copy Local property for your controls is set to False. There exists a known
issue that when you drag and drop a MapXtreme desktop control onto a Windows form,
references are loaded that have the Copy Local property set to True. MapXtreme
references must point to assemblies residing in the Global Assembly Cache (GAC), not to
the local bin path, which is what happens when Copy Local is set to True.

The same behavior exists for ASP.NET Web applications when dragging and dropping
MapXtreme web controls onto a form or when building a console application that is not
based on a MapXtreme template. The same workaround applies here: Set the Copy
Local property to FALSE.

This does not occur when using the MapXtreme web application template or sample
applications, which are based on the MapXtreme web application template.

Add New Assemblies to Project

The illustration below highlights the assemblies used for MapXtreme desktop
applications.
MapXtreme 9.5 Developer Guide 33

Redirecting MapXtreme Assemblies To Newer Versions

You must redirect your application to use the current version of the assemblies. Microsoft
provides several mechanisms to redirect assemblies. For more detailed information, see
Microsoft’s .NET Framework Developer Center.

Application Configuration File

It is recommended that you use an application configuration file to accomplish assembly
redirection. The configuration file must be located in the same directory as the application
and is named after the application. For example, the configuration file for myApp.exe
must be named myApp.exe.config.

The application configuration file overrides settings in the publisher's policy file.

To redirect assemblies, you must identify the version numbers and PublicKey tokens for
the current release and add them to your application configuration file. The version
number is in the form X.x.x.x, for example, 8.1.0.x.

MapXtreme assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32
and C:\Windows\Microsoft.NET\assembly\GAC_64.

Publisher Policy File

A publisher policy file containing redirection settings could be installed in the GAC with
the assembly. However, this is not a supported Precisely configuration.

Machine Configuration File

Specifying redirection settings in the machine configuration file will cause all applications
referencing the assembly to use the upgraded version. Use this method of redirection
carefully, since the machine configuration file overrides settings in both the application
configuration file and the publisher's policy file.

Creating Applications in Visual Studio
With MapXtreme, it's easy to add a map to your application. Visual Basic.NET and Visual
C# project templates are provided that allow you to create simple mapping applications
without writing any code.
MapXtreme 9.5 Developer Guide 34

http://msdn.microsoft.com/en-us/library/7wd6ex19%28v=vs.100%29.aspx

 2 – Getting Started
Sample desktop and web applications are also provided for you to review, experiment
with and adapt to your own situation. For a step-by-step tutorial on how to use these
sample applications, see Appendix A: How to Create and Deploy a MapXtreme
Application.

MapXtreme also ships with a collection of tutorial applications to help you understand
how to include useful mapping functionality in a web application. Each tutorial application
is accompanied by documentation that explains how the application was built. See
Learning Resources from the Start > Program menu for the documentation. The tutorial
applications are included in a single Visual Studio solution called MapXtremeTutorials.sln,
located in the \Tutorials folder of your MapXtreme installation (default location is
C:\Program FIles\MapInfo\MapXtreme\9.x.x.\Tutorials, where 9.x.x is the release
version).

The following procedure outlines the steps to make a simple desktop mapping
application. For steps to create a web application, see ASP.NET Web Applications.

Map Applications

 This example is specific to Visual Basic.NET. To create a Visual C# Map application
substitute Visual C# for Visual Basic in the following steps.

1. From the Visual Studio File menu, select New Project. The New Project dialog box
appears.

2. In the Installed Templates frame of the New Project dialog box, under the Visual Basic
folder, choose Windows.

3. In the Templates frame of the New Project dialog box, select MapXtreme 9.x.x
MapForm Application.
MapXtreme 9.5 Developer Guide 35

4. Choose an appropriate name and click OK. MapXtreme creates the application.

Under Solution Explorer double-click MapForm.vb and MapForm.vb [Design]
appears.

5. On the Debug menu, click Start Debugging to run the application.
MapXtreme 9.5 Developer Guide 36

 2 – Getting Started
6. Click the Open Table icon and load your data. The default location for sample data is
Program Files\MapInfo\MapXtreme\9.x.x\Samples\Data or, Program
Files(x86)\MapInfo\MapXtreme\9.x.x\Samples\Data.

7. Use the controls in the toolbar to manipulate the map as you would with any other
Precisely mapping application.

ASP.NET Web Applications
The following procedure outlines the steps to make a simple ASP.NET Web Application
using the MapXtreme Web Application template. The template is pre-configured for IIS 7/
8.

This example is specific to Visual Basic.NET. To create a Visual C# ASP.NET map
application substitute Visual C# for Visual Basic in the following steps.

1. From the Visual Studio File menu, click New Project. The New Project dialog box
appears.

2. From the Installed Templates list, choose Visual Basic and Windows. From the
available web templates, choose MapXtreme Classic Web Application or MapXtreme
Integrated Web Application.
MapXtreme 9.5 Developer Guide 37

3. Set the name of the application and solution and the location for the project. Click OK.

4. Under Solution Explorer double-click MapForm.aspx to see the design view of the
MapControl and some tools.

5. Build the project.

6. On the Visual Studio Debug menu, click Start Debugging to run the application.
MapXtreme 9.5 Developer Guide 38

 2 – Getting Started
7. Use the controls in the toolbar to manipulate the map as you would with any other
Precisely mapping application.

If you are unable to run the application, be sure to check that the ASP.NET State Service
is running on your system (Control Panel > Administrative Tools > Services > ASP.NET
State Service).

MapXtreme Controls
Once you have created a basic application using one of our templates, enhancements
are possible using a variety of MapXtreme controls provided in the Toolbox.

For desktop map applications built using Windows Forms, MapXtreme Windows Controls
are available. Any of the controls found in the MapXtreme Windows Controls tab of the
Visual Studio Toolbox can be added to your form. See Chapter 7 Desktop Applications,
Controls, Dialogs, and Tools.

For MapXtreme ASP.NET web applications, MapXtreme Web Controls are available. Any
of the controls found in the MapXtreme Web Controls tab of the Toolbox, can be added to
your form. See Chapter 5 Web Applications, Controls, and Tools for more information.

Building ASP.NET Web Applications Without a
Template
You may also build your ASP.NET map application without using the MapXtreme
templates. For example, to create a Visual Basic web application:
MapXtreme 9.5 Developer Guide 39

1. Choose File > New Project from the Visual Studio menu. Under Visual Studio
Installed Templates, navigate to the Web section under your preferred programming
language. Choose the generic ASP.NET Web Application template and click OK.

2. From the MapXtreme Web Controls group in the Toolbox, choose a control and drag it
onto the form. This will add MapXtreme assemblies as references in your project:
MapInfo.WebControls. MapInfo.CoreEngine, MapInfo.CoreTypes and
MapInfo.CoreEngine.Wrapper. It will also update your web.config file with assembly
information.

3. In this situation, you will notice that the MapXtreme web controls and tools will display
red X’s in the Designer, instead of their icons. To display the icons properly, copy the
MapXtremeWebResources folder from one of the MapXtreme sample applications and
paste it into your project where your Web.config and default.aspx files are located.
Close and re-open the web page to see the icons.

4. To run the web application under IIS 7 or IIS 8 classic mode, copy the following code
into the Web.config file. To run in integrated pipeline mode, skip to step 6.

<system.web>
 <compilation debug="true" targetFramework="4.8">
 <assemblies>
 <add assembly="System.Design, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=B03F5F7F11D50A3A" />
 <add assembly="MapInfo.CoreEngine, Version=9.x.x.x, Culture=neutral,
PublicKeyToken=93e298a0f6b95eb1" />
 <add assembly="MapInfo.CoreEngine.Wrapper, Version=9.x.x.x,
Culture=neutral, PublicKeyToken=93e298a0f6b95eb1" />
MapXtreme 9.5 Developer Guide 40

 2 – Getting Started
 <add assembly="MapInfo.CoreTypes, Version=9.x.x.x, Culture=neutral,
PublicKeyToken=93e298a0f6b95eb1" />
 <add assembly="MapInfo.WebControls, Version=9.x.x.x, Culture=neutral,
PublicKeyToken=0a9556cc66c0af57" />
 </assemblies>
 </compilation>
 <sessionState mode="StateServer"
stateConnectionString="tcpip=127.0.0.1:42424" sqlConnectionString="data
source=127.0.0.1;userid=sa;password=" cookieless="false" timeout="20" />
 <httpHandlers>
 <add verb="*" path="MapController.ashx"
type="MapInfo.WebControls.MapController, MapInfo.WebControls,
Version=9.x.x.x, Culture=neutral, PublicKeyToken=0a9556cc66c0af57" />
 </httpHandlers>
 <httpModules>
 <add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,
Version=9.x.x.x, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator" />
 </httpModules>
 </system.web>

5. Save Web.config. Build the project and run the application.

6. To run the web application under IIS 7 or IIS 8 integrated pipeline mode, add the
following key in bold text to the <appSettings> section:

<appSettings>
 <!--Use this setting to set config sections for Classic or Integrated
Pipeline Mode-->
 <add key="MapInfo.Engine.Session.PipelineMode" value="Integrated" />
</appSettings>
Copy the following code into the Web.config file below the <appSettings>
section.
<system.webServer>
 <modules>
 <add name="WebSessionActivator" type="MapInfo.Engine.WebSessionActivator,
MapInfo.CoreEngine, Version=9.x.x.x, Culture=neutral,
PublicKeyToken=93e298a0f6b95eb1" />
 </modules>
 <handlers>
 <add name="MapController" verb="*" path="MapController.ashx"
type="MapInfo.WebControls.MapController, MapInfo.WebControls,
Version=9.x.x.x, Culture=neutral, PublicKeyToken=0a9556cc66c0af57" />
 </handlers>
</system.webServer>

7. Save Web.config. Build the project and run the application.
MapXtreme 9.5 Developer Guide 41

Deploying Your Application
There are essentially two strategies for installing the MapXtreme components on the
server machine where you wish to host your application: either 1) use the included
runtime installer or, 2) create your own installer and add the appropriate merge modules
(MSM).

The MapXtreme SDK ships with MXTRunTime.exe.

Deploying With the Runtime Installer
Use the runtime installer (MXTRunTime.exe) as part of your custom installation process.
This will install the MapXtreme assemblies and create the needed registry entries. It will
also include the required .NET Framework v4.8. Runtime assemblies and files are
included for both Web and Desktop applications.

For web-based applications, using the runtime installer is the better strategy. All of the
runtime components are installed in their default locations. There are no user-
configurable options.

One disadvantage of using the runtime installer executable is that, depending on your
application, unnecessary files may be installed. Additionally, if you expect to install more
than one MapXtreme-enabled application, you will need to maintain your own reference
counts when using the runtime installer. By using the MSMs directly with your own
installer, references are maintained automatically.

Steps for Deploying an Application Using the Runtime Installer

You must have Administrator permissions on the computer in order to run the installer.
You also need IIS permissions to install to the Web server.

1. From the MapXtreme product media, choose Install. The Install options page appears.

2. Choose Deployment Installation and choose Install Runtime Environment. The
install wizard opens.

3. Follow the prompts to proceed with the installation.

4. Deploy your Windows or Web application as you wish (for example, create a
deployment project in Visual Studio and add your application).

If you wish to run the runtime installer from a command line, follow these instructions. The
executable is located in the [DVD root]:\Install\InstallRuntime folder on the product media.

• To run the runtime installer with minimal UI, execute the runtime installer like this:
MXTRunTime.exe /v"/qb"
MapXtreme 9.5 Developer Guide 42

 2 – Getting Started
• To run the runtime installer silently, execute the runtime installer like this:
MXTRunTime.exe /v"/qn"

If you are using a software copy protected version of MapXtreme, the runtime executable
is called MXTRuntime.exe.

Deploying With Your Own Installer
Create your own installer using Windows Installer technology (MSI) and include the
MapXtreme merge modules. A merge module (MSM file) is a single package that
contains all files, resources, registry entries, and setup logic necessary to install a
component. Merge modules cannot be installed alone; they must be assimilated into an
MSI file. Use this strategy if you want to fine-tune exactly which components are installed,
or if you want to create your own MSI-based installer.

One disadvantage of using the MSMs is that you will have to create your own patch or
updated installer if Precisely provides updates to this product.

An advantage of using the MSMs is that you control which components get installed and
reference counts are maintained automatically. Assemblies of a particular version will be
copied into the Global Assembly Cache (GAC) only once, and reference counts will be
maintained for each application using those assemblies. If one application is
subsequently removed, the reference count (which then decreases by one) will preserve
the assemblies in the GAC. When the last application using those assemblies is removed,
then the assemblies themselves will be removed.

Several developer tools are available to help you create an MSI installer. InstallShield
Developer (Acresso Software Corporation) and Visual Studio (Microsoft) are examples.
See the Windows Installer topic in the Microsoft MSDN library.
MapXtreme 9.5 Developer Guide 43

http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

MapXtreme Merge Modules

The following are the merge modules for MapXtreme. Include them as necessary in your
installer MSI. See Packaging Your Desktop Application for more information on using
merge modules.

Note the 9.x.x in each MSM filename represents the current version of the product. MSMs
are located in \Program Files\Common Files\Merge Modules.

Name of Merge Module Included Assemblies Purpose
When

Required

Custom Symbols

MapInfoCustSymb_9.x.x.m
sm

none Contains
custom
symbols

Required
when the
applicatio
n expects
to use the
stock
bitmap
symbols

Desktop

MapInfoDesktop_9.x.x.ms
m

MapInfo.Windows

MapInfo.Windows.Dialo
gs

MapInfo.Windows.Fram
ework

MapInfo.CommonDialog
Ext

Contains
assemblies
with .NET
controls for
use in C# and
VB .NET
desktop
applications

Required
when the
applicatio
n uses the
'Desktop'
tools

Fonts

MIFonts_9.x.x.msm

none Contains
MapInfo fonts
such as
Symbols,
Cartographic,
Real Estate,
Arrows,
Miscellaneou
s, Oil&Gas,
Transportatio
n, Weather,
and Shields.

Required
when the
applicatio
n expects
to use the
stock
TrueType
® fonts
MapXtreme 9.5 Developer Guide 44

 2 – Getting Started
Mapping

MapInfoCoreEngine_9.x.x.
msm

MapinfoMXTConfig_9.x.x.
msm

MapInfoCoreEngineIntl.ms

m *

MapInfoCoreResJPN_9.x.

x.msm †

MapInfoCoreResCHN_9.x.

x.msm ‡

MapInfo.CoreEngine

MapInfo.CoreEngine.Wr
apper

MapInfo.CoreTypes

MapInfo.WMS.Client

MapInfo.Windows.Printi
ng

MapInfo.Ellis.Extensible
DataProvider

MapInfo.LinearReferenc
ing

MapInfo.Ogc

MapInfo.WorkspaceMan
ager.Extension

Provides the
core mapping
functionality.
They also
install the
common
configuration
and default
reference files
for these
assemblies.

Required

Name of Merge Module Included Assemblies Purpose
When

Required
MapXtreme 9.5 Developer Guide 45

Web Controls

MapInfoWeb_9.x.x.msm

MapInfo.Web

MapInfo.WebControls

Installs
the.NET
assembly
MapInfo.Web,
and a number
of 'web
resources' to
be used in
web-based
applications.

It also starts
the
ASPNetState
service, and
creates a
virtual
directory for
the 'web
resources' (if
IIS is
installed).

Required
for any
applicatio
n that
uses the
stock web
controls

Web Services Clients

MapInfoServices_9.x.x.ms
m

MapInfo.Services Contains the
assemblies
for geocoding
and routing

Required
if your
applicatio
n requires
geocoding
and
routing

Name of Merge Module Included Assemblies Purpose
When

Required
MapXtreme 9.5 Developer Guide 46

 2 – Getting Started
To Deploying an Application With Your Own Installer

Here are the tasks you must do to get MapXtreme to install with your installer:

1. Include the MSMs you need.

By default, Visual Studio and InstallShield look in C:\Program Files\Common
Files\Merge Modules for merge modules to include. This allows you to build installers
immediately, without having to re-configure your development environment.

WFS

MapInfoWFS_9.x.x.msm

MapInfo.WFS.Server Contains the
assemblies
needed for
WFS.

Required
if your
applicatio
n uses a
Web
Feature
Service
for data
transform
ation

WMS

MapInfoWMS_9.x.x.msm

MapInfo.WMS.Server Contains the
assemblies
needed for
WMS.

Required
if your
applicatio
n uses a
Web Map
Service
for
retrieving
digital
images.

* Include if you are deploying applications built with MapXtreme.

† Include if you are deploying applications built with MapXtreme JPN.

‡ Include if you are deploying applications built with MapXtreme CHN.

Name of Merge Module Included Assemblies Purpose
When

Required
MapXtreme 9.5 Developer Guide 47

Deploying a Web Application
If you create your own deployment for a Web application, you will need to add the MSMs
manually. The web setup project does not detect the assemblies that are referenced
within the Web.config file; thus the assemblies (and the corresponding MSMs) are not
detected as dependencies. To add the MSMs manually, right-click on your Web setup
project and choose Add>Merge Module. Select MapInfoCoreEngine_9.x.x,
MapInfoMXTConfig_9.x.x, MapInfoWeb_9.x.x and any other MSMs you need.

Deploying Applications that Access Data
Any Visual Basic or Visual C# application that includes data access has a dependency on
Microsoft Data Access Components (MDAC) version 2.7 or later. MDAC must be installed
on a target computer prior to installing your application or the application will fail.

MapXtreme Web Applications Behind Proxy Servers
If you are deploying your web application behind a proxy server, be sure to add the
MapXtreme Server URL to the proxy server’s bypass cache list. This will allow
MapXtreme to deliver dynamic maps for every request, which it is designed to do.

Proxy servers rely on cached images for display. MapXtreme’s images, however, are built
for every request, so in the case of the web application located behind the proxy server,
no images are sent to the cache. The web application displays a red X in place of the map
image.

Permissions to Temp Directory for Deployed Web Applications
For deployed web applications, if you are using integrated security, ensure all users who
will access the site have permissions on the temp directory and any other resources.
MapXtreme executes in the ASP.NET process space and this process executes with the
security token passed from the IIS process. You must grant access to any user who will
log in access to this directory. If you are using anonymous access then you must grant
access to the temp directory to the IUSR_LocalMachineName system account.
MapXtreme gets the temp directory from the current TEMP environment setting.

Application Data Files
Application data files are nonexecutable files used by an application. MapXtreme installs
and uses the following set of application data files. For information about customizing
these file locations, see Location of Application Data Files:
MapXtreme 9.5 Developer Guide 48

 2 – Getting Started
By default, MapXtreme applications look in the following directories for data files:

• Program Files\Common Files\MapInfo\MapXtreme\9.x.x—This is the directory the
MapXtreme installer places these files.

• The directory where your application is located. For a Windows application, this is the
directory where the .exe file is located. For web applications, this is the directory where
the Web.config file is located.

Deployment Installation Troubleshooting
Consider the following questions when troubleshooting a deployment installation:

• What was used to deploy the application (for example runtime, SDK, Setup.exe?)

• Is the customer on the deployment machine logged on as the administrator?

• Is the 4.8 Framework installed on the deployment machine?

• Is the CoreEngine registered as a COM+ application on the deployment machine?

• Is the Visual C++ runtime component (CRT) for Visual Studio 2015 and Visual Studio
2017 installed on the machine?

File Type Filename

Abbreviation file MAPINFOW.ABB

Pen file MAPINFOW.PEN

Projection file MapInfoCoordinateSystemSet.xml

Vector symbol file MapInfow.fnt

Custom symbol directory CustSymb

Nadcon files *.las, *.los

jgd2000 files jgd2000.*
MapXtreme 9.5 Developer Guide 49

MapXtreme 9.5 Developer Guide 50

3

3 – Mapping Concepts
Before you create a mapping application, it’s helpful to understand
basic mapping concepts and how these concepts are implemented in
MapXtreme. This chapter discusses the common concepts you will
come across as you learn MapXtreme.

At the end of this Developer Guide, we have provided Appendix M:
Glossary containing mapping and programming terms that you will
also find useful.

In this chapter:
 Mapping and MapXtreme . 52
 Geocoding with MapXtreme . 57
 Routing with MapXtreme . 58

Mapping and MapXtreme
The central element to a mapping application is the map. This chapter presents a short
overview of the most important mapping terms that you will likely encounter while building
your application with MapXtreme. The introductions also point you to the appropriate
namespace in the MapXtreme object model so that you can quickly get the technical
information you need. The topics include:

 Maps
 Tables
 Layers
 Features
 Labels and Legends
 Themes
 Tools
 Workspaces
 Coordinate Systems and Projections

Maps
A map displays the spatial relationship among map features, such as town boundaries,
customer locations, or power lines. The map visually orients you to where those features
are and what they represent. In addition to features, elements on the map can include
labels, titles, legends, and themes. Themes are created based on some action taken
involving the features and information on the map.

The map is contained in a MapControl. The MapControl also provides basic tools for
viewing the map (pan, zoom in, zoom out, center).

In MapXtreme you can create a map in a variety of ways:

• Use the MapXtreme Workspace Manager to build and save a map workspace. (See
Features of the Workspace Manager).

• Use a MapXtreme template that provides a MapControl that you can drag and drop
onto a Visual Studio form (See Chapter 7 Desktop Applications, Controls, Dialogs, and
Tools for desktop applications and Chapter 5 Web Applications, Controls, and Tools for
web applications.

• Use the MapXtreme Object Model to programmatically build mapping into your
application (See MapFactory and the MapInfo.Mapping namespace in the Developer
Reference (online help).
MapXtreme 9.5 Developer Guide 52

 3 – Mapping Concepts
Tables
Tables contain the data you wish to display on the map. Tables hold rows and columns of
information that describe the features, including their geometry, style, and attributes.
MapXtreme supports tables from a wide variety of sources including, native tables
(MapInfo .TAB), relational database management systems (RDBMS), dBase, MS Access,
ASCII files, NativeX, Geopackage, and ESRI ShapeFiles. Speciality tables include raster,
grid, seamless, views, WMS, and ADO.NET. The type of table is available through the
TableInfo class. Tables are opened and closed via the Catalog in the MapInfo.Data
namespace. See Chapter 8 Working with Data.

Layers
Maps are made up of layers. Layers contain map features, such as postal code
boundaries, schools, or streets networks. It is important to understand the order of the
layers. The bottommost layer is drawn first and the topmost layer drawn last. Layers
containing features that would obscure the features of other layers should be placed
lower, respectively. For example, a layer of boundary regions should be placed beneath a
layer of points.

Layers in MapXtreme can represent more than map features. Layers can be raster or grid
images, seamless maps (joined maps). They can contain labels or user-drawn features,
or contain an object theme, such as a pie theme. Layers can be grouped for easier
positioning and to facilitate animation of their features. The main interface is IMapLayer.
For more information see Layers.
MapXtreme 9.5 Developer Guide 53

Features
Features are described by their geometry, style, data source, key and attributes. Typically
a feature is a row in a table. Supported geometries include closed objects that cover a
given area (Polygons, MultiPolygons, Rings, Rectangle, RoundedRectangles, and
Ellipses); point objects that represent single locations of data (Points, MultiPoints); and
line objects that cover a given distance (Curves, MultiCurves and LegacyArcs).

One of the main uses of computerized maps is to gather information about the features.
In MapXtreme features are returned in FeatureCollections by any of several methods,
either created from scratch using a schema, selected using selection tools or methods or
by searching the Catalog for those that meet a specific set of criteria.

Feature classes are located in the MapInfo.Data namespace.

Labels and Legends
Maps without elements to describe what is displayed are not very useful. Maps need text
such as labels and legends. Labels have been mentioned above as belonging to a type of
layer called a LabelLayer. This allows you to control every aspect of a label’s visibility,
position, style, and content. MapXtreme classes for working with labels include
LabelSource, LabelProperties, and LabelModifiers. See Introduction to the
MapInfo.Mapping Namespace.

Other text elements can also be used in a map to help deliver its message properly.
Legends are cartographic elements that describe the features in a coded manner. For
example, the legend may describe the boundaries as school districts, the lines as a
power line network, or points as corporate office locations. Legends also contain a title to
describe collectively what the map represents.
MapXtreme 9.5 Developer Guide 54

 3 – Mapping Concepts
In MapXtreme, legends are part of the Adornments class, along with map titles and
scalebars. Adornments reside in the MapInfo.Mapping namespace.

Themes
Computer maps are not only useful for visibly showing spatial relationships among the
map features, but you can analyze the underlying data that is associated with the features
to learn more about what you see. A common analytical technique is to create a theme
based on a feature layer in which the data is ranked in specific ways. For example, a
ranged theme shows color blocks where each color represents features on the map that
meet the same criteria. A graduated symbol theme is useful for showing distributions of
populations for example, with the largest symbol representing the largest population.
MapXtreme 9.5 Developer Guide 55

Themes can also be created for labels. For example, use a ranged label theme to show
the relative population size among cities. The largest labels represent the cities with the
largest populations.

The MapInfo.Mapping.Thematics namespace contains classes that implement themes as
style overrides on Feature layers and as Object themes. Modifier themes change the
style, while object themes add a new layer. All themes implement the ITheme interface.

Tools
Most mapping applications provide an assortment of toolbar buttons (tools) to aid with
common drawing tasks (such as drawing a line on the map) and navigation tasks (such
as zooming in). MapXtreme provides a number of mapping tools, plus you can also
create your own custom tools.

The tools are divided into desktop tools and web tools, the API for each contained in their
own namespace (MapInfo.Tools for desktop and MapInfo.WebControls for web tools.)

For more information on desktop tools in MapXtreme see MapXtreme Desktop Tools API.
For more information on web tools see Chapter 5 Web Applications, Controls, and Tools.

Workspaces
While not strictly a mapping concept, workspaces are included here because they will
make working with all the mapping elements easier. MapXtreme supports an XML-based
workspace format that uses the .MWS extension. In it are all the settings for your maps.
The format for the workspace is explained in Appendix C: Understanding the MapInfo
Workspace. MapXtreme provides a utility called Workspace Manager to help you
construct workspaces and save them for later use. See Chapter 27 Workspace Manager.

Coordinate Systems and Projections
Coordinate systems and projections are two important mapping concepts about which
you should have a basic understanding. Projection refers to how a map is displayed on a
flat surface such as a paper map or computer screen, while a coordinate system
describes how map features are spatially arranged. Both are important considerations
when developing applications, especially those where spatial precision and accuracy are
important.

A projection is a method of reducing the distortion that occurs when objects from a
spherical surface are displayed on a flat surface. There are two main trade-offs to be
considered: the preservation of equal area, and the preservation of the true shape of a
MapXtreme 9.5 Developer Guide 56

 3 – Mapping Concepts
feature. There are many different types of projections, each designed to reduce the
amount of distortion for a given area. Some projections preserve shape; others preserve
accuracy of area, distance, or direction.

A coordinate system is a set of parameters that tells you how to interpret the locational
coordinates for objects. One of those parameters is projection. Coordinates can be of two
types: Spherical or Cartesian. Spherical relates to locations on the curved surface of the
Earth, while Cartesian describes flat surface locations in two dimensions. Both are
represented by x and y coordinates. The difference comes when calculating distance or
area of features that represent real Earth locations such as streets or rivers (Spherical), or
relative locations, such as a map of brain anatomy or a chess board (Cartesian).

Knowing which coordinate system your map uses is an important consideration when
developing applications. Analytical operations involving distance and area calculations,
such as buffering, routing, and querying use the coordinate system and projection to yield
the correct results.

Coordinate system and projection classes are part of the MapInfo.Geometry namespace.
For more information see Chapter 16 Spatial Objects and Coordinate Systems.

Geocoding with MapXtreme
All of the maps discussed above use data that provide additional information beyond what
you can see on the map. For example, a table of store locations not only includes
geographic coordinates to place the stores in the correct map location, it may contain
data about the locations, such as store hours, customer service phone numbers and
manager name. This gives the application the power to analyze and yield information that
would otherwise be lost in rows and columns of tables.

Typically a table of custom data is included on a map along with reference layers, such as
streets, town boundaries and water features that represent the true environment of the
area. These references layers are usually purchased ready to display on a map. Precisely
sells a wide variety of reference data for locations around the world. Additionally,
MapXtreme provides more than 400 MB of sample data for world locations. To install,
from the MapXtreme product CD browser, choose Install Sample Data. Use the Custom
installation option to install as much of this data set that you need.

But the custom data, like your store locations or call center regions, may not be ready to
display on a map. The table must contain geographic coordinates so the mapping engine
knows where to draw the objects. The process of assigning coordinates to data is called
geocoding. Any table of data that contains locational information, such as address or
postal code, can be geocoded. The process involves matching the custom table against
MapXtreme 9.5 Developer Guide 57

an already geocoded table covering the same location. If an address match is made, the
coordinates from the geocoded table are assigned to the custom data. Then the custom
data is ready to be viewed on a map.

Geocoding is a typical early step in the process of creating a map. As a developer of
mapping applications, you will need to consider the type of data you wish to display on
the map and its need to be geocoded.

The MapXtreme framework provides classes for using a geocoding client that can access
Precisely’s server geocoding products. For more information about geocoding see
Chapter 20 Geocoding and the MapInfo.Geocoding namespace in the online Help
(accessible via Visual Studio).

Routing with MapXtreme
Another component available to developers of MapXtreme is routing. Driving direction
applications and those involved in planning routes for deliveries or laying cable, for
example, utilize routing. Typically the goal is to locate the route by shortest distance or
shortest travel time.

MapXtreme provides four types of routing: point-to-point routing, multi-point routing,
matrix routing, and isogram routing. Each type offers numerous options for creating the
appropriate routing network for your needs.

Like the provision for geocoding, MapXtreme allows developers to use a pre-built routing
client in their application that interacts with Precisely’s routing server products. See
Chapter 21 Routing and the MapInfo.Routing namespace in the MapXtreme Online Help.
MapXtreme 9.5 Developer Guide 58

4

4 – Understanding the

MapXtreme Architecture
This chapter focuses on the design of the MapXtreme architecture so
you can make informed choices for your development needs.
Understanding the architecture of the product will help you to create
applications that efficiently use the features and capabilities of the
product.

In this chapter:

 MapXtreme Architecture . 60
 Object Model Overview. 61
 Application Architectures . 64
 Web Application Architecture . 65
 Desktop Application Architecture . 67

MapXtreme Architecture
MapXtreme is built on top of Microsoft’s .NET framework and utilizes the functionality that
its infrastructure includes. This Precisely initiative enables you to leverage the power and
adaptability of developing your applications on the .NET framework. We have also
worked hard to combine the power and ease of our Windows products into one
comprehensive object model. The object model is the basis for Precisely’s partners and
customers, as well as Precisely itself, for developing Windows-based products for the
foreseeable future.

With similar code, you can develop an application that can be deployed on either a
desktop machine or the Web. If you develop an application for the desktop, you can then
adjust the application for subsequent web deployment with only minimal code changes.

The following figure illustrates the MapXtreme architecture. The MapInfo.CoreEngine.dll
assembly and MapInfo.CoreTypes.dll assembly contain most of the core mapping and
data access functionality. On top of the Core Engine are the MapInfo.Windows and
MapInfo.Web namespaces that contain controls, tools, and other functionality specific to
each deployment environment. An application developed using the MapXtreme object
model is built atop of the MapInfo.Windows or MapInfo.Web namespace.

MapXtreme Architecture
MapXtreme 9.5 Developer Guide 60

 4 – Understanding the MapXtreme Architecture
Object Model Overview
The MapXtreme Object Model is made up of many namespaces. A .NET namespace is a
type classification system that differentiates specific classes, methods, and properties
from others with the same name. By utilizing namespaces, .NET developers can avoid
collisions between names of objects and their methods and properties.

MapXtreme ships with a full-color poster of the key interfaces and classes and shows
how they relate to each other via namespace segregation. A PDF version of the poster is
viewable from the Learning Resources page, which is accessible from the Windows Start
menu. Specifically, the Learning Resources page can be accessed from: Start > All
Programs > MapInfo > MapXtreme > Learning Resources.

The list below contains several of the namespaces implemented in the MapXtreme Object
Model. A broad overview of each namespace is included in the following sections. Each
description contains a reference to the part of this manual that contains detailed
information about it and its use.

• MapInfo.Data Namespace

• MapInfo.Data.Find Namespace

• MapInfo.Engine Namespace

• MapInfo.Geometry Namespace

• MapInfo.Mapping Namespace

• MapInfo.Persistence Namespace

• MapInfo.Raster Namespace

• MapInfo.Styles Namespace

• MapInfo.WebControls Namespace

• MapInfo.Tools Namespace

• MapInfo.Geocoding Namespace

• MapInfo.Routing Namespace

The complete object model is organized by namespace in the MapXtreme Programmer’s
Reference, which is integrated into Visual Studio.

If you have used MapX or the non-.NET version of MapXtreme (MapXtreme for Windows
v3), be sure to review Appendix J: Migrating to MapXtreme for a comparison of the two
product’s object models.

MapInfo.Data Namespace
MapXtreme 9.5 Developer Guide 61

The MapInfo.Data namespace contains the classes and interfaces that implement the
MapInfo Data Provider. The object model has several different classes to access data.
Depending on the format in which your data is stored, there are specific classes to use to
access it. Additionally, we now implement ADO.NET access to any data that is contained
in formats not covered by any other class. For details on the MapInfo.Data namespace,
see Chapter 8 Working with Data and Chapter 11 Accessing Data from a DBMS.

MapInfo.Data.Find Namespace
The MapInfo.Data.Find namespace contains the classes used for searching through data.
The namespace facilitates the search for an object by specifying a mappable table and
column (it must be indexed) on which to perform the search. For details on the
MapInfo.Data.Find namespace, see Chapter 13 Finding Locations.

MapInfo.Engine Namespace
The MapInfo.Engine namespace contains all classes directly related to the core
functionality that drives all applications based on MapXtreme. This includes the core
Session class which is the starting point for all MapXtreme applications. For details on the
MapInfo.Engine namespace, see Chapter 9 Working with Core MapXtreme Classes.

MapInfo.Geometry Namespace
The MapInfo.Geometry namespace is an extensible hierarchy based on OGC (Open GIS
Consortium) standards, coordinate system interoperability, and object processing. The
MapInfo.Geometry namespace contains classes, interfaces, and enumerations for
creating and editing Geometry objects. For details on the MapInfo.Geometry namespace,
see Chapter 16 Spatial Objects and Coordinate Systems.

MapInfo.Mapping Namespace
The MapInfo.Mapping namespace contains classes, interfaces, and enumerations for
creating, displaying, and exporting maps, layers, modifiers, and labels. For details on the
MapInfo.Mapping namespace, see Chapter 12 Adding Mapping Capability to Your
Applications.

MapInfo.Mapping.Legends Namespace
The MapInfo.Mapping.Legends namespace contains classes, interfaces, and
enumerations for creating and displaying Cartographic and Thematic Legends. For more
information, see Legends and Using Themes and Legends.
MapXtreme 9.5 Developer Guide 62

 4 – Understanding the MapXtreme Architecture
MapInfo.Mapping.Thematics Namespace
The MapInfo.Mapping.Thematics namespace contains classes that implement themes as
styles of layers and as layers themselves. Themes can be applied to change the style.
For examples, the Modifier theme changes the style of the layer and the Object theme
adds a new layer. All themes implement the ITheme interface. For details on the
MapInfo.Mapping.Thematics namespace, see Chapter 14 Using Themes and Legends.

MapInfo.Persistence Namespace
The MapInfo.Persistence namespace contains classes that support the reading and
writing of XML-based workspaces to enable the saving and retrieval of mapping
workspaces. See Appendix C: Understanding the MapInfo Workspace.

MapInfo.Raster Namespace
The MapInfo.Raster namespace exposes the full functionality of Precisely’s C/C++ Raster
and Grid APIs. Raster images can be opened for querying using
MapInfo.Raster.RasterRead. Grid images can be opened for querying using
MapInfo.Raster.GridRead. Hillshading can be added to existing grids using
MapInfo.Raster.HillshadeWrite. Related classes include MapInfo.Raster.RasterInfo and
MapInfo.Raster.GridInfo. For details on the MapInfo.Raster namespace, see Chapter 17
Working with Rasters and Grids.

MapInfo.Styles Namespace
The MapInfo.Styles namespace highlights the Styles object model. The Styles class is the
base class of all styles. For details on the MapInfo.Styles namespace, see Chapter 15
Stylizing Your Maps.

MapInfo.WebControls Namespace
The MapInfo.WebControls namespace provides support for using Visual Studio templates
for a MapXtreme ASP.NET application. There are MapControl and LayerControl design-
time enhancements available from this namespace, as well as web tools. For details on
the MapInfo.WebControls namespaces, see Chapter 5 Web Applications, Controls, and
Tools.

MapInfo.Windows Namespace
MapXtreme 9.5 Developer Guide 63

The MapInfo.Windows namespace contains classes that implement various windows
controls and their requisite components for use with developing forms in Windows
applications. The Windows.Dialogs namespace contains classes that implement various
dialog boxes and dialog box components to be used in Windows applications. For details
on the MapInfo.Windows namespace, see Chapter 7 Desktop Applications, Controls,
Dialogs, and Tools.

MapInfo.Tools Namespace
The MapInfo.Tools namespace contains classes for creating and implementing many
types of tools to use in your desktop map application. For details on the MapInfo.Tools
namespace, see Overview of the MapInfo.Tools Namespace.

MapInfo.Geocoding Namespace
The MapInfo.Geocoding namespace contains the classes, interfaces and enumerations
that define the MapXtreme client for geocoding. Geocoding using either the MapInfo
geocoding server or the MapInfo Location Utility service is supported. The URL of a
running geocoding server or Location Utility service must be available in order to perform
geocoding. The interface of the geocoding server and Location Utility service are similar,
since they both use the same classes for geocode requests, constraints, responses,
result codes, and input and candidate addresses. See Chapter 20 Geocoding.

MapInfo.Routing Namespace
The MapInfo.Routing namespace contains classes, interfaces, and enumerations which
comprise the .NET client for Routing. The MapInfo.Routing namespace contains classes
that support point-to-point, multi-point, matrix and isogram routing. optimized for shortest
time or shortest distance. It interacts with other MapInfo routing server products. The
ability to avoid certain points is also available. Routing results can include step by step
directions and/or a route geometry which can be displayed on a map. See Chapter 21
Routing.

Application Architectures
Now that you have had an overview of the MapXtreme namespaces, the next step is to
consider the architecture of the application you plan to build.
MapXtreme 9.5 Developer Guide 64

 4 – Understanding the MapXtreme Architecture
Using MapXtreme, you can build both web and desktop applications. The follow sections
illustrate possible architectures for web and desktop applications. The designs are based
on the Model-View-Controller paradigm that separates an application's data model, user
interface, and control logic into three distinct components. This allows for modifications to
one component with minimal impact to the others. Chapter 5 Web Applications, Controls,
and Tools and Chapter 7 Desktop Applications, Controls, Dialogs, and Tools provides
important additional information on key design elements and decisions you need to
consider when planning your MapXtreme application.

Web Application Architecture

Architecture Description

The Web application illustrated above takes into account the following components and
capabilities:
MapXtreme 9.5 Developer Guide 65

• MapXtreme Web Application

• Microsoft .NET Infrastructure

• Map-building Tools

• Data Access

MapXtreme Web Application

A typical MapXtreme web application contains views (presentation layer), a model (to
interact with data source and application internal data model), and controller (the
business logic that controls the flow of the application).

MapXtreme provides web templates that are integrated into Microsoft Visual Studio to
help you create your initial web application. For a tutorial on building a web application,
see Building a Web Application.

Build views by dragging and dropping MapXtreme web controls onto a Visual Studio web
form. Build your internal data structures and interact with external data sources, base
maps and dynamic content by using objects under MapInfo.Engine and MapInfo.Data
namespaces. Use the controller code to tie the views and data together and provide the
user with an engagement sequence to effectively use the application to resolve a
business need or problem.

Microsoft .NET Infrastructure

MapXtreme runs under Microsoft .NET 4.8 Framework. An application built using
MapXtreme runs as an ASP.NET application under the worker process of IIS.

The Microsoft ASP.NET framework provides COM+ object pooling for developers of high
performance enterprise applications so that objects such as workspaces can be
preloaded. MapXtreme’s object model operates very efficiently under this framework. The
framework also provides application state management tools such as StateServer and
SQL Server, as well as automatic and manual state management control. Chapter 6
Understanding State Management presents important information on these topics.

Map-building Tools

Use the MapXtreme Workspace Manager to create your application’s base maps. Here
you can manage each layer of a map and control its zoom level, labeling, styles, themes
and adornments to give you exactly the presentation you need for your application. The
information is saved to an XML-based workspace for easy retrieval at a later date. See
Chapter 27 Workspace Manager.
MapXtreme 9.5 Developer Guide 66

 4 – Understanding the MapXtreme Architecture
Data Access

A key element of this architecture is the ability to access to dynamic data content. Objects
that exist within the MapInfo.Data namespace provide this data access. Data content can
come from a number of sources, such as WMS, WFS, remote database management
systems, live feeds from GPS or driving directions from the MapInfo Routing service. To
make the most of disparate data, you can concurrently use information from different data
sources. See Chapter 8 Working with Data.

Desktop Application Architecture

The desktop application architecture is similar to the web application architecture in its
Model-View-Controller design.

Separate components are used for the presentation layer, application model and
business logic. Use the Workspace Manager to build any base maps that you need. Use
Windows controls and dialogs to give your application a rich user experience. You can
also concurrently use dynamic data content from a variety of sources, and control the flow
and logic of the application.

See Chapter 7 Desktop Applications, Controls, Dialogs, and Tools for more information.
MapXtreme 9.5 Developer Guide 67

MapXtreme 9.5 Developer Guide 68

5

5 – Web Applications,

Controls, and Tools
This chapter brings together a host of information related to building
ASP.NET web applications using the web controls, tools, and
conveniences provided with MapXtreme.

In this chapter:
 Web Application Request/Response Lifecycle 70
 Components of a MapXtreme Web Application 70
 MapXtreme Web Controls and Tools . 74
 Web Control Architecture . 78
 Using the MapXtreme Web Controls . 82
 Managing Your Web Controls . 83
 Creating a Custom Tool . 84
 Using and Distributing Custom Web Controls 87
 Adding an InfoTool to a Web Application . 89
 ASP.NET AJAX and MapXtreme Web Applications 90
 MapXtreme Tile Handler . 92
 HTML/XHTML Validation Issues. 97
 Migrating Post-back Web Controls to JavaScript Web Controls. . . . 98
 Specialized Topics for Web Controls . 99

Web Application Request/Response Lifecycle
In order to plan and build an effective web application, you need a solid understanding of
the behind the scenes interactions between the client (browser) and the server (web
application). In its simplest form, a web application is a software application that is
accessed through a web browser over an Internet or intranet connection. The capabilities
of the application are presented to a user as an HTML page, and through user interaction
with the elements on the web page, HTTP requests are sent to a web server for
processing. The web server sends back a response that satisfies the user’s request.

A MapXtreme web application typically presents the user with an image of a map and
some tools to interact with the map. A single request/response cycle could be as simple
as the user clicks a Zoom-In tool to display a different view of the map. Behind the scene,
the request to zoom in is sent to the server. The server processes the request and
responds with a refreshed image of the map showing the new view.

For information on the architecture of a MapXtreme web application, see Chapter 4
Understanding the MapXtreme Architecture.

For a tutorial on building a MapXtreme application, see Appendix A: How to Create and
Deploy a MapXtreme Application.

For a discussion of creating ASP.NET web applications, see ASP.NET Web Application
Projects in the MSDN library.

Components of a MapXtreme Web Application
The following sections cover the major components that make up a typical MapXtreme
web application, including:

• MapXtreme Session

• Background Map

• MapControl

• Map Tools

MapXtreme Session
The MapXtreme Session is the starting point for all MapXtreme applications. It manages
the initialization of resources needed for a MapXtreme application. The MapXtreme
Session also provides access to other important objects such as Catalog, MapFactory,
CoordSysFactory, Selections, and others.
MapXtreme 9.5 Developer Guide 70

http://msdn.microsoft.com/en-us/library/aa983474

http://msdn.microsoft.com/en-us/library/aa983474

 5 – Web Applications, Controls, and Tools
To access the MapXtreme Session, call the MapInfo.Engine.Session.Current() method.
Each thread in your process has a MapXtreme Session object available. There can be
only one MapXtreme Session per thread and this session cannot be shared by multiple
threads. See Session Interface.

Web applications can have one MapXtreme Session object per user, or pooled
MapXtreme Sessions available to many users. Both development models are discussed
in Chapter 6 Understanding State Management.

Background Map

The background map, in the form of an image, is the most visual component of a
MapXtreme web application. It provides the user of the application with information about
map features and shows their relationship to other map features. Typically, a background
map is made up of reference layers, such as administrative boundaries, street networks,
and points of interest. Custom data related to the application, such as points representing
office locations, cell towers, or ATM machines, are additional layers. The reference layers
and the custom layers do not change based on the user’s interaction with the application.
What typically changes is the display of the map. A user may zoom into a particular
location or create a thematic shading that overlays the map based on criteria the user
submitted in a web request.

The background map is presented to the user in its initial, or "clean" state. This state is an
important consideration when you design a pooled application since your application
must handle changes in user state.

The background map is pre-loaded into the application from an XML-based workspace
(.mws). The workspace is identified in the Web.config file of the application. See What
Should the Initial Map Look Like?. The MapXtreme web template and sample
applications provide Web.config files that include hard-coded paths to sample data. If you
base your web application on one of these, be sure to adjust the path to your own data.

The Workspace Manager utility provided with MapXtreme is an example of a desktop
application that assists you with building a background map. See Chapter 27 Workspace
Manager.

MapControl
MapControl is a MapXtreme web server control containing an instance of a Map object.
The MapControl is the main web control in a MapXtreme application; it displays the
background map and responds to tool interactions on the map. Behind the scenes, the
MapXtreme 9.5 Developer Guide 71

Map object is obtained from the MapFactory using the MapAlias property of the
MapControl. The map is rendered and exported as an image and returned to the browser
in the control’s tag.

The sample applications that ship with MapXtreme have a MapControl built in, as does
the MapXtreme Web application template. You will see, however, that in design mode, the
map is not rendered. That is because to get a map from a web MapControl, there must be
a running web application on the server to serve up the map image along with some
dynamically generated javascript. That is only available at run/debug time.

 If you start from a Visual Studio Visual Basic or C# ASP.NET template, you must
manually add the MapControl and tools to your web form in order for the
MapXtreme resources to be included in your project.

For more information, see MapXtreme Web Controls and Tools.

Figure 1: a MapXtreme Web Application View at Design Time
MapXtreme 9.5 Developer Guide 72

 5 – Web Applications, Controls, and Tools
Figure 1: a MapXtreme Web Application View at Run Time

Map Tools
MapXtreme provides a number of map tools to assist you in navigating and interacting
with the background map. These tools are contained in the Visual Studio toolbox. Use
them by dragging and dropping the tool onto a web form.

Many of these tools are built into the MapXtreme web application template and sample
applications, including:

• Basic tools for Center, Pan, Zoom-in, and Zoom-out

• ZoomBarTool with pre-set zoom levels between 500 and12,500 map units

• Directional tools (N, NE, E, SE, S, SW, W, NW) for direct line panning in 45-degree
increments

The LegendControl, Distance tool and selection tools are located in the MapXtreme
portion of the Visual Studio toolbox.

Tools are discussed in Description of Web Controls and Tools.

A generic WebTool, the base tool for all MapXtreme map tools is also located in the
toolbox. Use this tool if you wish to add custom behaviors to a tool. See Creating a
Custom Tool.

State Management and Pooling Capabilities
MapXtreme 9.5 Developer Guide 73

One of your goals in building a MapXtreme web application is to make it stable, scalable
and offer a satisfying experience for your users. MapXtreme provides configurations to
help you manage the state of your application, and allow it to grow with the numbers of
users.

The MapXtreme web application template and the sample applications are configured to
manage state manually. This means that only the changes your users make during their
interaction with your application are saved and restored. You accomplish this by writing
code that is specific to your application and save/restoration needs.

To more efficiently serve the potentially growing number of users of your application, the
template and sample applications are configured to use the Microsoft COM+ pooling
service in which MapXtreme Session objects are available and shared across multiple
requests.

State management and pooling need careful consideration when you are planning your
web application. See Chapter 6 Understanding State Management.

MapXtreme Web Controls and Tools
MapXtreme’s web controls and tools are embedded in a web page. Web controls respond
to interactions by web tools. Information that is captured using a tool is processed on the
server by the web page and returned to the client, typically as a new map image.

MapXtreme provides three web controls (MapControl, LayerControl, and LegendControl)
and a number of map tools. The web controls show content, such as a map, a list of map
and label layers and their properties, or a legend to identify what the layers represent.
The tools interact with the MapControl to change the view of the map, select features on
the map for further analysis, and more. For a description of the web controls and tools
see Description of Web Controls and Tools.

The Web controls and tools are available from several places within Visual Studio:

• Visual Studio toolbox under the MapXtreme heading. Drag and drop these controls
onto your Web Form to add mapping functionality to your project.

• Web Application template: Start with the MapXtreme web application template
(Visual Studio File > New Project menu) to build a mapping prototype that requires no
coding.

• Sample Applications: Task-oriented samples are located In the \Samples\Visual
Studio 20xx\Web\Features folder. Source code is also provided for you to learn from or
extend for your own needs.
MapXtreme 9.5 Developer Guide 74

 5 – Web Applications, Controls, and Tools
The API for Web controls and tools is contained in the MapInfo.WebControls namespace.
See the Developer Reference for more information.

JavaScript-Enabled for Partial-Page Updates

MapXtreme web controls and tools use a combination of a web page and JavaScript to
tell the MapXtreme server what needs to be done. Each map tool specifies a JavaScript
ClientInteraction that defines what must happen (for example, click, draw a rectangle,
line, or polygon) and a JavaScript ClientCommand that sends a URL request to the
server to process the command (for example, pan, zoom, or select an object).

These JavaScript-enabled tools do not trigger a full page postback with each use.
Typically, only the image of the map is refreshed after each tool use. See Map Tools
Architecture for an understanding of this development model. See Managing Your Web
Controls for information on event handling, error management and state management.

Previous MapXtreme controls (pre-v6.5 releases) required a postback that called
Page_Load and Page_Unload every time a tool was used. These tools are provided for
backward compatibility and are not recommended for new development projects. See
Migrating Post-back Web Controls to JavaScript Web Controls.

Customizable

If the provided tools do not offer you the functionality to meet your needs, consider
modifying them. This can be as simple as changing a built-in tool property or as
complicated as writing your own JavaScript and server-side class to extend its
functionality. Source code for the web controls and tools is provided in the
Samples\MapXtremeWebControlsSourceCode folder. See Creating a Custom Tool.

MapXtreme provides an ASP.NET AJAX sample application that demonstrates how to
use Microsoft's ASP.NET AJAX controls in a MapXtreme web mapping application. See
ASP.NET AJAX and MapXtreme Web Applications.
MapXtreme 9.5 Developer Guide 75

Description of Web Controls and Tools
The following are the available MapXtreme Web controls and tools.

Web Controls Description

MapControl Allows you to display an instance of a Map object. Each
Map object is referred to by a MapAlias, such as Map1.

At runtime, the MapControl displays the map which is
obtained from a MapFactory by using the map’s MapAlias
property. The map is drawn by exporting the map image,
and referencing this image in the HTML tag. If the
MapAlias property is not specified or is invalid, the first
map from the MapFactory is chosen. Set the MapControl
MapAlias property at design time.

LayerControl Allows you to display map feature layers and label layers
in a tree view structure. This control can turn the visibility
on or off for a particular layer and displays a read-only
current zoom value. The visibility changes are persistent
only for the active life of the application using the
LayerControl.
MapXtreme 9.5 Developer Guide 76

 5 – Web Applications, Controls, and Tools
LegendControl The LegendControl allows you to display a legend for a
given MapControl. The legend that is returned is a non-
interactive image. The default export format is .GIF.

The legend to display can be specified at design time
using its LegendAlias or its index in the map's legend list.
This can also be set using JavaScript on the page.
JavaScript can also be used to show and hide the legend.
You can arrange for the legend to be scrollable.

Both thematic and cartographic legends are supported in
the LegendControl.

The Legend Control web sample application supports this
control. It demonstrates how to create and use a
customized LegendControl based on our current web
control architecture, and how to create a theme and
display a legend by sending requests to the server using
JavaScript without needing to refresh the whole page. For
more information, see the MapXtreme Learning Resources
browser on your Program menu or from the MapInfo
website under Support & Training. Expand the Learning
Resources link and click on Sample Applications.

Map Tools Description

CenterTool Allows you to recenter the map by clicking on the map.

DistanceTool Allows you to get the distance between two or more points
by clicking on the map.

NavigationTools Allow you to pan the map by fixed directions: North, South,
East, West, NorthEast, NorthWest, SouthEast, and
SouthWest.

PanTool Allows you to reposition the map within its window by
dragging in any direction.

PointSelectionTool Allows you to select a feature (nearest to the point) when
clicked on the map.
MapXtreme 9.5 Developer Guide 77

Web Control Architecture
The MapXtreme Web control architecture follows the ASP.NET model for creating Web
applications. The general architecture is a Model-View-Controller (MVC) design pattern,
in which the web application represents the Model, the web page (HTML, JavaScript)
represents the View, and the MapXtreme Server that responds to requests for information
represents the Controller.

The user interacts with the web application through web controls and tools that capture
data and send instructions and commands to the server which processes and returns the
information.

PolygonSelectionT
ool

Allows you to select all features whose centroids lie within
the polygon. The selection area is drawn on the map using
mouse clicks representing the nodes of the polygon. A
double click closes/ends the polygon.

RadiusSelectionTo
ol

Allows you to select all features whose centroids lie within
the radius. The radius is drawn on the map using mouse
clicks representing the center and boundary of the circle.
The selection radius is drawn on the map using a click and
drag operation.

RectangleSelection
Tool

Allows you to select all features whose centroids lie within
the rectangle. The rectangle selection area is drawn on the
map using a click and drag operation.

ZoomBarTool Allows you to zoom a map to a series of preset levels
between 500 and 12,500 map units.

ZoomInTool Allows you to zoom a map by either a single click or by
selecting a rectangular area

ZoomOutTool Allows you to draw a rectangle representing the view to
zoom out of the map.

InfoTool Sample
Web Application

An example of an InfoTool is included in the sample Web
applications. It demonstrates how to create and use a
customized map tool based on the MapXtreme Web
control architecture.
MapXtreme 9.5 Developer Guide 78

 5 – Web Applications, Controls, and Tools
In MapXtreme, controls and tools are rendered when the web page is rendered at
initialization time. After initialization time, when a tool is used, only the map image is
rendered. These JavaScript-enabled tools are an improvement over the pre-v6.5 web
controls that performed a full page postback with every tool operation.

MapXtreme controls provide the following behaviors and functionality:

• A background map is loaded via a pre-defined workspace. At design time, set the
MapControl MapAlias property to the map alias of the map defined in the preloaded
workspace. At runtime, the corresponding map is loaded into the MapControl, ready
for users to interact with it using map tools.

• The first time a page is rendered, Page_Load and Page_Unload are called.
Page_Load initializes the state of the application, either to a default state for a new
session, or restores state if the session is not new. Page_Unload stores the state of
any changes, in anticipation of another request.

• The StateManager is implemented in an application as a class, and an instance of that
class is put in the MapXtreme Session. SaveState and RestoreState methods are
called from this object. The SaveState and RestoreState methods are called every
time a tool is used. If Manual mode is used for state management, a StateManager
class instance must be in the session. (MapInfo.Engine.Session.State is set to Manual
in your Web.config file.) For more on state management, see State Management.

• Error processing is done in the global_asax.cs/.vb file in the application_error event
handler. See Error Management.

• Events are handled through client-side JavaScript commands that send a request to
the server. A server-side command class does server-side processing. See Event
Handling.

The MapXtremeWebResources folder included with the Visual Studio MapXtreme Web
templates contains dependencies for the web controls and map tools. Make sure to
include these files when deploying an application.

Map Tools Architecture
MapXtreme map tools are used to interact in some way with the map, such as panning to
a different view or selecting an area of the map to collect data for further analysis. A basic
set of navigational tools are provided in the MapXtreme Web application template. These
tools, along with others for selecting map features and creating a legend, are located in
the Visual Studio toolbox.

The map tools are made up of client-side and server-side components. On the client side,
the tools have a JavaScript interaction component and a JavaScript client command
component. On the server side, the tools have server command class component.
MapXtreme 9.5 Developer Guide 79

The client-side map tool components are responsible for:

• Drawing and mouse operations (for example, rubber band rectangle, mouse click)

• Collecting data from mouse operations (for example, getting the screen coordinates
for a zoom-in operation)

• Sending the url request to the server

The server-side map tool components are responsible for:

• Carrying out the business logic of the tool (for example, calculating the distance
between two points)

Client Side Map Interaction

The client side map tool interaction is implemented with JavaScript classes. These are
generic classes that can be used by any user interface to perform an interaction on any
HTML element. The base Interaction class, located in Interaction.js, is extended to create
all of the individual interactions such as ClickInteraction and RectInteraction. The
constructor for Interaction is:

Interaction(elementID, onComplete)

where elementID is the IMG tag of the map and onComplete is the function which is
called when the interaction is complete.

For example, the Interaction class can a draw a rubber band rectangle over the map and
collect all the point features that are contained within it.

Client Side Command Execution

A map tool has a client side JavaScript command object that is responsible for performing
a specific task. The base Command class, located in Command.js, is extended to create
all of the individual commands such as PanCommand and ZoomCommand. After the
map tool interaction is complete, the tool executes the client command The Command
class constructor is:

Command(name, interaction)

where name is the server side Command class name and interaction is the data
gathered during the client interaction.

The client Command generates a URL request that is sent to the server, which then
processes the response to display the new map.

The interaction object can be null. This means there is no client side interaction, such as
pan, zoom, point select, that will fire off the command automatically. The command can
still be fired, but it would have to be done programmatically.
MapXtreme 9.5 Developer Guide 80

 5 – Web Applications, Controls, and Tools
Server Side Command Architecture

On the server, the MapInfo.WebControls.MapControlModel class handles the URL
request sent from the client. This class contains methods for carrying out basic map
navigation commands such as pan and zoom, as well as selection commands for
selecting points, polygons, and features within drawn rectangles and radii. The
InvokeCommand method locates the specified tool command and calls its Execute
method. Execute calls the RestoreState, then Process, and then finally SaveState.

To perform commands other than those provided in this class, you must write a
Command class that extends the WebControls.MapBaseCommand class.

How a Map Tool Works
The following describes a typical request/response cycle for a web map tool, in this case,
a Zoom-In tool. You can create custom map tools using this same architecture. See
Creating a Custom Tool.

The numbers in the diagram refer to the stages described below.

1. A user draws a rectangle around the general area of Europe displayed in a
MapControl using a Zoom-In tool.

2. The tool’s ClientInteraction property called RectInteraction collects the screen
coordinates that define the rectangle. RectInteraction is defined in Interaction.js.
MapXtreme 9.5 Developer Guide 81

3. The tool’s ClientCommand property MapCommand creates a URL request and
assigns it to the MapControl’s image.src property. ClientCommand is defined in
Command.js. The URL request looks like:

MapController.ashx?Command=Zoom&Width=300&Height=300&ZoomLevel=1200&Points=1,
50,100&MapAlias=Map1

4. The URL request is sent to the server.

5. The MapController receives the request and invokes the MapControlModel. The
MapController derives from System.Web.IHttpHandler.

6. The MapControlModel parses the URL request and invokes the ZoomInCommand
class.

7. The ZoomInCommand gets the map from the MapFactory and carries out the
operation to zoom in on the map. The map image is updated to reflect the new view.

8. The map image is exported to an image, and written to the HTTP response as a
stream, and returned to the client.

Using the MapXtreme Web Controls
To use the MapXtreme Web controls in your web application:

1. Do one of the following:

a. Create a MapXtreme web application from Visual Studio File > New Project and
choose the MapXtreme Web Application template. The MapControl, LayerControl
and map navigation tools are built in.

b. Open one of the sample web applications and modify it for your needs.
c. Drag and drop what you need onto the web form from the MapXtreme Web 9.x.x

toolbox in Visual Studio.
d. Create a MapXtreme web application from Visual Studio File > New Project and

choose the generic ASP.NET Web Application template 1.

2. In your application’s Web.config file, specify the path and name of a workspace that
contains map layers for pre-loading into the MapControl. This is necessary regardless
of which choice you made in step1.

1. In this situation, you will notice that the MapXtreme web controls and tools display red X’s in the Designer instead
of their icons. To display the icons properly, copy the MapXtremeWebResources folder from one of the
MapXtreme sample applications and paste it into your project where your Web.config and default.aspx files are
located. Close and re-open the web page to see the icons. To avoid this manual step. choose option "a" instead.
MapXtreme 9.5 Developer Guide 82

 5 – Web Applications, Controls, and Tools
The Web.config file for the template and samples contains a path to the default
location of the installed sample data, as shown below:

<configuration>
<appSettings>

 <add key="MapInfo.Engine.Session.Workspace" value="c:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\Data\World.mws" />

</appSettings>
</configuration>

If your application requires multiple maps, they can exist in one or more workspaces,
each with a unique MapAlias property. To preload more than one workspace in the
Web.config file, use a semicolon between the full path of each workspace.

3. Make sure that MapAlias property of the MapControl is set. The default MapAlias for
the MapControl in the template is Map1. If this property is not set, MapXtreme will
render the first map from the session which may not be the map you expect.

To determine the MapAlias, open the .mws file in a text editor and look for the
MapDefinition element. The MapAlias is stored as an alias attribute.

You can also find the MapAlias from Workspace Manager. When you hover the mouse
pointer over the map node (top node in the layer list), the alias appears in a ToolTip.

4. Set the MapControlID property for all map tools, LayerControl, LegendControl and
custom controls (if any) to point to the appropriate MapControl.

Managing Your Web Controls
An important part to using Web controls is managing them effectively. This section
explains how to perform:

• Event Handling

• Error Management

• State Management

Event Handling
Map tool events are handled through client-side JavaScript commands that send a
request to the server. On the server-side a command class derived from
MapBaseCommand does processing for the tool.
MapXtreme 9.5 Developer Guide 83

In many command cases, the result of the server-side processing is sent back to the
client. This is an image in the case of the MapControl or XML in the case of the
LayerControl. Then, only a portion of the web page is updated with the command result
via client-side JavaScript (for example, a new map image is displayed after panning).

Error Management
Error handling in the Web controls can be handled in many ways, and it is very specific to
the application. Therefore, this section only explains one of the ways of handling errors.
Since the response expected by the client side is an image, we can catch the exception
using a detailed message, and send the response back with both an image and an error
message. As a result, the MapControl will now contain the error message.

The Global.asax files provided with our sample applications demonstrate an example of
handling application errors. If the application encounters an error while processing a
request for a map image, the Application_Error method creates an image containing an
error message, and returns that to the client.

For more information on Error Management, refer to the MSDN site on error handling with
ASP.NET.

State Management
The MapInfo.WebControls.StateManager is an abstract class that includes methods
SaveState and RestoreState. MapXtreme’s map tools call RestoreState and SaveState
before and after the processing, respectively. Since state management is application
specific, it is your responsibility to implement these methods in a concrete class in the
application. This allows you to control what gets restored and saved and how things are
restored and saved.

For more information on state management, see Chapter 6 Understanding State
Management.

Creating a Custom Tool
To create a custom tool, you can modify or add behavior to a built-in tool or write your own
custom commands and tools.

For example, you may wish to modify a Zoom-In tool to zoom-in and select a feature with
one click. This tool requires a server command class that contains code to zoom-in and
perform the selection. Since we provide the source code for all the server command
classes, you can simply modify the ZoomIn command class to add the selection code.
MapXtreme 9.5 Developer Guide 84

http://msdn.microsoft.com/en-us/library/w16865z6.aspx

 5 – Web Applications, Controls, and Tools
If our source code does not provide a starting point for your customization, you must write
your own commands and tool classes. The source code is located in your MapXtreme
installation under \Samples\MapXtremeWebControlsSourceCode.

As you plan your customization, keep the following MapXtreme tool architecture in mind.
A MapXtreme map tool consists of:

• A client-side tool class that inherits from MapInfo.WebControls.WebTool.

• Properties on the tool class that control the behavior of the tool, including:

• JavaScript that describes the interaction of the tool with the MapControl (click, draw
rectangle, etc.)

• JavaScript that creates the url request for the tool.

• A server-side command class that is derived from
MapInfo.WebControls.MapBaseCommand that carries out the desired tool behavior.

Properties for the tool are defined either in the class or on the web page. The custom tool
is referenced on the web page by the tool class name.

The code used in the following procedure can be found under the Samples folder under
\Web\Features\CustomTools\CustomToolsCS.

To create a custom tool:

1. Drag the generic WebTool from the MapXtreme toolbox onto your web form. You can
also use one of the existing map tools if you want to extend the existing behavior.

2. In the WebTool property page, set the properties for MapControlID,
InActive/ActiveImageUrl and CursorImageUrl.

3. Set the appropriate ClientInteraction property by selecting from the drop-down list.

The built-in interactions include mouse operations for clicking and dragging, drawing
lines, polygons, rectangles and radii, which will cover the needs of most web
application. See the Interaction.js in the MapXtremeWebResources folder in your
project.

4. Set the appropriate ClientCommand property by selecting from the drop-down list.

The built-in client commands for mapping, panning, zooming, etc., create the URL
request that is sent to the server. For a description of these commands, see the
Command.js in the MapXtremeWebResources folder in your project.
MapXtreme 9.5 Developer Guide 85

If one of the built-in commands does not meet your needs, either modify the existing
Command.js or write your own. The custom command takes the name of the
interaction from step 3 as input. See CustomCommand.js in the CustomToolsCS or
CustomToolsVB sample for an example of how to get multiple responses from the
server with a single click.

5. Register the JavaScript manually in your .aspx page. Insert the following line within the
web page body.

<script language="javascript" src="CustomCommand.js"
type="text/javascript"></script>

6. Create a new server command class that derives from
MapInfo.WebControls.MapBaseCommand. Include code that carries out the behavior
that the client command requested. Alternatively, you can extend an existing server
command class.

7. In the server command class, assign the name of the server command in the
constructor.

namespace ToolsSample
{
public class AddPinPointCommand : MapInfo.WebControls.MapBaseCommand
{

/// <summary>
/// Constructor for this command, sets the name of the command
/// </summary>
/// <remarks>None</remarks>
public AddPinPointCommand()
{

Name = "AddPinPointCommand";
}

8. In the server command class, override the Process() method by adding code that
carries out the business logic for the command.

public override void Process()
{

// Your code here.....
}

9. In the Page_Load method of the webform1.aspx, add your server command to the
collection of commands in the MapControlModel.

MapInfo.WebControls.MapControlModel controlModel =
MapControlModel.SetDefaultModelInSession();

controlModel.Commands.Add(new AddPinPointCommand());

10.Add the tool to the Visual Studio toolbox by creating a new assembly. See Using and
Distributing Custom Web Controls.
MapXtreme 9.5 Developer Guide 86

 5 – Web Applications, Controls, and Tools
11.Drag and drop the custom tool onto the web form and set the properties to the names
of the ClientCommand and ClientInteraction, as set forth in your JavaScript from steps
3 and 4.

12.Set the property for the server Command, as defined in step 6.

13.Register the tag prefix in the web form by specifying the assembly and namespace in
which this control exists.

<%@ Register TagPrefix="cc1" Namespace="MapInfo.WebControls"
Assembly="MapInfo.WebControls, Version=9.2.0.x, Culture=neutral,
PublicKeyToken=0a9556cc66c0af57" %>
<%@ Page language="c#" Inherits="ToolsSample.WebForm1"
CodeFile="WebForm1.aspx.cs" %>
<%@ Register TagPrefix="cc2" Namespace="CustomizedWebTools" %>

If the existing behaviors of the WebTool do not meet your needs, you can write your own
server Command class and Javascript to handle client-side commands and interactions.
See Adding an InfoTool to a Web Application for an example.

Using and Distributing Custom Web Controls
Once you have created a custom web tool, you must include it in an assembly so that it is
available in the Visual Studio toolbox or to distribute to others.

MapXtreme provides the source code for our Web controls so you can learn from them,
modify them, and distribute them as you need. The source code for the Web controls is
installed in the \Samples\WebControlsSourceCode folder. In order to use and distribute
the modified web controls, you must create a new assembly and register it in Visual
Studio.

Whether you modify the MapXtreme source code or create your own tool class from
scratch, consider the following important factors regarding the MapXtreme web control
assembly.

• The assembly name is MapInfo.WebControls.dll and is installed in the global assembly
cache. This assembly has a specific version number which is used by our templates
and sample applications.

• The controls in the assembly are installed in the toolbox in Visual Studio.

• The assembly has references to MapInfo.CoreEngine.dll,
MapInfo.CoreEngine.Wrapper.dll and MapInfo.CoreTypes.dll.

• Resources such as images and scripts are installed in the C:\Program Files\Common
Files\MapInfo\MapXtreme\9.x.x\MapXtremeWebResources folder.

• The following files are used by the Web controls:
MapXtreme 9.5 Developer Guide 87

• *.GIF images that represent tool actions (for example, DistanceToolControlActive,
DistanceToolControlInactive).

• *.BMP images that represent tool icons (for example, label, selection arrow)

• JavaScript defining tool interactions and behaviors (Interaction.js, Command.js,
LayerControl.js, LegendControl.js and Tool.js)

• *.CUR (cursor) files that display images when the mouse is used.

Creating a Web Assembly
To create a custom web control assembly:

1. Copy the customized web control source files to another directory so the original is
preserved.

2. Remove the original assembly from the global assembly cache and from the Visual
Studio toolbox.

The assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32 or
GAC_64, depending on whether you installed the 32-bit or 64-bit MapXtreme.

3. Create a strongly named key file (.snk) using sn - k MapInfo.WebControls.snk and
copy this key file to the main project folder (same level as the project files).

4. Change the AssemblyInfo.cs or AssemblyInfo.vb file to reflect the version number of
your web assembly.

5. Open the project in Visual Studio, make any changes you need and build the project.
The new assembly should be in the bin\Release directory so you can distribute the
release version of the assembly.

6. Register your new assembly in the global assembly cache, and in the Visual Studio
toolbox using the following syntax as a model. For more information see Global
Assembly Cache Tool.

gacutil /i MapInfo.WebControls.dll

7. Write your application using the new assembly. Drag and drop the new controls onto
your form from the Visual Studio toolbox.

8. In the installer for your Web application, make sure the new assembly is installed in the
global assembly cache. As long as the Web application points to this version of the
assembly, it will use the new controls.

Consider the following scenarios:
MapXtreme 9.5 Developer Guide 88

http://msdn.microsoft.com/en-us/library/ex0ss12c%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/ex0ss12c%28v=vs.100%29.aspx

 5 – Web Applications, Controls, and Tools
• You can insert the Web controls project and resources right into your Web application
solution. In this case, change the URLs for your resources (scripts and images) to
begin with the project root. This prevents you from having to create virtual directories.

• You do not have to use the global assembly cache and a strongly named assembly.
You can set the Copy property for the assembly to true, and have the assembly in the
bin folder of your application.

Adding an InfoTool to a Web Application
MapXtreme provides a sample application for an InfoTool that can be adapted and used
in a web application. Use this tool to capture information at the point a user clicks on the
map and get information returned from the web application.

Follow these steps to modify the InfoTool sample.

1. Locate the InfoToolCS or InfoToolVB Web Application in the samples folder (default
location C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio20xx\Web\Features\InfoTool\Inf
oToolVB.

2. Copy the following files to your project folder and add them to your project:

• CustomCommand.js from the root of the InfoTool folder

• CustomizedCommands.cs or CustomizedCommands.vb from the \App_Code folder

• stylesheet.css from the root of the InfoTool folder.

3. Add a PointSelect tool to your Web Form and add the code below in the form’s
Page_Load method:

MapInfo.WebControls.MapControlModel controlModel =
MapControlModel.SetDefaultModelInSession();
controlModel.Commands.Add(new CustomWebTools.Info());

4. Match the properties of the PointSelect tool to those of the InfoTool from the sample
application. Set these in the tool’s Properties window.

These properties include: ClientCommand, ClientInteraction, Command,
CursorImageURL, InactiveImageURL. and MapControlID.

5. Switch the form to the HTML view and add the following line after the <form> tag.

<script language="javascript" src="CustomCommand.js"
type="text/javascript"></script>

6. Add a <div> like the one in the sample application to hold the information retrieved by
the tool.
MapXtreme 9.5 Developer Guide 89

<div id="Info" class="infoDiv">
 Div element to display selected feature information in html
table.</div>

7. Build the Web Application.

ASP.NET AJAX and MapXtreme Web
Applications
MapXtreme’s web controls and tools include JavaScript which provides an efficient
request/response cycle for web applications. Each time a map tool is used, JavaScript
interactions and commands carry out the operation without requiring a full-page postback
to the client. Typically, only the map image is refreshed.

Microsoft’s ASP.NET AJAX technology takes this behavior further, by integrating scripting
libraries with the ASP.NET Framework. The principal controls are the UpdatePanel, a
container for server controls that are frequently refreshed, and the ScriptManager, which
manages the scripting activities for the web page.

MapXtreme provides a sample application that demonstrates how to use Microsoft's
ASP.NET AJAX controls in a MapXtreme web mapping application. The sample is located
in ..\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio20xx\Web\Features.

 The AJAXDemo sample requires that the Microsoft ASP.NET AJAX Extensions 1.0
or later be installed on your system.

The following section provides the steps to add AJAX controls to your MapXtreme
application.

Before proceeding, as an exercise in understanding AJAX, it’s a good idea to create a
web application using the "ASP.NET AJAX-Enabled Web Site" template that is provided
with the AJAX extensions. Examine its Web.config file; the httpHandlers section and the
httpModules section contain settings that you may need to copy into your application.

You should also familiarize yourself with the AJAXDemo sample web application. The
steps that follow refer to JavaScript code and Web.config settings taken from this sample.

Adding ASP.NET AJAX Controls to a MapXtreme Web
Application
To add ASP.NET AJAX controls to an existing MapXtreme web application:
MapXtreme 9.5 Developer Guide 90

 5 – Web Applications, Controls, and Tools
1. Open your web form in Visual Studio’s Design mode.

2. From the "AJAX Extensions" section of the Visual Studio Toolbox, drag a
ScriptManager control onto the form. (It does not matter where you place the
ScriptManager, as it will not be visible at run-time.)

3. Drag an AJAX UpdatePanel control onto your form.

4. Move standard controls, such as Button controls, inside the UpdatePanel, to prevent
the Button from causing a full-page update.

 Do not move MapXtreme controls, such as the MapControl or the LayerControl,
inside the UpdatePanel. For a detailed example, see the AJAXDemo sample
application.

5. Open your application's Web.config file, and locate the httpHandlers section.
Depending on the contents of your web application, the httpHandlers section might
contain just one or two entries -one for MapController.ashx, and, if your application
contains the LayerControl, one for LayerController.ashx.

<httpHandlers>
 <add verb="*" path="MapController.ashx" . . .
<add verb="*" path="LayerController.ashx" . . .

</httpHandlers>

6. Open the Web.config file from the AJAXDemo sample application, and locate its
httpHandlers section, which contains additional entries needed by ASP.NET AJAX:

<httpHandlers>
 <remove verb="*" path="*.asmx"/>
 <add verb="*" path="*.asmx" . . .
 <add verb="*" path="*_AppService.axd" . . .
 <add verb="GET,HEAD" path="ScriptResource.axd" . . .
 <add verb="*" path="MapController.ashx" . . .

<add verb="*" path="LayerController.ashx" . . .
</httpHandlers>

If any of those first four httpHandlers entries are missing from your Web.config file,
copy the missing entries from the AJAXDemo Web.config file, and paste them into
your Web.config file. (It is not necessary to copy the LayerController.ashx entry; if you
place the LayerControl on your page in Designer mode, the LayerController.ashx entry
will be generated automatically.)

7. Locate the httpModules section of your Web.config file. The httpModules section
probably already contains one entry, for MapInfo.Engine.WebSessionActivator. Copy
the "ScriptModule" entry from the AJAXDemo Web.config file, so that your
httpModules section resembles this:
MapXtreme 9.5 Developer Guide 91

<httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule. . .
 <add type="MapInfo.Engine.WebSessionActivator. . .
</httpModules>

If the controls in your UpdatePanel affect the map in some way, you will need to add
JavaScript to the page to force the map image to update. The AJAXDemo sample
application contains sample JavaScript that demonstrates how you can update the
map image whenever the designated UpdatePanels cause a page update.

8. Open the AJAXDemo application's MapForm.aspx page in Source mode. Copy the
<script> block and paste it into your aspx page. NOTE: You must paste the <script>
block after the ScriptManager tag, because the script makes use of objects provided
by the ScriptManager.

9. In the <script> block, delete the DisplayEventInfo function and any calls to it. The
DisplayEventInfo function is a debugging tool for the AJAXDemo application; it is not
needed in other applications.

10.If you renamed your UpdatePanel, edit the <script> block to use the new UpdatePanel
name. (The UpdatePanel name is passed as the second parameter to the
TargetPanelWasUpdated function; the default name is "UpdatePanel1".)

11.If you use more than one UpdatePanel in your application, but you do not want all of
the UpdatePanels to affect the map, then you should set each UpdatePanel's
UpdateMode property to Conditional. For details, see the ReadMe file provided with
the AJAXDemo sample application.

For additional details about the Web.config settings required by ASP.NET AJAX
extensions, please consult Microsoft's ASP.NET AJAX documentation.

MapXtreme Tile Handler
MapXtreme provides a REST-based tile handler and public URLs that are used to request
map tiles and information. With a REST-based handler, you can embed all the arguments
of your map request in a single URL.

Map tiles are becoming essential today in web mapping as they can be pre-rendered and
stored, awaiting requests from a user. You can design a tile server that stores base maps
as static images since these do not need to be updated during the user’s session. For
dynamically changing data that contain information exclusive to the user, such as
information returned from a query, these maps are generated on the fly. Because they are
tiled, only the tiles that would be visible in the map window (based on the tile size, map
window size and zoom level) would be returned.
MapXtreme 9.5 Developer Guide 92

 5 – Web Applications, Controls, and Tools
For an example of a web application that takes advantage of the MapXtreme Tile Handler,
see the MapXtreme Tile Handler example located on the MapInfo Developers Code
Exchange.

MapXtreme provides support for:

• requesting tiles by their row and column positions in the map

• requesting a list of available maps

• requesting a description of a map

• specifying the cache instructions for better tiling performance

The MapXtreme Tile Handler API is included under the MapInfo.WebControls.Tiling
namespace. See the Developer Reference for details. Source code for the Tile Handler is
provided in the \Samples\WebControlsSourceCode folder.

Using the MapXtreme Tile Handler
In its simplest form, to access the MapXtreme Tile Handler and request map tiles and
information from a tile server:

1. Modify your web.config file to point to the handler, as follows.

<httpHandlers>
<add verb="*" path="TileServer/*"

type="MapInfo.WebControls.Tiling.TileHandler" />
 <add verb="*" path="TileServer/*/*"
type="MapInfo.WebControls.Tiling.TileHandler" />
 <add verb="*" path="TileServer/*/*/*"
type="MapInfo.WebControls.Tiling.TileHandler" />
 <add verb="*" path="TileServer/*/*/*/*"
type="MapInfo.WebControls.Tiling.TileHandler" />
</httpHandlers>

2. Provide a workspace (.MWS) that contains multiple maps.

For example, for a coverage locator application where the user wants to know if their
location is inside or outside your coverage (cell network, trade area, school districts,
etc.) include:

• a base map layer to server as a background and reference map.

• an overlay map containing reference points and lines such as point locations and
road networks.

• a coverage layer containing your coverages

3. Request a list of available maps using the following URL format.

http://server/TileServer/maplist.{ext}
MapXtreme 9.5 Developer Guide 93

http://www.mapinfo.com/for-developers/code-exchange
http://www.mapinfo.com/for-developers/code-exchange

where ext is an extension denoting the format of the information returned (current
support for JSON only)

This query will return a JSON object (JavaScript Object Notation) with the following
format:

{
[

"Map1Alias",
"Map2Alias",
"Map3Alias"

]
}

4. Using the listed map names from step 3, request more information about a map using
the following URL format:

http://server/TileServer/{mapname}/description.{ext}

where mapname is the name of the map on the Tile Server to get metadata about. The
value is case-insensitive.

ext is an extension denoting the format of the information returned (current support for
JSON only)

This returns the metadata of a specified map.

{
"numberOfLevels": 20,

"coordSys": "epsg:41001",
"description": "Map of the World",
"name": "World",
"tileWidth": 256,
"tileHeight": 256,
"bounds": {

"minX": -3.756380109844111E7,
"minY": -4.497601034176671E7,
"maxX": 3.773376466605809E7,
"maxY": 4.49763662218225E7

}
"outputTypes":
[

"png"
]
}

5. With information collected from steps 3 and 4, request the map by providing all the
necessary arguments in the URL (explained below):

http://server/webapp/TileServer/{mapname}/{level}/{x;y}/tile.{ext}

For example:
MapXtreme 9.5 Developer Guide 94

 5 – Web Applications, Controls, and Tools
http://<server>/<mywebapp>/TileServer/WorldOverlay/3/0;0/tile.png

This will request the upper left tile of a WorldOverlay map consisting of 64 tiles.

The arguments are explained in the table below.

Caching
The MapXtreme Tile Handler supports caching of frequently used tiles so that application
performance does not suffer. Caching instructions are included in the web.config file
following Microsoft’s.NET Framework HttpCacheability.

Argument Description

server Your web server

webapp The name of the web application running
on the server.

TileServer The path to your instance of the MapTiling
handler. This must match the beginning
of the "path" entries in the "httpHandlers"
section of your web.config. See above.

mapname The name of the map on the Tile Server.

level The level of requested tiles. Zero-based.

x;y The x and y ordinates of the requested tile
(zero-based).

For example, at level 3 the map consists
of 64 tiles in 8 rows and 8 columns. The x
and y arguments for the upper left tile
would be 0;0. For the lower left tile, it
would be 0;7.

ext An extension denoting the format of the
tile (e.g., .gif, png). Must match a
supported format.
MapXtreme 9.5 Developer Guide 95

http://msdn.microsoft.com/en-us/library/system.web.httpcacheability(VS.80).aspx

Five types of caching (plus a no cache option) are supported. These enumerated values
are used to set the Cache-Control HTTP header.

To specify a cache option, modify your web.config file to point to the key
MapInfo.Engine.Session.Cacheability, as follows.

<appSettings>
<add key="MapInfo.Engine.Session.Cacheability" value="private"></add>

</appSettings>

NoCache Sets the Cache-Control: no-cache header. Without a
field name, the directive applies to the entire request
and a shared (proxy server) cache must force a
successful revalidation with the origin Web server
before satisfying the request. With a field name, the
directive applies only to the named field; the rest of the
response may be supplied from a shared cache.

Private Default value. Sets Cache-Control: private to specify
that the response is cacheable only on the client and not
by shared (proxy server) caches.

Public Sets Cache-Control: public to specify that the response
is cacheable by clients and shared (proxy) caches.

Server Specifies that the response is cached only at the origin
server. Similar to the NoCache option. Clients receive a
Cache-Control: no-cache directive but the document is
cached on the origin server. Equivalent to
ServerAndNoCache.

ServerAndNoCac
he

 Applies the settings of both Server and NoCache to
indicate that the content is cached at the server but all
others are explicitly denied the ability to cache the
response.

ServerAndPrivate Indicates that the response is cached at the server and
at the client but nowhere else. Proxy servers are not
allowed to cache the response.
MapXtreme 9.5 Developer Guide 96

 5 – Web Applications, Controls, and Tools
Caching Expiration

You can also set an expiration date for your cached tiles. Set an expiration date when the
data in the tile needs to be refreshed. By expiring tiles, users of your application will
receive only the most up-to-date information displayed.

To set the cache expiration, add a key to the web.config file, as follows:

<appSettings>
 <add key="MapInfo.Engine.Session.CacheExpires" value="1/1/2016"></add>

</appSettings>

The value can be any string that can be successfully parsed by Microsoft’s
DateTime.Parse(String) method.

Note that Microsoft limits the expiration date to one year. Any date beyond one year will
not be honored.

HTML/XHTML Validation Issues
If you create a MapXtreme web application and run the resulting HTML through a
validator service, you might see the following validation error, depending on what version
DOCTYPE tag you use:

value of attribute "ID" invalid. "_" cannot start name

This validation error is in reference to a hidden field with the attribute

id="__VIEWSTATE"

The id attribute that causes this validation error is not output by MapXtreme; it is an
attribute that is output by ASP.NET.

To resolve this validation error, you may need to replace the DOCTYPE tag on your .aspx
page. Specifically, if you update your DOCTYPE tag to an XHTML DOCTYPE tag, the
resulting page will validate, even with the id attribute shown above. (ASP.NET will wrap
the offending tag in a DIV tag, all of which will validate against the XHTML DOCTYPE.)
As an example, you might use the same DOCTYPE tag that is generated for you when
you create a new Web Application from Visual Studio's ASP.NET template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
MapXtreme 9.5 Developer Guide 97

http://msdn.microsoft.com/en-us/library/1k1skd40(VS.80).aspx
http://msdn.microsoft.com/en-us/library/1k1skd40(VS.80).aspx

Migrating Post-back Web Controls to
JavaScript Web Controls
The process of migrating your pre-v6.5 Web controls1 to the MapXtreme Web controls in
versions 6.6 and higher is not automatic. Every application and migration process is
different and depends on how tightly coupled the application is with the functionality and
design of the older Web controls.

The recommended migration process is to take a phased approach. In some cases code
restructuring might have to be done. The following processes need to be considered
while migrating your Web controls:

• Loading Data

• Replacing Controls

• State and Event Management

Loading Data
The only way to load data with MapXtreme Web controls is by using a preloaded
workspace. The MapControl points to the MapAlias in the workspace and tries to display
the map, not load the map. The preloaded workspace is specified in the Web.config file.
See What Should the Initial Map Look Like?.

In the case where the MapControl is used to display multiple map images, set up the data
so that all maps are in one location, and change the MapAlias of the MapControl to
choose the maps.

Replacing Controls
Replacing controls can be done in various ways, either by deleting the older Web controls
from the form and dragging and dropping the new Web controls on the form, or by
creating new Web forms, dragging and dropping the new controls and then start adding
functionality from the old forms to the new forms. Make sure to set the appropriate
MapAlias for the MapControl and set the appropriate MapControlID for all dependent
tools and the LayerControl.

1. In MapXtreme releases prior to version 6.5, the web controls required a postback page that called Page_Load
and Page_Unload every time a tool was used. These controls have been replaced by more efficient JavaScript-
enabled partial-page update controls. We provide the postback controls for backward compatibility, but they have
been marked Obsolete. Information on these controls is contained in the MapInfo.Web.UI.WebControls
namespace. For the JavaScript controls API, see the MapInfo.WebControls namespace.
MapXtreme 9.5 Developer Guide 98

 5 – Web Applications, Controls, and Tools
State and Event Management
In most cases, the older method of state management is to restore state in Page_Load
and save state in Page_Unload. This code must be moved to the new class which derives
from the StateManager into the RestoreState and SaveState methods.

If your web application handles state manually, then you must implement the
StateManager and put this in the ASP.NET session. It is a best practice with MapXtreme
to manually handle state so that you are only restoring the information needed. See
Chapter 6 Understanding State Management.

In the case where Server.Transfer or Response.Redirect is used in a web page, the
session is no longer new. You must put the StateManager in the ASP.NET session if it
previously does not exist.

Specialized Topics for Web Controls
The following sections refer to special usage of MapXtreme Web controls:

• Using Web Controls in Frames

• Using the MapControl in Table Cells

• Web Control Localization

Using Web Controls in Frames
The MapXtreme Web controls work in frames. For information on how to create frames,
framesets, and assign pages to frames see the Visual Studio documentation.

When using Web controls in frames, remember that a frame points to a web page and a
frameset contains one or more frames. Take the following scenario: A page with a
MapControl and other pages with tools or a LayerControl that depend upon the
MapControl. All of the pages form a frameset.

Given the above scenario, the following rules apply:

• The MapControlID must be manually entered into the properties for the dependent
controls. If there is a MapControl on the same page as the dependent control with the
same ID, the tools and LayerControl will pick that one.

• Since the frame pages render in a particular order, the MapXtreme session will not be
a new session for frames rendered after the first frame. To ensure the StateManager is
in place, implement the following code. Ensure there is a StateManager class
registered regardless of what page is loaded, The following code is executed before
RestoreState is called.
MapXtreme 9.5 Developer Guide 99

' If the StateManager doesn't exist in the session put it in, else get it.
If StateManager.GetStateManagerFromSession() Is Nothing Then

StateManager.PutStateManagerInSession(New AppStateManager())
End If

Using the MapControl in Table Cells
Due to HTML behavior, as soon as an element is dragged out of another element, it is
resized to a basic size (mainly 0). If you put a MapControl in a table cell you may have a
problem when an element does not have an absolute width and height in the HTML.
When the element is dragged out of the cell, it will collapse and therefore the cell size
becomes 0.

To solve this issue, set the MapControl height and width, explicitly. The following sample
shows how to set the size in the HTML:

<table style="Z-INDEX: 101; LEFT: 32px; POSITION: absolute; TOP: 64px"
borderColor="#ff00ff" border="1">
 <TR bordercolor="#ff3366">
 <TD bordercolor="#0066ff">
 <cc1:mapcontrol id="Mapcontrol2" runat="server" Width="300px"
Height="300px"></cc1:mapcontrol>
 </TD>
 </TR>
 <TR>
 <TD>
 <cc1:pantool id="Pantool2" runat="server"
MapControlID="MapControl2"></cc1:pantool>
 <cc1:zoomintool id="ZoomInTool1" runat="server"
MapControlID="Mapcontrol2"></cc1:zoomintool>
 <cc1:zoomouttool id="ZoomOutTool1" runat="server"
MapControlID="Mapcontrol2"></cc1:zoomouttool>
 </TD>
 </TR>
</table>

Web Control Localization
MapXtreme provides a Visual Studio solution for developers who wish to translate text
strings associated with the web controls. This "localization kit" contains resource projects
for all runtime components of MapXtreme. No design-time resources are included.

Included in each project are the English resource strings for translating and a strong
named key (.snk) file. that will compile into an assembly that can be incorporated into
your MapXtreme application. The MapXtreme web controls are contained in the project
called MapInfo.WebControls.resources.
MapXtreme 9.5 Developer Guide 100

 5 – Web Applications, Controls, and Tools
See Appendix K: Localization Kit for instructions on how to build a satellite assembly from
localized web control resources.
MapXtreme 9.5 Developer Guide 101

MapXtreme 9.5 Developer Guide 102

6

6 – Understanding State

Management
This chapter describes concepts and best practices for state
management—a subject of great importance when writing web
applications.

In this chapter:
 Overview. 104
 Terminology . 104
 What is State Management? . 106
 InProc Development Model . 109
 State Management For Pooled Objects .113
 A Detailed Look at Manual State Management 119
 A Closer Look at the MapXtreme Session 126

Overview
State management is a key consideration in the design and implementation of a
MapXtreme web application. How the changes a web site visitor makes when interacting
with your web application is central to a successful user experience and to building a
scalable, high performing application.

Before getting too far into this subject, the following section is a "must read" for what
follows in this chapter. Understanding the difference between MapXtreme Session and
HTTP Session, user state and application state, clean and dirty MapXtreme Session
objects, and more, will better prepare you for planning and building your web application
successfully right from the beginning.

Terminology
MapXtreme Session - The MapInfo.Engine.Session object that holds the Catalog,
MapFactory, and CoordSysFactory. The user interacts with an instance of a MapXtreme
Session object.

HTTP Session - The System.Web.HttpSessionState object where the user's changes are
saved between requests. These changes are saved and restored for each request. The
user's changes are known as the user state.

Browser Session -The period of time a unique user interacts with the web application.
This is also referred to as the ASP.NET Session.

InProc Development model - A web application development model in which each user
has his own instance of the MapXtreme Session object. Any changes the user makes
during the browser session do not affect other users. The entire MapXtreme web
application is stored in memory with the current application state and is associated with
this individual user. This model is useful for small, light-use web applications where the
number of users is known, such as a department’s intranet. Contrast this with the more
scalable Pooled Development model in which users share the MapXtreme Session and
system resources. See InProc Development Model on page 109.

Pooled Development model - A model in which multiple MapXtreme Session instances
are available from a COM+ pool associated with the web application and are activated to
serve web requests. Each of the pooled MapXtreme Session objects is used to handle
requests from multiple web users. This model is more complicated than the InProc model,
since your application must manage the state of the MapXtreme Session for each user.
However, this is a more efficient use of system resources. Use this model to build
scalable applications. See State Management For Pooled Objects on page 113.
MapXtreme 9.5 Developer Guide 104

 6 – Understanding State Management
State Management - A general term in web application development that deals with
saving and restoring information from a browser session.

Background map - The initial map(s) that is pre-loaded with the web application as
defined in the Web.config file. This map contains reference layers, such as street
networks and postal boundaries, as well as application-specific data such as store
locations or cell towers. This base workspace will be pre-loaded in MapXtreme Session
instances and will be available unless the application allows the user to change the base
maps. See What State Management Options are Available? on page 106.

Application State - An ASP.NET-defined mechanism for storing state information in
memory that applies to all users and sessions of a web application. See the ASP.NET
Application State Overview at http://msdn2.microsoft.com/en-us/library/ms178594.aspx.
See also Handling Initial Requests on page 124

User state - The saved state of the MapXtreme Session and application state between
user requests. Any changes the user makes to the MapXtreme Session or application
must be saved to the HTTP Session. Changes can be as simple as re-centering the map,
or as complicated as a query to create a thematic map.

Beginning state - The condition of a pooled MapXtreme Session instance when the user
accesses it. There are four possible beginning states:

• New user to site, the available MapXtreme Session instance from the pool is clean,
with the background map in its initial state.

• New user to site, the available MapXtreme Session instance from the pool is dirty
(map has changes from another user)

• Returning user, the available MapXtreme Session instance from the pool is clean.

• Returning user, the available MapXtreme Session instance from the pool is dirty
(map has changes from this or another user)

MapInfo.Engine.Session.State - A MapXtreme-defined mechanism that determines
whether the MapXtreme Session state will be saved automatically or manually. The
automatic Session state means the entire MapXtreme Session is saved to the HTTP
Session. Automatic Session state is set in the application’s Web.config file in the key:

<add key="MapInfo.Engine.Session.State" value="HttpSessionState" />

Manual Session state means that the developer is responsible for saving state that
changes from one user to another. This is the mechanism to use when building scalable,
pooled applications.

Manual Session state is set in the application’s Web.config file in the key:

<add key="MapInfo.Engine.Session.State" value="Manual" />
MapXtreme 9.5 Developer Guide 105

http://msdn2.microsoft.com/en-us/library/ms178594.aspx
http://msdn2.microsoft.com/en-us/library/ms178594.aspx
at http://msdn2.microsoft.com/en-us/library/ms178594.aspx

StateManager - A MapXtreme class with methods and properties to help with saving and
restoring user state in a pooled web application. When MapInfo.Engine.Session.State is
set to Manual in the Web.config file, the application must provide a StateManager class
that implements SaveState and RestoreState methods. See Implementing a
StateManager on page 121.

sessionState - A standard ASP.NET Web.config element for configuring which storage
mechanism is used for saving user state. Three types:

• InProc - user state is stored in memory for the lifetime of the ASP.NET Session.

• StateServer - user state is saved on the server so user changes can be retrieved at
a later time.

• SQLServer - user state is saved to an SQL Server database for later access.

What is State Management?
Many types of web applications need to perform state management—the process of
saving and restoring information about what state, or condition, each user's session is in.
For example, when a retail web application provides a shopping cart, the application must
remember the state of each user's shopping cart.

In a web mapping application, if your application allows the user to click the map to zoom
in, your application needs to remember that one user might be zoomed in on Europe
while another user is zoomed in on Australia. The code that remembers each user's map
state is referred to as state management code.

What State Management Options are Available?
MapXtreme provides you with these options for how you manage state:

• You can use InProc state management, which is easy to code; however, it is not
appropriate for all applications because it taxes server resources.

• You can use a Pooled architecture with automatic state management. This model is
easy to code, but the resulting application may not be fast enough, depending on your
needs.

• You can use a Pooled architecture with manual state management. This model
requires more coding on your part. You must write code to save and restore the
appropriate MapXtreme Session objects that comprise the user's state. However, this
model produces the most scalable applications, so it is the best choice for applications
that have large numbers of users.
MapXtreme 9.5 Developer Guide 106

 6 – Understanding State Management
Thus, there are trade-offs associated with each option. You must consider many factors
when designing web applications using MapXtreme. Some factors are MapXtreme design
decisions and others are Microsoft technology design patterns. This chapter will walk you
through some of the decisions you must make and show you how to make the correct
choices for your type of application.

It is strongly recommended that you think about state management before you write your
web application. The type of state management that you choose will affect how your write
your application. If you write a web application, and then later decide to adopt a different
type of state management, you may need to rewrite significant parts of your application.

Questions to Ask Before Writing Your Application
If you want to create a simple MapXtreme web application, you can do so quickly and
easily - just create a new web application using the Visual Studio template provided with
MapXtreme ("MapXtreme Web Application").

However, for a more complicated web application, before you invest significant time and
effort coding the business logic for your web application, there are several questions that
you should think about, as the answers to these questions will help you decide which type
of state management is right for you.

How Many Users Will Access Your Application?

The most important question you can answer is: How many people will access this site?

The earlier you identify the number of users your web application will have, the better off
you are. If you develop and test an application with a very small number of users (as a
pilot project perhaps), then later on you might discover that your application does not
perform well when there are many users. In that situation, you may find that you need to
change your application architecture - a change which might require you to rewrite your
application. It is far better to plan ahead and anticipate your user load in advance, so that
you can use the appropriate state management architecture from the beginning.

Known Number of Users

Perhaps you are creating an intranet site where you have a finite, defined list of potential
users. For example, you might be creating a web site to be used by a specific department
in your organization. Perhaps you know the names of everyone who will access your site.

Given such a well-defined and finite number of concurrent users, you can consider using
the InProc, non-pooled development model. It is the easiest model to code, but not an
appropriate choice for all applications, because it places substantial demands on web
MapXtreme 9.5 Developer Guide 107

server resources. It creates one MapXtreme session instance for each concurrent user.
However, if your pool of users is finite and well-defined, these server requirements might
not be a problem.

Unknown Number of Users

The other development model is when you do not know the number of users who will
want access to the site. Perhaps you are hoping or expecting that over time your web site
will attract more and more visitors. In this case, the InProc, non-pooled model would be
inappropriate, and you should instead plan on using a pooled development model where
you capture each user’s state manually. In the pooled development model, you will create
a finite number of MapXtreme sessions, and each user request will be serviced by re-
using one of the objects from the pool.

The pooled architecture lets you develop your application for scalability. You may later
need to add more servers to handle additional load; thus your application must
understand how to save the users current state and when and how to apply it when the
next request comes in to the server. This may occur on the same server or a different
server in your farm. This scalability leads to many options and choices you can make
about how your system will store state, access data, and respond to multiple requests.
This is why it is important to plan out your application and create a strong architecture that
supports distributed applications.

What Should the Initial Map Look Like?

When you develop an application, you must decide what information remains the same
for all users. This includes map layers, labels, titles, and color-coding or other types of
thematic shading. This is known as the background map.

To set up your background map, run the MapXtreme Workspace Manager (a desktop
application installed with MapXtreme), and save your map as a workspace file (.mws file).
See Chapter 27 Workspace Manager.

Once you have created an .mws file, edit your web application's Web.config file to include
a reference to your .mws file. The following Web.config excerpt shows the syntax:

<configuration>
 <appSettings>
 <add key="MapInfo.Engine.Session.Workspace"
value="C:\MIDATA\EvalData\WorldDetail\World_Detail.mws" />
 </appSettings>
</configuration>

This tag instructs the MapXtreme Session to load this workspace whenever a new
instance of the Session is created.
MapXtreme 9.5 Developer Guide 108

 6 – Understanding State Management
How Will Users be Allowed to Modify the Map?

Most web applications allow the user to click, drag, or perform other actions that modify
the map in some way. In your application, you might consider the following.

Will you allow your users to:

• Zoom in or out or re-center the map?

• Select some features on the map (perhaps by clicking directly on the map)?

• Turn map elements on or off (such as clearing a checkbox to turn off street display)?

• Create and/or modify thematic shading (such as color-coding on the map to show
data)?

• Place map annotations, such as symbol markers, on the map?

All of these operations can be supported in a mapping application. However, if you decide
to implement a web application using a pooled model, you should be aware that pooled
applications need to include code that carefully saves and restores all changes the user
has made to the map.

For example, if your web application allows users to place annotations on the map, then
you will need to write code to save each user's custom annotations, and then write code
to restore that user's custom annotations with each subsequent request.

If your application uses the pooled model with manual state management, then your state
management code will grow more complex as you add more and more features that allow
the user to modify the map. As you consider features that allow the user to modify the
map in various ways, remember to set aside time for the development and testing of your
state management code as well.

InProc Development Model
If you use the InProc development model, you code your application much like you would
code a desktop application. With the InProc model, there is one MapXtreme Session
object for each user; this means you will have the overhead of each user having their own
process space, and resources are not shared. (The MapXtreme Session is the holder of
the Catalog, MapFactory, CoordSysFactory, and other MapXtreme objects.)

The InProc model is a simple model for development purposes. Because each user has
their own MapXtreme Session, changes can be made within a Session without disrupting
any other users' Session.
MapXtreme 9.5 Developer Guide 109

For example, if the user clicks to zoom in on the map, your application code can simply
modify the map object's Zoom property, without worrying about whether the change in the
zoom level will adversely affect other users. Thus it is easy to code an InProc web
application.

You might find it helpful to think of a web application as being analogous to a restaurant.
Web applications need to service simultaneous requests from multiple users, just as
restaurants need waiters to take food orders from multiple tables.

The InProc model is analogous to a restaurant that hires one waiter per table. It would be
expensive for a restaurant to employ one waiter per table. However, if a restaurant was
able to afford hiring one waiter per table, then doing so would certainly provide each table
with excellent service. Also, having one waiter per table would make each waiter's job
simpler. Since each individual waiter would be servicing one table, the waiter would not
need to waste any time or energy remembering which order went to which table.

Pros and Cons of the InProc Development Model
If you choose the InProc model, it will be easier for you to write your web application,
because you will not need to provide any complex code for saving and restoring each
user's state with each subsequent request.

However, the InProc model is not scalable, because it requires having a dedicated
MapXtreme Session for each concurrent user. For thousands of users to use your site
concurrently, the application would need to maintain thousands of MapXtreme sessions
on the server, which taxes your server’s resources. If you anticipate a large number of
concurrent users, then the InProc model is not an appropriate choice for your application.

InProc Management: A Walk-Through
An example helps illustrate how MapXtreme Sessions are created and used when an
application uses the InProc model. The following describes, in simplified terms, the
sequence of events:

1. A user launches a browser and goes to your mapping application web site.

2. A new MapXtreme Session is created on your server. It will be used to service all
requests from this user during this ASP.NET session.

3. The workspace file(s) specified in your Web.config file is loaded. As a result, your
MapXtreme Session's MapFactory has one or more Map objects. For the sake of this
example, let us assume that the workspace contains one map, which initially shows
the entire world.
MapXtreme 9.5 Developer Guide 110

 6 – Understanding State Management
4. The web page's HTML is rendered and returned to the client browser. Part of the page
is an HTML img tag, which requests an image of the map from the server. On the
server, objects from this user's MapXtreme Session—a Map object, in particular—are
used to render the map image, which is returned to the user's browser.

5. The user selects the Zoom In tool, and then draws a marquee box around Australia, to
zoom in on Australia.

6. On the server, the application modifies the Map object's Zoom property so that it is
zoomed into Australia. The application renders a new map image and streams the
image to the client browser.

The Map object is now in a different state than it was initially-its Center and Zoom
properties have changed (to show Australia rather than showing the entire world).

7. The user clicks on the Select tool, and then clicks on the portion of the map that shows
Australia.

8. On the server, the application performs a selection: to select the Australia region. A
new map image is rendered, to display the new selection.

There are now two ways the Map's status has changed from its original state: Its
center and zoom changed (in step 6), and now there is a Selection.

9. Elsewhere, a second user launches a browser and goes to your mapping application
web site. A new MapXtreme Session is created on your server for the second user.
This session contains a map, which shows the entire world. This Map object is
separate from the first user's Map.

Note that the second user sees a map of the world, rather than a map that is zoomed in
on Australia. Only the first user's map is zoomed in on Australia. A second MapXtreme
Session (with its own map) was created to service the requests from the second user.
Thus the second user will not see the same map as the first user.

Configuring an Application to Use the InProc Development
Model
The Web.config file for your web application holds the settings to control the application
model. For the InProc model the Web.config file settings are:

<!--Use this setting to turn Session pooling on/off (true/false)-->
 <add key="MapInfo.Engine.Session.Pooled" value="false" />

<!--Use this setting to save Session state automatically (HttpSessionState) or
manually (Manual)-->
 <add key="MapInfo.Engine.Session.State" value="HttpSessionState" />
MapXtreme 9.5 Developer Guide 111

<sessionState mode="InProc" stateConnectionString="tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;userid=sa;password="
cookieless="false" timeout="20" />

These settings specify that the MapInfo.Engine.Session object is not pooled, and the
state of the MapXtreme Session object is automatically stored in the user’s HTTP
Session (key value = HttpSessionState).

In the sessionState element, we have set the mode attribute to InProc to specify that
everything is saved in process. InProc is the default mode if sessionState is not specified.

The lifetime of the MapXtreme Session instance depends on the Session state
configuration. The MapXtreme Session instance is cached in memory for the lifetime of
your ASP.NET session when you use server-based Session State and the ASP.NET
sessionState element in your Web.config file is set to InProc.

If you use any other type of Session State configuration (for example, client-based or
server-based with sessionState element set to StateServer or SQLServer), the
MapXtreme Session instance is created and disposed for each ASP.NET request.
However, this has performance implications and should be avoided as a development
model. If you follow the InProc model, sessionState should be set to InProc.

Once you decide to follow this option of an InProc session, each user who accesses your
web site will be given a copy of the MapXtreme Session object and all it contains.
Obviously if the number of users grows, then so will the memory footprint.

Your application will also load the workspace defined in the Web.config each time a
MapXtreme Session is created. For the InProc model, this means a new MapXtreme
Session is created and the workspace is loaded when the user first visits the site.

Using the MapXtreme Template with the InProc Development
Model
If you created a Web Site using the " template, be aware that it does not follow the InProc
model.

To create an application with the template that uses InProc:

1. Modify the Web.config file as shown in Configuring an Application to Use the InProc
Development Model on page 111.

2. Remove the application's Page_Load and Page_Unload methods from
MapForm1.aspx.vb or MapForm1.aspx.cs or comment out the manual state-
management code that was placed automatically by the MapXtreme template.
MapXtreme 9.5 Developer Guide 112

 6 – Understanding State Management
State Management For Pooled Objects
State management in a pooled application is a development model that is designed to
make applications scalable. If you anticipate that your application will have a large and/or
a continuously growing number of users, the pooled model is a better choice for you than
the InProc model.

What is Pooling?
In the pooled model, your application creates a finite number of MapXtreme Session
objects on the server. Each one of those object instances is then shared within the
application and re-used; each MapXtreme Session handles requests from multiple users,
as illustrated in the following diagram.

This diagram represents an application that has a COM+ pool of two MapXtreme Session
objects, being accessed by three users (web clients). Whenever a client submits a
request, the request will be serviced by one of the two MapXtreme Session objects.

In this model, no client has its own dedicated MapXtreme Session. Instead, MapXtreme
Session objects are shared and re-used. The following sequence of events is possible:

1. Client1 might request a map zoomed in on Africa. This request might be handled using
SessionObj1.

2. Client3 might request a map zoomed in on Australia. This request might also be
handled using SessionObj1. In other words, each Session handles requests from
multiple clients. No one client "owns" the MapXtreme Session; they are all shared.
MapXtreme 9.5 Developer Guide 113

3. Client1 might submit a request to pan the map to show Europe. This request might be
handled using SessionObj2. In other words, there is no guarantee that every request
submitted by a particular client will be serviced by the same MapXtreme Session, or
the same Map object.

Pros and Cons of Pooling
Pooling helps reduce the number of concurrent MapXtreme Session instances, and
thereby reduces the overhead of creating each object from scratch. When an object is
needed, it is pulled from the pool. When the object is not needed anymore, it is placed
back into the pool to await the next request. Pooling in MapXtreme means that multiple
MapXtreme Session objects can already be created and loaded with a background map
and available when a web request is received.

Pooling helps you optimize the server's resources in the following ways:

• Improves overall response time for web applications by running several ASP.NET
requests concurrently.

• Conserves resources by reducing the number of concurrent MapXtreme Session
instances.

• Maximizes CPU utilization by reducing the number of requests running at the same
time (and reducing thread context switching). This is particularly useful when requests
are CPU intensive (for example, Map image exports). The general recommendation is
to have a pool size of 1-2 session instances per CPU.

However, a pooled application can make an application more complicated. MapXtreme
Sessions (and their maps) are shared and re-used; therefore, you need to take steps to
ensure that each Map is re-set to an appropriate state each time your application handles
a client request.

For example, suppose a client requests a map of Germany. You cannot simply fetch a
MapXtreme Session from the pool and then use its Map to render an image, because
there is no guarantee that particular map is zoomed in on Germany. The Map that
services the request must be set to an appropriate, known state. As the application
developer, you must manage the state of the object to ensure that the object is in an
appropriate state before you use it to service the current request.

Saving State for Pooled Applications
The pooled development model offers you two options for managing the state of your
pooled objects. You can use automatic state management, and have MapXtreme take
care of the current user state, or you can use manual state management and control the
changes that must be saved and restored for each user.
MapXtreme 9.5 Developer Guide 114

 6 – Understanding State Management
Automatic State Management

This scenario indicates that the state of the MapXtreme Session object will be saved
automatically, to the session mechanism defined in the Web.config (either StateServer or
SQLServer). The application programmer does not have to programmatically save any of
the current user state information, such as layers, thematics, open tables, or current
zoom. The entire state of the MapXtreme Session object will be saved.

This option saves system resources compared to the InProc model, since you do not
have a MapXtreme Session for each user and all users will share pooled MapXtreme
Session objects. The drawback is that the entire MapXtreme Session will be serialized to
the currently defined state mechanism. In general, the MapXtreme Session object
retrieves all objects in its factories and serializes them to the state mechanism. This
includes all maps and their included layers, all open table definitions, and any projections
loaded. If the application is using automatic state management, the MapXtreme Session
object does not know about individual user’s state and stores all available information.
This includes layers that do not change from one user to another, which is the
background map. This can be a time consuming process and can cause this type of
application to perform more slowly than an InProc model. For information on serialization
see Serialization and Persistence in Chapter 9 on page 219.

Manual State Management

This configuration means the MapXtreme Session instance will not automatically save
any instance data. It is up to the application programmer to include code in the application
to save and restore the state for each user. The MapXtreme Session object will not store
any of its state to the currently defined state mechanism.

This configuration provides for the greatest gain in performance and scalability. You are
using pooled MapXtreme Session instances that do not save any state, and these pooled
objects are being returned to the COM+ pool "dirty". By this we mean the pooled object
has any modifications to the map done by the current user and your application is
responsible for cleaning up the state and setting it correctly for the next user. You can
choose to clean up at the beginning of your web application request or the end.
Implementing a StateManager on page 121.

The combination of using pooled MapXtreme Sessions and managing user state
manually makes this a complicated development model. You cannot tell which
MapXtreme Session will be used for a particular request; however, at the same time you
need to satisfy the user’s request with a MapXtreme Session that is specific to that user.
For this reason, your application must be aware of the beginning state of the pooled
MapXtreme Session.
MapXtreme 9.5 Developer Guide 115

There are four possible beginning states that your application must handle. Each situation
involves a user condition and a MapXtreme Session state.

Manual State Management: A Walk-Through
An example helps to illustrate how pooled MapXtreme Sessions are managed when an
application uses the manual state management model. The following describes, in
simplified terms, a possible sequence of events:

1. A user launches a browser and goes to your mapping application web site.

2. Since this application uses pooling, a MapXtreme Session instance is retrieved from
the pool.

3. The RestoreState method is called from Page_Load.

If the MapXtreme Session is "dirty," with some user’s changes, the application sets the
map back to the desired beginning state; see the RestoreDefaultState method in the
AppStateManager class.

For this example, let us assume that the beginning state shows a map of the entire
world.

4. The web page's HTML is rendered and returned to the client browser. Part of the page
is an HTML img tag, which requests an image of the map from the server. On the
server, objects from this user's browser session—a Map object, in particular—are used
to render the map image, which is returned to the user's browser.

5. In the Page_Unload method, the application saves the user's state, by calling the
AppStateManager.SaveState method.

User is... MapXtreme Session in the Pool is....

New to the site Clean *

* MapXtreme Session and its background map are in their initial state.

New to the site Dirty†

† MapXtreme Session and/or its background map contain another user's changes.

Returning to the site Clean *

Returning to the site Dirty†
MapXtreme 9.5 Developer Guide 116

 6 – Understanding State Management
6. The user selects the Zoom In tool and draws a marquee box around Australia.
Javascript that is built into the Zoom In tool submits a request to the server to zoom in
on Australia.

7. On the MapXtreme server, the application once again must fetch a MapXtreme
Session object from the pool. Note that the MapXtreme Session returned from the pool
may be a different object than was used to service the previous request. This object
could be clean or dirty.

8. On the server the application calls the AppStateManager.RestoreState method, to
restore the user state that was saved in step 4. This restores the MapXtreme Session
to a known state that is appropriate for this user.

9. The application modifies the Map object's Zoom property so that it is zoomed into
Australia. The application renders a new map image and streams the image to the
client browser. Again, the application saves the user's state at the end of the request.

10.The user clicks on the Select tool, and then clicks on the Australia region of the map,
to select Australia.

11.The application again fetches a MapXtreme Session from the pool, and again calls
RestoreState to set the pooled object to a known state.

12.On the server, the application carries out the operation to select Australia. A new map
image is rendered, to display the new selection.

13.On the server, the application again calls AppStateManager.SaveState, to save the
user state. Since this example allows the user to perform selections, the
AppStateManager's SaveState and RestoreState methods will need to include code to
save and restore Selections.

Any aspect of the MapXtreme session that you allow a user to change, such as layers,
themes, queries, map views, must be handled in your code to save and restore each
item.

Using pooling and managing user state manually is beneficial in that it improves efficiency
and allows applications to be scalable. However, this model does require additional work,
in terms of saving the user state at the end of each request, and then restoring that state
at the beginning of that user's next request.

Configuring a Pooled Application to Use Manual State
Management
MapXtreme 9.5 Developer Guide 117

For examples of a pool application using manual state management, see the sample web
applications that ship with MapXtreme. The following are the main points for configuring
such an application.

Configure pooled objects in the Web.Config file using the settings:

<!--Use this setting to turn Session pooling on/off (true/false)-->
 <add key="MapInfo.Engine.Session.Pooled" value="true" />
<!--Use this setting to save Session state automatically (HttpSessionState) or
manually (Manual)-->
 <add key="MapInfo.Engine.Session.State" value="Manual" />
<sessionState mode="StateServer" stateConnectionString= "tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;userid=sa;password="
cookieless="false" timeout="20" />

These two settings can be combined into the following options:

• For pooled objects and automatic state management, set Pooled to true, and set State
to HttpSessionState.

• For pooled objects and manual state management, set Pooled to true, and set State to
Manual.

Place the logic that determines the user’s current state into the Page_Load method. See
Implementing a StateManager on page 121.

User State

Your application must now consider the user's current state and the state of the
MapXtreme Session object when it was retrieved from the pool. In this situation you will
have to decide:

• Do you return the pooled object clean to the pool in your SaveState method?

• Do you let go of the pooled object and then restore any state in the RestoreState
method?

The correct choice here is not always clear since many variables about the difference in
state from one user to another may lead you to leave the session object dirty prior to
releasing it back to the pool. Another application may save time by waiting for the
Page_Load to clean up or to check if the Session needs cleaning.

The example in the section Manual State Management: A Walk-Through on page 116
followed the second option here: to clean up the pooled object in the RestoreState
method.

The next section provides more information on how to save and restore state.
MapXtreme 9.5 Developer Guide 118

 6 – Understanding State Management
A Detailed Look at Manual State Management
This section provides a detailed example of how a pooled application can perform manual
state management. We will examine relevant sections of code from the Thematics
sample web application, which is installed as part of MapXtreme. If you have not already
done so, you might want to run the Thematics sample to familiarize yourself with it, before
reading this section.

The Thematic sample is one of the projects included in the solutions here:

C:\Program Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio20xx\Web\Features

This discussion covers the following topics:

• Overview of the Thematics Sample

• Application Settings

• Implementing a StateManager

• Serializing MapXtreme Objects in the Proper Order

• Automatically Deserializing MapXtreme Objects

• Handling Initial Requests

• Handling Subsequent Requests

Overview of the Thematics Sample
This application displays a map of the world, loaded from the workspace World.mws (part
of the sample data installed with MapXtreme).
MapXtreme 9.5 Developer Guide 119

Options on the web form allow the user to create various types of thematic shading on the
map. These themes modify the appearance of regions (country boundaries) in the table
world.tab. The attribute data for the themes comes from a Microsoft Access database,
eworld.mdb (included within the Visual Studio project).

In this sample, the world.mws workspace file is pre-loaded when the MapXtreme Session
is created; however, the columns from eworld are added later, when a client accesses the
application.

 To get better performance, put attribute column information into a workspace file, so
that all needed data will be pre-loaded at the MapInfo Session creation time.

Application Settings
First let's take a look at the parts of the Web.config file that contain relevant application
settings. Near the top of the Web.config file you will find these settings:

<configuration>
<appSettings>
 <!--Use this setting to turn Session pooling on/off (true/false)-->
 <add key="MapInfo.Engine.Session.Pooled" value="true" />

 <!--Use this setting to save Session state automatically (HttpSessionState)
or manually (Manual)-->
 <add key="MapInfo.Engine.Session.State" value="Manual" />

<!--Use this setting to preload a workspace on Session creation-->
 <add key="MapInfo.Engine.Session.Workspace" value="c:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\Data\World.mws" />

The settings are explained below:

• MapInfo.Engine.Session.Pooled: Because this key has a value of "true", MapXtreme
Session objects are pooled by the COM+ service. When a new MapXtreme Session is
retrieved upon a new client request, the Session could be "clean" - a new object just
created - or it could be a "dirty" object which has already been used to handle a
previous request. Because of the uncertain state of this object, this application will take
steps within each request to restore the MapXtreme Session to a known state before
using it.

• MapInfo.Engine.Session.State: Because this key has a value of "Manual", the
application is responsible for explicitly saving and restoring Session state. The Manual
setting aids performance, because the application's StateManager class is written with
intelligence about which objects it should save and restore. The StateManager
MapXtreme 9.5 Developer Guide 120

 6 – Understanding State Management
selectively saves and restores only the minimum number of objects that are needed;
that is why it is the most efficient state management option. (See Implementing a
StateManager on page 121).

• MapInfo.Engine.Session.Workspace: This setting lets you specify a semi-colon
separated list of.mws workspace files, which will be pre-loaded at the time the
MapXtreme Session is created. To specify multiple workspaces, separate the
filenames with semi-colons.

Farther down in the Web.config file, you will find this setting:

 <sessionState mode="StateServer"
stateConnectionString="tcpip=127.0.0.1:42424" sqlConnectionString="data
source=127.0.0.1;user id=sa;password=" cookieless="false" timeout="20" />

This indicates how you wish to save state; in this case, to the StateServer where the
information can be retrieved at a later time. You can also set this to SQLServer, where
state is saved to a database.

Implementing a StateManager
The Thematic sample application uses manual state management, which means it
requires an implementation of a StateManager class to save and restore the appropriate
MapXtreme Session changes.

This class inherits from the abstract base class MapInfo.WebControls.StateManager and
must implement the following methods:

 Public Overrides Sub RestoreState()
 Public Overrides Sub SaveState()

 If you use the " template to create a new web site in Visual Studio, the resulting
project includes an implementation of the StateManager, called AppStateManager.

The exact contents of the AppStateManager class vary from application to application.
The more options your application provides, allowing the user to customize the map, the
more code you need to add to the AppStateManager, to save and restore those
customizations. This is why the AppStateManager that is provided with the Thematics
sample application contains more code than the AppStateManager that you get when you
create a new project from the MapXtreme Web Site template.

For example, the thematic sample handles customizations to theme layers, theme tables,
attribute tables, and a group layer. The web template, in contrast, has code to handle
customizations to layers and selections.

The RestoreState and SaveState methods are used as follows:
MapXtreme 9.5 Developer Guide 121

1. Each time a client submits a request, the Page_Load method calls RestoreState.
RestoreState is also called each time a map tool is used on the client. The
RestoreState method ensures that the MapXtreme Session object— which was
retrieved from the pool in an unknown, possibly "dirty" state— is restored to a known
state, either to the user’s state, if it exists, or to the default state from Application state.

For example, if the user's map was zoomed in on France the last time the user
requested a map, then the RestoreState method will ensure that the map retrieved
from the pool is returned to a "zoomed in on France" state. This way, the user's
session can continue from where it left off.

The following VB code example is from the Thematic sample application’s
WebForm1.aspx.vb.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles MyBase.Load

 ' The first time in
 If Session.IsNewSession Then

'//**
'// You need to follow below lines in your own application.
'//***

Dim stateManager As New AppStateManager

' tell the state manager which map alias you want to use.
' You could also add your own key/value pairs, the value should be
' serializable.

stateManager.ParamsDictionary.Item(AppStateManager.ActiveMapAliasKey)_
= Me.MapControl1.MapAlias

' Put state manager into HttpSession, so we could get it later on from
' different class and requests.

MapInfo.WebControls.StateManager.PutStateManagerInSession_

(stateManager)
Me.InitState()

 End If
MapInfo.WebControls.StateManager.GetStateManagerFromSession.RestoreState()

 PrepareData()
 End Sub

2. After the Page_Load method, the application applies whatever business logic is
appropriate, given the nature of the client request.

For example, if the request was generated by the user clicking with the Zoom In tool,
the business logic adjusts the map's center and zoom level.

3. At the end of the request processing cycle the Page_Unload method calls SaveState.
SaveState is also called after a map tool is used on the client.
MapXtreme 9.5 Developer Guide 122

 6 – Understanding State Management
The SaveState method saves the map's latest state, so that when and if the user
submits yet another request, that request will be able to call RestoreState again. Each
call to SaveState is performed in anticipation of a possible subsequent call to
RestoreState, the next time a request is received.

Private Sub Page_UnLoad(ByVal sender As Object, ByVal e As _
EventArgs) Handles MyBase.Unload

MapInfo.WebControls.StateManager.GetStateManagerFromSession()_
.SaveState()

End Sub

Serializing MapXtreme Objects in the Proper Order
In the AppStateManager class provided with the Thematics sample, the SaveState
method calls the ManualSerializer.SaveMapXtremeObjectIntoHttpSession method
several times. The objects are saved (serialized) in the following order:

ManualSerializer.SaveMapXtremeObjectIntoHttpSession(MapInfo.Engine.Session.Curr
ent.Catalog(SampleConstants.EWorldAlias), "mdb_table")

ManualSerializer.SaveMapXtremeObjectIntoHttpSession(MapInfo.Engine.Session.Curr
ent.Catalog(SampleConstants.ThemeTableAlias), "theme_table")

ManualSerializer.SaveMapXtremeObjectIntoHttpSession(map.Layers(SampleConstants.
ThemeLayerAlias), "theme_layer")

ManualSerializer.SaveMapXtremeObjectIntoHttpSession(map.Layers(SampleConstants.
GroupLayerAlias), "group_layer")

It is important that these SaveMapXtremeObjectIntoHttpSession calls occur in the correct
order, because some objects are dependent on other objects.

In this example, first we save tables (which are referenced through the Catalog). Next, we
save layers (which are referenced through the map's Layers collection). That is the
appropriate order, because most types of layers are dependent on tables.

For example, each FeatureLayer is associated with a table. The table must be open
before you can instantiate (or de-serialize) a FeatureLayer that uses that table. Therefore,
this AppStateManager class saves the tables first, and then saves the layers.

Similarly, in the RestoreState method, the data objects are restored first, followed by calls
to restore the layers:

ManualSerializer.RestoreMapXtremeObjectFromHttpSession("mdb_table")
ManualSerializer.RestoreMapXtremeObjectFromHttpSession("theme_table")
ManualSerializer.RestoreMapXtremeObjectFromHttpSession("theme_layer")
ManualSerializer.RestoreMapXtremeObjectFromHttpSession("group_layer")
MapXtreme 9.5 Developer Guide 123

Automatically Deserializing MapXtreme Objects
In the SaveState method, we identify the objects to be saved using specific references,
such as a specific layer in the map:

ManualSerializer.SaveMapXtremeObjectIntoHttpSession(map.Layers(SampleConstants.
ThemeLayerAlias), "theme_layer")

The RestoreState method, however, does not reference the Catalog or the map.Layers
collection. In the RestoreState method, we call methods on the ManualSerializer class,
but we do not do anything with the results from that call, and there is no reference to a
map.Layers collection: They are de-serialized automatically to the appropriate place in
the Catalog or Layers collection, or wherever necessary.

ManualSerializer.RestoreMapXtremeObjectFromHttpSession("theme_layer")

 Use the ManualSerializer class to carry out saving and restoring objects. Do not
store MapXtreme objects directly into the HttpSessionState using syntax such as:

HttpContext.Current.Session.Item("myTable") = _
MapInfo.Engine.Session.Current.Catalog("myTable")

Handling Initial Requests
Application state is a server-side state management mechanism that is used to store
information that is common, or global, to all user sessions. Application state is initialized
when Session.IsNewSession is true. Application state is an important element when
handling initial requests.

In the case of MapXtreme, Application state holds the initial state of a background map so
that any user’s initial request will receive the map in this default state.

The MapXtreme Thematics sample demonstrates the steps to take to handle initial
requests.

There are two different types of "first" requests that your application must handle: 1) the
first request from the very first user to access the web application, and 2) first requests
from all subsequent users.

The very first time any user uses the application, a clean MapXtreme Session is retrieved
from the pool with a background map in its initial state. This initial state is stored in
Application state and used like a template. This happens in the SaveDefaultState method.

The first request from all subsequent users makes a call to RestoreDefaultState, which
retrieves the initial state of the map from Application state.
MapXtreme 9.5 Developer Guide 124

 6 – Understanding State Management
The following are the steps related to initial requests.

1. In the Page_Load method, check to see if the current session is new. If it is, instantiate
your StateManager and add the MapAlias into the state manager's ParamsDictionary
property. This is mandatory when using Manual state management.

2. Next in the Page_Load method, since this is a new session, we initialize application
data by calling the InitState method. In the InitState method, we prepare the initial state
of the map.

3. Next, in the Page_Load method, we make a call to RestoreState to check whether this
is the first request for this application.

If this is the first request for the application, we call SaveDefaultState method to set
various properties on the map to their initial state and we call a ManualSerializer
method, to store this initial map state in a byte array into HttpApplicationState.

Conversely, if this a user's first request, but not the very first request for the
application, we make a call to RestoreDefaultState to reset the properties to their initial
state.

Handling Subsequent Requests
After the user’s first request has been handled, he or she will likely submit additional
requests, such as clicking the map to zoom in. This time when RestoreState is called
(either in the Page_Load method or from the map tools), the initial request logic will be
skipped. Instead the code that restores the user's state is executed.

At the end of the user's session, or after using a map tool, the SaveState method is called
to save the state of the session.

 This Page_Unload method will not get called if you use Server.Transfer or
Response.Redirect with endResponse flag as true, because those methods will
ignore this event handler. You could explicitly invoke
MapInfo.WebControls.StateManager.GetStateManagerFromSession().SaveState()
before processing Server.Transfer or Response.Redirect with endResponse flag as
true to work around this issue.
MapXtreme 9.5 Developer Guide 125

A Closer Look at the MapXtreme Session
The MapXtreme Session is the starting point for all MapXtreme applications. It manages
the initialization of resources needed for a MapXtreme application. The Session also
provides access to other important objects such as Data.Catalog, MapFactory,
CoordSysFactory, Selections, and others.

To access the MapXtreme Session, call the MapInfo.Engine.Session.Current() method.
Each thread in your process has a MapXtreme Session object available. There can be
only one MapXtreme Session per thread and this session cannot be shared by multiple
threads.

Web applications can have one MapXtreme Session object per user, or pooled
MapXtreme Sessions available to many users. The following section describes the COM+
pooling options in more detail.

Configuring Microsoft COM+ Object Pooling
The MapXtreme Session object is registered with the COM+ services on your system.
This system handles configuration and activation of any registered pooled objects. The
runtime installer has the logic to register and create default settings for the MapInfo
Session object. By default the MapXtreme Session object is configured with two pooled
objects and a 60 second time-out.

Configuring the Pool Size

The MapXtreme Session is configurable using the system configuration methods for the
appropriate section. These settings are available in both the system dialogs in the Control
Panel and the .NET configuration files of your application. Web applications must
manage these settings when using pooled MapXtreme Sessions.

One important setting is the number of pooled objects created by the COM+ system to
service your running application. This setting is accessed using the Control Panel >
Administrative Tools > Component Services. Browse through the Component Services >
Computers > My Computer > COM+ Applications > MapInfo.CoreEngine > Components.
Here you will find the MapInfo.Engine Session object. Right click the icon and select
Properties.

The Property dialog allows you to set various properties including the number of pooled
objects per application and the activation time-out for session creation. Setting the
number of pooled objects correctly directly impacts your applications performance. To set
the number of pooled objects correctly you need to understand your application and how
it accesses data.
MapXtreme 9.5 Developer Guide 126

 6 – Understanding State Management
Background Map Affects Performance

Another aspect of the session that can directly impact your application's performance, is
the startup workspace that you define in the application Web.config file. This workspace
defines which maps, layers, and tables will be loaded when the session object is created.
This happens in the COM+ pool thread and outside your web application space.

When the application starts, a request is made to the application pool for a MapXtreme
Session object. The COM+ pool then creates the number of pooled objects you specified
in the control panel Component Services dialog box. This MapXtreme Session object
reads the Web.config file, and the specified workspace is loaded before your application
gets an instance from the pool. Therefore, if loading the workspace takes more time than
the time-out specified in the Component Services dialog box, you will receive a COM+
activation exception. So it is important to understand what you are loading in this
workspace and how long it will take to completely load.

If you specified a Minimum Pool Size of 2, then the COM+ pool will create both copies of
the MapXtreme Session instance on the first request for a pooled object. When the
COM+ pool senses a time-out waiting for a pooled object, it will create more objects up to
the maximum setting. If your workspace is very complex and takes a great deal of time to
load, then the activation of subsequent objects may cause time-out errors when the
application is active. The web application pool has settings to control the reactivation of
pooled applications, including settings for recycling the pooled classes. So at some point
your application and the pooled objects may be recycled, and this will cause another
workspace loading.
MapXtreme 9.5 Developer Guide 127

You must decide which maps, tables, and layers are important to have as the background
for your application, and load these via the workspace in the Web.config file, But be
aware of the implications of a large workspace that takes time to load. To test your load
time, simply load the workspace in Workspace Manager on the server machine to
determine the actual load time and adjust your time-out setting accordingly.

Initial workspaces are very useful in loading maps, layers, and tables that do not change
from user to user, but you have to be aware of the implications of loading complex
workspaces.

Further Reading

The MapXtreme Session is highly configurable and is designed to work in conjunction
with Microsoft COM+ and web technologies. To better understand how best to use this,
you need to understand the Microsoft web delivery architecture. There are many places
to get more information on the topics listed above. Here are some links to very good
information on web architecture:

COM+ pooling COM+ Object Pooling Concepts

IIS 7.0 IIS 7.0: Managing Web Applications in IIS 7.0

IIS 8.1 Web Service (IIS) Overview

IIS 8.5 Web Service (IIS) Overview

IIS 10.0 Web Service (IIS) Overview
MapXtreme 9.5 Developer Guide 128

https://technet.microsoft.com/en-us/library/hh831725
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682784%28v=vs.85%29.aspx
http://technet.microsoft.com/en-us/library/cc771654%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/hh831725
https://technet.microsoft.com/en-us/library/hh831725

7

7 – Desktop Applications,

Controls, Dialogs, and
Tools
This chapter provides information on planning a desktop application,
as well as, an overview of the myriad desktop controls, dialogs, and
tools available in MapXtreme.

In this chapter:
 Planning a Desktop Application . 130
 MapInfo.Windows.Controls Namespace. 132
 Key Controls to Use in Desktop Applications 133
 MapInfo.Windows.Dialogs Namespace . 141
 Customizing Controls and Dialog Boxes . 147
 Overview of the MapInfo.Tools Namespace 147
 MapXtreme Desktop Tools API . 149
 Customizing Tools. 155
 Tool Events . 156
 Editing a FeatureGeometry with the Select Tool. 157

Planning a Desktop Application
MapXtreme is a .NET-based object model that exposes mapping functionality to any
.NET-based development work. There are many emerging technologies that can be used
to develop applications using the .NET framework.

Desktop applications provide a rich tool interaction for the user. While web applications
are getting more sophisticated, applications designed for the desktop still have the
advantage. For example, desktop applications have a “snap to node” capability that can
be useful when placing a Point feature exactly at the intersection of the street. Desktop
applications also offer InfoTips as you hover the mouse pointer.

If you have an existing WinForms or other .NET-based application framework, you can
simply start integrating the MapXtreme classes into your application. The MapXtreme
object model is a fully compliant .NET object model, so you have the full power and
functionality of the .NET framework to interact with our object model. Simply develop your
application in the mode defined by your application framework and reference the
MapXtreme objects.

Best Practices for Desktop Applications
The MapXtreme MaForm Application template is designed for rapid prototyping only,
since it only references the MapXtreme assemblies. Use this as a starting point for a
quick demonstration or proof of concept.

WinForms and the .NET framework provide basic support for single document (SDI) and
multiple document interface (MDI) based applications. WinForms does not provide an
application framework comparable to Microsoft Foundation Classes (MFC). It is missing
document view, data exchange, and other MFC-based user interface concepts.

However, Microsoft does provide its Composite UI Application Block (CAB), as a way of
encouraging their recommended patterns and practices. Note that the Composite UI
Application Block is available for .NET 2.0 Framework and above. More information is
available at the Microsoft Developer Network website at msdn2.microsoft.com/en-
us/library/aa480450.aspx.

A very important aspect of the .NET development model is the separation of business
logic from presentation. MapXtreme uses this paradigm in its controls to allow the user to
open a dialog with a copy of the object to be modified. In this way, the dialog is not directly
editing your runtime objects and you can create a new object in another process or
machine and pass back the serialized version for use by your application.
MapXtreme 9.5 Developer Guide 130

http://msdn2.microsoft.com/en-us/library/aa480450.aspx
http://msdn2.microsoft.com/en-us/library/aa480450.aspx

 7 – Desktop Applications, Controls, Dialogs, and Tools
MapXtreme and COM
.NET does not mean the end of COM. Many development shops put a great deal of effort
into the COM object model and have a large investment that can't simply be discarded.
So what is the best method of developing applications that have COM objects?

It is more likely that new .NET code will have to interoperate with existing COM code
(rather than the reverse situation), so we will focus on this scenario. A .NET client
accesses a COM server through a runtime-callable wrapper (RCW). The RCW wraps the
COM object and mediates between it and the .NET common language runtime (CLR)
environment, making the COM object appear to .NET clients as if it were a native .NET
object and making the .NET client appear to the COM object just as if it were a standard
COM client.

You can create references to these COM object directly from Visual Studio for instance,
and simply interact with them just as you would with a .NET class. This allows you to build
your .NET application while talking to legacy COM objects and passing the results to
MapXtreme .NET objects. Think of the .NET application you are developing as an
orchestration piece of your application framework. In this way you can use the latest
technologies available in the .NET framework and retain your existing investment in
legacy libraries. Because all data from the COM objects has been translated to the .NET
environment, passing these to other managed classes is allowed and causes no domain
issues.

Sample Applications and Project Templates
MapXtreme integrates into Visual Studio and comes with various sample applications and
project templates. The sample applications show different aspects of how to use our
object model within the .NET framework and Windows Forms applications. The templates
are basic starting points for application development.

The project templates that are part of Visual Studio allow you to create a starter project
and demonstrate a generalized application framework. From Visual Studio, create a new
project by selecting the MapForm Application template. This creates a basic single
document interface (SDI) application. See the sample desktop applications for a basic
multiple document interface (MDI) application and how best to integrate MapXtreme into
this model.

The .NET Windows Forms development platform is basic in its approach and
functionality. We recommend using third-party tools that supplies a more complete UI
development platform.
MapXtreme 9.5 Developer Guide 131

The Desktop sample applications that ship with MapXtreme are designed to show you
specific tasks with minimal overhead. Use these as learning tools instead of a starting
point for production application as these were not designed as application development
examples.

The remainder of this chapter describes the wide variety of controls, dialogs and tools
available for building desktop applications.

MapInfo.Windows.Controls Namespace
The MapInfo.Windows.Controls namespace contains classes that implement controls in
desktop applications. The use of Windows controls is quite simple as you drop the
desired controls onto your form and use the various properties to configure them to your
specifications. You will find that the controls in this namespace are similar to controls
found in the MapInfo.WebControls namespace. However, the controls in each
namespace cannot be substituted for each other. The controls in this namespace are
specifically to be used in desktop applications. For information about controls for web-
based applications, seeChapter 5 Web Applications, Controls, and Tools.

 Some controls do not display at design time. When dragged and dropped onto a
form they merely appear as a rectangle. These controls display properly at run time.

The desktop controls included with MapXtreme can be categorized into standard controls
and map-specific controls. Standard controls include buttons, view tools, label tools, all
kinds of boxes, etc. These are quite similar to (and in many cases, inherited from) classes
that exist within the System.Windows.Forms namespace.
MapXtreme 9.5 Developer Guide 132

 7 – Desktop Applications, Controls, Dialogs, and Tools
The map-specific controls are specific to Precisely’s mapping implementations. These
include controls that set or modify aspects of object styles, labels, layers, coordinate
systems, themes, and other related functions.

Visual Studio Toolbox and Designer showing the list of available MapXtreme controls.

The most complex of the controls is the Layer Control, which is available as either a
modal Dialog Box, or as a control that you can display directly on your form. The Layer
Control has an API that allows extensive customization; see the “LayerControlDemo”
sample application for examples.

Key Controls to Use in Desktop Applications
While all the controls included in MapXtreme are useful, several stand out from the rest
as being central to most mapping applications. The following sections discuss these.
Each of these controls assume the presence of the appropriate references included in
your project. (These are automatically included if you have created your project from the
MapXtreme MapForm template in Visual Studio).
MapXtreme 9.5 Developer Guide 133

 If you are not creating your project from one of our templates, please make sure to
add references to the appropriate components (for example, MapInfo.CoreEngine,
MapInfo.Windows, MapInfo.Windows.Dialogs, and MapInfo.Windows.Framework).
See also MapXtreme Merge Modules.

MapControl
The MapControl is necessary for every application that displays a map. To add a
MapControl to your form, drag it onto your form from the toolbox in Visual Studio. Once
the MapControl is on your form there are several operations you can perform on it to
make your map more useful to the user.

Modifications to the MapControl can be performed via the Properties Window when the
MapControl is selected on your form. Right-click on the MapControl in design-mode to
display a context menu with the following choices: Load Map, Clear Map, Layer Control,
and Create Thematic. Load Map opens a standard file chooser from which the
developer can choose a map to preload into the MapControl. Clear Map clears any map
already in the control, either when adding the MapControl to the form or somewhere in
the middle of the design process. Layer Control launches a Layer Control dialog box that
allows you to customize the map (see Layer Control). Create Thematic launches the
CreateThemeWizard (see CreateThemeWizard) allowing you to create a theme on the
map.
MapXtreme 9.5 Developer Guide 134

 7 – Desktop Applications, Controls, Dialogs, and Tools
A Form showing a MapControl, a Layer Control, and a MapToolBar

The MapControl also has several properties relating to the loaded map that can be preset
so that the map shown at run time is further customized for the specific application.
Properties that can be modified include zoom level, coordinate system, map center, and
settings for three mouse buttons during run time. The mouse buttons can be set to Zoom,
Pan, Draw geometries, Select, or any of several other map tools. See Overview of the
MapInfo.Tools Namespace.

You can also set a design time tool to further manipulate the map while working in Visual
Studio. Design time functionality includes Zoom In, Zoom Out, Select, Pan, Center, and
the default arrow. Clear Map from the context menu removes all layers from the
MapControl’s map and closes the corresponding tables (if they are not in use in another
MapControl).

MapToolStripButtons
MapXtreme provides ready-to-use map tools in its Windows Form templates and in the
Visual Studio designer toolbox. Tools are added to the form by adding a ToolStripButton to
a .NET ToolStrip.

The properties for each tool is set on the button. The MapToolBar, which had been
responsible for managing the current tool is no longer required. The MapToolBar has
been retained for backward compatibility and future use if you choose. It is still provided in
the Visual Studio toolbox.
MapXtreme 9.5 Developer Guide 135

The 22 ToolStripButtons include the same mapping activities that have always been
available in the MapToolBar, including navigation, selections, adding features, labeling,
opening tables and displaying a layer control.

All but two of the ToolStripButtons can be added to a ToolStrip or StatusStrip. The tools
that display the zoom level and scale of the current map view, can only be added to the
StatusStrip.

To add a new ToolStripButton, in Visual Studio choose the ToolStrip from the toolbox
under Menus and Toolbars. A split button appears on the form displaying a small down
arrow. Click the arrow to display the list supported ToolStripButtons and choose what you
need. Once added to the MapControl, the tool is immediately associated with it.

The API for the ToolStripButtons is contained in the MapInfo.Windows.Controls
namespace. The abstract base class from which all the ToolStripButtons are derived is
the MapInfo.Windows.Controls.MapToolStripButtonBase, which in turn was inherited from
the .Net System.Windows.Controls.ToolsStripButton class.

For information on how to use the ToolStripButtons programmatically, view the code in the
MapForm template and visit the Developer Reference. For information on the behaviors
of each tool, see the individual MapTool classes in MapInfo.Tools namespace.
MapXtreme 9.5 Developer Guide 136

 7 – Desktop Applications, Controls, Dialogs, and Tools
The MapToolBar
Beginning with version 7.0, the MapToolBar has been replaced in the MapForm template
by a ToolStrip. See MapToolStripButtons. The MapToolBar is still available in the Visual
Studio toolbox. This section outlines instructions on how to add a MapToolBar to a
MapForm.

The MapToolBar combines several of the map tool controls (e.g., zoom in, open table)
into a single control. The default collection of tools includes: OpenTable, LayerControl,
Select, ZoomIn, ZoomOut, Pan, and Center.

To add a MapToolBar to your MapForm, drag it from the Visual Studio toolbox. (The
MapToolBar is no longer provided in the MapForm templates.)

To add tool buttons to the MapToolBar:

1. Open the ToolBarButton Collection Editor by clicking on the ellipsis (...) next to the
Buttons property in the Properties window.

The ToolBarButton Collection Editor appears.

2. Click the Add button.
MapXtreme 9.5 Developer Guide 137

This creates a new MapToolBarButton below the last one in the list.

 If you would like to add a customized tool you need to click on the arrow next to
the Add button and choose ToolBarButton. You need to write a customized
handler for the new button.

3. Name the new button.

4. Select the ButtonType from the right-hand pull-down menu.

For example, if you are adding a Select tool button, choose Select from the list.

5. Click OK.

The MapToolBarButton is now created and added to the button bar. The newly added
tool works in the default manner.

Adding Custom Buttons to a ToolBar

This procedure assumes you have created a custom tool and added it to the
MapControl.Tools collection. Adding custom buttons involves assigning the button’s
ToolId to the name of the custom tool and adding a custom bitmap to the MapToolBar’s
ImageList.

For information on how to create a custom desktop tool, see Customizing Tools.
MapXtreme 9.5 Developer Guide 138

 7 – Desktop Applications, Controls, Dialogs, and Tools
For information on custom bitmap symbols that ship with MapXtreme see Appendix F:
Custom Symbols.

To add a custom button to a toolbar:

1. Add a MapToolBar to your form.

2. In the Visual Studio property window, highlight the Buttons property and press the ...
button to invoke the ToolBarButton Collection Editor dialog

3. Click the Add button to add a new MapToolBarButton.

4. Set the button's ButtonType property to CustomTool (last item the drop-down list).
Note that the button will now appear blank, as there is no image associated with the
custom button yet.

5. Set the button's ToolId property to the name of the custom tool you added to the
MapControl's Tools collection. If the ToolId value does not match a tool in the
collection, then a runtime exception will be thrown when the user clicks the button.

6. Click OK to close the ToolBarButton Collection Editor dialog.

7. In the form's constructor, after the InitializeComponent call, add code to add a custom
bitmap to the MapToolBar's ImageList. How the custom bitmap is associated with the
application is up to the programmer. One option is to add an ImageList to the form at
design-time, populate it with the custom images, then write code to transfer its images
to the toolbar's ImageList at runtime. That code would look like this:

// Add custom tool button's bitmap to toolbar's image list
foreach (Image image in this.imageList1.Images) {

this.mapToolBar1.ImageList.Images.Add(image);
}

// Associate the bitmap with the custom tool's button (last image in the
list)

this.mapToolBarButtonBlueSelect.ImageIndex =
this.mapToolBar1.ImageList.Images.Count-1;

Layer Control
The Layer Control dialog box shows all the layers that make up the current map and the
status of the layers’ attributes. These attributes are: visible, editable, selectable, and auto
label. The icons above each check box column represent the attributes types. ToolTips
display over the attribute icons when you move your cursor over them to help familiarize
yourself with each icon. It is easy to change a layer’s, or multiple layers’ attributes using
the check boxes.
MapXtreme 9.5 Developer Guide 139

The Layer Control also has options available to change the Display and Label settings;
modify any thematic maps you have created, and reorder, add, or remove layers. You can
also export or import the theme and style that you have created, as an xml file.

You can rearrange layers in the LayerControl by dragging and dropping them in the Layer
Control Layers list.

 Dropping a layer onto a Label Layer adds a new set of labels to the Label Layer.
This can happen by accident—for example, if you were attempting to move a layer
to the spot just above the Label Layer.

Tip: If you want the dropped layer to be placed outside of the Label Layer, hold
down the Shift key before you drop the layer. As you press and release the Shift
key, the cursor changes to indicate whether the dropped layer will go above or
inside the target layer onto which you are dropping.

The Layer Control puts all the functionality of the Layer Control dialog box onto a form. A
single line of code is necessary in the Form_Load() method to link the Layer Control to
the MapControl’s map.

layerControl1.Map = mapControl1.Map;

To better understand the complexities and capabilities of the Layer Control, run the
MapXtreme utility called Workspace Manager. This tool includes a working example of
Layer Control. See Chapter 27 Workspace Manager. Workspace Manager is available
from the Program Menu under MapInfo\MapXtreme\9.x.x.

Customizing Context Menus

You can create customized context menu items for your Layer Control that appear when
the user right-clicks a node in the layer tree. Use the ContextMenuTargetObject property
to return the object that the user right-clicked.

A code sample has been provided that shows how to define a LayerControlEnhancer
class that allows a user to add custom items to the Layer Control's context menu. This
example can be found in the LayerControl sample application located in the
..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\LayerControl directory.

Keyboard Shortcut Programmability

You can create keyboard shortcuts to access everything on the LayerControl toolbar. The
PerformDown, PerformUp, and PerformRemove methods already provide programmatic
access to the Down, Up, and Remove buttons.
MapXtreme 9.5 Developer Guide 140

 7 – Desktop Applications, Controls, Dialogs, and Tools
The AddMenuMnemonic property provides programmatic access to the key associated
with displaying the Add menu. The syntax for the AddMenuMnemonic property is:

public System.Windows.Forms.Keys AddMenuMnemonic {get; set;}

MapInfo.Windows.Dialogs Namespace
The MapInfo.Windows.Dialogs namespace contains classes that create dialog boxes with
specific functions. Contrary to controls, dialog boxes are not visible during design-time
and can only be created and configured in code. You can create your own customized
dialog boxes using classes from the MapInfo.Windows.Dialogs namespace and then
utilize them by calling the System.Windows.Forms.Form.ShowDialog() method.

The stock dialogs are built from the MapXtreme object model’s public API. There are no
hidden internal fields or anything private. You can use these dialogs or customize them
for your needs, or write your own from scratch. You may wish to provide fewer controls on
a stock dialog so that your users are restricted from changing some behavior.

To use a particular dialog box in your application, add the MapInfo.Windows.Dialogs
namespace to your code as follows:

using MapInfo.Windows.Dialogs

private void DoLayerControl()
{

LayerControlDlg layerControl = new LayerControlDlg();
layerControl.Map = mapControl1.Map;
layerControl.ShowDialog(this);

}

The code above displays the LayerControl dialog box when the DoLayerControl() method
is called.

Stock Dialogs

MapXtreme ships with many stock dialogs and controls to handle tasks of manipulating
the MapXtreme objects. All the dialogs and controls used in Workspace Manager are
available for use in your application. The dialogs are simply containers for the low level
controls. These controls are designed to work specifically with many of the MapXtreme
objects.

The controls that ship with MapXtreme are used by the stock dialogs to create the basic
UI components. The controls are placed in dialogs to create specific UI components. You
can, in the same way, use the base controls to design your own dialogs. Simply create a
dialog class and start dragging the controls onto the surface to create your dialog.
MapXtreme 9.5 Developer Guide 141

The stock dialogs also can be customized through visual inheritance. You can derive a
class from our dialogs and customize some of the behaviors by overriding methods and
properties. Other dialogs such as the Layer Control are customizable, so you can change
the default behavior to hide controls you don't want users to access, change the look of
the icons, or remove tabs.

Basically you have control over all the UI components that ship with MapXtreme. This
allows you to create your own custom interface. Using any of the methods described
allows you to create a customized desktop application that exposes only what you need
rather than everything MapXtreme defines.

CreateThemeWizard
The CreateThemeWizard class is a convenience class that you can add to your
application. This class is used to guide the user through the process of creating a new
theme by launching a wizard (a set of dialog boxes). There are three basic steps to
creating a theme: 1) Select the theme type; 2) Select the table and columns to use for the
theme; and 3) Modify the theme attributes (style, number of ranges, etc.). The wizard ties
all these settings together into a sequence of dialog boxes to make theme creation as
simple as possible for the end users of MapXtreme applications.

Using the CreateThemeWizard

The CreateThemeWizard displays several different dialog boxes, depending on the
choices made by the user. The first dialog box allows you to select a theme type.

Create Theme: Step 1 of 3 dialog box

If the user chooses a single variable theme type (Ranged, Dot Density, Individual Value,
or Graduated Symbol) the second dialog box displayed allows them to choose a table
and single column.
MapXtreme 9.5 Developer Guide 142

 7 – Desktop Applications, Controls, Dialogs, and Tools
Create Theme: Step 2 of 3 dialog box (single column)

If the user chooses a multiple variable theme type (Pie or Bar), the second dialog box
displayed allows them to choose multiple columns of data from which to create the
theme.

Create Theme: Step 2 of 3 dialog box (multiple columns)

The following dialog box is specific to the type of theme chosen in Step 1. The figure
shows a Step 3 dialog box specific to a ranged theme.
MapXtreme 9.5 Developer Guide 143

Create Theme: Step 3 of 3 dialog box (Ranged Theme)

The dialog box shows the default theme distribution method: EqualRangeSize. The
corresponding name of the distribution method in the user interface of the wizard is Equal
Ranges.

When a user make a change in the Settings tab, such as changing the number of ranges,
the Recalculate Theme button is activated. The user must click the Recalculate Theme,
Apply, OK button, or on a new tab to perform the recalculation. The recalculation does
not occur automatically. The figure below shows a Step 3 dialog box with a change to the
number of ranges. The Recalculate Theme button is now available.
MapXtreme 9.5 Developer Guide 144

 7 – Desktop Applications, Controls, Dialogs, and Tools
Create Theme: Step 3 of 3 dialog box (Ranged Theme) After Settings Change

Programmatic checks look for changes in the values of the Settings tab and if the theme
bins need to be recomputed after:

• Tabbing to the Styles or Legend tab

• Clicking the Apply button

• Clicking the OK (accept) button

The CreateThemeWizard is accessible from many different places at design time and at
runtime, depending on the controls in your application. At design-time the
CreateThemeWizard can be accessed from the menu at the bottom of the MapControl
properties window and also from the Layer Control by right-clicking on a layer and
choosing Add Theme.

Developing with the CreateThemeWizard

To add a CreateThemeWizard programmatically, follow the example code.

using MapInfo.Windows.Dialogs;

CreateThemeWizard themeWizard = new CreateThemeWizard(mapcontrol1.Map, this);
MapXtreme 9.5 Developer Guide 145

Methods

Once the wizard is created, call the CreateTheme() method from the
CreateThematicWizard class to create the theme. An optional string parameter can be
added to set the theme’s alias. The alias can be used to access the theme from the
Layers collection in the case of an ObjectTheme (Bar, Pie, GraduatedSymbol) or the
Modifiers collection in the case of a FeatureStyleModifier (Ranged, RangedLabel,
IndividualValue, IndividualValueLabel, Dot Density). You would access the theme to
modify or delete it.

ITheme theme = themeWizard.CreateTheme("theme1");

If you already know which table is to be themed or which label source to use for a label
theme, you can use the methods, CreateFeatureTheme() for tables or
CreateLabelTheme() for labels.

Properties

There are a few properties that can be useful for obtaining information about the theme
creation. WizardResult contains an enumeration WizardStepResult that allows you to
check how the user exited the wizard. These choices are WizardStepResult.Done and
WizardStepResult.Cancel. These are useful to appropriately update the controls or
menus in your application.

The following example shows of the use of this.

if (createThemeWizard.WizardResult == WizardStepResult.Done
{

// Update the menus
mnuRemoveTheme.Enabled = true;
mnuModifyTheme.Enabled = true;

}

SelectedLabelSource, SelectedLayer, and SelectedThemeType are properties on the
CreateThemeWizard class that can be used to find out which layer or label source the
theme has been applied to. This is useful when you want to provide the ability to modify a
theme and need to access that object.

To modify a theme, determine the type of theme and then launch the appropriate type of
modification dialog. Dialog box classes for modifying themes are ModifyBarThemeDlg,
ModifyDotDensityThemeDlg, ModifyGradSymbolThemeDlg, ModifyIndValueThemeDlg,
ModifyPieThemeDlg, and ModifyRangedThemeDlg.

MapXtreme ships with a ThemeDialogs sample application in which you can analyze the
implementation and customize it for your needs. See
..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\
Features\ThemeDialogs under your installation of MapXtreme.
MapXtreme 9.5 Developer Guide 146

 7 – Desktop Applications, Controls, Dialogs, and Tools
Customizing Controls and Dialog Boxes
MapXtreme ships with a wide variety of dialog box classes in the
MapInfo.Windows.Dialogs namespace. Each of the dialog boxes represented there have
possible customizations specific to each one. To modify a specific dialog box, assign
values to the different properties that are specific to each dialog box. Since there are so
many, it is not practical to list all the possible customizations here. Please refer to the
online reference for details about each dialog box.

An example of customizing a dialog box is as follows: The LineStyleDlg class creates a
Line Style Dialog Box. This dialog box can be created in either a sparse style mode
(where nothing is selected when opened), or in a mode where some choices are visible
but not enabled (grayed out).

The customization provided by setting property values is obviously limited to the specific
dialog object being modified. To create a new dialog box based upon a design of an
established one is done by adding some controls to a new form at design time. For
example, to create a modified LineStyle Dialog Box, you can drop a LineStyle Control on
a new form and then add other controls to that form, making, in effect, a modified
LineStyle Dialog Box.

Overview of the MapInfo.Tools Namespace
MapTool Object Model

The MapTools are the objects you use to interact with the map. These tools implement
the basic behaviors you expect of a map. There are view-based tools, zooming and
panning, tools for creating geometries on a specific layers, and tools for generating
selections based on an area of the map. Each tool is customizable using events to
capture pre- and post-process events.

Properties of the methods associated with the tools are on the tool and not the layer. For
example, the selectability of a layer is specified on the tool and not the layer. In this way,
you can use one tool to select an object on one layer and use another tool to select from
a second layer. This gives much more freedom in the tools but also enables you to
emulate the properties on layers. The Layer Control operates on the entire tools
collection of the map, when selectability or other properties are changed via its UI.

This design also allows you to create tools that insert into specific layers. For example, a
city planner may want the application to insert manholes on the water layer only, but to
insert trees on the vegetation layer. You could create a custom tool that when selected,
inserts only the specified symbol or geometry on the appropriate layer. This also works for
MapXtreme 9.5 Developer Guide 147

the stock tools, so that drawing a polygon will always be on the specified layer. Again the
stock Layer Control manipulates the tools collection to make it seem as if the insertion is
on a single layer.

The MapInfo.Tools namespace contains all the classes that allow you to create basic and
customizable tools for your MapXtreme application.

You can customize new instances of these stock tools with event code, or write your own
tool classes that derive from stock tools but override specific methods. See Customizing
Tools on page 155.

Tools can be assigned to a particular mouse button (left, right, or middle). Use the
following string tool names for the appropriate mouse button property: "Arrow", "ZoomIn",
"ZoomOut", "Center", "Pan", "SelectPoint", "SelectRect", "SelectRadius",
"SelectPolygon", "SelectRegion", "AddPoint", "AddLine", "AddPolyline", "AddPolygon",
"AddRectangle", "AddCircle", "AddEllipse", "AddText", "Label".

For example, the code below sets the left mouse button to the ZoomIn tool:

mapControl1.Tools.LeftButtonTool = "ZoomIn"

For an example of using the desktop tools programmatically, see the sample application
under ..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\DesktopTools under your
installation of MapXtreme.
MapXtreme 9.5 Developer Guide 148

 7 – Desktop Applications, Controls, Dialogs, and Tools
MapXtreme Desktop Tools API
The diagram below shows a UML representation of the MapTool class.

Tools are ultimately derived from the MapTool class. Select and Add tools are derived
from the SelectMapTool and AddMapTool classes, respectively.

The Tools included in this namespace can be divided into four categories: View tools,
Select tools, Add tools and Custom tools.

Within the Add, Custom and Select tool categories are tools for drawing or selecting
these geometric objects: Ellipse, Arc, Circle, Rectangle, Polygon, Point, Line, and
Polyline.

All of the tools have properties associated with them which implement three interfaces:
IMapToolProperties, ISelectMapToolProperties, and IAddMapToolProperties.
MapXtreme 9.5 Developer Guide 149

View Tools
The View tools (ZoomMapTool, CenterMapTool, and PanMapTool) change the view of the
map accordingly to the tool being used. These tools are part of the default tool collection.
If you begin building your desktop applications with a MapXtreme template, these tools
will appear on the default toolbar.

The LabelMapTool allows you to label features on the map. This tool is not included in the
default tool collection. on the MapForm template. To add it to the MapControl, first add a
ToolStrip from the Visual Studio Toolbox, right-click on the context menu item
LabelToolStripButton.

To add it. click on the Collections ... button under the Buttons property of the MapToolBar.

Select Tools
The Select family of tools (SelectMapTool, SelectPointMapTool, SelectPolygonMapTool,
SelectRadiusMapTool, SelectRectMapTool, and SelectRegionMapTool) select points and
regions that fall within the geometric object shaped by the use of these tools. For
example, the SelectRectMapTool selects objects that fall within the rectangle.
SelectMapTool is the abstract base class that the other select tools derive from.

 MapXtreme does not support the intersection of an object with a polyline, hence
there is no select polyline tool.
MapXtreme 9.5 Developer Guide 150

 7 – Desktop Applications, Controls, Dialogs, and Tools
The SelectPointMapTool can be used to rotate objects.

A SelectNode mode allows individual points to be moved, added, or removed from
objects. See Editing a FeatureGeometry with the Select Tool on page 157 for an example.

Dynamic Selection shows what objects can be in the selection as the mouse is being
moved when using the SelectRectMapTool, SelectRadiusMapTool, and the
SelectPolygonMapTool.

The selection map tools have properties to set various options, including which layers are
selectable. These default tool properties can be set on the MapTools collection which can
be found in MapInfo.Windows.Controls.MapControl.Tools. Optionally, each tool can set its
own overriding properties and specify to use the default value on the MapTools collection
or its overriding value.

To set the default list of selectable layers, create an IMapLayerFilter which specifies
which layers are selectable. Then set the default property on the MapTools for the
SelectableLayerFilter.

For example, to set the default list of selectable layers to work on all vector layers:

// select from all vector layers
IMapLayerFilter selectableLayerFilter =
MapLayerFilterFactory.FilterAnd(MapLayerFilterFactory.FilterVisibleLayers(true)
, MapLayerFilterFactory.FilterByLayerType(LayerType.Normal));

mapControl1.Tools.SelectMapToolProperties.SelectableLayerFilter =
selectableLayerFilter;

For more information on Select tool properties see
MapInfo.Tools.MapTool.ISelectMapToolProperties in the MapXtreme Developer
Reference.

Add Tools
The Add family of tools (AddArcMapTool, AddCircleMapTool, AddEllipseMapTool,
AddLineMapTool, AddPointMapTool, AddPolygonMapTool, AddPolylineMapTool, and
AddRectangleMapTool) are all based on the AddMapTool class. The Add tools allows you
to draw a particular geometric object on your map. In order to add an object to a map, you
must have an active insertion layer in your map where the object resides after it is
created. The size and shape of the particular object depends on the tool used and can be
constrained through the use of the modifier keys (Shift and Ctrl) while the tool is being
used.
MapXtreme 9.5 Developer Guide 151

For more information on Add tool properties see
MapInfo.Tools.MapTool.IAddMapToolProperties in the MapXtreme Developer Reference
Help.

Custom Tools
The Custom tools (CustomArcMapTool, CustomCircleMapTool, CustomEllipseMapTool,
CustomLineMapTool, CustomPointMapTool, CustomPolygonMapTool,
CustomPolylineMapTool, and CustomRectangleMapTool) are very basic tools that only
fire events. Use these classes to design custom behaviors for specific tools. For example,
you can use the CustomEllipseMapTool to draw green Ellipses with a red outline every
time the tools is used. Use the various tool events (see Tool Events on page 156 to
specify particular behaviors to respond to specific events generated by the tools.

Custom tools are not included in the default tools collection. If you wish to assign a
custom tool to a mouse button, you may provide any string you wish to identify the tool.

For more on customizing tools, see Customizing Tools on page 155.

Shape Tools
MapXtreme provides a group of tools for drawing geometric features on your map. Most
of these tools are used by “click-and-drag.” As you click and then drag to another location
on your map, a rubber-band image is displayed showing the current size and shape of the
object being drawn. Each of these tools uses the Esc key to cancel the current operation
(if appropriate).

The following are types of shape tools MapXtreme supports.

Line Tools

The tools included in this group are AddLineMapTool and CustomLineMapTool. These
tools draw a Line. The tool is activated by clicking and dragging from the beginning point
to the end point. Releasing the mouse button creates the Line. If the Shift key is pressed
while dragging, the angle of the Line is constrained to multiples of 45°. If the Ctrl key is
pressed while dragging, the line doubles in length and height. Pressing Esc before
releasing the mouse cancels the operation.

Polyline Tools

The tools included in this group are AddPolylineMapTool and CustomPolylineMapTool.
These tools draw a Line with multiple segments. The tool is activated by clicking on a
point and then clicking on a subsequent point. When you are done clicking on points, click
MapXtreme 9.5 Developer Guide 152

 7 – Desktop Applications, Controls, Dialogs, and Tools
again on the last point and the Polyline is drawn. If the Shift key is pressed while
dragging, the angle of the Line is constrained to multiples of 45°. The Ctrl key has no
effect on this tool. Pressing Esc before completing the line, cancels the operation.

Ellipse and Arc Tools

The tools included in this group are: AddEllipseMapTool, CustomEllipseMapTool and
CustomArcMapTool. The Ellipse tools draw an Ellipse. The CustomArcMapTool draws an
arc only; it does not insert the arc into a layer.

The Ellipse tool is activated by clicking and dragging from a point on one side of the
perimeter to a point on the other. Releasing the mouse button creates the Ellipse. If the
Shift key is pressed while dragging, the Ellipse is constrained to a circle where the radius
is constant. If the Ctrl key is pressed while dragging, the Ellipse is drawn with the starting
point in the center. Pressing the Esc key before releasing the mouse cancels the
operation. Note that the axis of the Ellipse is always aligned to the coordinate system.

MapXtreme provides a lightweight CustomArcMapTool that draws a reference arc on the
map, but which does not provide or insert a LegacyArc FeatureGeometry into the layer.
To create an arc tool with such behavior, you must create your own implementation. For
example, if you want a CustomArcMapTool to have the same operations as an
AddMapTool, create a new arc tool class that derives from CustomArcMapTool and
implements the IAddMapToolProperties interface.

Circle Tools

The tools included in this group are AddCircleMapTool and CustomCircleMapTool. The
Circle tools draw a Circle. This is equivalent to using the Ellipse tool while holding down
the Shift key. The tool is activated by clicking and dragging from the center point of the
Circle center to a point on the perimeter. As you drag, you will see the size of the Circle
expand around that center point. Releasing the mouse button creates the Circle. If the
Ctrl key is pressed while dragging, the Circle is drawn from perimeter point to perimeter
point. Pressing the Esc key before releasing the mouse cancels the operation.

Rectangle Tools

The tools included in this group are AddRectangleMapTool and
CustomRectangleMapTool. These tools draw a Rectangle. The tool is activated by
clicking and dragging from one corner to the opposite corner. Releasing the mouse button
creates the Rectangle. Note that the drawn object is always axis-aligned. If the Shift key
is pressed while dragging, the Rectangle is constrained to a square. If the Ctrl key is
pressed while dragging, the Rectangle is drawn with the starting point in the center.
Pressing the Esc key before releasing the mouse cancels the operation.
MapXtreme 9.5 Developer Guide 153

Distance Map Tool
The DistanceMapTool allows you to get the distance between two or more points on the
map. The tool is activated by selecting the tool in tool bar. To get the distance between
points user need to click multiple points on the map. Double-clicking the mouse button
completes the operation and fires DistanceComputed event, which gives distance
between the start point, intermediate point(s) and the end point.

This tool is not included in the default tool collection on the MapForm template. To add
this tool to the MapControl, you need to first add a ToolStrip from the Visual Studio
Toolbox, then right-click on the context menu item and choose DistanceMapTool.

Using InfoTips
An InfoTip is a small text box that can appear when the mouse hovers over a map
feature. A map is associated with an instance of MapInfo.Tools.MapTools, which contains
all the tools (instances of MapInfo.Tools.MapTool) that can be used on the map.

The MapInfo.Tools.MapTools class has three properties that control the appearance of
InfoTips. They are:

• InfoTipsEnabled–Gets/Sets whether InfoTips will appear when the mouse is idle.
MapXtreme 9.5 Developer Guide 154

 7 – Desktop Applications, Controls, Dialogs, and Tools
• InfoTipTimerDelay–Gets/Sets the amount of time (in milliseconds) that must elapse
before the InfoTip appears. The default is 500.

• InfoTipDisplayDelay –Gets/Sets the amount of time (in milliseconds) that the InfoTip
will be displayed. The default is 0, which means that the Infotip will be displayed until
the mouse is moved.

Note that as long as the mouse is moving, InfoTips will not appear. An InfoTip will only
appear when the mouse is over a feature with a label and has been idle for at least the
interval specified by InfoTipTimerDelay. The InfoTip will disappear when the mouse is
moved or when the mouse has been idle for longer than the time specified by the
InfoTipDisplayDelay provided that time is greater than zero.

You can prevent InfoTips from being displayed at all with:

mapControl1.Tools.InfoTipsEnabled = false;

You can set the delay before an InfoTip is displayed to one second with:

mapControl1.Tools.InfoTipTimerDelay = 1000;

You can set the length of time an InfoTip is displayed even though the mouse remains idle
to 2.5 seconds with:

mapControl1.Tools.InfoTipDisplayDelay = 2500;

See the MapInfo.Tools.MapTools class in the MapXtreme Developer Reference for more
information on using InfoTips in the API.

Customizing Tools
Tools for desktop applications can be customized in two ways: by creating a subclass of
an existing tool, or by using one of the tools in the Custom Tools group. Any of the Tool
classes provided in MapXtreme can be customized by creating a subclass derived from
the desired particular Tool class. An example of this is deriving a new tool class from the
AddLineTool class. The tool could be changed to a particular behavior (e.g., always beep
when line is drawn), a particular appearance (e.g., always draw the line in red), or to a
particular functionality (e.g., always constrain line drawing to 90 degree increments).

Another example would be to create two different tools based upon the same tool. The
AddPointTool could be used to subclass two other tools that each use different symbols
for indicating two kinds of points on a map. Assign one tool to the left mouse button and
assign the other to the right mouse button.

The following code example illustrates a customization of the AddPolygonTool.

VB example:
MapXtreme 9.5 Developer Guide 155

Dim insertionlayerfilter As IMapLayerFilter
Dim style As MapInfo.Styles.CompositeStyle
Dim addmaptoolproperties As MapInfo.Tools.AddMapToolProperties
Dim maptool As MapInfo.Tools.MapTool

insertionlayerfilter = _
MapLayerFilterFactory.FilterByLayerType(LayerType.Normal)

style = New MapInfo.Styles.CompositeStyle

addmaptoolproperties = New _
MapInfo.Tools.AddMapToolProperties(MapLayerFilterFactory.Filter_

ForTools(MapControl1.Map, insertionlayerfilter, _
MapLayerFilterFactory.FilterVisibleLayers(True), _
"CustomPolygonAddMapToolProperties", Nothing), style)

maptool = New MapInfo.Tools.AddMapTool(MapControl1.Viewer, _
MapControl1.Handle.ToInt32(), MapControl1.Tools, New _

MapInfo.Tools.MouseToolProperties(Cursors.Default, _
Cursors.Default Cursors.Default),_
MapControl1.Tools.MapToolProperties, addmaptoolproperties)

Additionally, MapXtreme ships with a desktop tools sample application that you can use
to analyze and customize it for your needs. See
..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\DesktopTools\cs in the
MapXtreme installation directory on your computer.

Tool Events
The MapInfo.Tools namespace supports tool events with information and the ability to
cancel the tool’s operation. A Select Tool’s event lists the items being selected or
deselected. Events can be fired at every stage of use of a particular tool. In your code you
can trap certain moments in the lifecycle of the usage of a tool. Adding code to particular
events gives you the maximum flexibility on customizing the use of each tool in your
mapping application.

The events in the namespace are as follows:

FeatureAddingEventArgs This event is fired when an add tool is
about to draw an object.

FeatureAddedEventArgs This event is fired when an add tool has
added an object to a table and map.

FeatureSelectingEventArg
s

This event is fired when a selection tool is
about to change the selection.
MapXtreme 9.5 Developer Guide 156

 7 – Desktop Applications, Controls, Dialogs, and Tools
Editing a FeatureGeometry with the Select Tool
The following section shows you how to edit features by reshaping and adding nodes to a
FeatureGeometry. It illustrates the use of a MapControl, LayerControl and the Select tool.
See also MapControl on page 134 and Layer Control on page 139.

FeatureSelectedEventArg
s

This event is fired when a selection tool
changes the selection.

FeatureChangingEventAr
gs

This event is fired when a selection tool is
about to change a feature. Use this event
to check to see if the change that is going
to happen is valid.

FeatureChangedEventArg
s

This event is fired after a selection tool
changed a feature.

NodeChangedEventArgs This event is fired when a selection tool
alters the nodes in a selection.

NodeChangingEventArgs Fired when a selection tool is about to
change a node of a selected feature. Use
this event to check to see if the change
that is going to happen is valid.

ToolActivatedEventArgs This event is fired when a mouse tool is
activated.

ToolActivatingEventArgs This event is fired when mouse tool is
about to be activated.

ToolEndingEventArgs This event is fired when a mouse tool is
about to end. This is a good place to have
a new action begin.

ToolUsedEventArgs This event is fired when a mouse tool is in
use. Use this event to set flags for the
beginning, middle, and end of a the
sequence of mouse clicks.

DistanceToolEventArgs This event is fired before the finish of
DistanceMap tool and contains distance,
distance type and distance unit.
MapXtreme 9.5 Developer Guide 157

Reshaping a Feature
1. Load a map into the MapControl and zoom in on the Feature you wish to modify.

2. Select the object's layer in the LayerControl.

3. On the Visibility tab of the LayerControl, select the Show Nodes check box.

4. On the Options tab, select the Selectable and Editable check boxes.

5. Select the root node of the map in the layer control tree view.

6. On the Editing tab, select Allow Node Editing from the Editing mode combo box.
MapXtreme 9.5 Developer Guide 158

 7 – Desktop Applications, Controls, Dialogs, and Tools
7. Click OK to accept your changes. The map display will change and display the object's
nodes.

8. Using the Select Item tool, select the polygon you want to modify, then click and drag
on a node to change its position. Use the Shift key to select a range of nodes and the
Ctrl key to toggle the selected state of a node.
MapXtreme 9.5 Developer Guide 159

Adding Nodes
To add nodes to a Feature Geometry:

1. Open the LayerControl again and select the root node of the map.

2. On the Editing tab, select Allow node adding from the Editing Mode combo box.

3. Click OK to accept your change.

4. On the map, select the polygon you want to modify.

5. Using the Select Item tool, hold down the Ctrl key and click on the edge of the polygon
where you want to add the node. The new node will appear.

Reshaping and Adding Nodes Programmatically
This section describes how to reshape and add nodes programmatically. The sample
code is provided in C# and VB.

1. Add a button named "btnEditNodeTool" to the main form in the Visual Studio designer.

2. Double-click the button to open the button's handler in the code page. Add the
appropriate code sample:

VB example:

Private Sub btnEditNodeTool_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs)
MapControl1.Tools.LeftButtonTool = "Select"
MapControl1.Tools.SelectMapToolProperties.EditMode =
MapInfo.Tools.EditMode.Nodes
MapXtreme 9.5 Developer Guide 160

 7 – Desktop Applications, Controls, Dialogs, and Tools
End Sub

3. Run the application.

4. Select the object's layer in the LayerControl.

5. On the Visibility tab of the LayerControl, select the Show Nodes check box.

6. On the Options tab, select the Selectable and Editable check boxes.

7. Click OK to accept the change.

8. Now click the new button you added to the form. The cursor will change to the Select
arrow.

9. Select an object to modify, then click and drag on a node (as in step 1 of the previous
example).
MapXtreme 9.5 Developer Guide 161

MapXtreme 9.5 Developer Guide 162

8

8 – Working with Data
The MapInfo.Data namespace contains the classes and interfaces that
provide multiple ways of accessing data from a MapXtreme
application.

In this chapter:
 Overview of MapInfo.Data Namespace . 164
 Catalog and Tables . 165
 Supported Table Types . 172
 Working with Catalog and Tables . 175
 Table Metadata (TableInfo) . 179
 MapInfo ADO.NET Data Provider . 199
 Features and Feature Collections. 204
 Saving Opened Table as GeoJson File .211
 Analyzing Data .211
 Improving Data Access Performance . 214

Overview of MapInfo.Data Namespace
The MapInfo.Data namespace contains the classes and interfaces that provide multiple
ways of accessing data from a MapXtreme application. Within this namespace is the
MapInfo ADO.NET data provider with a MapInfo SQL language for standard querying of
databases and tables. The Feature object model is another way to access data that uses
objects instead of SQL. The Catalog is the starting point for data access, containing
methods for managing tables (open, close, create) and searching for data in a variety of
ways.

This chapter is organized to follow the MapXtreme Data Access Model diagram above,
and includes these topics:

• Catalog and Tables

• Supported Table Types

• Table Metadata (TableInfo)
MapXtreme 9.5 Developer Guide 164

 8 – Working with Data
• MapInfo ADO.NET Data Provider

• Features and Feature Collections

Data access is central to any MapXtreme application, and covers a wide variety of topics.
Within the topics listed above are other important topics of information that should not be
overlooked.

Following this chapter are two additional chapters related to data access: Chapter 10
Creating Expressions, and Chapter 11 Accessing Data from a DBMS.

Catalog and Tables
Catalog is the manager of the MapXtreme data access model. Tables are a fundamental
unit of MapXtreme. Tables hold the data that you want to display and analyze in your
application. The Catalog, as manager, holds a list of tables that are currently open in the
session. Tables are also opened, created and closed from the Catalog.

Nearly all of MapXtreme’s data access operations involve the Catalog and tables.

Tables
The Table class is the basic unit of all data access. Table, Column, and all TAB file
metadata information is accessible from a MapInfo Table. Tables may be mappable
(contain a column of type FeatureGeometry) or non-mappable. Tables also may be open
and accessed without displaying a map.
MapXtreme 9.5 Developer Guide 165

Table Aliases

When tables are opened, they can be assigned a name (or alias) which is used while the
table is open for referencing the table. For example, the table may be referred to by its
alias in SQL statements. A table that is opened from a TAB file is assigned a default alias
if no alias is specified. The default alias is based upon the name of the TAB file. This
property is optional and may be set to null. However, it is good practice to assign an alias.

Columns

A Column object identifies the properties of a column in a table, feature, or feature
collection and specifies the column's name (alias), data type, width (for string and decimal
columns), and other properties of the column.

Supported data types include:

Data Type Description

Int Provides a 32-bit signed integer. This maps to the .NET
Framework datatype Int32.

SmallInt Provides a 16-bit signed integer. This maps to the .NET
Framework datatype Int16.

Double A floating point number within the range of -1.79E +308 through
1.79E +308. This maps to Double.

dBaseDecimal Provides a floating point number which is treated internally the
same as a Double. The dBaseDecimal has a fixed precision
and scale when persisted in a table. This is a legacy data type
derived, as its name suggests, from the dBase file formats. This
maps to Double.

Boolean Provides a boolean value. This maps to Boolean.

String Provides a variable-length, null terminated UNICODE string
value. This maps to String.

Date * † Provides a date value. The Date type is implemented as a
structure in the MapInfo.Data namespace.

DateTime * ‡ Provides a combined date and time value. The DateTime type
is mapped to System.DateTime.
MapXtreme 9.5 Developer Guide 166

 8 – Working with Data
Time Provides a time value. Supports the Time type in MapInfo
Professional tables (TAB files) version 9.2 and later. The Time
type is implemented as a structure in the MapInfo.Data
namespace.

FeatureGeom
etry

Provides a FeatureGeometry.

Binary Provides an array of binary data. This maps to an Array of Byte
values.

Key Provides a key from a table. This is the data type of the Key
pseudo column on a Table.

CoordSys Provides a coordinate system. This type exists only for the
purposes of binding a coordinate system object to an
MICommand for functions which require the specification of a
coordinate system.

Style Provides an instance of a Style class. See MapInfo.Styles.Style.
This is the data type of the Style object stored in the style
column on a Table.

Raster Provides a RasterInfo from table's raster column. This is the
data type of the RasterInfo object stored in raster column on a
Table.

Grid A GridInfo from table's grid column. This is the data type of the
GridInfo object stored in grid column on a Table.

Wms Provides a WmsClient from the table's Wms column. This is the
data type of the WmsClient object stored in the Wms column on
a Table.

TileServer Provides a TileServerInfo from the table’s raster column. This is
the data type of the TileServerInfo object stored in the raster
column on a Table.

* To ensure backward compatibility with earlier versions of MapXtreme, the
MapInfo.Data.MIDataReader.GetDateTime method works with both the DateTime and Date types. In
both cases, a System.DateTime value is returned. However, the MapInfo.Data.Column.DataType will
reflect the actual data type, either Date or DateTime.

Data Type Description
MapXtreme 9.5 Developer Guide 167

Time and DateTime Data Source Support

MapXtreme can read Date, DateTime, and Time data (and save it back if applied) on the
supported data sources and data providers. The different data sources may have different
type definitions on date/time, which may or may not match MapXtreme types exactly.

The new data types are supported for the following data sources:

• Mem tables

• Native tables (TAB files)

• ADO.NET

• Oracle via OCI

• MS SQL Server via ODBC

The ASCII and dBase, and Microsoft Access data sources are not supported.

Date and DateTime Support in Remote Databases

Remote databases may not support all the data types that MapXtreme supports. The
table below shows the date and time-based types supported in native TAB files and in
each supported database.

Return Column Type and Value Changes in Remote Databases

The addition of the new data types has prompted some changes to the return column
types and values for remote databases. The table below shows the return column type
and value for MapXtreme 6.7.x and MapXtreme 6.8 for the supported types in each
remote database.

† The Time and DateTime types are not supported for MapInfo SQL functions. However, in MapInfo
SQL functions that call/use a DateTime type, the function will return the date portion of the DateTime
value. Please see the MapInfo SQL Reference for more information.

‡ The Time and DateTime types are not supported for MapInfo SQL functions. However, in MapInfo
SQL functions that call/use a DateTime type, the function will return the date portion of the DateTime
value. Please see the MapInfo SQL Reference for more information.

MapXtreme
Native(X)
TAB Files ADO.NET Oracle (OCI)

MS SQL
Server GeoPackage

Date Date Date

Time Time

DateTime DateTime DateTime DateTime DateTime DateTime
MapXtreme 9.5 Developer Guide 168

 8 – Working with Data
The following sections provide you with MI_Key, MI_Geometry, and MI_Style column
information.

MI_Key

All tables have a pseudo column named MI_Key which returns instances of Key. The
MI_Key pseudo column is similar in concept to the rowid pseudo column in MapInfo
Professional and MapBasic. Unlike rowid, this column is not a numeric column. A Key
instance may be converted to or from a string literal.

MI_Geometry

A Geometry column object in a table, feature, or feature collection contains
FeatureGeometry objects and specifies properties such as the coordinate system of the
column and the entire bounds of all the geometry objects it contains.

Geometry columns for most table types are given the name “Obj”. To be compatible with
previous versions of MapX and MapInfo Professional, the alias “Obj” is resolved to the
first GeometryColumn in the table. Additionally, the alias “MI_Geometry” may also be
used for any table to refer to the same column that “Obj” refers to.

MI_Style

Tables with a Geometry column also have a column with the name “MI_Style”, or if not
found, from the first column with type MIDbType.Style. This column is used to hold the
style information for Geometry objects such as line width for polygons and symbol size for
points. This column cannot be updated independently. The Style and Geometry columns
must be updated at the same time.

Server / Data Type
MapXtreme 6.7.x

Return Column Type / Value
MapXtreme 6.8.0 *

Return Column Type / Value

* applies to v 6.8.0 and higher.

SQL

Server/DateTime†

† SQL Server 2005 and earlier.

Date/System.DateTime DateTime/System.DateTim
e

Oracle/TimeStamp Date/System.DateTime DateTime/System.DateTim
e

Oracle/Date Date/System.DateTime Date/MapInfo.Data.Date
MapXtreme 9.5 Developer Guide 169

The MI_Style column is created automatically when you are opening a table in MapInfo
native format (.TAB). For all other table types, you must specifically create the column. If
you use MapInfo.Data.ColumnFactory.CreateStyleColumn it will create a column with the
name (alias) of "MI_Style" and a data type of MIDbType.Style.

When using MISQL to insert rows into a table, be sure to include the MI_Style column in
the insert statement. See the code example below:

Table tab = MapInfo.Engine.Session.Current.Catalog.GetTable("MapViewer");
TableInfo ti = TableInfoFactory.CreateTemp("Test",

((MapInfo.Data.GeometryColumn)tab.TableInfo.Columns["Obj"]).CoordSys);
Table tabTemp = MapInfo.Engine.Session.Current.Catalog.CreateTable(ti);

MIConnection conn = new MIConnection();
conn.Open();
MICommand comm = conn.CreateCommand();
comm.CommandText = "Insert Into " + tabTemp.Alias +

" (Obj, MI_Style) SELECT MI_Point(MI_X(Obj), MI_Y(Obj), '" +
((MapInfo.Data.GeometryColumn)tab.TableInfo.Columns["Obj"]).Coord
Sys.SrsString + "'), MI_Style" + " FROM " + tab.Alias + " WHERE msaname
= 'Minneapolis-St. Paul, MN-WI' AND Not Obj = Null";

MessageBox.Show(comm.CommandText);
int numChanged = comm.ExecuteNonQuery();

mapControl1.Map.Layers.Add(new FeatureLayer(tabTemp));
mapControl1.Map.SetView(mapControl1.Map.Layers["Test"] as FeatureLayer);

Catalog
The Catalog is essentially the manager of the MapXtreme data access model. The
Catalog holds a list of tables that are currently open in the MapXtreme Session. Tables
are also opened, created and closed from the Catalog. The Catalog can be thought of as
a single database holding all the tables opened in it, regardless of their actual data
source.

Each MapXtreme Session manages a single Catalog.

Catalog initially contains no tables. When a table is opened, an alias (or name) is
assigned to the table or provided by the caller. The alias is used to identify the table in
queries and other operations.

Tables can be mappable (contain a spatial component) or be non-mappable and contain
only data columns. The MapXtreme Catalog can open both types and use either in
queries and joins.

Catalog provides facilities for creating new table definitions and enumerating through
tables which are currently opened. Catalog also contains search methods that can be
used to access data in open tables.
MapXtreme 9.5 Developer Guide 170

 8 – Working with Data
The Catalog has an SQL engine that allows you to select, insert, update, and delete
tables and data within tables. The SQL engine allows you to join any tables defined in the
catalog (for example, Native to SQLServer, or SQLServer to Oracle). The Catalog
handles the integration from various sources so you don’t have to. This is a powerful tool
when organizing data from various sources.

The MapXtreme Catalog is exposed through the MapInfo ADO.NET Data Provider.
Access to tables and result sets is controlled through this interface. See MapInfo
ADO.NET Data Provider.

Code Sample

The following example illustrates how to access the Catalog through the MapXtreme
Session object, open some tables and enumerate through all the tables in the Catalog
followed by only the editable tables in the Catalog.

VB example:

Public Shared Sub MapInfo_Data_Catalog()
 ’ Catalog is accessible off the Session object
 Dim catalog As Catalog = Session.Current.Catalog

 ’ Open a bunch of tables
 Dim table As Table = catalog.OpenTable("States.tab")
 table.SessionInfo.ReadOnly = True ’ Make states ReadOnly
 table = catalog.OpenTable("world.tab")
 table = catalog.OpenTable("worldcap.tab", "World Capitals")

 ’ Enumerate the catalog directly - includes All tables
 Dim t As Table
 For Each t In catalog
 Console.Out.WriteLine("Table : {0}", t.Alias)
 Next
 Console.Out.WriteLine()

 ’ Now enumerate through only tables that are editable (not ReadOnly)
 Dim tEnum As ITableEnumerator = _

 catalog.EnumerateTables(TableFilterFactory.FilterEditableTables())
 While tEnum.MoveNext()
 Console.Out.WriteLine("Table: {0}", tEnum.Current.Alias)
 End While

 Session.Current.Catalog.CloseAll()
End Sub
MapXtreme 9.5 Developer Guide 171

Supported Table Types
One of the strengths of MapXtreme is its ability to access data "where it lives." This
means we strive to handle a wide variety of data formats. Here are the supported table
types in MapXtreme:

MapInfo .TAB
format

MapInfo native table format.

This file-based table may have an associated .MAP file
containing FeatureGeometry and Style information. Non-
spatial data is stored in a .DAT file. TAB is available as a
storage format to be used when caching. See Creating a
New Table.

dBase Data stored in a dBase file.

The table may have an associated .MAP file containing
FeatureGeometry and Style information. Non-spatial data is
stored in a .DBF file. An associated .IND file holds one or
more B-Tree indices for non-spatial attribute values (strings,
numbers, and dates)

ASCII Data stored in a delimited .CSV or text file. The maximum
string length is 255 characters (including up to two quotation
marks). ASCII tables are Insert only.

The table may have an associated .MAP file containing
FeatureGeometry and Style information. Non-spatial data is
stored in a .CSV or .TXT file.

MS Access Microsoft Access database table.

This file-based table located inside of a Microsoft Access
.MDB database may have an associated .MAP file containing
FeatureGeometry and Style information. Non-spatial data is
stored in an Access file.
MapXtreme 9.5 Developer Guide 172

 8 – Working with Data
Shapefile An ESRI Shapefile table.

These tables are read-only and support three-dimensional
geometries (X, Y, Z, M). Non-spatial attribute data is stored in
.DBF file format. FeatureGeometry values stored in ESRI
.shp file format. MapXtreme does not have access to the
spatial index. Caching is supported as a .MAP file that can be
temporary or persistent. A persistent cache can be shared
with MapInfo Professional. It is controlled by the
PersistentCache property on the TableInfoShapefile class.

MemTable An in-memory storage of non-spatial attribute data.

FeatureGeometry data and indices are stored on disk. These
are temporary tables—all data is lost when the table is
closed. MemTables are serializable. The data can be
persisted in workspaces (data only; keys may be changed
when reloading). This table type is available as a storage
format to be used when caching. There is no .TAB file
equivalent to a MemTable. See Create a Temporary
MemTable.

RDBMS Server A spatial table stored in a remote database management
system (such as SQL Server or Oracle).

The table is defined by a native SQL SELECT statement.
MapXtreme performs query parsing and modification.
Caching is enabled by default. Supported protocols (toolkits)
include: OCI (Oracle Spatial) and ODBC (, SQL Server,
SpatialWare and XY). See Chapter 11 Accessing Data from a
DBMS.

See Installation Requirements for list of supported RDBMS.
MapXtreme 9.5 Developer Guide 173

ADO.NET A table of non-spatial data that is based upon an ADO.NET
DataTable or IDbCommand.

This table type supports many different data providers with
provider-specific implementations. ADO.NET is the choice
when there is no MapXtreme supported data provider.
ADO.NET is designed to support both Connected
(IDBCommand) and Disconnected (DataTable) ADO.NET
models. IDBTables are read-only. Cache may be applied
forcibly (implicit keys). DataTables are editable and run-time
serialization is supported. See Using an ADO.NET Data
Provider.

Raster A table containing a raster image.

This typically provides a base map for other spatial table
types. Tables have only a single record and a fixed column
schema (RasterInfo, MI_Geometry, MI_Style). These tables
may be joined with vector tables using spatial predicates (for
example, “within”). See Chapter 17 Working with Rasters and
Grids.

Grid A table containing a grid image.

This table type provides a base map for other spatial table
types. Tables have only a single record and a fixed column
schema (GridInfo, MI_Geometry, MI_Style). These tables
may be joined with vector tables using spatial predicates (for
example, “within”). GridRead class provides access to grid
cell values. MapInfo.Raster.GridCreatorFromFeatures class
creates a grid using an interpolator. See Chapter 17 Working
with Rasters and Grids.

WMS A table containing an image from a Web Map Service (WMS).

This table type provides a base map for other spatial table
types. Tables have only a single record and a fixed column
schema (GridInfo, MI_Geometry, MI_Style). These tables
may be joined with vector tables using spatial predicates (for
example, “within”). WMS tables are accessed like dynamic
raster through a MapInfo.Wms.WmsClient. See Chapter 24
Web Map Service.
MapXtreme 9.5 Developer Guide 174

 8 – Working with Data
Working with Catalog and Tables

Seamless A table that combines two or more base tables with
contiguous geography. It displays as a single map layer.

Seamless tables are specifically tuned for spatial queries,
such as drawing a map, which uses seamless tables for
optimally querying appropriate component tables.
Component tables that make up a seamless table may be
vector or raster. They must all have the same schema. They
are read-only. The underlying component tables cannot be
modified directly. Sorting and aggregating operations
examine every record of every component tables (could be
have a significant performance impact when working with
vector tables.)

View A view based on a MapInfo SQL Select statement (not a
native SQL supported by Server tables). See View Tables.

ResultSet A table containing the results of a search. ResultSet is used
exclusively for IResultSetFeatureCollections. See Result
Sets.

TileServer A table containing a TileServer image. This typically provides
a base map for other spatial table types. Tables contain a
single record and a fixed column schema (TileServerInfo,
MI_Geometry, MI_Style).

Geopackage A table containing information in a Geopackage format.

Indicates a table that has both FeatureGeometry objects and
attribute data stored in an OGC Geopackage database file
format.

NativeX MapInfo Extended (NativeX) Tab file formats.

This file-based table may have an associated .MAP file
containing FeatureGeometry and Style information. Non-
spatial data is stored in a .DAT file. TAB is available as a
storage format to be used when caching.

The NativeX format supports table caches larger than 2GB in
size and character sets UTF-8 and UTF-16.
MapXtreme 9.5 Developer Guide 175

This section covers some basic table operations, including:

• Locating Open Tables

• Closing a Table

• Packing a Table

• Listening to Table and Catalog Events

See also the MapInfo.Data.Table class in the MapXtreme Developer Reference.

Locating Open Tables
To locate open tables, you must enumerate the catalog. This is done by using the
methods in the following sections.

Catalog.GetTable

The MapInfo.Data.Catalog.GetTable method returns the Table object referenced by the
TableAlias parameter. This must be a table which has already been opened. If no such
table is found (or the table has subsequently been closed), then the method returns null.

Catalog.Item (Indexer)

MapInfo.Data.Catalog.Item property can be used as an indexer for locating a Table by its
Alias. This is functionally equivalent to using the Catalog.GetTable method but generates
code that is easier to read. The Alias must specify a table which has already been
opened.

VB example:

Public Shared Sub MapInfo_Data_Catalog2()

 Dim tbl As Table
 For Each tbl In Session.Current.Catalog
 System.Console.WriteLine("Table: " + tbl.Alias)
 Next

End Sub

TableEnumerators

Table enumerators may be obtained through the various overloaded EnumerateTables
methods. A table enumerator may be created with a filter. The filter determines which
tables are actually included in the enumeration while the enumerator simply provides the
MapXtreme 9.5 Developer Guide 176

 8 – Working with Data
mechanics of enumeration. You can create your own table filters to use in the
TableEnumerator. You can also create your own table enumerator by implementing the
ITableEnumerator interface.

VB example:

Public Shared Sub MapInfo_Data_Catalog3(ByVal catalog As Catalog)
 Dim te As ITableEnumerator = _
catalog.EnumerateTables(TableFilterFactory.FilterEditableTables())

 While te.MoveNext()
 Dim tbl As Table = te.Current

 End While
End Sub

Closing a Table
Three methods are available to close tables. MapInfo.Data.Catalog.CloseAll closes all
open tables while Catalog.CloseTable closes a single, open table. The Table class also
has a Close method.

Packing a Table
The MapInfo.Data.Table.Pack method removes records from the table that were
previously marked for deletion. When the table is packed, the table's TablePacked event
is raised. The arguments for the event indicate whether or not the table's keys changed
as a result of the pack (which would be caused by removing deleted records). Keys only
change if the PackType includes RemoveDeletedRecords and if there actually were
deleted records in the middle of the table. If the only deleted records in the table are at the
end of the table, then no keys are changed. The event does not indicate that keys were
changed.

 Since ResultSet tables hold collections of keys, these are vulnerable to pack
operations on the table from which they were derived. The ResultSet is no longer
valid if the keys have changed.

PackType Enumeration provides you with the following options.

• PackGeometry – Indicates that the geometry objects are packed. Packing the objects
attempts to remove as much unused space as possible. A fully packed RTree (the
spatial index used to spatially access the geometry objects) may reduce performance
by causing many more unnecessary reads. To balance disk space and processing
MapXtreme 9.5 Developer Guide 177

speed, packing the geometry objects may continue to leave some unused space in the
RTree. Also note: a packed RTree results in a slight performance penalty for insert and
update operations as there is a higher likelihood that the RTree needs to be expanded.

• RebuildGeometry – Rebuilding the geometry objects removes unused space that has
resulted from a series of insert, update, and/or delete operations. Unlike packing the
geometry objects, this option intentionally leaves unused space in the RTree index to
improve the performance of future insert and update operations.

• PackIndex – Non-spatial indices are maintained as B*trees. These structures do not
always have filled internal or leaf nodes. This is intentional by default to allow room for
the index to accommodate insert and update operations without requiring a significant
restructuring of the index. The unused space may be exacerbated by the occurrence
of insert, update, or delete operations. Packing an index fully packs every internal and
leaf node (except possibly the “last” node). This option reduces the disk space used by
the index as much as possible and also improves the read-performance of the index.
There is a performance penalty for insert and update operations on a fully packed
index.

• RebuildIndex – Rebuilding an index does not fully pack the internal and leaf nodes like
the PackIndex option. Instead, rebuilding an index recreates the index with the amount
of unused space that is intentionally put into the index to balance disk space, read
performance, and modify performance. After several modification operations, an index
may contain a considerable amount of unused space. This option regains that unused
space.

• RemoveDeletedRecords – Some data sources, including MapInfo Native and dBase
data sources, do not physically remove records when they are deleted. To physically
remove the deleted records, the table must be packed with this option specified. The
record number is typically used as the record key for these data source types.
Removing deleted records from a table may cause keys to become invalid since they
may change as a result of the pack.

• CompactDb – If the table's data source is Microsoft Access (TableType of Access),
then the MDB file containing the table's data may also be compressed using the Pack
method and specifying this option.

• All – This is a convenience option that is equivalent to PackGeometry | PackIndex |
RemoveDeletedRecords.

Listening to Table and Catalog Events
Table exposes several events which applications may subscribe to. They are:

• RowInsertedEvent – Occurs when a new row is added to the table.

• RowUpdatedEvent – Occurs when an existing row in the table is updated.

• RowDeletedEvent – Occurs when a row in the table is deleted.
MapXtreme 9.5 Developer Guide 178

 8 – Working with Data
• TablePackedEvent – Occurs when the table is packed.

• TableCloseRequestEvent – Occurs when the table has been asked to close.

• TableIsClosingEvent – Occurs when the table is closing.

• TableClosedEvent – Occurs when the table is closed.

Catalog also exposes the following events.

• TableOpenedEvent – Occurs when a table is opened.

• TableCreatedEvent – Occurs when a new table is created.

• TableIsClosingEvent – Occurs when the table is closing.

Table Metadata (TableInfo)
The TableInfo class in the MapInfo.Data namespace is an abstract base class that
contains information, or metadata, about an existing table, including:

• Columns – number, names, data types, etc.

• Table alias, and description and pathname of the data source.

• Client metadata (the information between the begin_metadata/end_metadata tags in
the TAB file).

TableInfo is used to open tables and create new tables. It is also used for retrieving
information about the open table.

Classes that derive from TableInfo include provider-specific metadata. There is a
TableInfo implementation for every MapXtreme supported table type. See Data Sources.

TableInfo instances may be constructed manually, or from a .TAB file definition (without
opening the table), as shown below.

TableInfo.CreateFromFile(…)

TableInfo contains properties for enabling Table Services, including caching and making a
table mappable via a spatial schema. See Working with the Cache and Making Tables
Mappable.
MapXtreme 9.5 Developer Guide 179

MapXtreme provides table column metadata support for M and Z values. This feature is
useful when you want to know whether geometries of a particular data provider can
support 3D and Measured values without evaluating its individual geometries.

Metadata for a table can be accessed from the table's TableInfo property. From the table
metadata you can access the GeometryColumn to interrogate if the table supports M or Z
values and what the range of values for that table is if the range is known. For more
information on support for M and Z values, see Support for M and Z Values.

Examining TAB File Metadata
TAB file metadata is accessible and editable. The TableInfo class can be obtained from
the Table to get information about the table structure.

The following code demonstrates how to get the metadata for an open table. The code
also demonstrates how the geometry column can be used to determine the coordinate
system and bounds of the table. For a code example that returns M and Z values, see
MapInfo.Data.TableInfo in the Developer Reference.

VB example:

Public Shared Sub MapInfo_Data_TableInfo2()
' Get the metadata for an open table
Dim ti As TableInfo = Session.Current.Catalog("states").TableInfo

' Print out some information to the console
Console.Out.WriteLine("Table Alias={0}, Datasource={1}, _

Description={2}, Type={3}", _
ti.Alias, ti.DataSourceName, ti.Description, ti.TableType)

' Print out some information about each column
Dim col As Column
For Each col In ti.Columns
Console.Out.WriteLine("Column {0} Type={1} Width={2}", _

col.Alias, col.DataType, col.Width)
MapXtreme 9.5 Developer Guide 180

 8 – Working with Data
' If the column is a geometry column, print csys and bounds.
If col.DataType = MIDbType.FeatureGeometry Then
Dim geocol As GeometryColumn = col
Dim csys As MapInfo.GeomeTry.CoordSys = geocol.CoordSys
Console.Out.WriteLine("CSys : {0}", csys.MapBasicString)
Dim dr As MapInfo.GeomeTry.DRect = geocol.Bounds
Console.Out.WriteLine("Bounds=({0},{1}),({2},{3})", dr.x1, _

dr.y1, dr.x2, dr.y2)
End If
Next

End Sub

Creating a New Table
The following sections illustrate how to create a permanent native table, a temporary
native table, and a temporary MemTable.

Create a New Permanent Native Table

The MapInfo.Data.Table.TableInfo property for a MapInfo native table returns an instance
of TableInfoNative. A native table is a MapInfo .TAB file. This class may be used to
access properties that are specific to native table types. New instances of this class may
be created and used to construct new tables. See also Data Sources.

Note the use of the ColumnFactory class. This is provided to help you know which
arguments are necessary for different data types. For example, a geometry column
requires a coordinate system.

VB example:

Public Shared Sub MapInfo_Data_TableInfoNative()
Dim ti As TableInfoNative = New TableInfoNative("NewTable")
ti.TablePath = "c:\data\Capitals.TAB"
ti.Columns.Add(ColumnFactory.CreateIndexedStringColumn("Capital",_

 25))
ti.Columns.Add(ColumnFactory.CreateStringColumn("Country", 30))
ti.Columns.Add(ColumnFactory.CreateDoubleColumn("Pop_Grw_Rt"))

' Make the table mappable
ti.Columns.Add(ColumnFactory.CreateStyleColumn())
Dim Robinson As CoordSys = _
Session.Current.CoordSysFactory.CreateFromPrjString("12, _

62, 7, 0")

ti.Columns.Add(ColumnFactory.CreateFeatureGeometryColumn(Robinson))
' Note we do not need to (nor should we) add a column of type Key.
' Every table automatically contains a column named "MI_Key".

Dim table As Table = Session.Current.Catalog.CreateTable(ti)
MapXtreme 9.5 Developer Guide 181

End Sub

Create a Temporary Native Table

VB example:

Public Shared Sub MapInfo_Data_TableInfo3(ByVal conn As MIConnection)
 Dim ti As TableInfoNative = New TableInfoNative("NewTable")
 ti.Temporary = True
 Dim col As Column

 col = New Column
 col.Alias = "FString30"
 col.DataType = MIDbType.String
 col.Indexed = True
 col.Width = 30
 ti.Columns.Add(col)

 col = New Column
 col.Alias = "FInt32"
 col.DataType = MIDbType.Int
 col.Indexed = True
 ti.Columns.Add(col)

 col = New Column
 col.Alias = "FInt16"
 col.DataType = MIDbType.SmallInt
 col.Indexed = True
 ti.Columns.Add(col)

 col = New Column
 col.Alias = "FDouble"
 col.DataType = MIDbType.Double
 ti.Columns.Add(col)

 col = New Column
 col.Alias = "FDateTime"
 col.DataType = MIDbType.Date
 ti.Columns.Add(col)

 col = New Column
 col.Alias = "FBoolean"
 col.DataType = MIDbType.Boolean
 ti.Columns.Add(col)
 ’ Note we do not need to (nor should we) add a column of type Key.
 ’ Every table automatically contains a column named "MI_Key".
 Dim miTable As Table = conn.Catalog.CreateTable(ti)
End Sub
MapXtreme 9.5 Developer Guide 182

 8 – Working with Data
Create a Temporary MemTable

The MapInfo.Data.Table.TableInfo property for a memory table returns an instance of
TableInfoMemTable. This class may be used to access properties that are specific to
memory table types. New instances of this class may be created and used to construct
new tables.

Data in formats such as XML or GML from a Web service can be brought into the Catalog
and used in this fashion. It can be converted to a MultiPolygon, LineString, Point, or other
Geometry via the MapXtreme API. MapXtreme then turns the Geometry into a
FeatureCollection, and, in turn, saves it to a memTable or native TAB format.

This approach is also appropriate if you wish to make data available for use in
MapXtreme, but not necessarily for map display.

MapXtreme supports reading and writing Z and M values to MemTables. M values on
MultiCurves allow you to carry out linear referencing operations and dynamic
segmentation. See Chapter 22 Linear Referencing.

VB example:

Public Shared Sub MapInfo_Data_TableInfoMemTable()
Dim ti As TableInfoMemTable = New TableInfoMemTable("NewTable")

' Note: The TablePath property does not apply - it can be set but it _
' is meaningless.

ti.Columns.Add(ColumnFactory.CreateIndexedStringColumn("Capital",_
25))

ti.Columns.Add(ColumnFactory.CreateStringColumn("Country", 30))
ti.Columns.Add(ColumnFactory.CreateDoubleColumn("Pop_Grw_Rt"))

' Make the table mappable
ti.Columns.Add(ColumnFactory.CreateStyleColumn())
Dim Robinson As CoordSys = _

Session.Current.CoordSysFactory.CreateFromPrjString("12, 62, _
7, 0")

ti.Columns.Add(ColumnFactory.CreateFeatureGeometryColumn(Robinson))
' Note we do not need to (nor should we) add a column of type Key.
' Every table automatically contains a column named "MI_Key".

Dim table As Table = Session.Current.Catalog.CreateTable(ti)
End Sub

Adding Expression Columns to a Table
MapXtreme 9.5 Developer Guide 183

Use the MapInfo.Data.Table.AddColumns method to add expression columns to a table.
The form of AddColumns that takes a Columns object creates temporary columns based
on expressions comprised of functions, operators, literal values, and other columns on
the table. All instances of Column in the columns argument must have an expression
string specified.

 TableAddColumns is not supported for the following table types: Server, View,
Seamless, AdoNet, ResultSet, or Drilldown. MapXtreme checks for the table and
throws an exception if it encounters one of these table types.

VB example:

Public Shared Sub MapInfo_Data_TableAddColumns(ByVal miTable As Table)
Dim NewCols As Columns = New Columns
NewCols.Add(New Column("PopDensity1990", "Pop_1990 / _

MI_Area(Obj, 'sq mi', 'Spherical')"))
NewCols.Add(New Column("PopDensity2000", "Pop_2000 / _

MI_Area(Obj, 'sq mi', 'Spherical')"))
miTable.AddColumns(NewCols)

End Sub

The expression string “Pop_1990 / MI_Area(Obj, 'sq mi', 'Spherical')” represents derived
information that will be placed in the temporary column. It says ‘For each record divide
population by area in square miles to yield the population density.’ The SQL function
MI_Area () in the expression will derive the area from the geometry of the record.

Using the AddColumns method may offer performance improvements in desktop
applications where the join can be performed once, rather than on each subsequent
access (as in the case of a view).

For more information and code examples, see the MapInfo.Data.Table.AddColumns class
in the Developer Reference Help system.

For more information on creating expressions, see Chapter 10 Creating Expressions.
MapXtreme 9.5 Developer Guide 184

 8 – Working with Data
Data Sources
The following table lists the data sources supported by MapXtreme. Each type of data
source is accessed by a specific data provider called TableInfo class, that is derived from
MapInfo.Data.TableInfo. For a short summary of each data type see Supported Table
Types.

Choosing the Correct Data Source

Data Source Class

Native (MapInfo.TAB) TableInfoNative

dBase TableInfodBase

MS Access TableInfoMSAccess

ASCII TableInfoAscii

RSBMS Server TableInfoServer

ESRI Shapefile TableInfoShapefile

Seamless TableInfoSeamless

Raster TableInfoRaster

Grid TableInfoGrid

WMS TableInfoWMS

ADONET TableInfoAdoNet

MemTable TableInfoMemTable

View TableInfoView

ResultSet TableInfoResultSet

TileServer TableInfoTileServer

GeoPackage TableInfoGeoPackage

NativeX TableInfoNativeX
MapXtreme 9.5 Developer Guide 185

Choosing the correct data source can make a difference in your application’s
performance. In some cases you will not have a choice, such as native MapInfo files
(.TAB), but in other cases there may be multiple choices. In most cases, you will be using
a supported data provider for the data source. In cases where the data is not accessible
through one of these, you may be able to use the MapInfo ADO.NET data provider. This
is the same data provider interface that the Catalog uses to retrieve data.

Each data source has certain performance characteristics. Native tables offer the best
access and map drawing times. Data is stored locally on the system and optimized for
your current operation. Other file-based table types perform well, depending on current
hardware and file size.

Methods for Accessing Data

MapXtreme provides several ways to bring data into the Catalog:

• Direct access to data sources

• Access via an ADO.NET data provider (TableInfoAdoNet)

• XML/GML from third-party web services

The best method to access data is to open it directly using one of the TableInfo classes
that are specific to where your data resides.

Use the second method (TableInfoAdoNet) to access data that is not internally supported
but has an ADO.NET provider.

A third method allows developers to integrate data to the Catalog who may interact with
HTTP services that return XML or GML.

Direct Access to Data Sources

MapXtreme provides native support for accessing data stored in file-based table formats
and RDBMS servers, such as SQL Server and Oracle. In the case of file-based access,
provide the path and filename in the appropriate TableInfo instance (TableInfoNative,
TableInfodBase, TableInfoMSAssess, TableInfoAscii, TableInfoGeopackage, and
TableInfoNativeX).

For direct access to data stored in RDBMS serves, use the TableInfoServer class to
define the connection string and an SQL statement to execute on the remote table.
Internally, MapXtreme uses ODBC or OCI to access the remote database.

TableInfoServer will open a connection to the server, query the table's metadata, and
create the appropriate table definition with any spatial characteristics that are defined on
the remote server. This tends to be the best performing method with remote data.
MapXtreme 9.5 Developer Guide 186

 8 – Working with Data
Internally, MapXtreme can access only the data necessary to perform the current
operation. During a map draw, MapXtreme will construct a query that returns only the
geometry column, and not the data columns. This minimizes the network traffic. If caching
is on, then this is only an issue for the first access, since all subsequent requests will
come from the cache. See Chapter 11 Accessing Data from a DBMS.

Access via an ADO.NET DataProvider

The second data access method is to use an ADO.NET data provider. This requires the
definition of ADO.NET classes for data retrieval. Only non-mappable tables may be
supplied as an AdoNet table. Non-mappable tables are those that do not contain
geometry information about the data. Tables retrieved from an ADO.NET provider,
however, can be made mappable by applying a SpatialSchema to the table definition. In
this method, the MapXtreme DataAccess engine calls the ADO.NET data provider
whenever data is requested by a user. This tends to be a slower method of accessing
data. However, when used in conjunction with caching, it performs well. See Using an
ADO.NET Data Provider.

Data from Third-Party Web Services

MapXtreme can integrate Web service XML or GML output into the Catalog for use in a
MapXtreme desktop or web application. Data can be brought into the Catalog and
converted to a MultiPolygon, LineString, Point, or other Geometry via the MapXtreme
API. MapXtreme then turns the Geometry into a FeatureCollection, and, in turn, saves it
to a memTable or native TAB format.

This approach is appropriate also if you wish to make data available for use in
MapXtreme, but not necessarily for map display.

Data Readers, MemTables and Result Sets
The methods to access data return a data reader or result set. A data reader allows
access in a sequential manner and does not store copies of data. It retrieves the data
from the data source, except in the case where the data source is cached. Result sets are
collections of keys. These keys allow you access back to the original tables and do not
create copies of the data.

A MemTable also allows you to store data from various sources into one table. This table
type stores data in a combination of memory arrays and temporary disk storage. When
data is added, the MemTable makes a copy of the data and does not have a key or
pointer back to the original table. These are useful for temporary layers for maps and
containers for return values of processes such as a geocoding or routing result.
MemTable access and map rendering performance is equivalent to native tables.
MapXtreme 9.5 Developer Guide 187

Result sets are a great tool when you need access to a defined set of rows and when you
need to get data from the source. If the source data may change during your session then
this method allows you to see the results if the data source supports concurrent access.
Since MemTables are copies of data they are a static set of data rows and will not reflect
changes from the original data sources.

Using an ADO.NET Data Provider
Data that cannot be directly accessed with a specific TableInfo data source can use
TableInfoAdoNet. The ADO.NET table can be in one of two forms: DataTable (a collection
of rows from a single table kept in-memory and allows read-write access); or
IDbCommand (an SQL statement executed at the data source that yields read only,
dynamic data).

Accessing Data in a DataTable

When using a DataTable, the Catalog is essentially holding on to a reference to the
DataTable you supply to the call to Catalog.OpenTable (using the TableInfoAdoNet class).
DataTables are editable using the MapInfo ADO.NET Data Provider by issuing Insert,
Update, and/or Delete commands. Your application may continue to access the
DataTable directly as well. Note, however, that the structure of the table should not be
changed while the Catalog has a reference to it. Also note that changes to the data
outside of the MapInfo Data Provider (e.g., without using the MICommand to issue Insert,
Update, or Delete commands) will not result in the raising of the insert, update, or delete
table events.

The DataTable contains almost enough information for the Catalog to define the table. For
string columns, however, the Catalog needs to assign a length to this field. The length
would be used when constructing temporary indices, temporary tables for aggregation,
etc. For these types of operations, it is important to get the string length correct. The
DataColumn has a MaxLength property that should be set to indicate the maximum
length string the column could hold. If not set, this value defaults to -1 in which case the
value of 254 is used. Before checking the MaxLength property, the Catalog looks to see if
the DataColumn has a property defined in its ExtendedProperties collection with the
name “StringWidth”. If found, the value for this property is used as the column's width.

This example illustrates how to create a MapInfo Table whose data is stored in a
DataTable.

VB example:

Public Shared Sub MapInfo_Data_TableInfoAdoNet(ByVal connection As _
MIConnection)

' Create a new DataTable.
MapXtreme 9.5 Developer Guide 188

 8 – Working with Data
Dim dt As DataTable = New DataTable("CityData")
Dim dc As DataColumn
dc = dt.Columns.Add("City", Type.GetType("string"))
dc.MaxLength = 30
dc = dt.Columns.Add("Country", Type.GetType("string"))
dc.MaxLength = 30
dc = dt.Columns.Add("Continent", Type.GetType("string"))
dc.MaxLength = 30
dc = dt.Columns.Add("Population", Type.GetType("string"))

 ' Populate the DataTable...
dt.Rows.Add(New Object() {"Madrid", "Spain", "Europe", 1500000})
dt.Rows.Add(New Object() {"Stockholm", "Sweden", "Europe". 985000})

 ' Now open a MapInfo Table which accesses this DataTable
 Dim ti As TableInfoAdoNet = New TableInfoAdoNet("Cities")
 ti.ReadOnly = False
 ti.DataTable = dt

 Dim table As Table = connection.Catalog.OpenTable(ti)
End Sub

Saving and Restoring ADO.NET objects

Saving and Restoring ADO.NET tables can be accomplished in MapXtreme by using the
steps outlined below. Explicit serialization/deserialization of ADO.NET tables is not
supported due to limitations on restoring the underlying System.Data.DataTable. An
ADO.NET table is a table in the Catalog which was created using a
MapInfo.Data.TableInfoAdoNet object.

The proper method of serializing/deserializing the ADO.NET based MapInfo table is in the
SaveState method. Serialize all tables that reference the ADO.NET table (i.e., ViewTables
or joins) and then close the ADO.NET table. In the RestoreState method, re-create the
ADO.NET MapInfo table with the same name and then deserialize any dependent
MapInfo tables. Order is important because you have to create the ADO.NET table prior
to restoring any other tables.

In the context of a MapXtreme Web Application which implements manual state
management, follow these steps to save and restore an ADO.NET table between client
requests.

 The steps outlined below refer specifically to ADO.NET tables created from a
DataTable.

1. In the MapInfo.WebControls.StateManager.SaveState method:

a. Place the ADO.NET DataTable or DataSet into the HTTPSession instance.
MapXtreme 9.5 Developer Guide 189

b. Save any MapInfo.Data.TableInfoView or MapInfo.Data.TableInfoResultSet tables
that are dependent on the ADO.NET table using the
ManualSerializer.SaveMapXtremeObjectIntoHttpSession.

c. Close the ADO.NET table in the Catalog.

2. In the MapInfo.WebControls.StateManager.RestoreState method:

a. Create a new TableInfoAdoNet object based on the DataTable retrieved from the
HTTPSession instance.

b. Open a new ADO.NET table in the catalog based on the TableInfoAdoNet object
with the same name as the original.

c. Restore any MapInfo.Data.TableInfoView or MapInfo.Data.TableInfoResultSet
tables based on the ADO.NET table using
ManualSerializer.RestoreMapXtremeObjectFromHttpSession.

It is important to remember that the order you save and restore is critical to the proper
creation of all the tables and their dependencies. For more information on serialization,
see Chapter 6 Understanding State Management.

Accessing Data Using an IDbCommand

The second form of ADO.NET table is based on the connected object types in ADO.NET:
Connection, Command, and DataReader. MapInfo Tables constructed in this fashion are
read-only. These types of tables are created by passing to the Catalog an IDbCommand
object that is already configured to return all of the data that is to comprise the table.
When the table is initially created (by calling Catalog.OpenTable), ExecuteReader is
called on the IDbCommand. The resulting data reader is used to determine the columns
and their data types. All subsequent cursor requests (other than cursors which retrieve a
specific record - called a key fetch) also call ExecuteReader to fetch the data to satisfy
the cursor. Notice that this may be very inefficient. If at all possible, use one of the other
table types to access your data.

Since the Command-based form of the ADO.NET table is designed to use the generic
interfaces without requiring any specific knowledge of any particular implementation of
these interfaces, the table also does not assume that the IDbCommand.CommandText is
any form of standard SQL. In fact, it may not be SQL at all. This table type does not
access, parse, or modify the CommandText. This means that this table type has no
mechanism for knowing which column(s) in the results formulate a unique, non-null key
value. For this type of table, it is required to tell the table which column(s) constitute the
key. This is accomplished by specifying the KeyType as Explicit and setting the
KeyColumns property.
MapXtreme 9.5 Developer Guide 190

 8 – Working with Data
There are many operations inside the MapInfo Data Provider which require the retrieval of
a specific record by key (also referred to as a key fetch). Select statements with a where
clause of the form MI_Key = '5' is a simple example in which we need to retrieve the
record whose MI_Key column can be represented by the string literal '5'. Key retrievals
are very common in mapping selections, labeling, and scrolling in a MIScrollableReader
(in which case the reader may be scrolling through a list of key values). MapInfo tables
are dependent upon the ability to efficiently fetch records by key value. Just as the
Command-based form of the ADO.NET table does not read, parse, or modify the
CommandText of the IDbCommand object that defines the table (the “Sequential”
IDbCommand), it has no ability to modify the IDbCommand object to fetch a specific
record. Thus, a second IDbCommand object must be supplied for this purpose. The
“FetchByKey” IDbCommand object must meet the following requirements:

• When ExecuteReader is called on this command object, it must produce a data reader
that has the same columns as the sequential command object and in the same order.

• The FetchByKeyCommand must contain a Parameters collection and must contain
one parameter for each member of the key. For example, if the TableInfo.KeyColumns
specifies a key as consisting of the “city” and “state” columns, then the
FetchByKeyCommand must contain two parameter objects. The first parameter object
is assigned a value representing the first column specified in the
TableInfo.KeyColumns collection (e.g., a value for “city”), the second parameter object
is assigned a value representing the second column specified in the
TableInfo.KeyColumns collection (e.g., a value for “state”), and so on. When
ExecuteReader is called on the FetchByKeyCommand, the reader must return the
record which represent s the specified key.

This example illustrates how to create a MapInfo Table that accesses data through the
ADO.NET connected command objects.

VB example:

Public Shared Sub MapInfo_Data_TableInfoAdoNet2(ByVal connection _
As MIConnection)

Dim ti As TableInfoAdoNet = New TableInfoAdoNet("EuropeanCities")
Dim _conn As OleDbConnection = New _

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data _
Source=C:\Data\EuropeCities.mdb")

Dim selectQuery As String = "SELECT City, Country, Continent, _
Pop_1994 FROM EuropeCities"

Dim _OleDbCommand As OleDbCommand = New OleDbCommand(selectQuery)
_OleDbCommand.Connection = _conn

selectQuery = selectQuery + " where City = @City AND _
Country = @Country"

Dim _OleDbKeyCommand As OleDbCommand = New _
OleDbCommand(selectQuery)

_OleDbKeyCommand.Parameters.Add("@City", OleDbType.Char)
MapXtreme 9.5 Developer Guide 191

_OleDbKeyCommand.Parameters.Add("@Country", OleDbType.Char)
_OleDbKeyCommand.Connection = _conn

' The MapInfo Table will Open/Close the connection as necessary.
' If this is expensive the application could open the connection
' before opening the table and closing the connection after the
' table is closed.

ti.SequentialCommand = _OleDbCommand
ti.FetchByKeyCommand = _OleDbKeyCommand

' Tell the table which column(s) constitute a key - for this table
' it is acompound key consisting of values from the City and County
' columns.

Dim sc As StringCollection = New StringCollection
sc.Add("City")
sc.Add("Country")
ti.KeyColumns = sc
ti.KeyType = KeyType.Explicit

' Ask the Catalog to open the table.
Dim tbl As Table = connection.Catalog.OpenTable(ti)

' Now the MICommand object may be used to select data from the table
' (by the name EuropeanCities since that is the alias we assigned to
' it). The data in thistable may be joined with any other table and
' it may be used as source data in a call to AddColumns to populate
' temporary columns with data from this table.
End Sub

Data Binding
Data binding is the process of bringing data from a data source into MapXtreme. Data
binding of external data (ADO.NET and other legacy sources) to MapInfo.Data.Table is
accomplished by opening an ADO.NET DataTable as a Table using TableInfoAdoNet. The
table can then be joined with another table, joined to itself or use Table.AddColumns to
bind columns to a second table.

To join a table to itself, following this example:

Select ... From T as A, T as B Where A.X = B.Y

If an application has data stored in a DataTable or data that is accessible through an
ADO.NET data provider, that data can be presented to the Catalog and treated as a
MapInfo table. This would be primarily useful if the data were not accessible through one
of the other table types.

For example, if the data is stored in a dBase file, Microsoft Access table, or is accessible
through ODBC or Oracle's OCI interface, it is recommended that those TableInfo types be
used to access the data. Data which cannot be accessed through one of these types of
MapXtreme 9.5 Developer Guide 192

 8 – Working with Data
tables, but that can be loaded into a DataTable or is accessible through some ADO.NET
Data Provider that implements the Command, Parameter and DataReader object types
can still be accessed by the Catalog.

An application may need to make data available as a MapInfo native table so that queries
can be executed to join the data with other MapInfo table data. It may also need to be
made available to the Catalog so it can be used as the source data in a call to the
Table.AddColumns.

Code Example: How to Join Data from an Oracle Table

public Shared Sub MapInfo_Data_TableAddColumns5(ByVal map As Map)
Dim Connection As MapInfo.Data.MIConnection = New _

MapInfo.Data.MIConnection
Connection.Open()

 'Add the USA table to the map
map.Load(New _

MapInfo.Mapping.MapTableLoader("C:\\maps\\usa.TAB"))

Dim lyr As MapInfo.Mapping.FeatureLayer = map.Layers("usa")

' Open the table from Oracle

Dim ti As TableInfoServer = New TableInfoServer("StateCapXY",_
"SRVR=tempest;UID=tn;PWD=tn", "Select * from usa_caps", _
MapInfo.Data.ServerToolkit.Oci)

Dim StateCapXY As Table = Connection.Catalog.OpenTable(ti)

' Add the Oracle columns to the USA table
Dim states As Table = Connection.Catalog.GetTable("usa")
states.AddColumns(Nothing, MapInfo.Data.BindType.Static, _

StateCapXY, "state", MapInfo.Data.Operator.Equal, "state")

 'Create a ranged theme on the USA layer using a field
 'from the Oracle table

Dim thm As MapInfo.Mapping.Thematics.RangedTheme = New _
MapInfo.Mapping.Thematics.RangedTheme(lyr, _
"pop_1990", "popusa", 4, _
MapInfo.Mapping.Thematics.DistributionMethod.EqualCount_
PerRange)

lyr.Modifiers.Insert(0, thm)

'Create a legend to appear on the map
Dim legend As MapInfo.Mapping.Legends.Legend = _

map.Legends.CreateLegend(New Size(5, 5))
legend.Border = True
Dim frame As MapInfo.Mapping.Legends.ThemeLegendFrame = _

MapInfo.Mapping.Legends.LegendFrameFactory.CreateTheme_
LegendFrame(_"Pop", "pop", thm)
MapXtreme 9.5 Developer Guide 193

legend.Frames.Append(frame)
frame.Title = "pop"
map.Adornments.Append(legend)

End Sub

View Tables

A view is a way to relate information from one or more tables based on a named select
statement. The Catalog allows you to create views based on any table definition. View
tables have the following characteristics:

• The data is not copied.

• Access to views always accesses its base tables.

• View is an MapInfo SQL Select Statement with a name (Alias).

• Queries may be joins (forms composite keys).

• Membership in the View is live.

• Exception: Views that aggregate cache the data. Data changed events trigger
recomputation.

• Can be serialized and persisted in workspaces.

For more information and code examples, see the MapInfo.Data.TableInfoView class in
the Developer Reference Help system.

Result Sets

ResultSets are similar to view tables in that both are defined using a MapInfo SQL select
statement and have an associated name (Alias). ResultSets, however, have a fixed
membership of records based on the evaluation of the where clause (if any) at the time
the result set is created. Any access to the data in a ResultSet always reflects the data in
the source table. However changes to the source data will not cause the ResultSet to
add/remove a record based on the original where clause. ResultSets manage a set of
keys internally.

In general ResultSets are lightweight and temporary. Some of the characteristics of result
sets are:

• The data is not copied.

• Access to result sets always accesses its base tables.

• A ResultSet is a sorted list of keys, a collection of column definitions, and a name.

• Membership in the ResultSet is fixed.

• Exception: ResultSets that aggregate, cache the data. Data changed events trigger
recomputation.
MapXtreme 9.5 Developer Guide 194

 8 – Working with Data
• Can be serialized, but not persisted in workspaces.

• ResultSets are vulnerable to Delete and Pack operations.

For more information, see the MapInfo.Data.TableInfoResultSet class in the Developer
Reference Help system.

Source Rows

Source rows represent a match between the table records involved in Table.AddColumns.
When adding temporary columns to a table, multiple records from the data source may be
aggregated together to compute a value for each record in the destination table (also
referred to as the bind table). The MapInfo.Data.SourceRows class is a collection of
SourceRows that identify the records from the data source that were aggregated
together,

SourceRows only exist if the BindType property is DynamicCopy, which indicates that
changes to the source data are propagated to the temporary column automatically.

 Table.AddColumns is not supported for the following table types: Server, View,
Seamless, AdoNet, ResultSet, or Drilldown.

See also Adding Expression Columns to a Table.

The GeoDictionary

The GeoDictionary maintains information about which map entities can be matched to
which information. The GeoDictionaries class is a collection of GeoDictionary objects.
The MapInfo.Data.GeoDictionary namespace provides support for data autobinding by
being a programmatic representation of the GeoDictionary file. The GeoDictionary file
contains information about tables (TAB files only). The GeoDictionary is used to
automatically determine the table to which application data should be bound. The
GeoDictionary is persisted in a file (typically GeoDict.DCT) and is maintained using the
GeoDictionaryManager utility application (see Chapter 28 Using the GeoDictionary
Manager).

AutoMatching Using the GeoDictionary

The MatchResolver.AutoMatch method in the Data.GeoDictionary namespace initiates
the AutoMatching process. It does not call AddColumns, i.e., does not do the binding. A
subsequent call to BindColumn is required to perform the autobinding, or a direct call to
AutoMatchAndBind.

Automatching can encounter ambiguous situations. These situations include:
MapXtreme 9.5 Developer Guide 195

• multiple source columns are detected in the user data

• multiple tables/layers are detected that match the source column

• multiple geosets/workspaces are available for the matched table/layer.

It is the MatchResolver object with which the GeoDictionary communicates during the
match process to solve the ambiguity. It provides the matching algorithm. The basic class
selects the first or the one with the highest matching percentage. This class is not sealed
and client applications may derive their own class from this and override its behavior.

Making Tables Mappable
Tables can either be mappable (contain a GeometryColumn) or non-mappable (no spatial
attribute data). Mappable tables are added to a MapXtreme application as a layer in a
map. Non-mappable tables, such as customer data, can be made mappable when a
GeometryColumn is created for it. MapXtreme provides spatial schemas to accomplish
this.

Spatial schemas are services that can be applied to a table to enhance its spatial
capabilities. There are two type of spatial schemas: XY and PointRef. Non-mappable
tables that have attribute columns that represent X and Y values (such as longitude and
latitude) use SpatialSchemaXY and tables that have an attribute column which can be
used to reference a record in a mappable table uses SpatialSchemaPointRef.

SpatialSchemaXY

SpatialSchemaXY uses the X and Y values of each record in the table to construct point
objects and store them in a temporary column known as MI_Geometry. This spatial
schema may be applied to tables of any data source except Seamless, View, and
ResultSet.

By having a GeometryColumn, the table can now be displayed as a layer in a Map and
used for spatial analysis.

SpatialSchemaXY has the following characteristics:

• The Geometry column is editable.

• Editing the Geometry automatically changes the X and Y values.

• You can define styles for each point in the table.

• You can store the spatial information as a TAB file and open like any other table.

This spatial schema can be used for traditional server XY data without a MapCatalog.
(Using a MapCatalog may offer better performance on RDBMS's, since more work is
done on the server. See The MapInfo_MapCatalog.)
MapXtreme 9.5 Developer Guide 196

 8 – Working with Data
MI_Geometry is a temporary column unless you write out the TAB file explicitly using the
TableInfo.WriteToTab method. The schema is automatically regenerated when the table is
opened.

VB example:

Public Shared Sub MapInfo_Data_SpatialSchemaXY()
Dim ti As TableInfo = _

TableInfo.CreateFromFile("c:\data\customers.TAB")
' a non-mappable table

Dim xy As SpatialSchemaXY = New SpatialSchemaXY
xy.XColumn = "Xcoord"
xy.YColumn = "Ycoord"
xy.NullPoint = "0.0, 0.0"

' Any customer at 0,0 means we don't know their location.
xy.StyleType = StyleType.None
xy.CoordSys = _

Session.Current.CoordSysFactory.CreateLongLat(DatumID.WGS84)
ti.SpatialSchema = xy

' Now set the spatial schema information before
' opening the table.

Dim table As Table = Session.Current.Catalog.OpenTable(ti)
End Sub

Public Shared Sub MapInfo_Data_TableInfoNative2(ByVal ti As _
TableInfoNative)
 ti.WriteTabFile()
End Sub

SpatialSchemaPointRef

This spatial schema uses a value in the table's data to create a Point geometry object by
matching the value against an equivalent value in a mappable table.

For example, if your table of customers contains addresses with postal codes, the
customer records can be tied to the spatial points in a postal code reference table.

SpatialSchemaPointRef is actually a join between two tables, one containing data and the
other containing a join column and an object column. The join column contains the same
values as the data column in the non-mappable table, such as postal codes. The result of
applying SpatialSchemaPointRef is a table that contains a spatial geometry column for
records that were previously non-spatial. This geometry column has the following
characteristics:

• The data table may match more than one record in the geometry table. When this
happens the similar rows are aggregated into a MultiPoint geometry.

• The geometry is the centroid of the geometry from the other table.

SpatialSchemaPointRef has these characteristics:
MapXtreme 9.5 Developer Guide 197

• The temporary Geometry column is read-only.

• Any edits to a value in the reference table changes the Geometry value in the data
table.

• SpatialSchemaPointRef can be applied to any data source except Seamless, View,
and ResultSet.

• You can define styles for each point in the table.

• You can store table information as a TAB file and open like any other table.

For more information and code examples, see the MapInfo.Data.SpatialSchemaPointRef
class in the Developer Reference Help system.

VB example:

Public Shared Sub MapInfo_Data_SpatialSchemaPointRef(ByVal _
map As _Map)

 ' a non-mappable table
Dim ti As TableInfo = _

TableInfo.CreateFromFile("c:\data\customers.TAB")
Dim pr As SpatialSchemaPointRef = New SpatialSchemaPointRef

 pr.CoordSys = map.GetDisplayCoordSys()
 pr.StyleType = StyleType.None
 pr.RefTable = "us_zips"

' the column in RefTable which will match the MatchColumn in my data
pr.RefColumn = "zipcode"

 ' a column in the Customer table
 pr.MatchColumn = "zip"
pr.RefTableLocation = "c:\data\us_zips.tab"

' Now set the spatial schema information before opening the table.
ti.SpatialSchema = pr
Dim table As Table = Session.Current.Catalog.OpenTable(ti)

End Sub
MapXtreme 9.5 Developer Guide 198

 8 – Working with Data
MapInfo ADO.NET Data Provider
MapXtreme provides mechanisms for issuing SQL commands which return record sets
from tables using ADO.NET. The MapInfo ADO.NET Data Provider is one mechanism for
accessing data in .NET applications in this fashion. For an alternative that uses the
Feature class and SearchInfo methods on the Catalog, see Features and Feature
Collections.

The following sections present the key interfaces and classes for accessing data via the
MapInfo ADO.NET Data Provider.

• MIConnection

• MICommand

• MIDataReader

• MapInfo SQL

MIConnection
An MIConnection represents a connection to the Catalog. The connection provides a
starting point for issuing SQL commands and obtaining results. Whereas most data
provider connections allow the user to immediately begin issuing queries or other
commands against existing tables (or schema objects), the MapInfo ADO.NET Data
Provider initially has no tables available. Tables need to be opened or created before they
can be accessed. When opened, a name (alias) can be associated with the table which is
used when resolving identifiers in the query engine.

Connections are not pooled in the MapInfo Data Provider and there is no connection
string required to create a new connection.
MapXtreme 9.5 Developer Guide 199

The MapInfo.Engine.Session class creates and initializes the Catalog which may be
accessed through the Session.Current.Catalog property. The MIConnection.Open
method obtains a reference to the Catalog using the Session.Current.Catalog property
and the MIConnection.Close method sets the internal reference to the Catalog to null.

VB example:

Public Shared Sub MapInfo_Data_MIConnection()
 Dim connection As MIConnection = New MIConnection
 Dim command As MICommand = connection.CreateCommand()
 command.CommandText = "Select * From States Where Pop > 1000000"

 connection.Open()
 Dim reader As MIDataReader = command.ExecuteReader()
 Dim i As Integer, n As Integer = reader.FieldCount
 For i = 0 To n - 1 Step i + 1
 Console.Out.Write("{0}\t", reader.GetName(i))
 Next
 Console.Out.WriteLine()
 While reader.Read()
 For i = 0 To n - 1 Step i + 1
 Dim o As Object = reader.GetValue(i)
 If o Is DBNull.Value Then
 Console.Write("null\t")
 Else
 Console.Write("{0}\t", o.ToString())
 End If
 Next
 Console.Out.WriteLine()
 End While
 reader.Close()
 command.Dispose()
 connection.Close()
End Sub

MICommand
MICommand provides the necessary interface for executing SQL commands against the
MapInfo Data Provider. MICommand creates MIDataReader and MIScrollableReader
instances for obtaining data via the ExecuteReader and ExecuteScrollableReader
methods, respectively.

Supported Commands

The commands that are understood by the MICommand are:

Select
SELECT < select_list >

FROM { < table_source > } [,...n]
MapXtreme 9.5 Developer Guide 200

 8 – Working with Data
[WHERE < search_condition >]
[GROUP BY expression [,...n]]
[ORDER BY {expression | column_position [ASC | DESC] } [,...n]]

< select_list > ::=
{

*
| { table_name | table_alias }.*
| { expression } [[AS] column_alias]

} [,...n]

< table_source > ::=
table_name [[AS] table_alias]

Insert
INSERT [INTO] { table_name } [(column_list)]

{ VALUES ({expression | NULL}[, ...n]) | query_specification

Update
UPDATE { table_name }

SET {{ column_name } = { expression | NULL }} [, ...n]
[WHERE < search_condition >]

Delete
DELETE [FROM] { table_name } [WHERE < search_condition >]

< search_condition > ::=
{ [NOT] < predicate > | (< search_condition >) }

[{ AND | OR } [NOT] { < predicate > |
(< search_condition >) } [,...n]]

< predicate > ::=
{

expression [{ = | < > | != | > | >= | < | <= } expression]
| string_expression [NOT] LIKE string_expression [ESCAPE

'escape_character']
| expression [NOT] BETWEEN expression AND expression
| expression IS [NOT] NULL

}

expression
Is a column name, pseudo column, column alias, constant, function, or any combination
of column names, column aliases, constants, and functions connected by an operator(s).
Column names and pseudo columns may be prefixed with a table name or a table alias
followed by the dot (“.”) character.

group_by_expression
Is a reference to a column in the select list - either an exact copy of the select list
expression, the alias, a 1-based number indicating the position of the column, or coln
where n is a number representing a column.
MapXtreme 9.5 Developer Guide 201

order_by_expression
Is a reference to a column in the select list - either an exact copy of the select list
expression, the alias, a 1-based number indicating the position of the column, or coln
where n is a number representing a column.

For more information on expressions, where they are used and how to create them, see
Features and Feature Collections.

ExecuteFeatureCollection

The ExecuteFeatureCollection method in the MICommand class is the bridge between
the MapInfo ADO.NET Data Provider and the Feature object model. This method
executes command text (SQL statements) against the data source connection, and builds
an IResultSetFeatureCollection. The Feature model is discussed in Features and Feature
Collections.

MIDataReader
The MIDataReader provides forward-only, read-only access to the data returned from
executing a SQL Select statement. To create a MIDataReader, you must call the
ExecuteReader method of the MICommand object, rather than directly using a
constructor.

The MapInfo Data Provider allows multiple MIDataReader instances to be in use on the
same connection. However, if the Table being accessed resides on a Microsoft SQL
Server database, only one MIDataReader may be open at a time.

IsClosed and RecordsAffected are the only properties that you can call after the
MIDataReader is closed.Although the RecordsAffected property may be accessed while
the MIDataReader exists, always call Close before returning the value of
RecordsAffected to ensure an accurate return value.

You must explicitly call the Close method when you are through using the MIDataReader.

When accessing the DataReader through the IEnumerator or IFeatureEnumerator
interface, Close() is automatically called when MoveNext() returns false. Only one
enumerator can be used on a DataReader.

 For optimal performance, MIDataReader tries to avoid creating unnecessary
objects or making unnecessary copies of data. As a result, multiple calls to methods
such as GetValue may return a reference to the same object. Use caution if you are
modifying the underlying value of the objects returned by methods such as
GetValue.
MapXtreme 9.5 Developer Guide 202

 8 – Working with Data
The MIDataReader provides a means of reading a forward-only stream of rows from the
MapInfo data provider. This cursor type is the best performing for accessing a selection of
rows since there is little setup or overhead.

Scrollable Data Readers

MIScrollableReader derives from MIDataReader and offers forward and reverse reading.
Some of the options available with MIScrollableReader include:

• ReadPrevious

• Rewind

• Unwind

• ReadTop

• ReadBottom

• AtTop / AtBottom

 An MIScrollableReader is more expensive to create than MIDataReader. This is the
most expensive cursor since there is setup and extra resources necessary to keep
track of record order to allow scrolling. Use this cursor only if you need to scroll
through the record set.

MapInfo SQL
The MapInfo SQL Language allows you to add powerful analytical processing to your
MapXtreme application. MapXtreme exposes SQL processing to users via the MapInfo
ADO.NET Data Provider for accessing data (specifically the MICommand object).
Expressions are also used for labeling, thematics, legends, AddColumns, Feature
searching, and Selection processing.

MapInfo SQL is standardized based on SQL-3 Specification. For example, you will find
that:

• String constants are enclosed in single quotation marks

• Identifiers may be enclosed in double quotation marks

• Select has no relationship to the Selection

A complete reference including code examples for the MapInfo SQL language is provided
in the MapInfo SQL Reference, which you can view directly from Visual Studio’s Help
system.
MapXtreme 9.5 Developer Guide 203

Features and Feature Collections
The Feature class object model in MapXtreme offers a non-SQL-based approach to
access and manipulate data. This section covers the Feature class and
IFeatureCollection interface. A key task in working with features is the ability to search for
them using a query definition object.

Feature
Features are described by their geometry, style, data source, key and attributes. Typically
a feature is a row in a table. A feature’s geometry is a FeatureGeometry object.
FeatureGeometries can cover a given area (MultiPolygon), a location (Points,
MultiPoints); and distance (MultiCurves, LegacyArcs). Additional Geometry classes that
derive from FeatureGeometry and are used for map features are
FeatureGeometryCollection and LegacyText. (Rectangle, rounded rectangle and ellipse
objects also derive from FeatureGeometry, but are used primarily for cosmetic display
purposes.)

One of the main uses of computerized maps is to gather information about the features.
In MapXtreme features are returned in FeatureCollections by any of several methods,
either created from scratch using a schema, selected using selection tools or methods or
by searching the Catalog for those that meet a specific set of criteria.

You can force a Load using the Load method. Changes made to the Feature are not
reflected in the underlying table (if there is one) until the Feature is saved back to the
table. This is done using the Update method, or UpdateFeature or InsertFeature. You can
throw away any edits done to the Feature object before it is saved using the DiscardEdits
method.

A Feature has a schema that describes the attributes of the Feature. The Columns
property describes the schema.
MapXtreme 9.5 Developer Guide 204

 8 – Working with Data
Retrieving Features from a Table

A Table is a type of Feature collection. As such, the Features within the table may be
enumerated directly. For example:

VB example:

Dim ftr As Feature
For Each ftr In table
...

The default feature enumerator for a table uses an MIDataReader internally with the
following command:

command.CommandText = "Select MI_Key, * From \"" + table.Alias + "\"";

To retrieve a subset of the features in a table, use one of the Catalog.Search methods or
use one of the MICommand.ExecuteFeatureCollection methods.

Modifying Features in a Table

To modify features in a table, use one of the following methods.

• Feature.Update

• Table.UpdateFeature

• Table.InsertFeature

Feature Collections
Feature collections are a group of Feature objects. All Features in a collection share the
same Schema (columns). The Feature collection has a schema which is the schema of all
of its member feature instances. Some Feature collections own their Features while other
Feature collections maintain references to Features.

Searching for Features
One of the most common tasks in Precisely’s mapping applications is to search for
features that meet certain criteria. Once you have the features you are interested in, you
can carry out further analysis, such as thematic mapping. In MapXtreme, searching for
features can be done in a number of ways: using tools, using Catalog search methods, or
using SQL and the MapInfo ADO.NET Data Provider.

The following code sample shows two ways to search for the same thing, in this case,
cities in New York.

// Using SQL
command.CommandText = "Select Obj From States Where state = ‘NY’;
MapXtreme 9.5 Developer Guide 205

FeatureGeometry nyGeom = command.ExecuteScalar() as FeatureGeometry;
command.CommandText =

"SELECT * FROM Cities WHERE Obj within @newyork";
command.Parameters.Add("@newyork", nyGeom);
MIDataReader reader = command.ExecuteReader();
// or… to get a FeatureCollection
IFeatureCollection fc = command.ExecuteFeatureCollection();

// Using Features
Feature fNY = catalog.SearchForFeature("States", _

SearchInfoFactory.SearchWhere("state='NY'"));
SearchInfo si = SearchInfoFactory.SearchWithinFeature(fNY, _

ContainsFilter.ContainsType.Centroid);
IDynamicFeatureCollection dfc = _

catalog.Search("Cities", si) as IDynamicFeatureCollection;
Console.Out.WriteLine(_

"There are {0} cities whose centroid is within NewYork." _
dfc.Count);

SQL searches are more fully discussed in MapInfo ADO.NET Data Provider. The
following sections focus on searches using the Catalog and SearchInfo.

Catalog Search Methods
The Catalog has a number of search methods as members. The overloaded Search
method can be used to search on one or more tables. They include different arguments to
make each search unique. For example, the basic Search (Table, SearchInfo) searches
the given table and returns a FeatureCollection. The Search (ITableEnumerator,
SearchInfo) method searches on multiple tables and returns a
MultiResultSetFeatureCollection.

The SearchForFeature method returns the first Feature from the results. The
SearchReader method returns an MIDataReader cursor with the results.

Code Sample: SearchForFeature

The following example shows how to use Catalog.SearchForFeature and
Catalog.SearchWithinGeometry. It finds all the cities in the uscty_1k table that are within
Florida. It assumes that tables “usa” and “uscty_1k” are open and that there is one map.

VB example:

Public Shared Sub MapInfo_Data_SearchInfo(ByVal catalog As Catalog)
Dim fFlorida As Feature = _

catalog.SearchForFeature("usa",MapInfo.Data._
SearchInfoFactory.SearchWhere_("State='FL'"))

Dim si As SearchInfo =
MapInfo.Data.SearchInfoFactory.SearchWithinGeomeTry(fFlorida._
Geometry,ContainsType.Centroid)
MapXtreme 9.5 Developer Guide 206

 8 – Working with Data
Dim fc As IResultSetFeatureCollection = _
MapInfo.Engine.Session.Current.Catalog.Search("uscty_1k",si)

' Set the map view to show search results

MapInfo.Engine.Session.Current.MapFactory(0).SetView(fc.Envelope)
' Set the view of the first map.

' Add results to selection.

MapInfo.Engine.Session.Current.Selections.DefaultSelection.Add(fc)
End Sub

SearchInfo and SearchInfoFactory
The MapInfo.Data.SearchInfo class defines the query used in a search and handles any
necessary post processing of the search results.

The SearchInfoFactory creates SearchInfo objects. SearchInfoFactory contains a number
of search methods that allow you to search using spatial references to your search
location or by using geometries that are drawn on the screen.

The following table describes the SearchInfoFactory search methods.

SearchInfoFactory
Methods Behavior

SearchAll Returns all the rows.

SearchNearest Returns the rows with table geometries that are closest
to the given search point.

SearchWhere Returns the rows specified by the given where Clause.

SearchWithinDistance Returns the rows where the table geometry is
contained within a distance of the search point,
rectangle or geometry. This method uses the
Geometry.Distance method to determine if an object is
in or out the search area. Previously
SearchWithinDistance had buffered the distance and
searched within the buffer, leading to less accurate
results.

SearchWithinFeature Returns the rows where the table geometry is
contained within the search features's geometry.
MapXtreme 9.5 Developer Guide 207

MapXtreme ships with a Search sample application that you can run and learn more
about each search type. The illustration below shows the Search menu with the
SearchInfoFactory methods that use a spatial reference. The Map Search menu has
methods for searching based on a drawn screen geometry object (circle or rectangle).
The Query Definition menu highlights the use of various filters that act on an SQL
statement. Find the sample in the
..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\Search folder.

SearchWithinGeometr
y

Returns the rows where the table geometry is
contained within the search geometry.

SearchWithinRect Returns the rows where the table geometry intersects
the given rectangle.

SearchIntersectsFeatu
re

Returns the rows where the table geometry intersects
with the search features's geometry.

SearchIntersectsGeo
metry

Returns the rows where the table geometry intersects
with the search geometry.

SearchWithinScreenR
adius

Creates a SearchInfo that returns the rows where the
table geometry intersects a screen circle.

SearchWithinScreenR
ect

Returns the rows where the table geometry intersects
the given screen rectangle.

SearchInfoFactory
Methods Behavior
MapXtreme 9.5 Developer Guide 208

 8 – Working with Data
Code Samples

This section includes several code samples that pertain to SearchInfoFactory methods.

SearchNearest

Using the SearchNearest method, the code simulates the Select Point tool behavior to
select the topmost items under a mouse click and add them to the selection.

VB example:

Public Shared Sub MapInfo_Mapping_SearchInfoFactory(ByVal _
mapControl1 As MapControl)

' Get a point from mouse click. Hard coded value use in sample.
Dim pt As System.Drawing.Point = New System.Drawing.Point(100, 100)

' Assumes there is a MapControl with a map in it.
Dim map As Map = mapControl1.Map
Dim session As ISession = MapInfo.Engine.Session.Current
Dim si As SearchInfo = _

MapInfo.Mapping.SearchInfoFactory.SearchNearest(map, _
pt, 3) ' 3 pixel tolerance radius

si.QueryDefinition.Columns = Nothing
' fetch all columns instead of just default
' Customize to stop at topmost layer where something is found

CType(si.SearchResultProcessor, ClosestSearchResultProcessor)._
Options = ClosestSearchOptions.StopAtFirstMatch

' Puts results of search directly into default selection
' Searches all tables in map in order from top to bottom.

MapInfo.Engine.Session.Current.Catalog.Search(map._
Layers.GetTableEnumerator(), si, _
session.Selections.DefaultSelection, _
ResultSetCombineMode.Replace)

End Sub

SearchIntersectsFeature

VB example:

Public Shared Sub _
MapInfo_Data_SearchInfoFactorySearchIntersectsGeomeTry(ByVal _
map As Map)

Dim ti As Table = _
MapInfo.Engine.Session.Current.Catalog.GetTable("usa")

Dim lParks As MapInfo.Mapping.FeatureLayer = _
CType(map.Layers("USA"), MapInfo.Mapping.FeatureLayer)

Dim g As MapInfo.Geometry.FeatureGeometry = New _
MapInfo.Geometry.Point(map.GetDisplayCoordSys(),-98,34)

Dim si As SearchInfo = _
MapInfo.Data.SearchInfoFactory.SearchIntersects_
Geometry(g,MapInfo.Data.IntersectType.Geometry)

Dim fc As IResultSetFeatureCollection = _
Session.Current.Catalog.Search("usa",si)
MapXtreme 9.5 Developer Guide 209

map.SetView (fc.Envelope)
End Sub

SearchWithinScreenRadius

This sample illustrates how to search for features using a screen drawn circle.

C# example:

// find nearest city to center of map
private void menuItemSearchNearest_Click(object sender, System.EventArgs e)
{

try
{

Cursor.Current = Cursors.WaitCursor;
// to compare to SearchWithinScreenRadius, we are
// calculating the search distance the same way it does
System.Drawing.Rectangle rect=mapControl1.Bounds;
System.Drawing.Point pt = new System.Drawing.Point(rect.Left, rect.Top);
pt.X += rect.Width/2;
pt.Y += rect.Height/2;

DPoint dpt1 = new DPoint();
// convert center point to map coords (could use map.Center)
_map.DisplayTransform.FromDisplay(pt, out dpt1);
Distance d = MapInfo.Mapping.SearchInfoFactory.ScreenToMapDistance (_map,

3);

SearchInfo si =MapInfo.Data.SearchInfoFactory.SearchNearest(dpt1,
_map.GetDisplayCoordSys(), d);

IResultSetFeatureCollection fc = _catalog.Search("uscty_1k", si);

MapInfo.Geometry.Point p = new
MapInfo.Geometry.Point(_map.GetDisplayCoordSys(), dpt1);

FeatureGeometry buffer = p.Buffer(d.Value, d.Unit, 20,
DistanceType.Spherical);

ShowSearchGeometry(buffer);

SelectFeatureCollection(fc);
}
finally
{

Cursor.Current = Cursors.Default;
}

}

Code Example: How to Find a Feature Containing a Point

You may also wish to perform the opposite type of search, in which you are looking for a
feature that encompasses a point. For example, for delivery planning, you may want to
know in which region a customer is located.
MapXtreme 9.5 Developer Guide 210

 8 – Working with Data
VB example:

Dim g As MapInfo.Geometry.FeatureGeometry = New _
MapInfo.Data.SearchInfoFactory.SearchIntersectsGeometry(g, _
MapInfo.Data.IntersectType.Geometry)

Dim irfc As MapInfo.Data.IResultSetFeatureCollection = _
MapInfo.Engine.Session.Current.Catalog.Search("british_
columbia", si)

Me.MapControl1.Map.SetView(irfc.Envelope)

Saving Opened Table as GeoJson File
MapXtreme provides an API named ExportToGeoJsonFile(), to save any opened table
content as GeoJson file.

Following code provide a summary of this API:

// Open Table
Table table = Session.Current.Catalog.OpenTable(@"c:\temp\usa.tab");
// Save table content as GeoJson file.
TableExportFactory.ExportToGeoJsonFile(table, @"c:\temp\usa.geojson");
// Close Opened table.
table.Close();

Analyzing Data
Once your data is available in the Catalog, you will want to analyze it to meet your
business objectives. The Catalog has an SQL processor that allows you parse and
aggregate your data. Here you have two options:

• OGC object-based query interface

• ADO.NET SQL-based interface

The diagram below shows the relationship between the two.

Group 1 shows the OGC query interface. Use these objects to construct a query. The
interface allows you to create queries to filter columns and rows, as well as add spatial
and non-spatial conditions. The queries interact through the Search methods off those
query objects to return data readers and result sets. Use these objects if you are more
comfortable with object-oriented programming and less so with SQL syntax. See
SearchInfo and SearchInfoFactory.
MapXtreme 9.5 Developer Guide 211

The ADO.NET interfaces, shown in group 2, use the defined ADO.NET model to allow
access via the MapInfo SQL language. The ADO.NET interfaces use SQL syntax to
interact with the Catalog. In this instance you need to generate the SQL statement and
assign it to the MICommand object. These objects use the Execute command to return a
data reader or result set. See MapInfo ADO.NET Data Provider.

MapXtreme Data Model

Both the OGC query-based and ADO.NET command-based approaches use the Catalog
(group 3) to organize the data sources as a response to the object or SQL query. The
object-based query API will generate SQL and pass this to the Catalog for processing. In
some instances you may be able to generate more efficient SQL by hand, but the objects
are well defined and the interfaces restrict how you interact so the SQL tends to be
optimal. If you are comfortable with the SQL language using the ADO.NET method may
be more comfortable. But if you are inexperienced with SQL then the OGC object based
query will work just as well.

The MapInfo SQL syntax is defined in the SQL Reference which ships with MapXtreme.
The language is based on SQL3 and has special MapInfo operators defined for spatial
analysis. These operators begin with the MI_ prefix.
MapXtreme 9.5 Developer Guide 212

 8 – Working with Data
Data Readers, MemTables and Result Sets

The methods to access data return a data reader or result set. A data reader allows
access in a sequential manner and does not store copies of data. It retrieves the data
from the data source, except in the case where the data source is cached. Result sets are
collections of keys. These keys allow you access back to the original tables and do not
create copies of the data.

A MemTable also allows you to store data from various sources into one table. This table
type stores data in a combination of memory arrays and temporary disk storage. When
data is added, the MemTable makes a copy of the data and does not have a key or
pointer back to the original table. These are useful for temporary layers for maps and
containers for return values of processes such as a geocoding or routing result.
MemTable access and map rendering performance is equivalent to native tables.

Result sets are a great tool when you need access to a defined set of rows and when you
need to get data from the source. If the source data may change during your session then
this method allows you to see the results if the data source supports concurrent access.
Since MemTables are copies of data they are a static set of data rows and will not reflect
changes from the original data sources.
MapXtreme 9.5 Developer Guide 213

Improving Data Access Performance
Performance is always an important aspect to any application that accesses data.
Consider the following list in your design and development plans for your application.

• Only request the data you need (especially from an RDBMS). This limits the amount of
data sent over the connection.

• For web applications, put attribute column information into the workspace file, so that
all needed data will be pre-loaded at the MapInfo Session creation time. For an
example, see Overview of the Thematics Sample.

• Only sort tables if you need an ordered list. This process takes time to read through
the entire table to build an order. Also it will be slower if there is no index on the
column.

• Only scroll if you need random access to a table. This also builds indexes to speed up
access and remember order. Data readers access the data directly with no need to
read extra data.

• Use consistent coordinate systems for Join and Search operations. This eliminates the
need to convert geometries for every access.

• Use indexed columns for Join / Filter / Sort / Aggregate operations.

• Use CentroidWithin, ContainCentroid, and EnvelopesIntersect prior to actually
checking for geometry intersects. These tests are very quick and in most cases
eliminate a lot of geometries from your list with little effort.

• Use BeginAccess/EndAccess (especially for file-based tables) when performing
multiple queries and/or edits.

• Try to avoid calls such as Area and Buffer in the Where clause because the operation
will have to be done each time a new cursor is created.

• Try to avoid calls such as Area and Buffer in the Select list when defining a view or
result set for similar reasons.

• Use result sets for intermediate results or operations where you manage keys. These
are very light weight and afford quick direct access back to the original data.
MapXtreme 9.5 Developer Guide 214

9

9 – Working with Core

MapXtreme Classes
The MapInfo.Engine namespace contains the interfaces and classes
that relate directly to the core functionality that drives all applications
based on MapXtreme. This includes the core ISession interface which
is the starting point for all MapXtreme applications. Classes in this
namespace include Session and Selections, and SearchPath. Other
types in the namespace are supporting classes, delegates, structures,
and enumerations for Collections, Resources, and CustomProperties.

In this chapter:
 Session Interface . 216
 Serialization and Persistence . 219
 Opening and Saving a Workspace Containing Named Resources 221
 Selection Class. 223
 Selection Code Examples . 225
 Event Arguments . 226
 Exceptions . 227

Session Interface
The ISession interface is the starting point for all MapXtreme-based applications. It
manages the initialization of resources needed for a MapXtreme application.

An instance of ISession holds components of the MapXtreme object model such as the
DataAccess engine, MapFactory, CoordSysFactory so that the desktop or web
application can do work. The following diagram illustrates the classes that implement
ISession interface.

For an ASP.NET application each client request has its own ISession instance. This
instance resides in the calling context and is available throughout the lifetime of the
client's request.

For a single-threaded desktop application there is only one instance. On a multi-threaded
desktop application there is one instance per thread.

The MapInfo.Engine.Session class provides access to the ISession object. To get the
current ISession instance, access the MapInfo.Engine.Session.Current property.

Session Management
Session management is a key topic to understand when you are designing your
application. While a desktop application’s session management is straightforward (each
user has his own ISession instance), a web application needs to factor in, perhaps, an
MapXtreme 9.5 Developer Guide 216

 9 – Working with Core MapXtreme Classes
unknown number of users who will user your application. It will have to know how to
handle each user’s state so that the correct information and visual display is returned to
the correct user.

MapXtreme provides templates for building web applications that help you manage state
properly. This topic is discussed in greater detail in Chapter 6 Understanding State
Management. Key decisions about state management, pooling, performance and data
access are presented to help you make informed decisions during the design phase of
your project, before you start coding.

Using Session.Dispose Method
The MapInfo.Engine.Session class has two overloaded Dispose methods. Your choice
will depend on the type of application you are building.

Session.Dispose()

Session.Dispose() disposes the ISession instance that is accessible through the
Session.Current property. This method is used only for multi-threaded desktop
applications.

Do not use this for web applications or single-threaded desktop applications. For web
applications, ISession is managed by WebSessionActivator.

For single-threaded desktop application, Dispose is called automatically when the
application is shutdown or when the AppDomain using MapXtreme is unloaded.

Session.Dispose(HttpSessionState)

Use Session.Dispose(HttpSessionState) for web applications that use the default session
state settings in which the ISession is stored in memory. Do not call this method for any
other configuration since the ISession instance is not stored in memory in any other
configuration.

The state settings are represented in the Web.config file of your application project by the
following keys:

<add key="MapInfo.Engine.Session.State" value="HttpSessionState" />
<sessionState mode="InProc" />

The first setting is an application-specific setting that controls the mechanism for saving
and restoring the state of the MapInfo.Engine.ISession instance. This instance is
accessible through the MapInfo.Engine.Session.Current property. The HttpSessionState
MapXtreme 9.5 Developer Guide 217

setting indicates that the session is saved and restored through the ASP.NET session
state. This state is exposed through the current HttpContext and is of type
HttpSessionState.

The second setting is an ASP.NET setting that controls how the HttpSessionState is
saved and restored. InProc indicates that the state of the ASP.NET session is to be
placed in memory and is unique to each ASP.NET ISession instance. This is the default
setting.

When you use these settings, there is an ISession instance for each ASP.NET session
and it is stored in the HttpSessionState throughout the lifetime of the ASP.NET session. In
order for the ISession instance to be properly disposed of when the session times-out or
ends, you must add the following statement to the Session_End method in your
Global.asax source code file.

VB example:

MapInfo.Engine.Session.Dispose(Me.Session)

Protected Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
 MapInfo.Engine.Session.Dispose(Me.Session)
End Sub

Making this call will ensure that the ISession instance is properly disposed of and that
memory is reclaimed.

ISessionEventHandlers
MapXtreme provides a MapInfo.Engine.ISessionEventHandler interface for loading
custom DLLs that extend MapXtreme’s functionality. Use this interface to autoload any
extension DLLs that you need for your application, such as extensible data providers,
persistence providers, and styles that a default workspace may use. When MapXtreme
starts up, it will initialize these assemblies and carry out the required instructions.

For example, MapXtreme provides a SpatiaLite sample implementation that, when
compiled, yields an assembly that contains code to support the SpatiaLite data provider
as well as to load the data provider when a MapXtreme session initializes.

In order for SessionEventHandler assemblies to be initialized on startup, they must be
located in the \Common Files\MapInfo\MapXtreme\9.x.x\SessionEventHandlers folder. In
fact, any assembly in this folder with the file suffix of .SessionEventHandler.DLL will be
loaded.

The ISessionEventHandler interface provides two methods that can be called to load any
extension code you need for your application and provide additional initialization
functionality.
MapXtreme 9.5 Developer Guide 218

 9 – Working with Core MapXtreme Classes
void BeforeWorkspaceLoad(ISession session)

is called before any default workspaces are loaded, and could be used to set up any
extensible data providers, edp callbacks, edp persistance providers, named connections,
load or create styles, open tables, database connections etc. that might be used by a
default workspace.

void AfterWorkspaceLoad(ISession session)

is called after any default workspaces (specified in app.config or web.config) are loaded.
This is a good place to do any final session initialization that your application could need.

When MapXtreme finds classes in the assembly that implement the
ISessionEventHandler interface, it constructs an instance of the class and adds it to an
internal collection. Whenever a new MapXtreme Session instance is created (once for a
desktop application, can be multiple sessions for web applications), all of the Session
handlers are called with the instance of the session being initialized.

Since there can be multiple SessionEvent handlers loaded and the order in which they
are called is indeterminate, if you are writing a handler, do not make any assumptions
about what is already in the session (ie: maps, tables, etc) .

Use this capability with caution! Any MapXtreme session created on that computer will
load these session event handlers. Adding handlers that display dialog windows or other
user interface components may cause web applications to hang as these dialogs will be
displayed on the server.

Serialization and Persistence
A Map is bound to a ISession object. You cannot take a Map object from one ISession
object and use it in another. You have two options if you want to clone the entire ISession
object; either by using Serialization or by using Persistence.

Serialization
Serialization is the process of converting an object into a stream of data in order to
preserve it on the server. This process is an essential part of maintaining objects in
MapXtreme web applications. If the objects are not maintained the server would need to
recreate the object (such as a map) for each web request. When an object is requested, it
is deserialized (or recreated from the stream of data) and then modified. This algorithm
does not make a copy of the object (as other serialization algorithms do) such that the
object being deserialized is created only once.
MapXtreme 9.5 Developer Guide 219

The serialization is performed by formatters that are embedded in the Microsoft.NET
Framework. Two different formatters are included in the Framework, one for binary
objects, BinaryFormatter, and one for SOAP objects, SOAPFormatter (SOAP is a
lightweight protocol intended for exchanging structured information in a distributed
environment, such as the web.). SOAPFormatter is relatively faster than BinaryFormatter.
SOAPFormatter is used for certain basic types of data (Int, Byte, Decimal, etc.) and
BinaryFormatter is called for complex of objects. See the Microsoft MSDN documentation
for more information about the SOAPFormatter and the BinaryFormatter.

To pass an object to one of these formatters, use the GetObjectData() method. To
deserialize the object (restore it from the stream) use the SetObjectData() method.

Any object that supports the ISerializable interface will automatically be restored, or
deserialized. The ASP.NET framework automatically deserializes the context.Session[]
array after HttpApplication.BeginRequest. MapInfo.Engine.Session is set up in
HttpApplication.BeginRequest handler so objects are deserialized into the
MapInfo.Engine.Session.

Serialize/Deserialize the Session Object

The following is an example of how to serialize/deserialize the Session object.

// Create a MemoryStream to serialize into
MemoryStream stream = new MemoryStream();
// Serialize the MapXtreme Session object
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(stream, Session.Current);
stream.Position = 0;
// Make changes to the Session object to make sure the
// deserialization works correctly
...
// Recreate the MapXtreme Session object from the stream
// Note: this will replace the current MapXtreme Session object with the
// contents of the stream
formatter = new BinaryFormatter();
formatter.Deserialize(stream);

The stream parameter passed to the formatter.Serialize method can be anything derived
from System.IO.Stream.

This serialization functionality was designed to be used with MapXtreme’s state
management feature. If you persist this information to disk, then try to reload it in the
future with a different version of the product, it's not guaranteed to work.

For more on serialization and state management see Implementing a StateManager.

Persistence
MapXtreme 9.5 Developer Guide 220

 9 – Working with Core MapXtreme Classes
Persistence in MapXtreme is the is the process of storing application objects to MapInfo
Workspace (.MWS) files, which exist in XML format. Persisting and de-persisting
ISession objects is done using the WorkSpacePersistence and WorkSpaceLoader
classes. These two classes will write out and read in .MWS files. The application can
write out the workspace (a copy of the Session), and apply the contents of the workspace
file to a new Session object, creating a clone of the Session.

VB example:

Public Shared Sub MapInfo_Persistence_WorkSpacePersistenceSave()
' Create a named connection point to "D:\data\version2"

Dim info As NamedConnectionInfo = New NamedConnectionInfo("file",_
ConnectionMethod.FilePath, "D:\data\version2")

Session.Current.Catalog.NamedConnections.Add("MyDataFolder",_
info)

 ' Create a map
Dim map As Map =
Session.Current.MapFactory.CreateEmptyMap("MyMap",_

"MyMapAlias", New Size(400, 400))
Dim table As Table =
Session.Current.Catalog.OpenTable("MyDataFolder", _

"myTableAlias", "Seamless\Lines - NYALBA\SeamCapDist.TAB")
map.Layers.Add(New FeatureLayer(table))

' Save the Session to a workspace file
Dim w As WorkSpacePersistence = New WorkSpacePersistence

 w.Save("c:\workspace\mySeamless.mws")
 End Sub

Note that adding a workspace (using the WorkSpaceLoader class) is an cumulative
process. To ensure the Mapxtreme Session only contains the contents of the new
workspace file, call Reload() method on the ISession object first. This method clears the
Session state and reloads pre-defined workspaces in the application’s Web.config file.

For more information on persistence and the XML schema, see Appendix C:
Understanding the MapInfo Workspace.

Opening and Saving a Workspace Containing
Named Resources
MapXtreme supports named resources for map definitions, map layers, data source
definitions and styles. Previously MapXtreme supported named connections. Named
resources are references to a resource in another location and identified by a name.
MapXtreme 9.5 Developer Guide 221

MapInfo Workspace format files (.MWS) containing named resources can be opened and
saved programmatically through the INamedResourceResolver interface in the
MapInfo.Engine namespace. This interface contains the functions to resolve the named
resources while parsing the MWS file and also to generate the named resources xml
node when saving the MWS file.

Opening an MWS: ResolveResource()
On opening and parsing an MWS containing named resources, the ResolveResource()
function returns the xmlNode corresponding to the name and type of the named resource.

For example, when parsing a named style for a WMS, you would pass
NamedResourceType.Style and XmlNode in the form of a string. ResourceResolver
parses the parameters and returns a named resource node in the form of an XmlNode.

Saving an MWS: GetResourceName()
When the MWS file is being saved, file parsed in memory will contain all the expanded
nodes. To write back the named Resources into the MWS file, you need to implement all
flavors of GetResourceName which takes objects of Table, Map, Style, and IMapLayer.
These functions will return the NamedResource node for the corresponding object. The
saved MWS file contain the entries of the named resources.

Registering Your Implementation with MapXtreme
To register your implementation of INamedResourceResolver with MapXtreme, you must
set the Session.Current.NamedResourceResolver property. Now MapXtreme will refer to
your implementation object when opening and saving MWS files.

Setting Preferences
If you only want to save a specific type of name resource and leave the others as is, you
must set a preference using PreferenceForNamedResource property available on the
WorkspacePersistence object. By default it is set to NameResourcePreference.All. You
can set other values as well such as NameResourcePreference.PreferNamedTables to
save only Tables as named resources. To store more than one resource as named
resources use the OR operator. For example:

NameResourcePreference.PreferNamedTables |
NameResourcePreference.PreferNamedLayers.

For more information, see INamedResourceResolver in the Developer Reference.
MapXtreme 9.5 Developer Guide 222

 9 – Working with Core MapXtreme Classes
Selection Class
A Selection is a collection of IResultSetFeatureCollection objects that holds lists of
features. These features are a subset of rows in a table. They could be property
boundaries, street networks, cell tower locations, or natural features such as rivers. They
are typically drawn with special highlighting when they display in a Map. There can only
be one IResultSetFeatureCollection for a given table in a Selection.

There can be more than one Selection in a ISession. The Selections collection contains
all of the selections in the application. There is always at least one selection, known as
the DefaultSelection.

Each Selection must have a name and unique alias. By default, map selection tools
modify the Selection when used. Each tool can be set to use any particular Selection.

A selection in MapXtreme is not a copy; it is a reference to an
IResultSetFeatureCollection for a given table in a Selection. If you attempt to modify a
Selection after you have closed the table that you are working with, the reference to the
IResultSetFeatureCollection will be invalid, causing an exception.

Features are selected using tools or through search methods. For a discussion of the
different selection tools that you can use when building a Windows Forms application,
see Chapter 7 Desktop Applications, Controls, Dialogs, and Tools. For selection Web
controls and tools, see Chapter 5 Web Applications, Controls, and Tools.

Features can also be selected through search methods from the MapInfo.Data.Catalog
class which returns IResultSetFeatureCollection collections. A Selection object can be
passed into a search, which can be used to populate or change a Selection.

Features can also be selected via the ExecuteFeatureCollection method from the
Data.MICommand class. In this case, you would execute SQL commands against the
MapInfo Data Provider.

For more information on features, tables, the Catalog, and the MICommand, see
Chapter 8 Working with Data.

Using Selection Properties
The properties of the Selection class are used to set the (required) name and alias, set a
selection to be Visible or Editable, or to get the selection’s Style. To determine whether a
Selection displays its highlighting to indicate it is selected or is available for editing, use
the Visible or Editable property, respectively.
MapXtreme 9.5 Developer Guide 223

If the Editable property is set to true, the table that you are working with must also be
editable.

The Style property indicates the Selection's style and returns a reference to the
Selection's composite style. When you change a Style property, the Selection object is
notified of the change. It will take affect the next time the Selection object is drawn. Styles
are discussed in Chapter 15 Stylizing Your Maps.

Selection Highlighting and Exporting
Selections are typically drawn on the map with special highlighting, to distinguish these
features from surrounding non-selected features. The highlighting is controlled by the
Mapping.FeatureViewer.DrawSelections property. When this property is set to true, they
are drawn with selection highlighting, provided they are drawn on a visible layer.

Similarly, the MapExport.ExportSelection property, can be used to control whether the
selections are drawn into the exported image.

SelectionChangedEvent
A delegate method is attached to the SelectionChangedEvent in order to receive
notification that this selection has changed. For example, if a record is added, the
SelectionChangedEvent is fired.

ISerializable Interface on Selection and Selections Classes
The ISerializable interface is implemented on the Selection and Selections classes. The
following code example demonstrates how to serialize or deserialize a Selections object:

// Create a MemoryStream to serialize into
MemoryStream stream = new MemoryStream();

// Serialize the Selections object
BinaryFormatter formatter = new BinaryFormatter();
formatter.Serialize(stream, Session.Current.Selections);
stream.Position = 0;

// Make changes to the Session's Selections object to make sure the
// deserialization works correctly.
...

// Recreate the Selections object from the stream.
// Note: this replaces the current Session's Selections object with
// the contents of the stream
formatter = new BinaryFormatter();
formatter.Deserialize(stream);
MapXtreme 9.5 Developer Guide 224

 9 – Working with Core MapXtreme Classes
Selection Code Examples
The following are code examples of common selection operations. Additional code
examples are included in many topics of the MapXtreme Developer Reference.

Selecting Features Within Another Feature
A common search technique using MapXtreme is to find features within another feature.
You may do this to find all the customers within a postal code boundary or all the
highways that are under construction in a sector. Follow the example below. The
parameter f is a MapInfo.Data.Feature.

VB example:

Dim si As MapInfo.Data.SearchInfo = _
MapInfo.Data.SearchInfoFactory.SearchWithinFeature(f, _

MapInfo.Data.ContainsType.Centroid)
Dim irfc As MapInfo.Data.IResultSetFeatureCollection = _

MapInfo.Engine.Session.Current.Catalog.Search("USCty_8k", si)

MapInfo.Engine.Session.Current.Selections.DefaultSelection.Clear()
MapInfo.Engine.Session.Current.Selections.DefaultSelection.Add(irfc)

irfc.Close()

Checking a Table for Selections
Follow the code example below to learn how to get a count of selections in a table.

VB example:

Public Shared Sub MapInfo_Engine_Selection2()
Dim session As ISession = MapInfo.Engine.Session.Current
Dim tableUsa As Table = session.Catalog("usa")

' Get fc for selection on usa.
Dim fc As IResultSetFeatureCollection = _

session.Selections.DefaultSelection(tableUsa)
Dim nCount As Integer = 0
If Not fc Is Nothing Then

nCount = fc.Count
End If

End Sub

You can also perform selection operations using MapInfo SQL queries and with the
ADO.NET data provider. See Chapter 8 Working with Data.
MapXtreme 9.5 Developer Guide 225

Returning All Columns From a Table
The following sample shows how to return all columns from a selection:

VB example:

Dim Connection As MIConnection = New MIConnection
 Connection.Open()
 Dim lyr As FeatureLayer = MapControl1.Map.Layers("usa")
 Dim ti As MapInfo.Data.Table = _

MapInfo.Engine.Session.Current.Catalog.GetTable("usa")
 Dim si As MapInfo.Data.SearchInfo = _

MapInfo.Data.SearchInfoFactory.SearchAll()
 si.QueryDefinition.SetColumns("*")
 Dim irfc As MapInfo.Data.IResultSetFeatureCollection = _

MapInfo.Engine.Session.Current.Catalog.Search(ti.Alias, si)
 Dim l As MapInfo.Data.Feature
 For Each l In irfc
 Dim column As MapInfo.Data.Column
 For Each column In l.Columns
 MessageBox.Show(column.ToString())
 Next
 Next

Changing the Map View Following a Selection
The following example shows how to change the zoom to display all the features in a
selection.

VB example:

Me.MapControl1.Map.Bounds = _
MapInfo.Engine.Session.Current.Selections.DefaultSelection.Envelope.Bounds

Event Arguments
The MapInfo.Engine namespace contains various event argument classes that provide
data for events. Refer to the online help for more information. Some of the event
argument classes include:

• CollectionCancelableEventArgs – Provides data for a collection event that can be
cancelled.

• CollectionEventArgs – Provides data for a collection event.

• NodeSelectionChangedEventArgs – Fires these event arguments when the node
selection changes.
MapXtreme 9.5 Developer Guide 226

 9 – Working with Core MapXtreme Classes
• SelectionChangedEventArgs – Other objects can attach delegates to this event to get
notified when a selection changes.

Exceptions
The Engine namespace contains various exception classes. Refer to the online help for
more information. Some of the exception classes include:

• ResourceNotFoundException – Throws this type of exception when the requested
object is not found in the Resource table.

• ResourceTypeMismatchException – The exception that is thrown when the object
read from Resources was not of the expected type.

• TimeoutException – The exception is thrown on Current timeout while waiting for a
pooled ISession to become available.
MapXtreme 9.5 Developer Guide 227

MapXtreme 9.5 Developer Guide 228

10

10 – Creating Expressions
Expressions are used throughout MapXtreme to describe the exact
pieces of information you need to display and analyze in your mapping
application. This chapter covers creating expressions for a wide range
of product areas, including data access, creating themes, labeling
maps and more.

In this chapter:

 Expressions Overview . 230
 Creating Expressions . 230
 Where Clause – Boolean Expressions . 231
 Functions In Expressions . 232
 Expression Examples . 232

Expressions Overview
Expressions are statements that are used to describe and format data. For example, in
English, an expression might read like “a median income of more than $50,000, or
“female percent of population.”

Expressions are formed using column names, constants (i.e., specific data values), along
with functions and operators that act upon the columns and constants. The operators and
functions are defined in the MapInfo SQL Language, developed to support MapXtreme
and other MapInfo .NET supported products going forward. For details, see the MapInfo
SQL Reference via the Help Viewer in Visual Studio.

Use expressions to make the most of your data. By using expressions you can:

• Show only the columns and rows of data that interest you.

• Derive new columns by calculating new values based on the contents of your existing
columns.

• Aggregate data to work with subtotals instead of the entire table.

• Combine data from two or more tables into one results table.

Many of the data sets you will use include more objects and information than necessary
for your projects. In many cases it is easier to work with a subset of the complete data
product. For example, if you were tracking crime statistics for a certain county by census
tract, you would not need the census tracts for the entire state. You would use an
expression to extract just the census tracts for the county.

Expressions are used throughout MapXtreme, in the following areas:

• SQL statements (select, insert, update, delete, group by, order by)

• SQL functions that take expressions as an arguments (e.g., the geometry argument in
MI_Area() is an expression that returns a geometry object.)

• Adding columns (MapInfo.Data.Table.AddColumn creates a temporary column based
on an expression.)

• Feature searches (SearchInfo and SearchInfoFactory)

• Themes (FeatureStyleModifier)

• Labels (LabelModifier)

• InfoTips (FeatureLayer, MapTools)

• Expression dialog

Creating Expressions
MapXtreme 9.5 Developer Guide 230

 10 – Creating Expressions
The simplest possible expression consists of a constant, such as “2” (numeric example)
or “Friday” (text example).

Other simple expressions consist of a column name, for example:

POP_2000
STATE

When you request specific multiple columns in a select statement, for example, these
columns together are known as an expression list.

Select colA, colB, colC from Table1, Table2
Select colA/2, ColB/ColC from Table1

You can also write expressions that perform mathematical operations on your data.

For example, RENT + UTILITIES is an expression that adds two columns together. This
expression could be used in a SQL statement to find all apartments that have a total cost
of less than $800 per month.

Where Clause – Boolean Expressions
A Boolean expression is a search condition that results in a value of either True or False.
For example, the expression

2 < 5

is a Boolean expression because the result is True.

All expressions that contain relational operators, such as the less than sign (<), are
Boolean. The operators AND, OR, and NOT, are Boolean operators. Boolean
expressions are also called comparison expressions, conditional expressions, and
relational expressions.

POP_2000 > 500000
POP_2000 <= POP_1990
PROVINCE <> ‘Ontario’
County = ‘Columbia’ AND VALUE >= 250000

Supported operators in MapInfo SQL are defined in the MapInfo SQL Reference online
via the integrated Help in Visual Studio (look for MapInfo SQL Reference in the Dynamic
Help contents pane).

Boolean expressions are used in the “where clause” of an SQL statement. The where
clause is the expression that controls the rows that are returned (the rows that result in
True).
MapXtreme 9.5 Developer Guide 231

For example, the boolean expression in this statement follows WHERE. Only objects in
the Europe table that fall within the boundary of France will be returned as True.

"SELECT * FROM Europe WHERE MI_Geometry within @France";

Functions In Expressions
Functions in MapXtreme are used to create even more complex expressions to retrieve
data that meets specific criteria. For example, MapInfo SQL supports many of the usual
database functions that work with strings, dates/time, and numbers,

The most powerful functions in MapInfo SQL are those that take advantage of the spatial
nature of mapping data. These geographic functions are used to create new geometries,
measure area and length, return spatial information, validate spatial relationships among
geometries, and others. Supported functions are defined in the MapInfo SQL reference.

An example of using a function in an expression might be when you wish to look at the
area of a table of boundaries, such as school districts. Use the function MI_Area() to
return the area of each record in the table.

Additional examples of functions in expressions are found in the Expressions Examples
section below.

DateTIme and Time Expressions
When using DateTime and TIme expressions with MapXtreme, please be aware of the
following:

• If a DateTime column or Time column is used alone in an expression, it is formatted
using the current locale.

• If a DateTime or Time column is in an expression, its string value is TimeToNumber or
DateToNumber + space + TimetoNumber.

• Operator math on Time or DateTime is not supported. You can add a number to a
Date, but not to a Time or DateTime.

Expression Examples
The following highlights some uses of expressions in various areas of MapXtreme.
MapXtreme 9.5 Developer Guide 232

 10 – Creating Expressions
SQL Statement Examples

This example will select all records from the Eurcity_1K table that are within Germany
and have a population of over 1 million.

Select * from Eurcity_1K WHERE (MI_Geometry MI_Within @Germany) AND Tot_Pop >
1000000

The following examples make selections based on Time and Date columns in the table.
This example will select all crime records from a "CrimeActivity" table where the crime
occurred between 12:00:00 AM and 6:00:00 AM:

SELECT * FROM CrimeActivity WHERE CrimeTime BETWEEN '12:00:00 AM' AND '6:00:00
AM'

Where CrimeTime is a Time column that stores the time at which the crime occurred.

This example will select employee Names from an "Employee" table who were born
before December 31, 1970.

SELECT Names FROM Employee WHERE BirthDay < '12/31/1970 12:00:00 AM'

Where BirthDay is a Date column that stores the birthdays of employees.

MapInfo SQL Function Example

The following expression uses a MapInfo SQL function to find features within a buffer.

Obj CentroidWithin MI_Buffer(Obj, 5, ‘km’, ‘Spherical’, 24)

This expression uses a MapInfo SQL special keyword reserved for geographic objects
called ‘Obj’. This keyword describes the geometry of the object such as its coordinate
system and bounds. This keyword is compatible with previous versions of MapX and
MapInfo Professional. It is equivalent to the column name MI_Geometry.

Note that km and Spherical are enclosed in single quotes. In MapInfo SQL, string literals
must be enclosed in single quotation marks while identifiers such as column names, table
names, aliases, etc.) should be enclosed in double quotation marks, but only needed if
the parsing logic is unable to correctly parse the identifier. This would include identifiers
that have spaces in their names or other special characters.

To find features that fall outside the buffer, the expression would look like:

NOT Obj CentroidWithin MI_Buffer(Obj, 5, ‘km’, ‘Spherical’, 24)
MapXtreme 9.5 Developer Guide 233

Add Columns Example

When adding temporary (computed) columns to a table using the AddColumns method,
the columns supplied contain an expression that defines how the value for the column is
computed. The expression may contain an aggregation function if multiple source records
are expected to match up to a single record in the table to which the columns are being
added.

The example below uses expressions to represent population density "Pop_1990 /
MI_Area(Obj, 'sq mi', 'Spherical')". The expressions are preceded by their new column
names. PopDensity1990 and PopDensity2000.

VB example:

Public Shared Sub MapInfo_Data_TableAddColumns(ByVal miTable _
As Table)

Dim NewCols As Columns = New Columns
NewCols.Add(New Column("PopDensity1990", "Pop_1990 / _

MI_Area(Obj, 'sq mi', 'Spherical')"))
NewCols.Add(New Column("PopDensity2000", "Pop_2000 / _

MI_Area(Obj, 'sq mi', 'Spherical')"))
miTable.AddColumns(NewCols)

End Sub

For more information on adding columns, see Adding Expression Columns to a Table.

Feature Search Example

The following example uses a boolean expression SearchWhere("State='FL'") that, when
executed, will return a value of 1 for each row that contains FL.

VB example:

Public Shared Sub MapInfo_Data_SearchInfo(ByVal catalog As Catalog)
Dim fFlorida As Feature = catalog.SearchForFeature("usa", _

MapInfo.Data.SearchInfoFactory.SearchWhere("State='FL'"))
Dim si As SearchInfo = _

MapInfo.Data.SearchInfoFactory.SearchWithinGeometry(fFlorida._
Geometry, ContainsType.Centroid)

Dim fc As IResultSetFeatureCollection = _
MapInfo.Engine.Session.Current.Catalog.Search("uscty_1k", si)

' Set the map view to show search results

MapInfo.Engine.Session.Current.MapFactory(0).SetView(fc.Envelope)
' Set the view of the first map.

 ' Add results to selection.
MapInfo.Engine.Session.Current.Selections.DefaultSelection.Add(fc)
End Sub
MapXtreme 9.5 Developer Guide 234

 10 – Creating Expressions
For more information on the Feature class and search methods, see Features and
Feature Collections.

Thematic Expression Example

A pie theme is an object theme that draws a pie chart based on the numeric value of the
theme's expression. The expression for the theme is made up of three columns:
Pop_Native", "Pop_Asian","Pop_Other".

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_PieTheme(ByVal _
map As Map)

' Load a map based on one table
map.Load(New MapTableLoader("world.tab"))
Dim lyr As FeatureLayer = CType(map.Layers("world"), FeatureLayer)

' Create a new pie theme
Dim pieTheme As MapInfo.Mapping.Thematics.PieTheme = New _

MapInfo.Mapping.Thematics.PieTheme(map, lyr.Table, "Pop_Native", _
"Pop_Asian", "Pop_Other")

' Create an object theme layer based on that pie theme
Dim thmLayer As ObjectThemeLayer = New ObjectThemeLayer("World _

Pop Growth Rate", Nothing, pieTheme)

'Add object theme to the map's layer collection.
map.Layers.Add(thmLayer)

End Sub

For more information on themes, see Chapter 14 Using Themes and Legends.

Label Expression Example using Date and Time

Expressions are properties of a label modifier which you use to modify the default
properties used to make a label. The expression in the code example says to display the
label in this form: Date/Time: <date and time>.

VB example:

Public Shared Sub MapInfo_Mapping_OverrideLabelModifier(ByVal _
modifier As OverrideLabelModifier)

modifier.Name = "'Date/Time: ' + DateTimeToString(dateTimeColumn, 'm/d/yyyy
hh:mm tt')"
End Sub

For more information on labeling, see Labels.
MapXtreme 9.5 Developer Guide 235

InfoTips Expression Example

InfoTips are text items that display when a tool hovers over a Feature. Expressions can
be used to generate text for InfoTips in a similar fashion to the way they are used for
labels. Use the MapTool.SetInfoTipExpression static helper function to set the InfoTip. It
takes care of creating the InfoTip hashtable and adding the layer entry into the hashtable
if it does not already exist. Each tool can be set to have InfoTips enabled or disabled.

The following example will generate a two-line text label to display the Table alias and the
X or Y coordinate for the centroid of the object that the cursor is hovering over.

VB example:

Public Shared Sub MapInfo_Mapping_HowDoICreateExprForInfoTip(ByVal
mapControl1 As MapControl)
 MapTool.SetInfoTipExpression(mapControl1.Tools.MapToolProperties,_

CType(mapControl1.Map.Layers(0), FeatureLayer), "@TableAlias + _
char(13) + _ 'Centroid X:' + MI_CentroidX(obj) + ' Y:' + _
MI_CentroidY(obj)")

End Sub

For more information on InfoTips, see Layer Control.
MapXtreme 9.5 Developer Guide 236

11

11 – Accessing Data from a

DBMS
MapXtreme provides spatial server access. This is a powerful feature
that allows developers to connect to live data stored in spatial servers,
such as MapInfo's SpatialWare running on Microsoft’s SQL Server
2008/2012/ 2014 or the Oracle Spatial databases. Spatial servers allow
companies to host their map data in their enterprise database for
central management and security. Spatial servers like SpatialWare
offer advanced query processing and increased performance on the
server for an organization's spatial data.

In this chapter:

 Accessing Remote Spatial Data . 238
 Accessing Remote Tables Through a .TAB File 238
 Accessing Remote Tables Without a .TAB File. 238
 Mapping DBMS Data with X/Y Columns. 239
 Accessing Data from Oracle. 239
 Accessing Data from MS SQL Server . 243
 DBMS Connection String Format . 246
 Defining Mappable Tables in Server Table Queries 248
 Accessing Attribute Data . 251
 Performance Issues . 251
 Working with the Cache . 252
 The MapInfo_MapCatalog . 256
 Adding Rows to the MapInfo_MapCatalog 259
 Per-Record Styles . 264
 Troubleshooting . 266

Accessing Remote Spatial Data
You can access data using MapXtreme with different DBMS servers. The servers include:

• Microsoft Access 2007 and Excel 2007

• Microsoft Access 2003

• Oracle 11G (11.1.0.6.0 and 11.1.0.7.0)

• Oracle 10G, 10GR2

• Microsoft SQL Server 2012 (with SQL Native Client 11)

• Microsoft SQL Server 2008 (with SQL Native Client 10)

• Microsoft SQL Server 2014

You can add a table from data in a DBMS using the TableInfoServer class in the
MapInfo.Data namespace.

The details for adding spatial data are included in the following sections.

Accessing Remote Tables Through a .TAB File
A MapXtreme application can access DBMS data “live”, or can open a MapInfo
Professional linked table. However, the linked table will be read-only and cannot be
refreshed by your application. The data is actually from the remote database and does
not reflect the data in the local linked version.

You can create a .TAB file to provide access to remote data. To generate a .TAB file using
MapInfo Professional, choose File > Open a DBMS table.

The .TAB file is a text file; you can create a .tab file using any text editor. Once you have
created the .tab file, you can access it the way you access any other MapInfo .TAB file
programmatically through the Catalog object or through the Workspace Manager.

Accessing Remote Tables Without a .TAB File
An application does not need a .TAB file to access remote data. The following code
sample illustrates this process.

VB example:

Public Shared Sub MapInfo_Data_TableInfoServer(ByVal connection As _
MIConnection)

' Note: Do not specify any columns. These are determined
MapXtreme 9.5 Developer Guide 238

 11 – Accessing Data from a DBMS
' dynamically from the query

Dim ti As TableInfoServer = New TableInfoServer("Provinces")
ti.ConnectString = "SRVR=ontario;UID=mapx;PWD=mapx"
ti.Query = "Select * From Provinces"
ti.Toolkit = ServerToolkit.Oci

ti.CacheSettings.CacheType = CacheOption.Off ' On is the default
Dim tbl As Table = connection.Catalog.OpenTable(ti)

End Sub

Mapping DBMS Data with X/Y Columns
You can access data from a DBMS table that has X/Y coordinates. You need to create a
MapInfo_MapCatalog and register the tables as SpatialType 4.0 and specify two column
names as the coordinates. The columns should be indexed on the table. Connect to the
DBMS via ODBC and specify the new columns as “Obj” or “MI_Geometry” in your query.

Accessing Data from Oracle
To connect to an Oracle database from a MapXtreme application, the Oracle OCI
connectivity client must be installed and appropriate permissions granted. See your
Oracle documentation for detailed information.

Geometry Conversion
The table below shows the translation from MapXtreme objects to Oracle Spatial
(SDO_GEOMETRY).

From MapInfo To Oracle

NULL geometry NULL

Point 1 POINT

MultiCurve (with IsLegacyLine
= true)

2 LINESTRING Geometry contains one line
string

Polygon 3 POLYGON Geometry contains one polygon.
MapXtreme 9.5 Developer Guide 239

The table below describes the translation from Oracle (GTYPES) to MapInfo Spatial
objects.

FeatureGeometryCollection 4 Collection Geometry is a heterogeneous
collection of elements.

MultiPoint 5 MULTIPOINT

MultiCurve 6 MULTILINESTRING Geometry has multiple
line strings.

MultiPolygon 7 MULTIPOLYGON Geometry has multiple
polygons.

Ellipse NULL

LegacyArc NULL

Rectangle NULL

LegacyText NULL

RoundedRectangle NULL

PieTheme, BarTheme NULL

From Oracle GTYPES To MapInfo

0 *UNKNOWN_GEOMETRY (Spatial ignores this
geometry.)

1 POINT Geometry contains one point. Point

2 LINESTRING Geometry contains one line string. MultiCurve

3 POLYGON Geometry contains one polygon. MultiPolygon

4 *Collection Geometry is a heterogeneous collection
of elements.

FeatureGeometryColle
ction

5 MULTIPOINT Geometry has multiple points. MultiPoint

From MapInfo To Oracle
MapXtreme 9.5 Developer Guide 240

 11 – Accessing Data from a DBMS
Oracle Support for Z and M Values
MapXtreme supports reading and writing Oracle GTYPEs with Z and M values. The
presence and order of Z and M is determined by inspecting the DIM_INFO array in the
USER_SDO_GEOM_METADATA for the table. MapXtreme checks for the following
dimension names (case insensitive):

• For Z dimension: "Z", "Elevation", " Depth" and "Z Dimension"

• For M dimension: “M", "Measure", and "M Dimension"

Tables that contain M and/or Z values now return FeatureGeometry objects that contain
the data for the dimensions present. FeatureGeometry instances inserted or updated into
an Oracle table will preserve each of the four dimensions of the new geometry (XYZM)
that the Oracle table is defined to support. For geometries containing dimensions
unsupported by the Oracle table, the values for those dimensions are ignored during
insert/update operations. For geometries not containing dimensions supported by the
Oracle table, NULL values are supplied for the missing dimensions during insert/update
operations. For example, when inserting a geometry with no Z or M values into a table
that is defined with dimensions x, y, and m, the M values stored in the table will be NULL.

The success of any of these insert/update operations may also be dependent upon
additional server-side validation including explicit column constraints and validation of
values against the dimensional extents specified in the SDO_GEOM_METADATA system
table.

SDO_GEOMETRY Arc and Circle Translation
Circles and circular arcs can be resolved to MultiCurves with a resolution of 25 segments
per 360 degree circle.

6 MULTILINESTRING Geometry has multiple line
strings.

MultiCurve

7 MULTIPOLYGON Geometry has multiple polygons
(more than one exterior boundary).

MultiPolygon

*Some data loss may occur when translating to or from MapInfo object format.
They are interpreted (when possible) as single point SDO_POINTTYPE values if
not already NULL. They “grab” the first point in the ordered array which would be
interpreted as a NULL geometry.

From Oracle GTYPES To MapInfo
MapXtreme 9.5 Developer Guide 241

Visualization of Non-translatable Oracle Objects
An Oracle Spatial Object that your MapXtreme application is unable to translate produces
a Point object with a default style (a black star) at the location of the SDO_Spatial point, or
the first SDO_Spatial ordinate in the ordinate array. This is to enable a visual
representation of the non-translatable object in the proper geographic area to which it
belongs. Examples of non-translatable objects are user-defined objects GTypes 0,4,5, or
invalid SDO_geometries containing unrecognized GTypes, ETypes, or interpretations.
The second class should also fail using SDO_VALIDATE_GEOMETRY().

Centroid Support
A MapXtreme application uses the SDO_POINT as the centroid value for polygons. This
centroid feature is used to position labels, and also affects the tool selection of the object.
The Oracle SDO_GEOMETRY.SDO_POINT_TYPE field (if not NULL) is interpreted as
the feature centroid if the point exists inside the region. If the point exists outside of the
region, its centroid is calculated as always.

 There is currently no method or tool in MapXtreme to set the centroid of a region
feature, but one may read and use a stored centroid.

Oracle Spatial Reference Support (SRID)
An Oracle SDO_GEOMETRY column may be defined with a spatial referencing system.
This is done by providing the Oracle SRID in the USER_SDO_GEOM_METADATA and
also by assigning that SRID in the stored SDO_GEOMETRY values. If a table contains an
Oracle Spatial column with an assigned SRID, your MapXtreme application is able to
query and properly interpret the data. The MapInfo_MapCatalog must contain the same
MapInfo Professional CoordSys string as indicated in the SRID of the data, since it is the
Coordsys in the MapInfo_MapCatalog that is currently used to interpret and update the
data.

If the Spatial column does not contain an SRID value, (the value is NULL), your
MapXtreme application is also able to interpret the data via the MapInfo Professional
Coordsys defined in the MapCatalog.

When loading tables that use the Latitude/Longitude coordinate system (Geodetic Data)
to Oracle Spatial, it is important to verify that all geometry coordinates are between (-
180,180) longitude and (-90, 90) latitude. Geodetic data coordinates beyond that range
MapXtreme 9.5 Developer Guide 242

 11 – Accessing Data from a DBMS
are not supported in Oracle Spatial and may cause problems. You can check your data
using MapInfo Professional before loading, or use the Oracle Spatial
SDO_GEOM.VALIDATE_LAYER() function on the table after loading it to Oracle Spatial.

OCI Connection Dialog
The MapInfo.Data.DBMSConnectionCollection class supports a ConnectionFailed event
by subscribing to the ConnectionFailedEvent event handler. When fired, this event
displays an OCILoginDlg to give the user an opportunity to change the login information
and retry the connection to the Oracle database one additional time. This handler is
specific to the MapXtreme OCI toolkit. The event is also available through the
LoadMapWizard class in the MapInfo.Windows.Dialogs namespace.

Accessing Data from MS SQL Server
MapXtreme supports data stored in Microsoft’s SQL Server 2008, SQL Server 2012 and
SQL Server 2014. The following information pertains to SQL Server 2008.

SQL Server 2008 Support
MapXtreme supports reading and writing data from and to Microsoft’s SQL Server 2008,
including the spatial data types GEOMETRY and GEOGRAPHY, along with M and Z
value support for both spatial formats.

To access data from SQL Server 2008, MapXtreme requires SQL Server Native Client 10.
Data is then handled like data from other remote database management systems that

MapXtreme supports1. Use the MapInfo.Data.TableInfoServer class to define the
connection string and an SQL statement to execute on the remote table. Internally,
MapXtreme uses ODBC to access the remote database.

1. For a complete list see Installation Requirements on page 22.
MapXtreme 9.5 Developer Guide 243

The following table shows how objects are handled in MapXtreme given a specific object
type from SQL Server 2008.

This table shows how a MapXtreme FeatureGeometry is written back to SQL Server 2008

SQL Server 2008 Spatial
GEOGRAPHY or GEOMETRY MapXtreme FeatureGeometry

Sql Server 2008 Spatial
GEOGRAPHY/GEOMETRY

FeatureGeometry

Point Point

LineString MultiCurve

Polygon Multipolygon

MultiPoint MultiPoint

MultiLineString MultiCurve

MultiPolygon MultiPolygon

GeometryCollection FeatureGeometryCollection

GeometryCollection containing
only Points and/or MultiPoints

MultiPoint

Geometrycollection containing only
LineStrings and/or MultiLineString

MultiCurve

Geometrycollection containing only
Polygons and/or MultiPolygons

MultiPolygon

An EMPTY
GEOMETRY/GEOGRAPHY, e.g.,
Point empty

NULL

MapXtreme FeatureGeometry
SQL Server 2008 Spatial

GEOGRAPHY or GEOMETRY

Point Point

MultiPoint MultiPoint

MultiPoint containing only one
Point

Point
MapXtreme 9.5 Developer Guide 244

 11 – Accessing Data from a DBMS
SQL Server 2008 provides new types for date and time information. The following table
shows how date and time types are mapped to MapXtreme date and time types.

Spatial tables from SQL Server 2008 must be registered in the MapInfo_MapCatalog so
that MapXtreme understands what it reads.

The MapCatalog provides four new spatialcolumn values to represent SQL Server 2008
tables:

MultiCurve MultiLineString

MultiCurve containing only one
Curve comprised of two points

LineString

Multipolygon MultiPolygon

FeatureGeometryCollection GeometryCollection *

Rectangle NULL

RoundedRectangle NULL

Ellipse NULL

LegacyArc NULL

LegacyText NULL

* This GeometryCollection may contain any or all of the following types: MultiPoint,
MultiLineString, and MultiPolygon.

SQL Server MapXtreme

Date Date

Time Time

DateTime DateTime

SmallDateTime DateTime

DateTime2 DateTime

DateTimeOffset No support

MapXtreme FeatureGeometry
SQL Server 2008 Spatial

GEOGRAPHY or GEOMETRY
MapXtreme 9.5 Developer Guide 245

17.x for GEOMETRY without M and Z values

18.x for GEOGRAPHY without M and Z values

20.x for GEOMETRY with M and Z values

21.x for GEOGRAPHY with M and Z values.

Data can be uploaded using MapInfo Professional or EasyLoader or you can use MapInfo
Professional to make existing data mappable, which will create the entry in the
MapCatalog. See The MapInfo_MapCatalog for more information on the MapCatalog.

MapXtreme supports SQL Server 2008 tables created in MapInfo Professional (table
versions 900, 950 and 1000) and EasyLoader.

DBMS Connection String Format

ODBC Connection String Format
The format of the ODBC connection string is defined by several clauses separated by
semicolons (;). Each clause has the form Key=Value. Important keys are listed below.

Keyword Description

DLG= A number that controls the display of the connection dialog box:
0 – Suppresses the connection dialog.
1 – Displays the connection dialog.
2 – Displays the connection dialog, but only if needed (i.e., if not all
required information was provided) [default].

 ASP.NET Applications which use Pooling must have a DLG=0
clause in the connection string for ODBC.

DSN= Specifies the ODBC data source name.

Caution: If you use the DSN= syntax key, the name that you specify
must match the data source name in use on the user’s system. Note
that different users might use different names to refer to the same
data source. If you cannot know in advance what data source name
to use, use the DRIVER= syntax key instead of the DSN= syntax
key.
MapXtreme 9.5 Developer Guide 246

 11 – Accessing Data from a DBMS
 Connection attributes/parameters do not have to be in order and one may use a
dialog to get a connection from an existing connection pool to avoid redundant
connections. In previous version of our API, if you used a dialog each time to
connect to the same database, or if you did not order the connection keywords in
the connection string in the documented order, the connection would not be shared
and you would get multiple connections.

ODBC Layers and Pooling in Web Applications
When adding remote layers via ODBC to an ASP.NET application that uses pooling, be
sure to have the DLG=0 clause in the connection string. This will avoid the display of
unnecessary user and password dialogs that can time out. This applies to TAB files and
workspaces. The following connection string example shows the highlighted DLG=0
clause.

<ConnectString>DRIVER={SQL Server};DATABASE=Devel;Server=Paladin;
UID=devel;PWD=devel;QuotedID=Yes;Trusted_Connection=No;
Network=DBMSSOCN;Address=PALADIN,1433;DLG=0</ ConnectString>

When using TableInfoServer and pooling is on, to access SQL Server specify
"DLG=SQL_DRIVER_NOPROMPT" in the connection string to avoid throwing a
MapInfo.Data.TableException: Unable to open table.

DRIVER= Specifies the exact driver name of the installed driver. Used instead
of the DSN= syntax key.

Example:

DRIVER={SQL Server}

 This does not apply to Oracle Spatial.

UID= Specifies the desired UserId for the data source, if required.

PWD= Specifies the user’s password for the data source, if required.
Passwords do not need to be in the connection string for the two
strings to match. If two tables are in the same database, the
connection string is the same.

Keyword Description
MapXtreme 9.5 Developer Guide 247

Oracle Spatial Connection String Format
These are the Oracle Spatial keywords. The string is defined by several clauses
separated by semicolons (;). Each clause has the form Key=Value. Important keys are
listed in the table below.

Sample Connection Strings
Here are sample connection strings for Oracle Spatial and Microsoft SQL Server 2008
ODBC drivers.

Oracle Spatial connection string:
UID=george;PWD=password;SRVR=OracleSpatial9i

Microsoft SQL Server 2008 connection string:
DRIVER={<driver>};
SERVER=<server>;UID=<uid>;PWD=<pwd>;Database=<database>

where <driver> for SQL Server Spatial should be the most current available, SQL Server
Native Client 10.0 or higher version.

Defining Mappable Tables in Server Table
Queries
The query you specify for a server table defines the result set of data from your DBMS
that represents the data in the table being added. You can formulate a fairly complex
query to do powerful server-side analysis that defines a mappable table in MapXtreme.
Your MapXtreme application uses this query internally to access the data.

Keyword Description

SRVR= Reflects the service name for the server set in the Oracle Net8
EasyConfig utility. This is required for Oracle connectivity, but does
not apply to ODBC connections.

UID= Specifies the desired UserId for the data source, if required.

PWD= Specifies the user’s password for the data source, if required.
MapXtreme 9.5 Developer Guide 248

 11 – Accessing Data from a DBMS
MapXtreme generates several internal queries based on your query to access the data in
a map as well as selection/key based queries. The table from which the geometry column
is selected must be registered in the MapInfo MapCatalog on the server. MapXtreme
requires this to obtain certain metadata about the geometry column such as the
coordinate system, spatial type, and default styles.

In order for a query to define a mappable table, the query must contain both a geometry
column and a key column. Sometimes for more complex queries on small sets of data
(where the spatial indexing or spatial predicate cause the query to fail), you can specify
TableInfoServer.MbrSearch=false to enable the results to be mapped.

The Geometry Column
If you do not specify a geometry column that your MapXtreme application can recognize,
the table is opened, but cannot be added to a map (the table is unmappable). MapXtreme
determines the geometry column of the table by looking it up in the MapCatalog and by
examining the result set datatype of the column. You can reference the geometry column
generically via the pseudo column name “Obj”, or you may refer to the geometry column
using its specific column name. This form is required to reference the geometry column
for an X/Y mappable layer. You can specify a geometry column via any server-supported
geometry function/expression.

Example
Select Obj from rdbsdata
Select sw_geometry from rdbsdata
select sw_member, ST_Buffer(geometry, 66.0, 0.1) from rdbsdata

// a geometry function
Select st_geometry(st_point(72.5, 42.5) from rdbsdata

// a geometry constructor

Oracle sdo_buffer example:
Select mi_prinx, mdsys.sdo_geom.sdo_buffer(geoloc, (select diminfo from
sdo_geom_metadata where table_name = 'ALINE'), 20) from aline where prinx = 1

Oracle constructor example:
Select 1 "mi_prinx",
mdsys.sdo_geometry(3,null,null,mdsys.sdo_elem_info_array(1,3,3),
mdsys.sdo_ordinate_array(-79.919909,40.553465,-71.060457,45.363657)) from dual

SQL Server 2008 Spatial function example:
select location_id, geography::Point(lat, long, 4326 /*WGS84*/) as geog from
dbo.store_locations
MapXtreme 9.5 Developer Guide 249

The Key Column(s)
A key column(s) must be returned in the query to enable it to be opened as a table. This
is what enables your MapXtreme application to identify each row in the result set to
perform shading, selection, and label operations on the layer.

The key column does not need to be specified in the query in most cases.

Your MapXtreme application can look up and determine the best key column(s) to use in
order to uniquely reference a row in the result set, and then add them to the query if they
are not present. In most cases, this is the primary key/unique index.

For Oracle Spatial tables, the MI_PRINX may be used.

For some queries, it is not possible for your MapXtreme application to identify the key.
This is the case in a query on a view or a synonym. The view or synonym must appear in
the MapInfo MapCatalog. They also must be registered as required with the underlying
Spatial index system in most cases. Since MapXtreme cannot determine the key on
these, a mechanism is provided to allow the application developer/query writer to identify
the key column in the result set. The key must be a single column and must be a distinct
value in the result set. To identify the column that is to be used as the key column, you
can specify column alias of prinx or mi_prinx, (e.g., select custid mi_prinx, custname,
Obj from mycust).

Example
Select customer_id mi_prinx, obj from customer_view

The column alias “mi_prinx” is used to identify and use the customer_id column as the
key column for the table. You can alternately alias the desired key column in the create
view statement to identify the key column automatically for any query on that view.

Example
Create view customer_view as select customer_id mi_prinx, geoloc from customer

In general, if a column name or column alias of prinx, or mi_prinx is found in the result set,
that column is used as the key column for the table. This enables the application/query
writer to specify the key column they desire.
MapXtreme 9.5 Developer Guide 250

 11 – Accessing Data from a DBMS
Accessing Attribute Data
To use all available data columns, specify a query such as Select * From tablename. You
are not required to specify * (asterisk); instead, you can designate specifically which
columns you want to use. For the best performance, limit your query so that it retrieves
only the needed columns.

When you add a DBMS table, for performance sake, you should only specify the columns
in the query that you intend to use in your application. These are the spatial column, the
key column(s), which are added automatically if you do not specify them, and columns
you want to label with, or create a theme from. You may use the pseudo columns “OBJ”
for any mappable table to refer to the column(s) containing the spatial data. This is
required for a table using the MapMarker MDIGEOADDRESS column on a table with an
X/Y column.

You can use any server side expression/function to specify a column. Also, avoid select *
from tab in a real application.

The following code example defines a server table using a TableInfoServer and adds a
layer to a map using this definition. You can now label or place themes based upon the
columns in this table.

VB example:

Public Shared Sub MapInfo_Data_TableInfoServer(ByVal connection As _
MIConnection)

' Note: Do not specify any columns. These are determined
' dynamically from the query

Dim ti As TableInfoServer = New TableInfoServer("Provinces")
ti.ConnectString = "SRVR=ontario;UID=mapx;PWD=mapx"
ti.Query = "Select * From Provinces"
ti.Toolkit = ServerToolkit.Oci

ti.CacheSettings.CacheType = CacheOption.Off ' On is the default
Dim tbl As Table = connection.Catalog.OpenTable(ti)

End Sub

Performance Issues
Establishing a connection with the database server may take several seconds. This is a
one-time cost, incurred when the table is first opened.
MapXtreme 9.5 Developer Guide 251

The map-display speed depends on how much data is retrieved from the server. In some
cases, displaying a map from a server is noticeably slower than displaying a map from a
local file. Speed also depends on whether your MapXtreme application has already
cached the map features that are being displayed.

Working with the Cache
Knowing how to work with cache in MapXtreme enables you to improve your application’s
performance. The sections below describe what the cache is, how it works in the
MapXtreme object model, and the CacheSettings property of the TableInfoServer object.

What Is the Cache?
In place of local files, applications can access MapXtreme features from a remote
database. In place of reading these records from the database each time the map needs
to be acted upon, your MapXtreme application can temporarily store these records in the
cache. This limits the number of calls between the application and the remote database.
Records in a server table can be cached to improve the performance of your application
(e.g., drawing, thematics, labeling, etc.). Server table data is cached internally as it is
read and drawn to the Map window. All subsequent redraws read from this cache instead
of going to the server database for the same data. The cache is able to offer significant
redraw performance improvement.

There are several settings that developers can use to customize cache usage. The cache
can be enabled (or disabled) when the server table is added by specifying the values for
the CacheSettings property of the TableInfoServer object and is On by default.

How the Cache Works
For each record that is cached, each attribute data value is stored in memory and each
feature object is stored on disk in a temporary Rtree file. For tables with a lot of records
and/or a large record size (for example, number of bytes per record for the attribute data),
caching may use a significant amount of memory. If an application tries to cache too
much data, too much virtual memory usage may be required, which can degrade
performance. Applications should be selective about how the cache is utilized.
MapXtreme offers a variety of mechanisms for controlling the cache.
MapXtreme 9.5 Developer Guide 252

 11 – Accessing Data from a DBMS
The TableInfoServer Object and the CacheSettings Property
When a table is added to the map, the cache is enabled by default but can be further
configured using the CacheSettings property of the TableInfo object. This property has
four possible values: ON, OFF, ALL, USER, with ON being the default for
TableInfoServer, OFF is default for other TableInfo objects.
MapXtreme 9.5 Developer Guide 253

Parameter Description

OFF A value of 'Off' means that the table will not use the cache at all. All
data operations will go directly to the database server.

ON Caching is enabled and the table automatically performs caching
based on the map view (center/zoom). The user may additionally
control the cache through the cache constraint objects.

The cached table maintains the record cache in a fashion that best
improves standard map operations. The cache is maintained to
contain, at a minimum, all the records displayed in the current
window of each Map the table is in (and visible). Once an initial
map window has been cached, pan and zoom operations that fall
entirely within the initial extents of the cache access the cached
records and do not need to query the database. If a pan/zoom
operation falls outside the cached region, the table adds the new
map window MBR (view) to the cache and obtains the missing
records from the database server and adds them to the cache. The
old map view is not initially discarded; rather, an internal history of
previous map views is maintained. To avoid having a cache that
grows excessively large, there are controls that can be placed on
the table's cache to determine when to discard old cached views
(map window MBR regions). These controls are properties of the
CacheParameters object, which can be set at the time the table is
initially opened. This allows the developer to set limits on the
maximum amount of memory or disk space used by the cache, the
maximum number of previous map window views to maintain in the
history, the maximum number of records to maintain in the cache,
and/or the maximum amount of time old map window views are
allowed to remain in the cache history. These limits can be used
individually or in combination to provide the cache management
that best suits the application's needs.

ON is the default setting for the CacheParameter setting for a
TableInfoServer. For other TableInfo data sources, the default is
OFF. For example, TAB files are not cached by default.
MapXtreme 9.5 Developer Guide 254

 11 – Accessing Data from a DBMS
If you try to cache too much data or too many tables, virtual memory usage may be
forced, and performance gain could be lost.

USER A value of USER for the LayerInfo CACHE parameter means that
your application creates a cache, but the only records that are
placed in the cache are those specified by the application
developer. The mechanisms available for specifying which records
are placed in the cache are BoundConstraint, FeaturesConstraint,
and AllFeaturesConstraint objects. The word constraint implies that
these objects are constraining the cache to include the specified
records. The BoundsConstraint object can be used to place all
records into the cache for which the MBR of the feature intersects
the MBR of the constraint.

A FeaturesConstraint object can be used to add specific records to
the cache. For example, if an analysis is going to be performed that
involves multiple steps and/or reads of the Feature or RowValues of
the feature, possibly on a set of features returned from a
Layer.Search, Layer.SearchWithinDistance, etc., it may be
advantageous to place these records into the local cache for the
duration of the analysis and remove them when finished. The
FeaturesConstraint provides this capability. If an application is
going to perform an analytically intensive operation that may hit
every record, it may be desirable to temporarily cache the entire set
of data for the layer. This is accomplished by using the
AllFeaturesConstraint. These cache constraint objects can also be
used when the cache is set to ON. In this case, they may add
records to the cache but have no effect on the cache's history of
previous map window views. The constraint objects can also be
used when the cache is set to OFF or ALL in which case they have
no effect.

 The constraint objects have no effect on non-server tables.

ALL The entire table is cached. With this option, the table's data is
retrieved from the server once and accessed locally from that point
forward. To refresh the data in the cache, use the Refresh method
on the table.

Parameter Description
MapXtreme 9.5 Developer Guide 255

Cache Storage Type:
Cache Storage type indicates the table type used to store the cached records of RDB
server tables. Following Storage Types are used in MapXtreme:

1. Native: The cached records are stored on disk in a temporary MapInfo Native table. If
multiple tables are opened with this cache storage type, then a different set of MAP,
DAT, etc. files will be created for each table. This storage type has a maximum file-size
limits of 2GB.

2. MemTable: The cached records are stored in memory in a temporary MemTable table.
Geometry objects are stored on disk in a temporary MAP file. If multiple tables are
opened with this cache storage type, then a separate set of in-memory cache and on-
disk MAP files will be created for each table. This storage type also has an upper size
limit of 2GB.

3. NativeX: The cached records are stored on disk in a temporary MapInfo NativeX table.
If multiple tables are opened with this cache storage type, then a different set of MAP,
DAT, etc files will be created for each table. This NativeX storage type supports UTF-8
and UTF-16 charsets as well as it can store the data files that are greater than 2GB in
size.

4. MemNativeX: The cached records are stored in memory in a temporary MemNativeX
table. Geometry objects are stored on disk in a temporary MAP file. If multiple tables
are opened with this cache storage type, then a separate set of in-memory cache and
on-disk MAP files will be created for each table. MemNativeX cache supports UTF-8
and UTF-16 charsets as well as it can store the data files that are greater than 2GB in
size.

5. Geopackage: The cached records are stored on disk in a temporary Geopackage
database(*.GPKG) file. All RDB server tables opened in a session with this cache
storage type are cached in a single Geopackage database and for each open RDB
table, a separate Geopackage cache table is created in that single Geopackage
database.

6. MemGeopackage: The cached records are stored in an in-memory Geopackage
database.

The MapInfo_MapCatalog
In order to display data on a map, your MapXtreme application needs to access a special
table, known as the MapInfo_MapCatalog. One catalog must be created per database
before any tables in that database can be viewed as a map layer in a MapXtreme
MapXtreme 9.5 Developer Guide 256

 11 – Accessing Data from a DBMS
application. The MapCatalog must contain information about the spatial columns in each
of the mappable tables you want to access from the database. The MapInfo EasyLoader
utility automatically inserts the appropriate row into the MapInfo_MapCatalog when the
table is uploaded into the database.

Your application can use a MapInfo_MapCatalog that already exists on the server. (This
same catalog is shared by various MapInfo client applications). If there is no
MapInfo_MapCatalog on the server, you need to create one. MapXtreme supports the
storage of style information for individual features in remote databases.

Loading Spatial Data to DBMS
If you have spatial data in the form of a MapInfo table, you can import it into your DBMS
database.

To load data into Microsoft SQL Server and Oracle Spatial, use the MapInfo EasyLoader,
that is distributed with MapInfo Professional and available for download from
http://support.precisely.com. The EasyLoader utility automatically creates a
MapInfo_MapCatalog when you upload a table, if there is no MapInfo_MapCatalog
already present.

Manually Creating a MapInfo MapCatalog
If you are not a MapInfo Professional or EasyLoader user, you or your database
administrator will need to create the MapCatalog manually, as described below. You only
have to create the MapCatalog once per server/database.

1. Create the user MAPINFO in the specific database where the mappable tables are
located.

2. Create the table MAPINFO_MAPCATALOG in the database.

The Create Table statement needs to be equivalent to the following SQL Create Table
statement:

Create Table MAPINFO_MAPCATALOG (
SPATIALTYPE Float,
TABLENAME Char(32),
OWNERNAME Char(32),
SPATIALCOLUMN Char(32),
DB_X_LL Float,
DB_Y_LL Float,
DB_X_UR Float,
DB_Y_UR Float,
VIEW_X_LL Float,
VIEW_Y_LL Float,
MapXtreme 9.5 Developer Guide 257

http://support.precisely.com
http://support.precisely.com

VIEW_X_UR Float,
VIEW_Y_UR Float,
COORDINATESYSTEM Char(254),
SYMBOL Char(254),
XCOLUMNNAME Char(32),
YCOLUMNNAME Char(32),
RENDITIONTYPE INTEGER,
RENDITIONCOLUMN CHAR(32),
RENDITIONTABLE CHAR(32)
NUMBER_ROWS INTEGER
)

 It is important that the structure of the table looks exactly like this statement. The
only substitution that can be made is for databases that support varchar or text
data types; these data types can be substituted for the Char data type.

3. Create a unique index on the TABLENAME and the OWNERNAME, so only one table
for each owner can be made mappable.

create unique index mapcat_i1
on mapinfo.mapinfo_mapcatalog (OwnerName,TableName)

4. Grant Select, Update, Insert, and Delete privileges on the MAPINFO_MAPCATALOG.
This allows users to make tables mappable.

grant select, insert, update, delete on mapinfo.mapinfo_mapcatalog to public
MapXtreme 9.5 Developer Guide 258

 11 – Accessing Data from a DBMS
Adding Rows to the MapInfo_MapCatalog
For each spatial table that you want to access from your application, you need to add a
row to the MAPINFO_MAPCATALOG table. If you do not use MapInfo Professional to
manage the MapInfo_MapCatalog, you will have to add rows to the
MAPINFO_MAPCATALOG table manually.

The following table describes the syntax and meaning of each column:

Column Name Values to Assign Examples

SPATIALTYPE MapInfo Spatial Object Format

1: Point layer in X/Y columns indexed

with micode (a serialized quadtree key)

4: Point layer in X/Y columns

5.x: SpatialWare for Oracle

6.x: Ingres SQL - Not Supported

7.x: Sybase SQS - Not Supported

8.x: Oracle SDO version 2 - Not Supported

9.x: MapInfo Geocoding DataBlade

SpatialWare Point Module

10.x: MapInfo Geocoding DataBlade XY
Module

11.x: SpatialWare IDS/UDO datablade

13.x: Oracle Spatial

14.x: SpatialWare for Microsoft SQL Server

17.x:SQL Server 2008 GEOMETRY with-
out M and

Z values

18.X: SQL Server 2008 GEOGRAPHY with-
out M and Z values

14.0 = SQL Server

14.1

14.2

14.3
MapXtreme 9.5 Developer Guide 259

SPATIALTYPE
(continued)

20.x: SQL Server 2008 GEOMETRY with M
and Z values

21.x: SQL Server 2008 GEOGRAPHY with M
and Z values

Spatial Object Type

x.0: Points only

x.1: Lines only

x.2: Regions only

x.3: All types supported

 This column describes the Spatial
Object Format of how the data is stored
and indexed and the Spatial Object
type(s) supported and not supported in
the column. The digits to the left of the
decimal point are the Spatial Object
Format. The digits to the right
represent the type of Spatial Object
Type that can be stored in the column.

Maps to

MapInfo.GeometryColumn.PredominantGe-
ometry Type, and

Has<Line/Point/Region/Text>Geometries

TABLENAME The name of the table. STATES
MapXtreme 9.5 Developer Guide 260

 11 – Accessing Data from a DBMS
SPATIALCOL-
UMN

The name of the column, if any, containing
spatial features:

SW_GEOMETRY (mappable using Spatial-
Ware Type/IDS/UDO)

NO_COLUMN (mappable using X–Y)

MI_SQL_MICODE (mappable using MI
Code) Or the name of the IDS/UDO, or Ora-
cle column that is ST_SPATIAL datatype.
Name of the Oracle SDO_GEOMETRY col-
umn.

SW_GEOMETRY

DB_X_LL The X coordinate of the lower left corner of
the layer’s bounding rectangle, in units that
are indicated by the COORDINATESYS-
TEM (see below). Maps to Map-
Info.Data.GeometryColumn.Bounds

-360

DB_Y_LL The lower left bounding Y value. -90

DB_X_UR The upper right bounding X value. 360

DB_Y_UR The upper right bounding Y value. 90

VIEW_X_LL The X coordinate of the lower left corner of
the default view. The default view only
applies if this is the first table to be opened.

Maps to

MapInfo.Data.GeometryColumn.Default-
View

-180

VIEW_Y_LL The lower left bounding Y value of the
default view.

-45
MapXtreme 9.5 Developer Guide 261

VIEW_X_UR The upper right bounding X value of the
default view.

180

VIEW_Y_UR The upper right bounding Y value of the
default view.

45

COORDINATE-
SYSTEM

A string representing a MapInfo CoordSys
clause (but without the keyword CoordSys at
the very start), which specifies a map projec-
tion, coordinate units, etc. For simple
Lon/Lat maps, specify Earth Projection 1, 0.
Maps to MapInfo.Data.GeometryCol-
umn.CoordSys

Earth Projection 1,

0

SYMBOL A MapInfo Symbol clause (if the layer con-
tains only points); or a Symbol clause fol-
lowed by a Pen clause (indicating styles for
linear features) followed by another Pen
clause (indicating styles for the borders of
regions) followed by a Brush clause. Maps to
MapInfo.Data.GeometryColumn.Default-
Style

Symbol(35,0,12)

Pen(1,2,0)

Pen(1,2,0)

Brush(2,255,255)

XCOLUMN-
NAME

For the X/Y mappable tables, specify the
name of the column containing X-coordi-
nates. If there is no such column (i.e., if this
table uses a single spatial column instead of a
pair of X-Y columns) then specify NO_COL-
UMN or leave empty. Maps to Map-
Info.Data.SpatialSchemaXY

NO_COLUMN

YCOLUMN-
NAME

For the X/Y mappable tables, specify the
name of the column containing Y–coordi-
nates, or specify
NO_COLUMN Maps to MapInfo.Data.Spa-
tialSchemaXY

NO_COLUMN
MapXtreme 9.5 Developer Guide 262

 11 – Accessing Data from a DBMS
RENDITION-
TYPE

This indicates how the object style informa-
tion is applied.

0 – Indicates that all the objects in the table
will have the style specified in the symbol
field of the MapCatalog applied to them. No
per-record styles are in effect. Objects will be
read/updated using the default style for the
table.

1 – Indicates that the table uses per-record
styles. The table has a separate column that
contains a MapBasic string representation of
the style information for each object in the
table (the same format that is currently used
in the MapCatalog’s SYMBOL column). The
style column in the table is recorded in REN-
DITIONCOLUMN.

0 or 1

RENDITION-
COLUMN

If RENDITIONTYPE is 1, this field stores
the name of the column in the spatial table
that contains style information. This column
is automatically added to any query against
the table and is maintained (updated) as the
object is updated. Users should NOT specify
this column in their queries as problems can
occur with intersect or update statements.
Queries which include this column in the
select clause (excluding the wildcard charac-
ter “*”) may access the values through the
Dataset object. Rows with a NULL value in
their style column will have the style from the
SYMBOL field of the MapCatalog applied to
the object. Creates a MapInfo.Column.Data-
Type with MIDBType.Style

MI_SYMBOLOGY
MapXtreme 9.5 Developer Guide 263

Per-Record Styles
Per-record style support brings a feature to spatial database implementations that has
long been available in MapInfo TAB files. Specifically, it allows each geometry in a single
table to have its own style. For example, a single 'public institution' table in Oracle Spatial
can have schools, town halls, libraries, and police departments and each point type would
be represented with its own symbol (i.e., a school symbol for all the schools). Similarly, a
single road table in SpatialWare SQL Server may have different road types such that
streets are shown as a single pixel black line, secondary roads as a double pixel red line
and interstates as parallel red lines.

To use per-record styles, your table must be represented with an entry in the MapCatalog
with appropriate settings for RENDITIONTYPE, RENDITIONCOLUMN, and
RENDITIONTABLE.

 If these columns are not present, the table’s default style will be applied to all
objects.

Symbol, Pen, Brush Clause Syntax
If you are manually creating a MAPINFO_MAPCATALOG table to provide support for a
remote spatial database, you will need to specify a symbol style, and possibly line and fill
styles as well.

Currently not used, but reserved for future
use.

Null

NUM-
BER_ROWS

Currently used by MapInfo Professional. Null
MapXtreme 9.5 Developer Guide 264

 11 – Accessing Data from a DBMS
Specifying Point Styles

Use a Symbol clause to specify point styles. There are three types of Symbol clauses:
one for specifying MapInfo 3.0-style symbols; one for specifying TrueType font symbols;
and one for specifying bitmap symbols.

Specifying Line Styles

Use a Pen clause to specify line styles. In a MapInfo_MapCatalog, you may need to
specify two pen clauses: one to specify the appearance of linear features, and another to
specify the appearance of region borders.

Specifying Fill Styles

Use a Brush clause to specify the style for closed features (regions).

The MapXtreme Styles API is discussed in Chapter 15 Stylizing Your Maps. Style patterns
are presented in Appendix F: Style Lookups.

Text Objects Limitation
LegacyText objects have their own way of displaying style that is separate from the use of
the MI_Style column. Therefore any form of text object needs to be treated differently
than other objects. The style for any text object is embedded and a NULL value is
inserted into the style column.

Symbol Syntax Example

Symbol(shape, color, size)
or
Symbol(shape,color,size,font,fontstyle,r
otation)
or
Symbol(bitmapname,color,size,custom
style)

Symbol(35,0,12)

Symbol(64,255,12,"MapInfo
Weather",17,0)
Symbol("sign.bmp", 255, 18, 0)

Pen Syntax Example

Pen(thickness, pattern, color) Pen(1, 2, 0)

Brush Syntax Example

Brush(pattern,color,backgroundcolor) Brush(2, 255, 65535)
MapXtreme 9.5 Developer Guide 265

Troubleshooting
If you encounter problems with your SpatialWare or Oracle applications, use the following
table to help analyze and solve the problem.

Problem Description Possible Cause Solution

The table is not
matchable.

Data binding was
attempted against a
SpatialWare layer.

AddColumns is not
currently supported for
SpatialWare layers.

No object was found
using the index that you
specified.

A query was made
against a table that does
not exist.

Check that the table name
is correct and in the proper
case. Also, the table may
need to be mappable.

No spatial object is
contained in the result of
the spatial query.

Use the EasyLoader
Upload utility to make the
table a mappable table.

A query was made
against a non-spatial
table.

Check the query for
possible syntax errors.
Also make sure that the
result of the query includes
the field specified in the
spatial column in the
MapInfo_MapCatalog.

Map appears to have
incorrect zoom level.
For example, the map
may be zoomed out too
far to identify any
geography.

The MBR for a DBMS
layer is determined by
the MapInfo_MapCatalog
table. The table extents
in the MapCatalog result
in a different zoom level
than the one you desire
for your output.

Edit the extents
(DB_X_LL, DB_X_UR,
DB_Y_LL, DB_Y_UR) in
the MapInfo_MapCatalog
using the MapInfo
Professional MBX tool,
MISETMBR.MBX.
MapXtreme 9.5 Developer Guide 266

12

12 – Adding Mapping

Capability to Your
Applications
We use the MapInfo.Mapping namespaces to add mapping
functionality to your application. This chapter explains how to use the
Mapping namespaces to enhance your mapping application.

In this chapter:
 Introduction to the MapInfo.Mapping Namespace 268
 Base Mapping Classes. 268
 Layers . 271
 Labels . 275
 Adornments . 280
 Feature Style Modifiers. 282
 Printing Your Map . 284

Introduction to the MapInfo.Mapping
Namespace
The MapInfo.Mapping namespace contains classes, interfaces, and enumerations for
creating, displaying, and exporting maps, layers, modifiers, thematics, legends, and
labels.

The Map class is the top level object for a map in a desktop application. Each Map object
can contain exactly one map. Each Map has one Adornment collection and one Layer
collection. When developing a web application a Map gets attached to a MapExport
object in order to export that map image to a bitmap or stream.

As described in Layers, a map is basically a set of layers piled on top of each other. Using
the Mapping namespace classes, an application can be designed to manipulate those
layers as needed.

Base Mapping Classes
This section discusses the base map classes in use in the MapInfo.Mapping namespace.
The diagram below shows a UML representation of the Map hierarchy.

MapExport
The MapExport class is used to export a Map to an image. The properties of this class
specify each aspect of the image, such as BorderPen, ExportSize, Format, etc.

MapExport supports several different image formats including: BMP (default), WBMP,
WMF, EMF, GIF, J2K, JPG, PNG, PSD, TIFF, TIFFCymk, and TIFFLzw. When
performance is an issue, the BMP, GIF, JPG, PNG, and TIFF formats can also be
exported using the .NET framework API instead of the LEADTOOLS API. While the
export speed may differ, the quality of the images exported is the same for both methods.
MapXtreme 9.5 Developer Guide 268

 12 – Adding Mapping Capability to Your Applications
To select a format, set the ExportFormat property to one of the above formats (e.g.,
ExportFormat.WindowsPNG).

 The LegendExport class also exports files in these formats using the .NET
framework and LEADTOOLS APIs.

Example Use of MapExport

If you are using a MapControl, you must clone the map prior to exporting it, as shown in
the example below:

VB example:

Public Shared Sub MapInfo_Mapping_MapExport(ByVal mapControl1 As MapControl)
 ’must clone since map is coming from mapcontrol and is linked to it via the
HWND
 Dim NewMap As Map = CType(mapControl1.Map.Clone(), Map)
 Dim exportObject As MapExport = New MapExport(NewMap)
 exportObject.ExportSize = New MapInfo.Mapping.ExportSize(2931, 4104)
 exportObject.Format = ExportFormat.Gif
 exportObject.Export("C:\Temp\ExportImage.gif")
End Sub

Map
The Map class contains everything that you can put in a map. A Map object is placed in a
MapControl object for a desktop application or attached to a MapExport object for a web
application.

A Map has the following properties:

• Bounds

• Center

• Zoom

• Scale

• Size

• Rotation

• DisplayTransform

• DisplayCoordSys
MapXtreme 9.5 Developer Guide 269

Each Map has a Layers collection, which holds all the layers that comprise the map (see
Layers), and a single Adornment collection, which contains all of the map’s adornments.
Adornments include Legends, Titles, and Scalebars (see Legends Overview).

MapFactory
The MapFactory class contains the objects used to create maps from Geosets,
workspaces, and lists of tables. MapFactory also functions as a container of, and tracks,
the collection of all maps created in a particular session.

Example Use of MapFactory

This example creates an empty map 300 by 300 pixels in size using the CreateEmptyMap
method of MapFactory.

' Create a new map
Dim map As Map = Session.Current.MapFactory.CreateEmptyMap(New Size(300, 300))

MapLoader
The MapLoader class provides a mechanism to load the layers of a map from Geoset
files, XML Workspace files, or TAB files. For each type of map to load, there is a subclass
of MapLoader that is used to load the map. These subclasses include MapGeosetLoader,
MapWorkspaceLoader, and MapTableLoader.

VB example:

Public Shared Sub MapInfo_Mapping_MapLoad()
 ’ Create an empty map
 Dim map As Map = _
MapInfo.Engine.Session.Current.MapFactory.CreateEmptyMap(New Size(400,_
300))
 ’ Create a maploader. Make sure that Session.Current.TableSearchPath points
to the folder with the tables in it
 Dim tl As MapTableLoader = New MapTableLoader("ocean.tab", _
"usa.tab", "mexico.tab", "us_hiway.tab")
 ’ Load tables into a map
 map.Load(tl)
End Sub

MapViewList, MapView
These classes contain the objects that help to maintain a list of the previous and next
views for a Map. Use the MapViewList class as a convenience to step through your stack
of map views, displaying them with the MapView class which provides the specifics
(Name, Center, and Zoom) of each map view.
MapXtreme 9.5 Developer Guide 270

 12 – Adding Mapping Capability to Your Applications
MapXtreme provides a VB sample for MapViewList in <MapXtreme Install
Directory>\MapInfo\
MapXtreme\9.x.x\Samples\Desktop\Features.

MapControl
The MapControl class contains the objects that allow the user to visualize a map on a
screen. Add a MapControl to a Windows Form to view a map. A MapControl also holds
the MapTools collection. A version of MapControl exists for web applications as well.

The MapControl class for use in desktop applications is in the MapInfo.Windows.Controls
namespace. For a working example of a desktop MapControl, run Workspace Manager
from the Start menu. See also Chapter 27 Workspace Manager.

The MapControl class for use in web applications is in the MapInfo.WebControls
namespace. See Web Control Architecture. For a tutorial on how to create an overview
map for a web application, see the Tutorials section of Learning Resources, available
from the Start menu.

Layers
The following section discusses the Layers objects and classes. The diagram below is a
UML representation of the Layers hierarchy.
MapXtreme 9.5 Developer Guide 271

FeatureLayer
A FeatureLayer is a layer that displays Features from a Table. For example, a layer of
region objects representing world countries is a FeatureLayer. FeatureLayers can be
native .TAB data, remote RDB, seamless, or raster data.

A new Opacity property has been introduced only for vector layers in version 8.1 and
later. It enables you to set the translucency with which the feature will be drawn. However,
if any feature style modifiers (explained later in this chapter) are applied on the layer, then
their opacity will be used for rendering instead.

Layers
Each map has a collection of FeatureLayers represented by the Layers class. The order
in the collection is the order in which the layers are drawn. Methods in the collection class
include Add, Insert, Move, and Delete. The Layers collection is derived from the
LayersBase class. The best way to enumerate through the layers is to use a Layer filter.

In order to change a layer it first needs to be made editable. This can be done changing
its setting in the LayerControl or programmatically by changing its EditMode property.
Once a layer is editable, features in that layer can be moved, resized, or deleted.

 Any edits made to a particular layer take effect immediately so exercise caution
when selecting features in an editable layer.

To implement a filter use the MapLayerFilterFactory class. This class allows you to create
a filter from a set of stock filters such as layer types or all visible layers. To create your
own filter write a class that implements the interface, IMapLayerFilter.

MapLayer
The MapLayer class is the base class of any layer. This class implements the IMapLayer
interface. Properties include Enabled, VisibleZoomRange, Name, and Alias. Use this
class to access generic layer properties.

UserDrawLayer
The UserDrawLayer is an abstract class that allows you to override the draw method to
draw your own layer. It provides an efficient way to add custom objects on top of a
MapControl using Windows drawing methods, instead of creating new features using
map coordinates and actually adding them to a map.
MapXtreme 9.5 Developer Guide 272

 12 – Adding Mapping Capability to Your Applications
ObjectThemeLayer
The ObjectThemeLayer class contains one of three different types of themes (pie chart,
bar chart, and graduated symbol). This layer behaves just like other layers and can be
grouped, have visibility set, etc.

GroupLayer
This is class represents a group of layers that are moved and turned on/off in unison. A
GroupLayer is a LayersBase collection combined with an IMapLayer. This object also
supports the ability to do AnimationLayers.

If the layer is in a group with a VolatilityHint equal to Animate then only those layers within
that group need to be redrawn. If the Layer has a VolatilityHint equal to CacheIfPossible
or Normal then all layers need to be redrawn.

LabelLayer
The LabelLayer class is responsible for generating labels and drawing them at a
particular layer position in a map. See LabelLayer and Label Layer Settings.

GraticuleLayer
This class is used to display a grid of longitude and latitude lines in the map window. See
Graticule Layers.

Layer Filters
The IMapLayersFilter and IMapLayersFilterFactory interfaces provide support for layer
enumeration.

IVisibilityConstraint
The IVisibilityConstraint is an interface which determines whether a particular object is
visible or not. This interface is implemented by a wide number of types, including all Layer
types, LabelModifiers, FeatureStyleModifiers, and Themes.

Code Example: Animation Layer
The following VB sample shows how to set the animation of a layer.
MapXtreme 9.5 Developer Guide 273

Private Sub btnInitializeObjects_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnInitializeObjects.Click
Dim Cat As Catalog = MapInfo.Engine.Session.Current.Catalog

'Create Temp layer
Dim tblInfoTemp As New TableInfoMemTable("Animation")
Dim tblTemp As Table = Cat.GetTable("Animation")
If IsNothing(tblTemp) = False Then 'Table exists close it
Cat.CloseTable("Animation")
End If
tblInfoTemp.Columns.Add(ColumnFactory.CreateFeatureGeometryColumn(Map_
Control1.Map.GetDisplayCoordSys()))
tblInfoTemp.Columns.Add(ColumnFactory.CreateStyleColumn())
tblInfoTemp.Columns.Add(ColumnFactory.CreateStringColumn("Name", 40))
tblInfoTemp.Columns.Add(ColumnFactory.CreateStringColumn("Dept", 15))
tblInfoTemp.Columns.Add(ColumnFactory.CreateIntColumn("Level"))

tblTemp = Cat.CreateTable(tblInfoTemp)

Dim lyr As New FeatureLayer(tblTemp)
MapControl1.Map.Layers.Add(lyr)

'Create Points
Dim pt As FeatureGeometry = New Point(lyr.CoordSys, New DPoint(-76, 42))
Dim cs As New CompositeStyle(New SimpleVectorPointStyle(37, _

System.Drawing.Color.Red, 10))
Dim ftr As New Feature(tblTemp.TableInfo.Columns)
ftr.Geometry = pt
ftr.Style = cs
ftr.Item("Name") = "Kelly"
ftr.Item("Dept") = "Sales"
ftr.Item("Level") = 3
tblTemp.InsertFeature(ftr)

Dim pt2 As FeatureGeometry = New Point(lyr.CoordSys, New DPoint(-119, 34))
Dim cs2 As New CompositeStyle(New SimpleVectorPointStyle(44, _

System.Drawing.Color.Purple, 10))
Dim ftr2 As New Feature(tblTemp.TableInfo.Columns)
ftr2.Geometry = pt2
ftr2.Style = cs2
ftr2.Item("Name") = "Greg"
ftr2.Item("Dept") = "Marketing"
ftr2.Item("Level") = 2
tblTemp.InsertFeature(ftr2)
End Sub

Private Sub Timer1_Tick(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Timer1.Tick
Dim cat As Catalog = MapInfo.Engine.Session.Current.Catalog
Dim tbl As Table = cat.GetTable("Animation")
If IsNothing(tbl) = False Then
'Update the position of the points
MapXtreme 9.5 Developer Guide 274

 12 – Adding Mapping Capability to Your Applications
Dim si As SearchInfo = MapInfo.Data.SearchInfoFactory.SearchWhere("Name= _
'Kelly'")

Dim ftr As Feature = cat.SearchForFeature(tbl, si)
Dim si2 As SearchInfo =_

MapInfo.Data.SearchInfoFactory.SearchWhere("Name = 'Greg'")
Dim ftr2 As Feature = cat.SearchForFeature(tbl, si2)

If TimeOfDay.Now.Second Mod 4 = 0 Then
ftr.Geometry.GetGeometryEditor().OffsetByXY(-5, -25, DistanceUnit.Mile, _
DistanceType.Spherical)
ftr2.Geometry.GetGeometryEditor().OffsetByXY(0, 25, DistanceUnit.Mile, _
DistanceType.Spherical)
Else
ftr.Geometry.GetGeometryEditor().OffsetByXY(-10, 0, DistanceUnit.Mile, _
DistanceType.Spherical)
ftr2.Geometry.GetGeometryEditor().OffsetByXY(10, 5, DistanceUnit.Mile, _
DistanceType.Spherical)
End If
ftr.Geometry.EditingComplete()
ftr2.Geometry.EditingComplete()
ftr.Update()
ftr2.Update()

End If

End Sub

Labels
The following section discusses the Labels objects and classes. The diagram below is a
UML representation of the Labels hierarchy.
MapXtreme 9.5 Developer Guide 275

LabelLayer
The LabelLayer class allows the separate ordering of labels and layers. A LabelLayer is a
kind of MapLayer and behaves as such. This similarity to MapLayer supports the
placement of a LabelLayer anywhere you can put a MapLayer allowing for relative
positioning of the Labels compared to the other layers in the map. Each LabelLayer is
made up of LayerSources and acts as a collection of those objects.

LabelSource
The LabelSource class graphically displays geographies as labels based on a data
source and rules that define how the source is labeled. The LabelSource is added to a
LabelLayer on the Map so that it is drawn. The LabelLayer provides positioning within the
Map as well as the rules that govern the interaction with other LabelSources. To use
LabelSource class, specify a table from where to get the data (MITable), an expression
which defines the label text, and other default label properties accordingly.

LabelModifier
MapXtreme 9.5 Developer Guide 276

 12 – Adding Mapping Capability to Your Applications
The LabelModifier class is used to modify the default properties used to make a label.
When the LabelLayer generates labels for each LabelSource in its Sources collection, it
first uses the DefaultLabelProperties to generate each label. It then uses each visible
LabelModifier in the Modifiers collection.

ILabelSourceFilter
This interface allows you to enumerate through the collection of LabelSource objects in a
LabelLayer filtering on specific rules. You can also implement this interface to define your
own filtering rules.

LabelProperties
This class has label property information, such as style, positioning, etc. It supports the
representation of sparse label properties. This is very useful when using a LabelModifier
to modify only a portion of the label properties. This class also allows you to set
prioritization and improved placement of labels.

Generating Labels
The LabelLayer class generates labels when the map draws or when you call the
LabelLayer.Refresh method. Each visible label source is considered. You can have more
than one layer of labels in a map.

To generate a label for each feature in the source's table that is within current map view,
the LabelLayer class does the following:

1. Uses the DefaultLabelProperties property as the starting set of properties used to build
the label.

2. Calls the Modify method of each visible label modifier in the Modifiers collection, if any.
This allows each modifier the opportunity for changing the label properties used to
build the label.

3. Performs visibility constraint checks to decide whether to keep the label.

a. Checks for label visibility by comparing the visibility constraints against the current
map zoom/scale.

b. If the label is visible and overlaps and duplicates are not allowed on this label,
checks for overlap and duplicates against other existing labels. If any are found,
uses Label Priorities to decide which label to keep.

4. Adds the label to the generated labels collection if it succeeds visibility constraints.
MapXtreme 9.5 Developer Guide 277

Note that Label generation rules only apply within each label layer and not the entire map.
For example, if you set the AllowOverlap property to False in all label sources contained
within all the label layers in a map, labels from one label layer will still overlap with labels
from another label layer because the labels are generated independently between label
layers.

Use the LabelLayer.Refresh method if the map has not yet drawn to generate the labels
based on the current map view.

Accessing Generated Labels

You can access generated labels through the LabelSource.Labels property. This
collection represents the labels that are within the current map view. They do not
represent all the labels in the map. The items in the collection change as the view of the
map changes.

Label Priorities
Label priorities determine which labels within the same LabelLayer are generated when
either AllowOverlap or AllowDuplicates is set to False.

 Note: as stated in Generating Labels, each label layer is independent of each
other, so different overlap or duplicate settings in other layers do not factor in
here.

When a label overlaps with or is a duplicate of another label in the same layer, the
priorities of both labels are compared to determine which label to keep. The process first
compares the priority of each label (known as the inter-label source). The label with
higher priority is kept.

MapXtreme provides two levels of priorities for controlling the display of labels: Major and
Minor. This allows you to group and subgroup prioritization. For example, you might want
cities with large populations to have labels with a higher priority than small towns.
However, you can also add a modifier to bump up the major priority of one small town to
give it a chance over the major cities.

When the Major priority is set to null (nothing in Visual Basic), the value used is the
inverse of the label's LabelSource position within a LabelLayer. The higher the index
position the lower the priority. For example, if a LabelSource is at index 3 and there are 10
LabelSources (indices from 0 to 9), the Major priority will be 6 (the inverse of the index
based on total).
MapXtreme 9.5 Developer Guide 278

 12 – Adding Mapping Capability to Your Applications
When the Minor priority is set to null (Nothing in Visual Basic), the value used is based on
the Key of the Feature being labeled. The inverse of a numeric representation of the key
against the number of rows in the Table is used. For example, if there are 10 rows in the
Table, the minor priority of the label for feature in row ID 7 defaults to 3 (10 - 7 = 3). If the
key is not numeric the minor priority defaults to 0.

When Major priorities are equal, the label with the higher Minor priority is kept.

To create a priority, use an expression that results in a numeric value. For example, the
expression in C# that results in a numeric value could be a field of numeric type or an
expression like the ASC value of the first letter in the field's value:

"(1/Asc(Country))*1e6"

Label Layer Selectability
To control selectability of label layers, use the
SelectMapToolProperties.LabelsAreEditable property programmatically or via Workspace
Manager’s Labels are Editable checkbox.

The LayerHelper.SetSelectable method does not affect the selectability of certain layer
types, including Labels, WMS/WFS, Raster and Group layers.

Code Example: Creating a LabelLayer
The following example demonstrates the use of the classes associated with Labels.

VB example:

' Open usa table using the data catalog
Dim table As Table = Session.Current.Catalog.OpenTable("usa.tab")

' Create a new map
Dim map As Map = Session.Current.MapFactory.CreateEmptyMap(New _

Size(300, 300))

' Create a new feature layer that references the table and add it to the map
Dim featureLayer As New FeatureLayer(table)
map.Layers.Add(featureLayer)

' Create a new label layer and add it to the map.
' Note that if you call MapInfo.Mapping.LayersBase.Add" method instead of
' MapInfo.Mapping.LayersBase.Insert method it will automatically position the
' label layer before the feature layer

Dim labelLayer As New MapInfo.Mapping.LabelLayer()
map.Layers.Insert(0, labelLayer)

MapXtreme 9.5 Developer Guide 279

' Create a new label source that references the table
Dim source As New MapInfo.Mapping.LabelSource(table)

' Change its caption expression to be a specific column from the table
' called "State_Name"
source.DefaultLabelProperties.Caption = "State_Name"

' Append the label source to the label layer so that it shows on the map
labelLayer.Sources.Append(source)

Curved Labels
Curved labels are labels that follow the curve of a line. They enhance the appearance of
map features that are made up of lines, such as streets and rivers.

Curved labels are generated in the Workspace Manager by selecting the label layer, then
selecting Curve labels along segments in the Position tab. See Curved Labels.

To render curved labels via the API, use the ILayout interface and the
UseRelativeOrientation property. For labels to curve along the geometry, specify
MapInfo.Text.RelativeOrientation. FollowPath. See a code example in the Developer
Reference under ILayout interface.

Adornments
The Adornments class is an unordered collection of a map’s adornments. An adornment
is either a Legend, a Title, a Scalebar, or some other user-defined object. Each map
contains a single Adornments Collection. Each adornment belongs to a single
AdornmentControl.

To create your own adornment, derive a class from the IAdornment interface and the
AdornmentControl abstract class.

Legends
Legends are for use in conjunction with themes. See Chapter 14 Using Themes and
Legends for more information about themes. Legends are created using the
LegendFactory class. A Legend consists of one or more legend frames. Each frame is
either a ThemeLegendFrame or a CartographicLegendFrame. Both kind of
LegendFrames are created by using the LegendFrameFactory class from the created
Legend object. For manipulation and customization of legends and their frames, use
MapXtreme 9.5 Developer Guide 280

 12 – Adding Mapping Capability to Your Applications
classes in the MapInfo.Mapping.Legends namespace. Classes in this namespace
include: CartographicLegendFrame, ThemeLegendFrame, LegendFormat,
LegendControl, and others.

You can set the size of the Legend with the Legend.Size property, but you cannot set the
size of the LegendFrames. The size of the LegendFrame is controlled by the amount of
data it contains.

VB example:

Private Sub Page_Load(ByVal sender As Object, ByVal e As _
System.EventArgs)
LegendControl1.Map = MapControl1.Map
If Not IsPostBack Then

Dim normalLyr() As MapInfo.Mapping.LayerType = New _
MapInfo.Mapping.LayerType(1) {}

normalLyr(0) = MapInfo.Mapping.LayerType.Normal
Dim filter As MapInfo.Mapping.IMapLayerFilter = _

MapInfo.Mapping.MapLayerFilterFactory.FilterByLayerType(normalLyr)
Dim frame As MapInfo.Mapping.Legends.LegendFrame
Dim NewLegend As MapInfo.Mapping.Legends.Legend = _

MapControl1.Map.Legends.CreateLegend(New System.Drawing.Size(5, 5))
NewLegend.Format.FrameAlignment = _
MapInfo.Mapping.Legends.LegendFrameAlignment.Horizontal

Dim ftrLayer As MapInfo.Mapping.FeatureLayer
For Each ftrLayer In _
MapControl1.Map.Layers.GetMapLayerEnumerator(filter)
frame = _
MapInfo.Mapping.Legends.LegendFrameFactory.CreateCartographic_
LegendFrame(ftrLayer)

NewLegend.Frames.Append(frame)
Next
LegendControl1.Legend = NewLegend
Else
LegendControl1.Legend = MapControl1.Map.Legends(0)
End If

End Sub

ScaleBar Adornment
A scale bar is linear object used to measure map distances in the units of the map (such
as kilometers or feet). Use the ScaleBarAdornment class to create a
ScaleBarAdornmentControl and add the control to the map. If you attempt to add a
ScaleBarAdornment to the map itself, it does display, but without the
ScaleBarAdornmentControl, the ScaleBar is not linked to the map itself.

VB example:

Public Shared Sub MapInfo_Mapping_ScaleBarAdornment(ByVal mapControl1 As _
MapXtreme 9.5 Developer Guide 281

MapControl)
' Create a scalebar
Dim sba As ScaleBarAdornment = New ScaleBarAdornment(mapControl1.Map)

' Position the scalebar at the lower right corner of map
Dim x As Integer = mapControl1.Map.Size.Width - sba.Size.Width
Dim y As Integer = mapControl1.Map.Size.Height - sba.Size.Height
sba.Location = New System.Drawing.Point(x, y)

' Add the control to the map
Dim sbac As ScaleBarAdornmentControl = New ScaleBarAdornmentControl(sba, _

mapControl1.Map)
mapControl1.AddAdornment(sba, sbac)

End Sub

Title Adornment
A Title adornment is a text object drawn on the map to represent a map title or to provide
a text to clarify other information on the map. In MapXtreme you use the TitleAdornment
class to create a title and add it to the map.

VB example:

Public Shared Sub MapInfo_Mapping_TitleAdornment(ByVal mapControl1 As
MapControl)
 ’ Create a Titlebar
 Dim ta As New MapInfo.Mapping.TitleAdornment(New System.Drawing.Size(100,
50), mapControl1.Map)
 ta.Title = "This is a watermark"
 mapControl1.Map.Adornments.Append(ta)
End Sub

Feature Style Modifiers
Feature style modifiers allow a way of changing/modifying the style of a Feature before it
is drawn. These classes use the sparse attribute aspect of CompositeStyle object to only
modify the part of the style in which you are interested. Range, Individual Value, and Dot
Density themes are style modifiers. Thematics are covered in detail in Chapter 14 Using
Themes and Legends. The diagram below shows a UML representation of the Modifier
and thematics hierarchy.
MapXtreme 9.5 Developer Guide 282

 12 – Adding Mapping Capability to Your Applications
FeatureStyleModifier
This is an abstract base class from which all modifiers must derive. The IndividualValue,
Ranged, and DotDensity themes are all FeatureStyleModifier objects. You can create
your own class that derives from FeatureStyleModifier and override the Modify() method.

FeatureStyleModifiers
The FeatureStyleModifiers class is an ordered collection of FeatureStyleModifier objects
contained within each FeatureLayer. Each modifier in the collection is called in order
before a feature’s geometry is drawn.

FeatureOverrideStyleModifier
The FeatureOverrideStyleModifier is a simple kind of FeatureStyleModifier. This class
provides style override functionality at the Layer level. The FeatureOverrideStyleModifier
has a composite style and implements the IVisibilityConstraint. This is similar to
functionality found in MapX and MapInfo Professional.
MapXtreme 9.5 Developer Guide 283

Printing Your Map
Once your application is created you may want to give your user the opportunity to print
out their generated map. The MapInfo.Printing namespace is provided to facilitate
including printing functionality into any application. This classes in this namespace are
built upon the .NET Framework classes for printing so the necessary constructions are
similar to any other Windows application. In addition to regular printing we have provided
many additional capabilities to optimize the printed version of a created map.

Refer to Appendix E: Printing From MapXtreme Applications for more detailed
information about printing from a MapXtreme application.
MapXtreme 9.5 Developer Guide 284

13

13 – Finding Locations
The MapInfo.Data.Find namespace contains the classes to use when
searching for map features by address, street intersection or name.

In this chapter:

 Functional Overview of Find . 286
 Overview of the Data.Find Namespace . 289
 Fine Tuning the Find Process. 297

Functional Overview of Find
Find is used when you wish to locate map features by address, street intersection or
name. To find features at locations using selection tools or queries, use the Search
classes in the Data namespace (see Searching for Features).

A successful Find operation can result in an exact match, one or more close matches, or
no match (failed match). The operation is controllable by a variety of properties and
fallback options and are discussed in the Overview of the Data.Find Namespace. The
section below describes how MapXtreme makes a match. The more you understand the
Find process, the more you can control the success of the operation.

The Find Process
MapXtreme locates map features by matching an address, street intersection or place
name with information in the feature table. For example, you can find 1600 Pennsylvania
Avenue in Washington, D.C. provided a table of Washington D.C. streets is open.

Finding a map feature is similar. For example, you can find The White House if you have
a mappable table of landmarks that contains the name “The White House” and its geo-
referenced (mappable) location. You don’t need to supply the address to find by place
name.

To find a street intersection you must provide both street names that make up the
intersection.

MapXtreme attempts to find an exact match in which the result is a character by character
match to the input address, place name or intersection. If it cannot make an exact match,
MapXtreme attempts to find close matches based on its matching rules and your settings.
If it cannot find a close match, it returns a failed match. Note that matching is not case-
sensitive. Upper and lower case characters are successfully matched with one another.

A street address is normally made up of a street number, name and abbreviations that
represent the street prefix, such as North, and suffix, such as Road. Addresses can take
a variety of forms and may include additional information such as apartment number or
route. In addition, some of the key components like street type may be missing from the
input address. MapXtreme looks at each component of the address and applies specific
rules to it to find a match.

The following sections describe how MapXtreme handles specific information and
conditions including street name, street abbreviations, address numbers, refining tables
and results.
MapXtreme 9.5 Developer Guide 286

 13 – Finding Locations
Matching to Street Name

A match to a street name is a straightforward character by character evaluation of the
address against the information in the search table. For example, MapXtreme returns an
exact match for the street name LaSalle if LaSalle is in the table, but may only return a
close match if the address is spelled La Salle or LaSal.

Matching to Street Abbreviations

Street abbreviations vary widely in address records. Sometimes the component is
missing altogether. In many cases, however, MapXtreme can make an exact match even
if there are slight differences between the address and the search table. MapXtreme
refers to a standardized address abbreviation and substitution list, called Mapinfow.abb,
to find a suitable match. This list contains standard spellings of street prefix and suffix
abbreviations, such as ST for Street and Av for Avenue. You must set a property to tell
MapXtreme to use this abbreviations file, but it is a good way to increase the chance of
exact matches or find more close matches than without the file.

The table below illustrates variations in address and whether or not it will result in an
exact match based on the use of the abbreviations file. The first column contains a street
name you want to find. The second column contains the corresponding street name from
a source table. The third column says why they do not match. The fourth column indicates
whether the particular problem is one that can be corrected by using the abbreviation
equivalence file. This table assumes that the addresses are the contents of a single
column in a table. While the street number would often be in the same column, we don’t
indicate street numbers here because they are handled differently than street names.

Address to
Find

Search Table
Address Comment

Correctable with
Abbreviation File for

an Exact Match

LaSalle
Street

LaSalle St “Street” and “St” do not
match.

Yes

LaSalle Ave LaSalle Av “Ave” and “Av” do not
match.

Yes

LaSalle Ave LaSalle St “Ave” and “St” do not
match.

No
MapXtreme 9.5 Developer Guide 287

If you find that you have repeated situations that do not match due to abbreviations, you
can:

• Edit your addresses to conform closer to the abbreviations file, or

• Edit the abbreviations file with a text editor to add your specific abbreviations. The
mapinfow.abb is located in C:\Program Files\Common
Files\MapInfo\MapXtreme\9.x.x. For more information about editing the abbreviations
file, see Fine Tuning the Find Process.

Matching Address Numbers
MapXtreme can match when the address number precedes the street name (as in North
American addresses) or when it follows the street name (common in European
addresses). By default MapXtreme assumes the address number precedes the street
name. You must set a property when the address number follows the street name.

LaSalle LaSalle St “St” is missing from target. No. If the street
abbreviation is
missing, MapXtreme
does make a guess on
what it could be.

LaSalle St
North

LaSalle St “North” is not in the
search table.

No

LaSalle St
North

LaSalle St N “North” and N do not
match.

Yes

LaSalle St
Apt 3

LaSalle St Apartment number does
not match anything in the
source.

Yes. The apartment
number is ignored.

Tenth St 10th St “Tenth” and “10th” do not
match.

Yes

10th Av Tenth Av “10th” and “Tenth” do not
match.

Yes

Saint John’s
Lane

St John’s
Lane

“Saint” and “St” do not
match.

Yes

Address to
Find

Search Table
Address Comment

Correctable with
Abbreviation File for

an Exact Match
MapXtreme 9.5 Developer Guide 288

 13 – Finding Locations
MapXtreme compares the input address number to a range of address numbers
.Typically the table contains address number ranges that correspond to the portion of the
street the range covers. Address ranges can be matched to the exact side of the street,
since often address ranges are odd-numbered on one side of the street and even-
numbered on the other.

In cases where MapXtreme cannot match the address range exactly, you may be willing
to settle for a close match in which the closest range would be considered a match. You
would use the stricter exact match requirement only for very precise finds. Often that level
of precision isn’t necessary. A close match is usually acceptable.

Matching with a Refining Boundary Table
MapXtreme can also find an address in one table in which there may be more than one
possible match. To avoid finding the wrong address, you specify a refining table and
column to focus the match to a smaller area.

This is useful, for example, when searching a table of streets that cover an entire county
and you are looking for Main St. It’s likely that more than one town in the county will have
a Main St. By providing a refining table of town boundaries, you can specify that you are
looking for the Main St. only in Town A.

You can use any type of refining boundary table you wish, for example, postal code
boundaries or census regions. Additionally, you can specific a second refining boundary
in which to conduct a Find.

Find Results
MapXtreme returns either an exact match, one or more close matches, or a failed match.
The results depend on a number of factors including the quality of the input data and the
conditions set for the operation. Information is also returned that explains how well each
portion of the address matched (or failed to match).

Overview of the Data.Find Namespace
The MapInfo.Data.Find namespace contains classes that enable you to locate a map
feature, street address, or street intersection within a mappable table. The properties and
methods of the Find class are used to set up a Find. The results of a Find are returned
using the FindAddressRange, FindCloseMatch, and FindResult classes.

The following UML diagram illustrates the Find namespace.
MapXtreme 9.5 Developer Guide 289

Find
The Find object is used to locate a map object, street address, or street intersection
within a given mappable table. Find searches the table for a match and returns the
result(s) in a FindResult object.

To use Find in MapXtreme, you must have:

• A mappable table (a table that contains geometry objects)

• An indexed column on which to perform the search

• An item to search for, such as a place name, street address or street intersection

• Optionally, a refining table in which to narrow the search to a more specific location.

The Find class provides a number of properties to control the search operation. For
example, you can limit the number of close matches to be returned (CloseMatchesMax)
or indicate that you wish to use the abbreviation file for increasing the likelihood of a
match (UseAbbreviations).
MapXtreme 9.5 Developer Guide 290

 13 – Finding Locations
Property Description

AddressNumberAfterStre
et

Specifies whether the address number is located
after the street name (for example, “Smith Street
107”).

ChooseAlternateBoundar
y

Specifies whether to match a record found in a
refining region other than the refining region
specified.

ChooseClosestAddressR
ange

Specifies whether to use the closest available
address number in cases where the address number
does not match.

ChooseClosestObject Specifies whether or not to find the closest object
match when an exact match is not found.

CloseMatchesMax Specifies how many close matches to return if an
exact match is not found.

InsetDistance A positive value representing how far from the ends
of the line to adjust the placement of an address
location.

InsetPercentage Represents the percentage of the length of the line
where the address is to be placed.

InsetUnit Represents the distance unit to use for Inset.

OffsetDistance Representing the distance to offset the placement of
an address location back from the street.

OffsetUnit Represents the distance unit to use for Offset.

UseAbbreviations Specifies whether substituting abbreviations from the
abbreviations file are used to find a match (for
example, “Smith Street” is substituted with “Smith
St”).

UseCloseMatches Specifies whether to return “N” number of close
matches if an exact match is not found.

UseInsetAsPercentage Specifies whether Inset is being used as a
percentage or as a distance.
MapXtreme 9.5 Developer Guide 291

The Find class provides four search methods: two for searching addresses or features
with or without a refining boundary, and two for searching street intersections with or
without a refining boundary.

.FindAddressRange
The FindAddressRange object represents an address range item returned from the
Find.Search method. The FindAddressRange object is returned as part of the FindResult
object when a street address is not found, the address number is not within the
minimum/maximum address ranges for a given street, or an address number was not
specified.

Code Sample
public void GetAddressRangesOnStreetTable()

{
Table_table;
_table = Session.Current.Catalog.OpenTable("North_Greenbush.tab");

Find _find = new Find(_table,_table.TableInfo.Columns[1]);
FindResult _findResult= _find.Search("Meadow Dr");
If ((!_findResult.ExactMatch) && (_findResult.NameResultCode ==

FindNameCode.ExactMatch)&& (findResult.AddressResultCode ==
FindAddressCode.AddressNumNotSpecified))

{
FindAddressRangeEnumerator _enum =

_findResult.GetAddressRangeEnumerator();
FindAddressRange _findAddressRange;
int _iIndex = 0;

while (_enum.MoveNext())
{

_findAddressRange = _enum.Current;
Console.WriteLine("_findAddressRange.BeginRange");

Method Description

Search Searches a mappable table for a named location and
returns a FindResult object.

SearchIntersection Searches a mappable street table for a given
intersection, returning a FindResult object.

Dispose Releases unmanaged resources held by the Find
object. It is necessary to call this method when finished
with the Find object.
MapXtreme 9.5 Developer Guide 292

 13 – Finding Locations
Console.WriteLine("_findAddressRange.EndRange");

_iIndex++;
}

if(_table != null)
{

_table.Close();
_table = null;

}
}

}
find.Dispose();
}

FindCloseMatch
The FindCloseMatch object represents a close match item returned from the Find Search
method. The object is returned as part of the FindResult object. A close match item is a
returned match that closely matches the name of the requested search.

To use this feature, you must first set the UseCloseMatches and CloseMatchesMax
properties of the Find object before you execute your search. For example if you tried to
search for “Washington Street,” and UseCloseMatches was set to true, a close match
would be “Washington Ave.”

Code Sample
public void CloseMatchesOnStreetTable()
{

Table _table;
_table = Session.Current.Catalog.OpenTable("Rensselaer.tab");

Find _find = new Find(_table,_table.TableInfo.Columns[1]);
_find.UseCloseMatches = true;
_find.CloseMatchesMax = 5;

FindResult _findResult= _find.Search("70 Washington");

if ((!_findResult.ExactMatch) && (_findResult.NameResultCode ==
FindNameCode.ExactMatchNotFound))

{
FindCloseMatchEnumerator _enum =

_findResult.GetCloseMatchEnumerator();
FindCloseMatch _findCloseMatch;
int _iIndex = 0;

while (_enum.MoveNext())
{

MapXtreme 9.5 Developer Guide 293

_findCloseMatch = _enum.Current;

Console.WriteLine(_findCloseMatch.Name);
_iIndex++;

}
}

if(_table != null)
{

_table.Close();
_table = null;

}
find.Dispose();
}

FindResult
The FindResult class returns information from the Find.Search method in the form of
properties that explain what kind of match was made, as shown in the table below. If
successful, the FoundKey property contains the key of the object to be located. If
successful, the FoundPoint property contains the point of the object located.

Property Description

AddressOutOfRan
ge

Specifies whether the address passed in was out of range.

AddressResultCod
e

Identifies the result code for the address part of the search
and returns a FindAddressCode enumeration.

BoundaryResultCo
de

Identifies the result code for the refining boundary part of
the search and returns a FindBoundaryCode enumeration.

 ExactMatch Specifies whether an exact match was found.

 FoundKey Specifies the Key of the object that has been located.

 FoundPoint Specifies the Point of the object that has been located.

IntersectionNotFou
nd

Specifies whether the intersection was not found.

 MultipleMatches Specifies whether multiple matches were found.
MapXtreme 9.5 Developer Guide 294

 13 – Finding Locations
FindAddressCode Enumeration

Identifies the result code for the address part of the search and is returned by the
FindResult.AddressResultCode property.

 This result code should only be used when searching for a street or intersection.

 NameResultCode Identifies the result code for the name being searched on
and returns a FindNameCode enumeration.

 ResultCode If the Find results is an exact match, the value is one. If the
Find results in an approximate match, the value is greater
than one. If the Find fails to match the address, the result is
a negative value.

 UseSubstitution Specifies whether a substitution was used from the
abbreviation file.

Member Name Description

ExactMatch An exact match was found.

SideOfStreetUndetermine
d

The side of the street was undetermined.

WithinMinMax The address number was within minimum/maximum
range.

NotWithinMinMax The address number was not within
minimum/maximum range.

AddressNumNotSpecified An address number was not specified.

StreetsDoNotIntersect The streets do not intersect.

NoMapObjectForRowMat
ched

The row matched does not have a map object.

Property Description
MapXtreme 9.5 Developer Guide 295

FindBoundaryCode Enumeration

Identifies the result code for the refining boundary part of the search and is returned by
the FindResult.BoundaryResultCode property. A refining boundary is used to distinguish
between multiple features with the same name.

 This result code should only be used when a region is being used to refine the
search.

FindNameCode Enumeration

Identifies the result code for the name being searched on and is returned by the
FindResult.NameResultCode property.

Member Name Description

ExactMatch An exact match was found.

FoundInOneOtherRegion The name was found in only one region other
than specified region.

FoundInMoreThanOneRegion The name was found in more than one region
other than the specified region.

NoRegionSpecifiedOneMatch No refining region was specified, and one match
was found.

NoRegionSpecifiedMultipleM
atches

No region was specified, and multiple matches
were found.

MultipleMatchesFound The name was found more than once in the
specified region.

Member Name Description

ExactMatch An exact match was found.

SubstitutionUsed A substitution from the abbreviations
file used.

ExactMatchNotFoun
d

 An exact match was not found.
MapXtreme 9.5 Developer Guide 296

 13 – Finding Locations
Fine Tuning the Find Process
As we stated in the beginning of this chapter, the more you understand about how Find
works, the better you can use its properties and your input information to improve the
chances for a successful match. This section provides some help with developing
strategies for improved results during a Find.

Editing the Mapinfow.abb File
The Mapinfow.abb file is an abbreviations and substitution file that ships with MapXtreme.
This file can be used to improve the chances for a Find if the abbreviation in the input
address can be found in the abbreviations file. This is covered in the section Matching to
Street Abbreviations. This section covers additional types of information you can include
in the file.

You can edit Mapinfow.abb in any text editor or word processor. Open the file and make
your additions, adding keywords as necessary. Here is a standard version of the file:

!Version 3.0
FIRST 1ST
SECOND 2ND
THIRD 3RD
FOURTH 4TH
FIFTH 5TH
SIXTH 6TH
SEVENTH 7TH
EIGHTH 8TH
NINTH 9TH
TENTH 10TH
NORTH N
SOUTH S
EAST E
WEST W
ALLEY AL
AVENUE AV
AVE AV
BOULEVARD BLVD
BRIDGE BR
CIRCLE CIR

NoObjectNameSpeci
fied

No object name specified; match not
found.

CloseMatch A close match was found.

Member Name Description
MapXtreme 9.5 Developer Guide 297

COURT CT
DRIVE DR
EXTENSION EXT
HIGHWAY HWY
INTERSTATE I
LANE LN
MOUNT MT
PARK PK
PARKWAY PKWY
PLACE PL
PLAZA PLZ
POINT PT
RAILROAD RR
ROAD RD
ROUTE RT
SAINT ST
SQUARE SQ
STREET ST
STR ST
TERRACE TER
!EOLNOSPACE
,
;

!EOLSPACE
FLOOR
SUITE
"P.O. BOX"
!NOSPACE
.
\"
\!
\\
!SPACE
"STATE HIGHWAY"STHWY"
"N ST"NORTH ST"
"S ST"SOUTH ST"
"E ST"EAST ST"
"W ST"WEST ST"
"N AV"NORTH AV"
"S AV"SOUTH AV"
"E AV"EAST AV"
"W AV"WEST AV"

You can make additions to this file to take care of various problems. Most importantly, you
can make several different kinds of additions. MapXtreme recognizes four classes of
substitution items and it interprets these classes differently. Each class is preceded by the
keyword used to identify it in the abbreviation file.
MapXtreme 9.5 Developer Guide 298

 13 – Finding Locations
In order for MapXtreme to know how to interpret a line, or set of lines, in the abbreviation
file, you have to precede the line with the keyword which indicates the appropriate
interpretation strategy.

When all of the entries in the abbreviation file use the default interpretation, there is no
need to precede any of them with a keyword. When there is no keyword at the beginning
of the abbreviation file, MapXtreme will treat the initial entries as requiring the default
interpretation. Once you add other types of substitution pairs, however, you have to start
adding keywords.

Space-delimited Substitution

Space-delimited simple substitution is the default. What that means is this: MapXtreme
compares spaced-delimited tokens in target addresses with the rows in the address file. A
space-delimited token is a string of characters with a space before and a space after. For
example, MapXtreme will match “Ave” with “Av” in “Park Ave” but it will not match “Avery
Blvd” to “Avry Blvd.” Both street names contain the string “Ave”. But that string is
bordered by spaces only in “Park Ave”, not in “Avery Blvd.” In “Avery Blvd”, “Ave” is
followed by “r”, not by a space.

All of the entries in the abbreviation file will receive this default interpretation. You can add
other items to receive the same treatment. For example, you might want to add the pair
“WK WALK” so that MapXtreme knows to interpret “WK” in a target address as though it
were “WALK”. Similarly, you might want to add a pair such as: “WAY WY”.

Use the keyword “!SPACE” to indicate space-delimited simple substitution. Entries
following “!SPACE” are given the default interpretation (this allows you to arrange the
Abb.file contents in some other order). When MapXtreme encounters another keyword, it
switches to the indicated interpretation strategy.

Space-delimited simple
substitution

!SPACE

Simple truncation !EOLNOSPACE

Space-delimited truncation !EOLSPACE

Simple substitution !NOSPACE
MapXtreme 9.5 Developer Guide 299

Simple Truncation

In simple truncation, MapXtreme finds an item in the address and simply ignores it and
everything after it. These items do not have to be space-delimited. This strategy is useful
for dealing with addresses such as:

123 Appian Way, Mail Stop 829

7305 Van Zandt # 23

In the first case, you want MapXtreme to ignore the comma and everything after it. In the
second case you want MapXtreme to ignore the number sign and everything after it. To
deal with such cases add the following to your abbreviation file:

!EOLNOSPACE
,
#

“!EOLNOSPACE” is the keyword indicating that the following items are to be treated as
cases of simple truncation. After that we have one line with a comma and one with a
number sign. Whenever MapXtreme encounters a comma or a number sign in an
address it will ignore it and everything after. The examples become:

123 Appian Way

7305 Van Zandt

Space-Delimited Truncation

In space-delimited truncation MapXtreme looks for items which are space delimited and
eliminates those items and everything following. For example:

73 Appian Way Suite 829

3033 Van Zandt Room 202

To deal with such cases add the following to your abbreviation file:

!EOLSPACE
SUITE
ROOM"

!EOLSPACE” is the keyword indicating that the following items are to be treated as cases
of simple truncation. After that we have one line with “Suite” and one with a “ROOM”.
Whenever MapXtreme encounters those tokens it will truncate the address. The
examples become:

73 Appian Way

3033 Van Zandt
MapXtreme 9.5 Developer Guide 300

 13 – Finding Locations
Simple Substitution

MapXtreme uses simple substitution to remove items from an address and otherwise
does nothing. Use it to deal with:

433 Van-Rensselaer

91 St Albans’

The goal is to strip out the hyphen and the apostrophe. Make the following entries to the
abbreviation file:

!NOSPACE
–
’

“NOSPACE” is the keyword calling for simple substitution, and the hyphen and
apostrophe on the following lines are the tokens to be removed. The examples become:

369 VanRensselaer

91 St Albans

Legitimate Spaces

There are cases where you want to indicate a substitution in which the searched for string
contains spaces. You can use double quotes in such cases. Place a double quote:

• at the beginning of the line; and

• between the searched for string and the substitution; and

• at the end of the line.

For example, you might want to substitute “STHWY” for “State Highway”. To do that, use
the following line:

"State Highway"STHWY"

This provides a solution to a subtle problem, that of street names which match items in
the abbreviation file. For example, “North St” and “Park Av” both have initial strings which
match terms in the abbreviation file. Consequently, MapXtreme will substitute “N” for
“North” to yield “N St” and “Pk” for “Park” to yield “Pk Av.” You could add the following
lines to the Abbreviation file to rectify these substitutions:

"N ST"North ST"
"PK AV"PARK AV"

Note that these lines have to come after the entries which substitute “N” for “North” and
“PK” for “Park”. If they came before, they would have no effect. Thus:

 ...
MapXtreme 9.5 Developer Guide 301

...
NORTH N
...
...
PARK PK
..
....
"N ST"NORTH ST"
"PK AV"PARK AV"
...
...

When MapXtreme encounters NORTH N it will turn NORTH ST into N ST. When it
encounters “N ST”NORTH ST” it will then turn N ST into NORTH ST. PARK AV is treated
similarly.

Special Characters

MapXtreme uses the exclamation point (!), the double quote (") and the backslash (\) as
special characters. These characters tell MapXtreme how to treat strings which follow
them, but are not themselves ordinarily treated as characters in substitution strings. The
exclamation point tells MapXtreme that the string should not be interpreted as an
abbreviation. The double quote tells MapXtreme that spaces in the string are legitimate.
And the backslash tells MapXtreme to treat a special character as an ordinary character.

When you want to use any of these in a line where they are to be treated as simple
characters, precede them by a backslash. Thus:

\!
\"
\\

Adding Lines to the Abbreviation File

You can add a new item to the file by adding a new row. The order in which you add rows
is not significant, except in those cases where you expect one substitution pair to
compensate for the effects of another. The number of spaces between the first and
second items in a row is not significant either.

Incorrect Address Ranges

When an address contains a number range that is not in the source table, MapXtreme will
not be able to match it. Such an address might fall into a gap in range numbers or it might
be beyond the ends of the ranges. To handle this problem:

1. Set the Find.ChooseClosestAddressRange property to true and then perform your
search.
MapXtreme 9.5 Developer Guide 302

 13 – Finding Locations
2. Resolve the failed matches by reviewing the FindAddressCode enumeration which is
returned by the FindResult.AddressOutOfRange property.

It is possible that the address is for a street segment that was added after your source
table was made. In that case, edit the source table so that it reflects the full range of
addresses for that street.

Inaccurate Town Names

MapXtreme’s last step in a Find operation is to determine in which region to place a
matched street address. MapXtreme only takes this step if you have so specified when
you set up the find process. It is common to use town or city name as the refining
boundary. This causes problems because people often do not use the town name which
the Census Bureau assigns to their address. Since almost all electronic maps of the
United States are based on Census Bureau maps, this will cause problems.

For example, the address “50 Wolf Rd., Albany, NY” is actually in the town of Colonie.
Thus the address town name in the target address will not match the appropriate town in
the source file.

One way to handle this is use the ChooseAlternateBoundary property. When this option is
enabled, MapXtreme attempts to match an address to whatever boundary that address is
in, providing that address is in only one boundary. When the address is in more than one
boundary, the Find will fail.

Another way to deal with this problem is to use the ZIP Code as the refining boundary,
rather than the town or city name.
MapXtreme 9.5 Developer Guide 303

MapXtreme 9.5 Developer Guide 304

14

14 – Using Themes and

Legends
MapXtreme provides you many options for adding thematics and
legends to your map. The following sections illustrate the different
types of themes and legends available to you and explains how to use
them.

In this chapter:
 Thematics Overview . 306
 GraduatedSymbolTheme . 308
 PieTheme . 309
 BarTheme. 310
 RangedTheme .311
 RangedLabelTheme . 314
 Ranged Themes and Serialization . 315
 IndividualValueTheme . 315
 Creating an IndividualValueTheme with Custom Bitmap Symbols . 316
 IndividualValueLabelTheme . 317
 IndividualValue Themes and Serialization 318
 DotDensityTheme. 318
 Legends Overview . 320
 Export/Import Theme and Style . 322

Thematics Overview
Thematic mapping allows you to present trends in data that would be difficult to see from
tabular data. The theme is usually some piece or pieces of your data. You thematically
shade a map using data from a data source, such as a native MapInfo table. For example,
you can thematically shade a map of the United States based on the average
temperature of each state. When you see red, you know it is hot (high number of
degrees); where you see blue, it is cold (low number of degrees).

Themes represent your data with shades of color, fill patterns, or symbols. There are
many uses for thematic maps to display your data. You create different thematic maps by
assigning these colors, patterns, or symbols to map objects according to specific values
in your data.

Mapping.Thematics Namespace
The MapInfo.Mapping.Thematics namespace contains classes that implement themes as
style overrides on Feature layers and as Object themes. Modifier themes change the
style, while object themes add a new layer. All themes implement the ITheme interface.

Modifier Themes
An example of a feature modifier theme are ranged, individual value and dot density
thematic maps. They modify existing features in a layer. The following UML diagram gives
an overview of the modifier theme hierarchy.
MapXtreme 9.5 Developer Guide 306

 14 – Using Themes and Legends
Object Themes
Object themes include graduated symbol, and pie and bar charts. These themes create
objects that represent the data values. The following UML diagram gives an overview of
the object theme hierarchy.
MapXtreme 9.5 Developer Guide 307

GraduatedSymbolTheme
A graduated symbol theme is an object theme that contains point features whose symbol
sizes are based on the numeric values of the theme's expression.

For instance, use graduated symbols to show housing income for a particular segment of
the population across an area.

Example of a Graduated Symbol thematic map.

When To Use a Graduated Symbol Theme
Graduated symbols maps work with numeric data only. It makes no sense to create
graduated symbols based on the type of cuisine each restaurant serves. However,
graduated symbols are appropriate when you want to show the distribution of housing
income by city.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_GraduatedSymbolTheme(ByVal map As
Map)

 ‘ Load a map based on one table
 map.Load(New MapTableLoader(“world.tab”))
 Dim lyr As FeatureLayer = CType(map.Layers(“world”), FeatureLayer)

 ‘ Create a new graduated symbol theme
 Dim gradTheme As GraduatedSymbolTheme = New _

GraduatedSymbolTheme(lyr.Table, “Pop_Native”)

 ‘ Create an object theme layer based on that graduated symbol theme
 Dim thmLayer As ObjectThemeLayer = New ObjectThemeLayer(“World Pop _

Growth Rate”, Nothing, gradTheme)
MapXtreme 9.5 Developer Guide 308

 14 – Using Themes and Legends
 ‘Add object theme to the map’s layer collection.
 map.Layers.Add(thmLayer)

 ‘ Adjust how we graduate the size.
 gradTheme.GraduateSizeBy = GraduateSizeBy.Constant
 thmLayer.RebuildTheme()
End Sub

PieTheme
A pie theme is an object theme containing pie charts with wedges that represent each
data value. In pie charts you compare the wedges in a single pie, or examine a particular
pie wedge across all of the pies. Pie charts also enable you to compare parts of a whole.

When To Use a Pie Theme
Pie charts are particularly useful for analyzing demographic data. For example, you have
a dataset of demographic information for the United States. Your dataset shows the
populations of several major demographic groups. Using pie charts, you can show the
population of each demographic group, and see what fraction of the pie it makes up in
each chart. This enables you to see the distribution of demographic groups on a per state
basis, or across the entire United States. You can also look at one demographic group
and see how the relative population of the group varies in different states.

VB example:

Public Shared Sub MapInfoMappingThematicsPieTheme(ByVal map As Map)
' Load a map based on one table
map.Load(New MapTableLoader("mexico.tab"))
Dim lyr As FeatureLayer = CType(map.Layers("mexico"), FeatureLayer)

' Create a new pie theme
Dim pieTheme As MapInfo.Mapping.Thematics.PieTheme = New _

MapInfo.Mapping.Thematics.PieTheme(map, lyr.Table, "Cars_91", _
"Buses_91", "Trucks_91")

' Create an object theme layer based on that pie theme
Dim thmLayer As ObjectThemeLayer = New ObjectThemeLayer("Count by _

Vehicle Type", Nothing, pieTheme)

'Add object theme to the map's layer collection.
map.Layers.Add(thmLayer)

' DataValueAtSize is calculated automatically if not specified in the
' pie's constructor. But, you can adjust it. If you do so here, you
' have to rebuild the theme. You can adjust it before creating the
MapXtreme 9.5 Developer Guide 309

' object theme layer, and that way the pies won't need to be built
' twice.

pieTheme.DataValueAtSize /= 2
pieTheme.GraduateSizeBy = GraduateSizeBy.Constant
thmLayer.RebuildTheme()
End Sub

Printing a Map Containing Pie/Bar Themes
When cloning a map for printing that contains pie or bar themes, be sure to take the size
of the paper into consideration to get expected results. The paper size is used to calculate
the size of the pie/bars in the printed output. Use the paper size at 100 percent so that the
graphs/themes are the same relative size in the print preview as they are on the
MapControl.

BarTheme
A bar theme is an object theme that contains bar charts with bars that represent each
data value. A bar chart is built for every map object (feature) at the centroid of the object,
enabling you to analyze several thematic variables in a particular chart by comparing the
height of the bars.

When To Use a Bar Theme
Bar themes are useful for examining the same variable across all the features in your
map. For example, you have a table of U.S. state boundaries containing female and male
population. Using bar charts, you can create a thematic map that displays a two–bar chart
for each state: one bar representing female, and the other representing male population.
You can compare the population differences of each state, or you can examine several
states and compare population differences to the others.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_BarTheme(ByVal map As Map)
 ‘ Load a map based on one table.
 map.Load(New MapTableLoader(“world.tab”))
 Dim lyr As FeatureLayer = CType(map.Layers(“world”), FeatureLayer)

 ‘ Create a new bar theme.
 Dim barTheme As MapInfo.Mapping.Thematics.BarTheme = New _

MapInfo.Mapping.Thematics.BarTheme(map, lyr.Table, “Pop_Native”,_
“Pop_Asian”, “Pop_Other”)
MapXtreme 9.5 Developer Guide 310

 14 – Using Themes and Legends
 ‘ Create an object theme layer based on that bar theme.
 Dim thmLayer As ObjectThemeLayer = New ObjectThemeLayer(“World _

Pop”, Nothing, barTheme)

 ‘ Add object theme to the map’s layer collection.
 map.Layers.Add(thmLayer)

 ‘ Stack the bars and graduate by a constant amount.
 barTheme.Stacked = True
 barTheme.GraduateSizeBy = GraduateSizeBy.Constant
 thmLayer.RebuildTheme()

End Sub

Controlling Display Size for Pie and Bar Themes
MapXtreme provides the abstract base class MultiVariableTheme that supports the
creation of pie and bar object themes. This class, derived from the ObjectTheme class,
provides two properties, DataValueAtSize and Size, that control how large object theme
geometries display at particular values. The default value for DataValueAtSize is set to
the largest data value of the mapped features. The Size value controls the width of pie
charts and the height of bar charts in paper units.

RangedTheme
A ranged theme shows data grouped into ranges (bins) according to specific criteria. In
MapXtreme a ranged theme modifies an existing layer to reflect that criteria. It does not
create a new layer, as range themes did in previous versions of MapX and MapXtreme.
When you create a ranged thematic map, MapXtreme groups all dataset rows into ranges
and assigns each row’s object the color, symbol, or line for its corresponding range.
MapXtreme 9.5 Developer Guide 311

Example of a ranged thematic map.

When To Use a Ranged Theme
A ranged theme is useful, for example, when you have demographic data for an area. For
example, rural male population in Asia can be grouped into bins and shaded by color to
indicate the population ranges that exist across the area.

All records in the dataset are assigned to a range and then drawn with a style based on
that range. When using a yellow to green color range, for example, the countries with the
highest population could be shaded yellow, the lowest shaded green and the intermediate
ranges some color in between yellow and green. When the map is displayed, the colors
make it readily apparent where the highest and lowest populations exist. (See How to
Apply Translucent Effects to Themes for instructions on applying translucency effects to a
ranged thematic map.)

Ranges are also useful when the size of the region is not directly related to the magnitude
of the data values.

Types of Ranged Values
MapXtreme can create ranges automatically using five distribution methods:

• Equal count

• Equal ranges

• Standard Deviation

• Natural break

• Quantile

• Custom
MapXtreme 9.5 Developer Guide 312

 14 – Using Themes and Legends
Equal Count

Equal Count has the same number of records in each range. If you want to group 100
records into 4 ranges using Equal Count, MapXtreme computes the ranges so that
approximately 25 records fall into each range, depending on the rounding factor you set.

When using Equal Count (or any other range method), it’s important to watch out for any
extreme data values that might affect your thematic map (in statistics, these values are
referred to as outliers).

Equal Ranges

Equal Ranges divides records across ranges of equal size. For example, you have a field
in your table with data values ranging from 1 to 100. You want to create a thematic map
with four equal size ranges. MapX produces ranges 1–25, 26–50, 51–75, and 76–100.
Keep in mind that MapXtreme may create ranges with no data records, depending on the
distribution of your data.

Standard Deviation

When you create ranges using Standard Deviation the middle range breaks at the mean
of your values, and the ranges above and below the middle range are one standard
deviation above or below the mean.

Natural Break

Natural Break is a way to show data that is not evenly distributed. It creates ranges
according to an algorithm that uses the average of each range to distribute the data more
evenly across the ranges. It distributes the values so that the average of each range is as
close as possible to each of the range values in that range. This ensures that the ranges
are well-represented by their averages, and that data values within each of the ranges
are fairly close together.

Quantile

Quantile is a second way to show data that is not evenly distributed. Quantiling uses two
variables expressions. For example, use the Quantile distribution method to show the
literacy rate as tied to population.
MapXtreme 9.5 Developer Guide 313

Custom Ranges

If none of the distribution methods meet your needs, you can create custom ranges using
the method DistributionMethod.CustomRanges,. See the code example in the
MapXtreme Developer Reference Help under the
MapInfo.Thematics.RangedTheme.Recompute method.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_RangedTheme(ByVal map As Map)
 ‘ Create a ranged theme.
 Dim lyr As FeatureLayer = CType(map.Layers(0), FeatureLayer)
 Dim theme As MapInfo.Mapping.Thematics.RangedTheme = New _

MapInfo.Mapping.Thematics.RangedTheme(lyr, “Pop_1990/Area(obj,_
'sq mi')”, “PopDensity”, 5,DistributionMethod.EqualCountPerRange)

 ‘ Add the ranged theme to the layer.
 lyr.Modifiers.Append(theme)
End Sub

RangedLabelTheme
This class creates a range theme in which labels are drawn with a range style. For a more
detailed discussion of ranged themes, see the section RangedTheme.

When To Use a RangedLabelTheme Class
Ranged label themes are useful when you want use the labels to convey information
about what you are labeling. For example, you could use a ranged label theme when
labeling city or town populations. The label of a city with a large population would have a
larger font than the label of a town with a small population.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_RangedLabelTheme(ByVal labelSource
As MapInfo.Mapping.LabelSource, ByVal columnExpr As _

String, ByVal themealias As String)
 ‘ Create new ranged label theme based on the label source of a
 ‘ LabelLayer already in the map. It will use 5 bins of equal range.
 Dim rangedLabelTheme As RangedLabelTheme = New _

RangedLabelTheme(labelSource.Table, columnExpr, themealias, 5, _
DistributionMethod.EqualCountPerRange)

 ‘ Add the label modifier to the label layer.
 Dim labelModifier As MapInfo.Mapping.LabelModifier = _

CType(rangedLabelTheme, MapInfo.Mapping.LabelModifier)
 labelSource.Modifiers.Insert(0, labelModifier)
MapXtreme 9.5 Developer Guide 314

 14 – Using Themes and Legends
End Sub

Ranged Themes and Serialization
Beginning with v7.0.0, serialization and deserialization for RangedThemes and
RangeLabelThemes has been changed in an effort to boost performance.

The changes are during theme serialization, when the theme's bin or category record
counts are serialized. Upon deserialization, the record counts are no longer recomputed;
rather the serialized record counts are applied to the theme. This change was put in place
to improve upon serialization/deserialization performance.

It is important to note that for applications that are expecting to have their theme record
counts updated upon deserialization will have to add logic to update the theme bin or
category record counts after deserialization. For RangeTheme and RangeLabelTheme,
this is a call to the MapInfo.Mapping.Thematic.IRangedTheme.Recompute method.

IndividualValueTheme
An Individual Value theme is a modifier theme that show points, lines, or boundaries that
are shaded by individual values contained in a particular field of a dataset. You can use
both numerical and nominal values in individual values maps. MapXtreme gives each
unique value its own distinct style.

For example, use an IndividualValue theme to show zoning classifications for parcels of
land. Each zone (commercial, residential, industrial) would display in a different color.
Parcels that match the zone classification would be shaded in that color.

When To Use an IndividualValueTheme Class
If you are shading your points, lines, or boundaries using nominal data, you can shade
only by individual values. Nominal data is either non-numeric data (e.g., name, type of
cuisine served, or brand of automobile sold) or numeric data where the numbers do not
represent measurements. For example, nominal data may be a column containing ID
numbers.

Dates are considered numeric data and can be used in both ranged and individual values
maps.

VB example:
MapXtreme 9.5 Developer Guide 315

Public Shared Sub MapInfo_Mapping_Thematics_IndividualValueTheme(ByVal_
map As Map)

 ‘ Load a map based on one table
 map.Load(New MapTableLoader(“World.tab”))
 Dim fLyr As FeatureLayer = CType(map.Layers(“world”), FeatureLayer)

 ‘ Create an individual value theme
 Dim thm As IndividualValueTheme = New _
IndividualValueTheme(fLyr, “Country”, “World Pop”)

 ‘ Add the theme to the FeatureStyleModifiers list
 fLyr.Modifiers.Append(thm)
End Sub

Creating an IndividualValueTheme with
Custom Bitmap Symbols
The following C# example shows how to create an IndividualValueTheme that use
custom bitmap symbols. A table of available bitmap symbols is included in Custom
Symbols.

// Open a connection to the Catalog
MapInfo.Data.MIConnection conn = new MapInfo.Data.MIConnection();
conn.Open();

// Retrieve a table from the Catalog
MapInfo.Data.Table ti=conn.Catalog.GetTable("usa_caps");
// Add it as a layer to MapControl
MapInfo.Mapping.FeatureLayer fl=mapControl1.Map.Layers["usa_caps"] _

as FeatureLayer ;

// Create a new IndividualValueTheme
MapInfo.Mapping.Thematics.IndividualValueTheme iv=new _

MapInfo.Mapping.Thematics.IndividualValueTheme(fl,"state","state");

// Add a custom bitmap symbol
MapInfo.Styles.BitmapPointStyle bitmappointstyle = new _

MapInfo.Styles.BitmapPointStyle("AMBU1-32.BMP", _
MapInfo.Styles.BitmapStyles.All ,System.Drawing.Color.Red , 30);

// Set the style
MapInfo.Styles.CompositeStyle cs = new _

MapInfo.Styles.CompositeStyle(null, null, null, bitmappointstyle);

// Apply the style to the first bin
MapInfo.Mapping.Thematics.ModifierThemeBin mtb= iv.Bins[0];
mtb.Style.ApplyStyle(cs);

// Add another bitmap symbol
MapXtreme 9.5 Developer Guide 316

 14 – Using Themes and Legends
bitmappointstyle = new _MapInfo.Styles.BitmapPointStyle("BADG1-32.BMP", _
MapInfo.Styles.BitmapStyles.All ,System.Drawing.Color.Red , 30);

// Set the style
cs=new MapInfo.Styles.CompositeStyle(null, null, null, _

bitmappointstyle);

// Apply the symbol to the second bin
mtb= iv.Bins[1];
mtb.Style.ApplyStyle(cs);

// Append the style modifiers to the feature layer
fl.Modifiers.Append (iv);

//Close the connection
conn.Close();

IndividualValueLabelTheme
This class creates an individual value thematic which operates on a layer's labels. For a
more detailed discussion of individual value themes, see the section
IndividualValueTheme.

When To Use an IndividualValueLabelTheme Class
As with ranged label themes, individual value label themes are also useful when you want
use the labels to convey information about what you are labeling. When working with
street data, for example, you could use an individual value label theme to label different
types of roads with different fonts. In this case, a highway would be represented by a label
with a different style than the label for a county road.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_IndividualValueLabelTheme(ByVal
labelSource As MapInfo.Mapping.LabelSource, ByVal columnExpr As String, ByVal _

themeAlias As String)
 ‘ Create new individual value label theme
 Dim theme As IndividualValueLabelTheme = New _

IndividualValueLabelTheme(labelSource.Table, columnExpr, themeAlias)

 ‘ Add the label modifier to the label layer.
 Dim labelModifier As MapInfo.Mapping.LabelModifier = CType(theme, _

MapInfo.Mapping.LabelModifier)
 labelSource.Modifiers.Insert(0, labelModifier)
End Sub
MapXtreme 9.5 Developer Guide 317

IndividualValue Themes and Serialization
Beginning with v7.0.0, serialization and deserialization for IndividualValueThemes and
IndividualValueLabelThemes has been changed in an effort to boost performance.

The changes are during theme serialization, when the theme's bin or category record
counts are serialized. Upon deserialization, the record counts are no longer recomputed;
rather the serialized record counts are applied to the theme. This change was put in place
to improve upon serialization/deserialization performance.

It is important to note that for applications that are expecting to have their theme record
counts updated upon deserialization will have to add logic to update the theme bin or
category record counts after deserialization. For IndividualValueTheme and
IndividualValueLabelTheme, this is a call to the
MapInfo.Mapping.Thematics.IModifierTheme.RecomputeBins method.

DotDensityTheme
A dot density theme is a style modifier that draws the fill pattern of a region, using dots
based on the numeric value of the theme's expression.

Dot density maps use dots to represent the data value associated with a boundary or
region. The total number of dots in a region represents that region’s data value. If you
have 10,000 senior citizens in a county, and each dot represents 100 senior citizens,
there would be 100 dots in the county boundary.

When To Use a DotDensityTheme Class
A dot density theme is useful for showing raw data where one dot represents a large
number of something: population, number of fast food restaurants, number of distributors
who carry a brand of soda, etc.

For example, if you have a table of population broken down into county boundaries, you
could use a dot density theme to show the concentration of people in each county
boundary. There are two properties you control for dot density maps. You can specify the
value of one dot. For example, to represent 20,000 high school students in Rensselaer
County, New York using a dot density theme, you can specify that one dot represents 200
students. When you shade the county, the map would be drawn with 100 dots for that
county.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_DotDensityTheme(ByVal map As Map)
MapXtreme 9.5 Developer Guide 318

 14 – Using Themes and Legends
 ’ Load a map based on one table
 map.Load(New MapTableLoader("mexico.tab"))

 ’ Create a dot density theme.
 ’ Add it as a modifier.
 Dim lyr As FeatureLayer = map.Layers("mexico")
 Dim thm As MapInfo.Mapping.Thematics.DotDensityTheme = New
MapInfo.Mapping.Thematics.DotDensityTheme(lyr, "Pop_90", "mexico Pop",
System.Drawing.Color.Red, DotDensitySize.Large)

 ’ thm.DotColor is System.Drawing.Color.Red
 ’ thm.DotSize is DotDensitySize.Large

 ’ Set each dot to represent 20,000 people
 thm.ValuePerDot = 20000

End Sub

Bivariate Thematic Maps
Bivariate thematic mapping uses point or line objects to represent two thematic variables.
For example, a star can represent one variable, such as the number of teenagers, while a
blue fill for the star represents their annual purchase amounts.

To create a bivariate map in MapX, you create two thematic maps, and layer one over the
other so that the objects display two variables.

Types of Maps and Variables

The only types of thematic maps suitable for bivariate mapping are ranged and individual
values maps. You can choose between two combinations for a bivariate map, depending
on your data:

• two ranged maps

• one ranged map and one individual values map

If you have a non-numeric variable, one of your maps must be an individual values map.
You cannot create a bivariate map with two non-numeric variables.

Displaying Attributes

To display two variables within one symbol, it is important to choose a different symbol
attribute for each variable. For example, you cannot choose color for both variables
because one color will overwrite the other. Choose from the following combinations:

• color and symbol type
MapXtreme 9.5 Developer Guide 319

• color and size

• size and symbol type

Symbol type should only be used for nominal or non-numeric data, as there is no inherent
association between a symbol type and a quantity.

VB example:

Public Shared Sub MapInfo_Mapping_Thematics_RangedThemeConstructor(ByVal lyr As
FeatureLayer)
 Dim thm As MapInfo.Mapping.Thematics.RangedTheme = New _

MapInfo.Mapping.Thematics.RangedTheme(lyr, “Literacy”, “Pop_1994”, _
“Literacy Quantile by Pop”, 4)

 lyr.Modifiers.Append(thm)
End Sub

Legends Overview
The MapInfo.Mapping.Legends namespace contains classes, interfaces and
enumerations for creating and displaying thematic and cartographic legends. Legends
are a collection of Thematic or Cartographic LegendFrames. Each frame contains a
collection of LegendRows, Each LegendRow has text and a style property.

Theme Legends
Theme legends provide a key of colors, symbols, and styles used for themes. This key
explains what the colors, symbols, and styles represent.

When to Use a Theme Legend

A theme legend is useful whenever you have a map that contains themes. With a weather
map that displays precipitation, rainfall may be represented by varying shades of green. A
theme legend would be important in visually explaining that the darkest shade of green
represents the highest amount of rainfall while lighter shades represent lower amounts of
rainfall.
MapXtreme 9.5 Developer Guide 320

 14 – Using Themes and Legends
In the \Samples\Desktop\Features\ThemeLegend folder, we provide a sample application
that demonstrates how to create a ranged theme on a table, create a legend and legend
frame for the them and add it to the map as an adornment.

Cartographic Legends
The cartographic legend class allows you to read and write cartographic legend
metadata. The legend identifies each cartographic feature on the map using text and a
style from the metadata.

When to Use a Cartographic Legend

A cartographic legend is very useful whenever you have a map that contains objects that
represent items on the map. For example, a map with landmarks requires a cartographic
legend. Hospitals, schools, churches, and airports would each be represented by a
different symbol. The cartographic legend provides a visual explanation of the different
types of landmarks that are represented on the map.

See the MapInfo.Mapping.Legends.Legend class in the Developer Reference for a code
example that demonstrates how to create a cartographic legend.
MapXtreme 9.5 Developer Guide 321

Formatting a Legend
The MapInfo.Mapping.Legends.LegendFormat class contains properties that control how
frames within a legend are drawn. You can control display properties such as alignment,
the number of legend frames per row or column, spacing between frames, and whether
the legend size and frame positions should be automatically adjusted.

The LegendFormat.FrameAlignment property is used in conjunction with the
FramesPerRow for horizontal alignment and FramesPerColumn for vertical alignment.

For example, if your legend contains 10 frames, and you set the FrameAlignment to
Horizontal and the FramesPerRow to 5, the legend will display two rows of frames with
five frames in each row. If you had 10 frames per row, the 10 frames would display in a
single row 10 frames wide.

Similar behavior happens with vertical alignment. If you have 10 frames and you set the
FrameAlignment to Vertical and the FramesPerColumn to 5, you will end up with 5 rows
of 2 frames (5 rows in 2 columns). The frames were aligned vertically up to 5 frames per
column. When FramesPerColumn is set to 10, the legend would contain 10 rows of 1
frame each (10 frames per column).

The default setting for FramesPerRow and FramesPerColumn is 0. The value used is the
current number of frames in the row or column as indicated by LegendFrameRows.Count
or LegendFrameColumns.Count properties.

Export/Import Theme and Style
MapXtreme facilitates to export existing themes and styles applied on any layer, in XML
format. Later on, this exported theme and style XML can be imported on any similar layer.

To use this feature create a new instance of ExportImportThemeStyle class and call the
Export() or Import() method as required.

The sample code below illustrates this:

MapInfo.Mapping.MapLayer layer; //initialize your layer here.
string strExportedThemeXml="theme.xml"
Persistence.ExportImportThemeStyle exportImportThemeStyle

= new ExportImportThemeStyle();
exportImportThemeStyle.Export(strExportedThemeXml, layer);

Similarly, with the help of Import() method, you can import the exported theme XML file on
any layer. Also, an option to export/import themes and styles has been provided via user
interface i.e. Layer control. Please refer to Export/Import Theme and Style.
MapXtreme 9.5 Developer Guide 322

15

15 – Stylizing Your Maps
Styles in MapXtreme affect many components of a mapping
application, not just how a map feature looks. Styles are used for
labels, text, themes, legends, selection and presentation with many
controllable attributes so you can design practically any style you like.

This chapter discusses styles in terms of the MapXtreme framework,
specifically the MapInfo.Styles namespace.

In this chapter:

 Overview of the MapInfo.Styles Namespace 324
 Style Descriptions. 325
 Pre-defined Styles and the StyleRepository Class 329
 Using Styles . 330
 Overriding Styles . 331

Overview of the MapInfo.Styles Namespace
The MapInfo.Styles namespace highlights the new Styles object model for MapXtreme.
The Style class is the base class of all styles. Classes that derive from Style include
AreaStyle, BaseLineStyle, BaseInterior, BasePointStyle, CompositeStyle, Font,
RasterStyle, and TextStyle. Derived from BaseLineStyle is the SimpleLineStyle class.
Derived from BaseInterior is the SimpleInterior class. Derived from BasePointStyle are
the BitmapPointStyle, FontPointStyle, and SimpleVectorPointStyle classes. Additionally,
GridStyle is derived from RasterStyle to include grid specific style settings. A StockStyles
class is provided to create common style types.

You cannot instantiate the abstract style classes Style, BaseLineStyle, BaseInterior or
BasePointStyle. You must create a particular type like SimpleLineStyle, or create them as
a CompositeStyle.

Style is its own object; it is no longer stored in an object. Each table containing a
geometry column also contains a Style column (alias MI_Style) containing a datatype
Style. For style overrides, the Feature class provides FeatureStyleModifier and
FeatureOverrideStyleModifiers. The Style object model also makes available several
collection classes (style repositories) to hold styles for the style dialog controls.

All style classes support the ability to be applied in a sparse manner. See the section on
FeatureOverrideStyleModifiers.

Styles are used in many areas of MapXtreme including the lines, interior fills and point
styles that represent geographic features. Styles are also an integral part of labels, text,
layouts, themes, overrides, legends and selections. Style properties range from standard
color fills, line width and point size, to background effects, bitmaps as point styles, and
MapXtreme 9.5 Developer Guide 324

 15 – Stylizing Your Maps
rotation angle. Practically any style property you can imagine is available for you to
incorporate into your application. Styles can be changed globally or per feature,
overridden for the current display or made as a permanent change.

MapXtreme comes with a number of sample styles to get you started. There are more
than 170 interior fill patterns, approximately 120 line style patterns, and approximately 70
bitmap point style images. You can create bitmap images in any application that can
create bitmaps, like MS Paint or Paint Shop Pro. There are virtually no size limitations on
the image; however, the ability of MapXtreme to display it will depend on available
memory. The image does not have to be square and can also have up to 24-bit color
depth. To make sure the image is displayed at the height and width you want, select the
'Display at actual size' option for BitmapPointStyles. Once the image is created, place it in
the CustSymb directory. Custom symbols are located in programdata\Mapinfo\custsymb
folder.

Additionally, MapXtreme ships with style controls and dialogs that allow you to rapidly add
them to a form or web application. See the ChangeStyles and FeatureStyles sample
applications under the Samples folder which bring together all the style classes discussed
in this chapter. For more information on form style controls and dialogs see Chapter 7
Desktop Applications, Controls, Dialogs, and Tools. For more on web controls see
Chapter 5 Web Applications, Controls, and Tools.

For visual representations of supported style elements, see Appendix F: Style Lookups.

StyleFactory
A StyleFactory class is available from MapInfo.Styles that contains methods to generate
MapInfo Style objects from various types of style parameters. For example,
MapInfo.Styles. StyleFactory.FromMBstring takes a MapBasic style clause as string input
and returns a CompositeStyle. See the online Developer Reference for more information
and a code example.

Style Descriptions

AreaStyle
The AreaStyle class contains style properties used for drawing regions. Regions are
drawn using a BaseLineStyle and BaseInterior.
MapXtreme 9.5 Developer Guide 325

BitmapPointStyle
The MapInfo BitmapPointStyle class contains style properties for drawing points using
custom bitmaps. Use this class for marking point locations. BitmapPointStyle is one of
three types of supported point styles, the others being FontPointStyle and
SimpleVectorPointStyle.

BitmapPointStyle has a ShowWhiteBackground property; if set to false, any white pixel in
the bitmap is transparent. By default, ShowWhiteBackground is set to false. For example,
you may wish to use your corporate logo to represent office locations worldwide, but do
not want to cover up other map features in the immediate area. There are other settings
that control how BitmapPointStyles are displayed. See the BitmapStyles enumeration in
the online help for more details.

MapXtreme ships with a number of bitmap point styles to get you started. They are
located in the CustSymb directory. You can also add your own bitmap images to this
directory. The maximum number of images allowed is 32,767.

CompositeStyle
The CompositeStyle class encompasses the collection of all the style types used for
default styles, modifier styles, and layer override styles. The CompositeStyle can also be
used to describe styles for the Collection object type. The style types contained are
AreaStyle, a BaseLineStyle derived class, TextStyle, a BasePointStyle derived class,
RasterStyle and GridStyle. The CompositeStyle can be constructed with any or all of
these types, but must contain at least one of the above.

For example, you can create a style override (a FeatureOverrideStyleModifier) to alter the
appearance of all features in a layer. Since a single layer can contain points and lines and
regions, you might need to specify point, line and area styles when you build your style
override. You can specify all necessary style types in one CompositeStyle object, which
you then pass to the FeatureOverrideStyleModifier constructor.

SimpleInterior
The MapInfo SimpleInterior class contains style properties used for filling the interior of
regions. SimpleInterior attributes include pattern, foreground and background color, and
background transparency. The default for a SimpleInterior is a solid white interior.
MapXtreme 9.5 Developer Guide 326

 15 – Stylizing Your Maps
Font
The MapInfo Font class contains style properties used for drawing text. Attributes for
fonts, include bold, italic, underline, strikeout, shadow, halo, all caps, double space, size,
foreground and background color. You can also change the font type (e.g., Arial, Times
New Roman) and the font size. Note that the outline font property has been removed. To
create an outline, use halo with a black background.

FontPointStyle
The FontPointStyle class contains style properties used for drawing points using mainly
the MapInfo.Styles.Font class. You can customize the point size, font color, angle of
rotation and other font properties. The maximum point size allowed is 240 points.

GridStyle
This is a helper class containing display style information about a grid such as color
inflections, null cell color and transparency. A grid is a map of continuous color gradation
that represents interpolated data values. For more information on grids see Chapter 17
Working with Rasters and Grids.

RasterStyle
This is a helper class containing display style information for a raster image including
brightness, contrast, grayscale (color on/off), transparency, and translucency. For more
information on raster images see Chapter 17 Working with Rasters and Grids.

Hillshade
This is a helper class used to store the parameters for hill shading on a grid. Hill shading,
also called relief shading, can be added to grid maps to show the effect of a light source
on the map. This gives a grid map greater definition, particularly useful for elevation
maps. Hill shade properties include the horizontal and vertical angles of the light source,
and a vertical scale factor. For more information on grids see Chapter 17 Working with
Rasters and Grids.
MapXtreme 9.5 Developer Guide 327

Inflection
This is used to hold a single inflection point which associates a color with a value. A grid
has an array of inflections to represent its colors. A grid map is a map that shows a
gradual color change across an area. The blending of one color into the next is due to the
inflection. For more information on grids see Chapter 17 Working with Rasters and Grids.

SimpleLineStyle
The SimpleLineStyle class contains style properties used for drawing polylines based on
the MapBasic Pen clause. It is used for map features such as streets and cable lines, as
well as borders around regions. Attributes to describe SimpleLineStyles include pattern,
width (in pixels or points) and color. The default for a SimpleLineStyle is a solid black 1-
pixel wide line. Units for SimpleLineStyle are pixels (default) or points.

The LineWidth class in the MapInfo.Styles namespace is a helper class used to define the
width and units of a line style.

BasePointStyle
This is an abstract base class for all MapInfo point styles. It cannot be instantiated.
SimpleVectorPointStyle, BitmapPointStyle and FontPointStyle derive from this class.

BaseLineStyle
This is an abstract base class for all MapInfo line styles. It cannot be instantiated.
SimpleLineStyle derives from this class.

BaseInterior
This is an abstract base class for all MapInfo interior styles. It cannot be instantiated.
SimpleInterior derives from this class.

StockStyles
This class contains static methods to create various default style objects, including black,
blue, red and white interiors, black, blue, and red lines, hollow interiors and lines, and
default fonts and point styles.

SimpleLineStyle redLine = StockStyles.RedLineStyle();
MapXtreme 9.5 Developer Guide 328

 15 – Stylizing Your Maps
TextStyle
This class contains style properties used for drawing text. It contains a
MapInfo.Styles.Font class and a BaseLineStyle derived class for callout lines. The
BaseLineStyle is optional (the TextStyle may or may not contain one).

SimpleVectorPointStyle
This class contains style properties for drawing points using MapInfo's 3.0 Compatible
proprietary font (MapInfow.fnt ships with MapXtreme). SimpleVectorPointStyle properties
include color, point size and the shape code of the actual symbol you wish drawn for the
point. The standard set includes symbols 31 through 67.

 Another symbol font set, called MapInfo Symbol, is a TrueType font set that
displays using the FontPointStyle class.

Pre-defined Styles and the StyleRepository
Class
MapXtreme ships with a variety of bitmap images covering many themes that can be
used as bitmap point styles. More than 170 fill patterns and line styles are also available
for use. These are all installed by the application and accessible either through the style
dialogs (e.g., LineStyleDlg) or through the various StyleRepository classes.

For visual representations of supported style elements, see Appendix F: Style Lookups.

StyleRepository Class
The StyleRepository class contains style collection classes (VectorSymbolRepository,
BitmapSymbolRepository, LineStyleRepository, InteriorStyleRepository), which allows
you to iterate through all current styles, as well as reload the collections with new styles
from a specific file(s) or directory. The StyleRepository class also contains a repository
(TrueTypeFontInfoRepository) that represents information about the TrueType fonts
installed on the system.

The VectorSymbolRepository represents the set of symbols from the MapInfo 3.0
Compatible symbol set. The BitmapSymbolRepository represents the set of images
currently found in the CustSymb directory. The LineStyleRepository represents the
current set of patterns available for line styles. And the InteriorStyleRepository represents
the set of interior patterns available.
MapXtreme 9.5 Developer Guide 329

Using Styles

Styles and Layer Control
Use LayerControl at design or runtime to modify and override styles. See the sample
application LayerControl for an introduction to the
MapInfo.Windows.Controls.LayerControl object model. This code sample uses a
LayerControl object directly on a form; it does not demonstrate using the LayerControlDlg
dialog box, which is a related, but separate class. Every operation demonstrated in this
code sample could be applied to a LayerControlDlg object, as well, since the
LayerControlDlg class exposes a LayerControl property.

LayerControl is discussed in Chapter 7 Desktop Applications, Controls, Dialogs, and
Tools and in Chapter 27 Workspace Manager.

Creating a Custom Bitmap Style
You can create bitmap images in any application that can create bitmaps, like MS Paint or
Paint Shop Pro. There are virtually no size limitations on the image; however, the ability of
MapXtreme to display it will depend on available memory. The image does not have to be
square and can also have up to 24-bit color depth. To make sure the image is displayed
at the height and width you want, select the 'Display at actual size option' for
BitmapPointStyles. Once the image is created, place it in the CustSymb directory.
MapXtreme 9.5 Developer Guide 330

 15 – Stylizing Your Maps
Overriding Styles
Styles can be permanently changed for features by saving the new style to the table.
Styles for features can also be changed for the current display (not permanent) by
overriding the current style For example, a ranged theme overrides the style of a region
object to shade it. See Chapter 14 Using Themes and Legends for more information.

Label styles can also be overridden. This section introduces you to the main style
override class for features. See more about features and labels in the chapter on the
Mapping namespace Layers and Labels.

FeatureOverrideStyleModifiers
This class implements FeatureStyleModifier to override a feature’s style. Its Style property
is a composite style object that is used to specify what parts of a feature's style to
override.

The contents of the style object passed to the Modify() method change dynamically for
each feature that is drawn. This increases the drawing speed of layers that contain style
modifiers. It is therefore important to make a copy of the style object if you need to use it
elsewhere in your application. You should also note that for the CompositeStyles in the
Style Stack passed to the FeatureStyleModifier.Modify() method, the Changed event does
not fire.

Code Sample: FeatureOverrideStyleModifier

The following sample demonstrates how to use FeatureOverrideStyleModifier and layer
FeatureStyleModifiers to change styles of various features within a map.

In this snippet from the ChangeStyles sample application, we want to override the world
capitals layer with a single red symbol, but keep the point size.

VB example:

'Get the layer we want
Dim _lyr As FeatureLayer = Me.mapControl1.Map.Layers("worldcap")

'Create a sparse point style
Dim vs As MapInfo.Styles.SimpleVectorPointStyle = New _

SimpleVectorPointStyle

'Just change the color and code and attributes flag to indicate that
vs.Code = 55
vs.PointSize = 25
vs.Color = System.Drawing.Color.Red
MapXtreme 9.5 Developer Guide 331

' And apply to the layer
Dim fsm As FeatureOverrideStyleModifier = New _

FeatureOverrideStyleModifier(Nothing, New _
MapInfo.Styles.CompositeStyle(vs))

_lyr.Modifiers.Append(fsm)
Me.mapControl1.Map.Zoom = New MapInfo.Geometry.Distance(6250, _

MapInfo.Geometry.DistanceUnit.Mile)
End Sub

Now MapXtreme facilitates to export/import styles along with thematics. For more
information see, Export/Import Theme and Style.
MapXtreme 9.5 Developer Guide 332

16

16 – Spatial Objects and

Coordinate Systems
This chapter covers the MapInfo.Geometry namespace and provides
descriptions and examples for writing applications for creating and
manipulating geometry objects.

In this chapter:
 Introduction to MapInfo.Geometry Namespace 334
 Geometries . 334
 Including Your FeatureGeometry in a Map 342
 Checking for Points in Polygons. 343
 Coordinate Systems . 345

Introduction to MapInfo.Geometry Namespace
The MapInfo.Geometry namespace is used for creating and manipulating geometry
objects, and the coordinate systems in which they are used. Geometry objects are used
in maps to represent single points, such as cities (represented as point objects),
boundary lines, such as county borders (represented by MultiCurve objects), and regions,
such as countries or zip code areas (represented by MultiPolygon objects).

The classes, interfaces, and enumerations in the MapInfo.Geometry namespace define
the types representing the geometries and coordinate systems used in displaying
geographic features on a map. The Geometry model provides support for Z and M values
on FeatureGeometry objects. Interfaces allow for creation and editing of the geometry
objects. Methods such as Buffer, Combine, Difference, and Intersection provide object
processing on single objects or pairs of objects.

Geometries
The Geometry class allows for the creation, editing, and other manipulation of geometry
objects. Classes which inherit from the Geometry class and represent types of Geometry
objects include Point, MultiPoint, Polygon, MultiPolygon, Curve, CurveSegment,
LineString, and Ring. The following legacy classes are also inherited from the Geometry
class: Rectangle, RoundedRectangle, Ellipse, LegacyArc, and LegacyText.

The Geometry class represents the topmost level of the MapInfo Geometry object model.
This class is abstract, and cannot be instantiated. All classes that derive from this class
contain knowledge concerning their coordinate system. All classes are able to make
copies of themselves, and compare themselves to other Geometry objects for equality.

The diagram below shows a representation of the Geometry model.
MapXtreme 9.5 Developer Guide 334

 16 – Spatial Objects and Coordinate Systems
Geometry Objects
All geometry objects in MapXtreme are created with a specific coordinate system that
cannot be changed. If you need to alter the coordinate system of an object you can make
a copy of that object in the new coordinate system.

Editing Geometry Objects

All Geometry objects contain a method for retrieving an interface to an editor that places
the object into Edit Mode. Once editing is finished the EditingComplete() method needs to
be called to signify that the editing of the object is complete. When the EditingComplete()
method is called, the order of the objects contained by the Geometry is reshuffled and all
references to them are dropped and need to be re-established in order to access them
again.

For example, the user creates a MultiPolygon and then edits the MultiPolygon. If the user
inadvertently moves a node of the interior ring to be outside of its containing Polygon the
Polygon is no longer valid. When EditComplete is called, all the contained objects within
the MultiPolygon are reshuffled, fixing the problem.

The geometry objects in the MapXtreme Object Model are described in the following
sections.
MapXtreme 9.5 Developer Guide 335

FeatureGeometry Objects
The FeatureGeometry class is specifically designed to contain classes that can be placed
in tables and that can be parts of Features and FeatureCollections. In order for something
to be displayed in a map, it needs to be in a table. FeatureGeometry objects are by
definition included in tables. Any object that is a subclass of Geometry and not a subclass
of FeatureGeometry cannot be saved to a table or included as part of a Feature or
FeatureCollection. An exception is thrown, or the program will not compile, if such an
operation is attempted. The FeatureGeometry class, like the Geometry class is abstract
and cannot be instantiated.

Support for M and Z Values

Feature geometries support reading and writing M and Z values at each node of the
object.

Support for reading and writing M and Z values for linear objects was accomplished by
extending the MapXtreme Geometry model. FeatureGeometry objects (Point, MultiPoint,
MultiPolygon, MultiCurve and FeatureGeometryCollection) can now hold values for X, Y,
Z and M for each node.

IsMeasured and Is3D properties allow you to determine whether the object has M or Z
values. Additional properties and methods are provided to read and modify M or Z values
at each node. The minimum and maximum ranges of M and Z values can be retrieved as
well.

MapXtreme provides creation and editing capabilities for FeatureGeometries. For more
information, see MapInfo.Geometry.FeatureGeometry class in the Developer Reference.

M values for MultiCurves provide valuable information in linear network applications for
tracking and managing assets, events and conditions. See Chapter 22 Linear
Referencing.

Point

Points are derived from the FeatureGeometry class and represent a single point on a
map. Points can be contained within a MultiPoint collection and then operated upon
collectively.

Use the following example code to model the creation of a Point:

using MapInfo.Geometry;
using Mapinfo.Design.Windows;

CoordSys longLatNad83;
CoordSysFactory coordSysFactory = new CoordSysFactory();
MapXtreme 9.5 Developer Guide 336

 16 – Spatial Objects and Coordinate Systems
longLatNad83 = coordSysFactory.CreateLongLat
(MapInfo.Geometry.DatumID.NAD83);

DPoint point = new DPoint(0.0, 0.0);
Point pointGeometry = new Point(LongLatNad83, point);

MultiPoint

A MultiPoint contains an unordered, disconnected set of Points and is useful for
performing multiple operations on multiple points.

Use the following example code to model the creation of a MultiPoint object:

using MapInfo.Geometry;

CoordSys longLatNad83;
CoordSysFactory coordSysFactory = new CoordSysFactory();
longLatNad83=coordSysFactory.CreateLongLat

(MapInfo.Geometry.DatumID.NAD83);
MultiPoint multiPointGeometry = new MultiPoint

(longLatNad83, pointArray);

where pointArray is an array of DPoints.

MultiCurve

The MultiCurve class is derived from the FeatureGeometry class, and contains a possibly
disconnected set of Curves. These Curves may interact in many ways; they can be
connected or disconnected, and can intersect or overlap each other.

Although the Geometry object model supports multiple CurveSegments for each Curve,
the current version of the MapInfo engine is limited to having one CurveSegment per
Curve that is part of a FeatureGeometry (i.e., MultiCurve). This limitation derives from the
current TAB file format, which remains largely unchanged for this version of MapInfo.
Hence, the limitation concerns FeatureGeometry objects only.

Upon construction of a MultiCurve where the constructor takes a Curve or Curves which
may contain multiple CurveSegments per Curve, the actual Curves contained in the
constructed MultiCurve are altered to always contain only one CurveSegment per Curve.
Currently, the only types of CurveSegments that exist are LineStrings. Curves containing
multiple LineString CurveSegments have the LineStrings combined to form one large
LineString.

Upon completion of editing (signified by calling EditingComplete(), any Curve which was
added to the MultiCurve and contained multiple CurveSegments is altered in a similar
manner as noted above to produce Curves containing single CurveSegments.This
limitation, of Curves contained in MultiCurves always containing only a single
CurveSegment, should be removed in future versions of MapInfo as new types of
MapXtreme 9.5 Developer Guide 337

CurveSegments are introduced (e.g., EllipticalArcs, CircularArcs, and Splines), and the
TAB file format is altered. Also, during construction and on completion of editing, any
empty Curves are automatically removed from the MultiCurve.

Line objects made up of two points that exist in MapInfo TAB files become MultiCurve
FeatureGeometry objects. They can be detected as two-point Lines by using the
IsLegacyLine property of the MultiCurve:

See the Developer Reference for a code example of creating and editing a MultiCurve
object.

Measure Values on MultiCurves

The Geometry object model supports M and Z values on FeatureGeometry objects. M, or
measure values, hold data at the nodes of MultiCurve objects that describes anything you
wish to map and analyze, including physical assets, conditions or events. The M values
play an important role in linear referencing and dynamic segmentation. For more
information, see Chapter 22 Linear Referencing.

Curve Sort Order

The order of the Curves in a MultiCurve may be altered during construction, as compared
to the array of Curves passed to the constructor, and upon completion of editing. Due to
this, plus the removal of empty Curves, and limitations in the current implementation, any
references to Curves contained in a MultiCurve prior to and during editing may no longer
be valid after editing is completed (i.e., after EditingComplete() is called). If these objects
are referenced, they throw an ObjectDisposedException. After editing, the parts of a
FeatureGeometry should be reacquired to obtain a valid reference.

Curve sort order becomes an important factor when you are calling some of the linear
referencing operations on a MultiCurve. MapXtreme includes the
MapInfo.LinearReferencing.ICurveSorter interface to handle the sort order of individual
curves. If no sort order is specified, MapXtreme returns the longest curve first, while the
remaining curves are returned in an unknown order. When using
CalculateMissingMeasures on an unordered MultiCurve, for example, MapXtreme could
calculate the wrong M values for a node based on its position in the MultiCurve. Providing
the correct sort order would eliminate that problem.

For more information, see Curve Order.

LineStrings

A LineString is a directed collection of sequential points that are connected in a linear
manner. Any two consecutive points in the LineString are connected by a straight line.
LineStrings can be part of Curves or Rings, or they can exist as a stand-alone Geometry.
MapXtreme 9.5 Developer Guide 338

 16 – Spatial Objects and Coordinate Systems
LineStrings that are part of Curves or Rings inherit the coordinate system of their
container. Stand-alone LineStrings can be empty. A LineString that is contained in a
Curve or Ring that is not in Edit Mode cannot be empty, and must contain at least two
points.

See the Developer Reference for a code example.

Rectangle

A Rectangle Geometry contains two points representing the lower left hand and upper
right hand corners of the Rectangle. The other two points are implied. Rectangles are
always axis aligned, and always appear to be rectangular in shape, regardless of the
coordinate system, and are not projected. They do not contain any warping that may be
represented by the coordinate system.

See the Developer Reference for a code example.

RoundedRectangle

A Rounded Rectangle behaves exactly like a Rectangle but is displayed with the corners
appearing rounded as a display-time only feature. The corners display as quarter circles
and the radius of the circle is controlled by the CornerRadius parameter.

Because RoundedRectangle objects, like rectangle objects, are defined by two points and
always display axis-aligned and unprojected, they are designed to be used primarily for
cosmetic display purposes. While many operations are available using Rectangle objects
(e.g., Combine), internally, a MultiPolygon copy of the Rectangle is used for these
operations. The resulting MultiPolygon contains 5 points (with the first and last points
being identical), and are effected by the coordinate system. In some instances, the
converted Rectangle may no longer appear rectangular. Use the CreateMultiPolygon
method to convert a RoundedRectangle to a FeatureGeometry object.

See the Developer Reference for a code example.

Ellipse

The Ellipse is inscribed in an axis-aligned rectangle defined by a DRect. The DRect is
defined by two points, the opposite corners of a rectangle, with the other two corners of
the rectangle implied. The Ellipse displays as if it were unprojected, regardless of the
coordinate system, and any skew that may be represented by the coordinate system.
MapXtreme 9.5 Developer Guide 339

Because Ellipse objects are defined by two points and always display axis-aligned and
unprojected, they are designed to be used primarily for cosmetic display purposes. While
many operations are available using Ellipse objects, internally, a MultiPolygon copy of the
Ellipse is used for these operations. The resulting MultiPolygon is effected by the
coordinate system and in some cases may no longer appear as a perfect ellipse.

See the Developer Reference for a code example.

LegacyArc

The LegacyArc object is a portion of an Ellipse and is defined by a DRect, a start angle,
and an end angle. The Ellipse is constructed to be inscribed in the rectangle defined by
the DRect. The rectangle, in which the Ellipse is inscribed, is axis-aligned and is always
rectangular regardless of the coordinate system used. The angles are measured in
degrees with zero being along the positive X-axis and positive angles being in the
counterclockwise direction. The angles are only stored to a tenth of a degree resolution
with values between 0.0 and 360.0.

Because LegacyArc objects are defined by two points (for the DRect) and angles, and are
always displayed axis aligned, they are designed to be used primarily for cosmetic display
purposes. While many operations are available using LegacyArc objects, internally, a
MultiCurve copy of the LegacyArc is used for these operations. This can sometimes lead
to unexpected results.

See the Developer Reference for a code example.

LegacyText

The LegacyText object is the MapInfo Professional equivalent of a text object. If a given
database does not support Text the LegacyText object can be lost when using that format.
LegacyText objects are placed within a geographically-sized rectangle with a lower-left
anchor point specified. The point-size of the text is based upon what fits best within the
rectangle.

LegacyText objects do not fit nicely into the Geometry model. Several methods available
on the Geometry FeatureGeometry classes, such as Combine, make no sense for
LegacyText and will throw a NotSupportedException. Text objects do exist in MapInfo
native TAB files in the Geometry column. The LegacyText class provides a way to access
these objects. Refer to online reference for specific behaviors of LegacyText objects.
MapXtreme 9.5 Developer Guide 340

 16 – Spatial Objects and Coordinate Systems
Geometry Objects
Geometry objects that are not also FeatureGeometry objects need to be converted to a
suitable FeatureGeometry object to be displayed on a map. Most FeatureGeometry
classes contain constructors that take appropriate Geometry objects and create new
FeatureGeometry objects:

using MapInfo.Geometry;

Curve curve = new Curve(csys, lineString);
MultiCurve multiCurve = new MultiCurve(curve.CoordSys, curve);

The code above creates the Curve using parameters defined elsewhere in the code of a
CoordSys (csys) and a LineString (lineString). A new MultiCurve is then created using
the CoordSys property of the Curve and the Curve itself.

In the example above, as in all FeatureGeometries created from objects, a copy of the
original object is created because the reference cannot be shared.

Curve

The Curve class inherits from the CurveSegmentList class, and represents a contiguous
linear Geometry. Curves contain a collection of CurveSegments that must remain
contiguous. This class is included in the model to allow for future expansion and is part of
the OGC standards.

Use the following example code to model the creation of a Curve:

using MapInfo.Geometry;

DPoint[] points = new DPoint[4];

points[0]= new DPoint(-88.135215,43.998892);
points[1]= new DPoint(-104.875119,43.998892);
points[2]= new DPoint(-120.242895,47.048364);
points[3]= new DPoint(-89.135215 46.998892);

LineString lineString = new LineString(csys, points);
Curve curve = new Curve(csys, lineString);

CurveSegments

At present a CurveSegment can only be a LineString. The class is designed to expand in
future iterations of the product to include Spline, CircularArc, and EllipticalArc
CurveSegments. Curves and Rings are comprised of CurveSegments.
MapXtreme 9.5 Developer Guide 341

Rings

A Ring is a collection of CurveSegments which must remain contiguous and closed.

Use the following example code to model the creation of a Ring:

using MapInfo.Geometry;

dPoints = new DPoint[102];
dPoints[0] = new DPoint(-109.171279,49.214879);
dPoints[1] = new DPoint(-109.169283,49.241794);
...
dPoints[101] = new DPoint(-109.171279,49.214879);
Ring newRing = new Ring(longLatNad83, CurveSegmentType.Linear, dPoints);

Polygon

A Polygon is an object made up of Rings. A polygon must have at least a single Ring
which defines the exterior boundary of the Polygon. Other Rings can be included inside
which then define holes in the Polygon. Once a Ring is placed inside of another Ring the
object becomes a MultiPolygon.

Use the following example code to model the creation of a Polygon.

using MapInfo.Geometry;

DPoint[][] points = new DPoint[1][];
points[0] = polyPointArrays[0];
Polygon polygon = new Polygon

(longLatNad83, CurveSegmentType.Linear, polyPointArrays[0]);

Including Your FeatureGeometry in a Map
Once a geometry is created you then need to add it to a map, allowing you to display it,
select it, label it, or perform any other map-related operations on it.

Public Shared Sub MapInfo_Mapping_HowDoICreateFeatureAddToMap(ByVal mapControl1
As MapControl, ByVal connection As MIConnection, ByVal x As _

Double, ByVal y As Double)
 Dim map As Map = mapControl1.Map

 ’uses wldcty25 as a template
 Dim table As Table = _

MapInfo.Engine.Session.Current.Catalog.GetTable("wldcty25")

 ’ create a temp table and add a featurelayer for it
 Dim coordSys As CoordSys = map.GetDisplayCoordSys()
 Dim tableInfo As TableInfoMemTable = New TableInfoMemTable("temp")
 tableInfo.Temporary = True
MapXtreme 9.5 Developer Guide 342

 16 – Spatial Objects and Coordinate Systems
 ’ add Geometry column
 Dim column As Column

 ’ specify coordsys for object column
 column = New GeometryColumn(coordSys)
 column.Alias = "MI_Geometry"
 column.DataType = MIDbType.FeatureGeometry
 tableInfo.Columns.Add(column)

 ’ add style column
 column = New Column
 column.Alias = "MI_Style"
 column.DataType = MIDbType.Style
 tableInfo.Columns.Add(column)

 Dim pointTable As Table = _
Session.Current.Catalog.CreateTable(tableInfo)

 ’ Set the location and display style of the point
 Dim Geometry As FeatureGeometry = _

New MapInfo.Geometry.Point(coordSys, x, y)
 Dim vStyle As SimpleVectorPointStyle = _

New SimpleVectorPointStyle(37, Color.Red, 14)
 Dim cStyle As CompositeStyle = _

New MapInfo.Styles.CompositeStyle(vStyle)

 ’Update the table with the location and style of the new feature
 Dim cmd As MICommand = connection.CreateCommand()
 cmd.Parameters.Add("Geometry", MIDbType.FeatureGeometry)
 cmd.Parameters.Add("style", MIDbType.Style)
 cmd.CommandText = "Insert Into temp (MI_Geometry,MI_Style) values _

(Geometry,style)"
 cmd.Prepare()
 cmd.Parameters(0).Value = Geometry
 cmd.Parameters(1).Value = cStyle
 Dim nchanged As Integer = cmd.ExecuteNonQuery()
 cmd.Dispose()

 ’add the table to the map
 map.Layers.Add(New MapInfo.Mapping.FeatureLayer(pointTable))
End Sub

Checking for Points in Polygons
The following code example shows how to determine whether a point is inside the
boundary of a FeatureGeometry (Multipolygon), on the boundary line or falls outside of it.

Public Shared Sub MapInfoGeometryContainsPoint()
Dim coordSysFactory As CoordSysFactory = Session.Current.CoordSysFactory
MapXtreme 9.5 Developer Guide 343

Dim coordSys As CoordSys = _
coordSysFactory.CreateLongLat(MapInfo.Geometry.DatumID.NAD83)

Dim points(6) As DPoint

points(0) = New DPoint(-0.705036, -0.122302)
points(1) = New DPoint(-0.446043, 0.486811)
points(2) = New DPoint(0.235012, 0.36211)
points(3) = New DPoint(0.422062, -0.304556)
points(4) = New DPoint(-0.244604, -0.71223)
points(5) = New DPoint(-0.705036, -0.122302)

Dim multiCurve As MultiCurve = New _
MultiCurve(coordSys,CurveSegmentType.Linear,points)

Dim multiPolygon As MultiPolygon = New _
MultiPolygon(coordSys,CurveSegmentType.Linear,points)

Dim insidePoint As DPoint = New DPoint(-0.115108,0.160671)
Dim boundaryPoint As DPoint = New DPoint(-0.446043,0.486811)
Dim outsidePoint As DPoint = New DPoint(-1.103118,0.021583)

If multiPolygon.ContainsPoint(insidePoint) Then _
Console.WriteLine("Points inside area inclosed by closed _
(GeometryDimension 2) objects are contained")

End If
If Not multiCurve.ContainsPoint(insidePoint) Then _

Console.WriteLine("But this is not true for linear _
(GeometryDimension 1) objects")

End If
If multiPolygon.ContainsPoint(boundaryPoint) Then _

Console.WriteLine("Points on the boundary of closed objects _
are contained")

End If
If multiCurve.ContainsPoint(boundaryPoint) Then _

Console.WriteLine("Points lying on linear objects are contained")
End If
If Not multiPolygon.ContainsPoint(outsidePoint) Then _

Console.WriteLine("Point completely outside closed objects _
are not contained")

End If
If Not multiCurve.ContainsPoint(outsidePoint) Then _

Console.WriteLine("Point completely outside linear objects _
are not contained")

End If
End Sub
MapXtreme 9.5 Developer Guide 344

 16 – Spatial Objects and Coordinate Systems
Coordinate Systems
Coordinate systems describe the domain in which a particular object or set of objects
reside. The coordinate system allows for the delineation, in specific terms, of the object or
objects being described. The CoordSys classes contain methods, properties and
interfaces that allow for the creation, manipulation, and editing of coordinate systems.

When Geometries are created, they are created in a particular coordinate system
specified in the creation of the object. Objects cannot change the coordinate system in
which they were created. They can only be copied into another coordinate system.

The CoordSys class facilitates the creation and manipulation of coordinate systems. The
Coordsys class uses an XML version of the projection file (C:\Program Files\Common
Files\MapInfo\MapXtreme\9.x.x\MapInfoCoordinateSystemSet.xml).

The CoordSysFactory object contains registered coordinate systems. CoordSys
definitions can be registered by loading one or more XML projection files or by using the
RegisterCoordSys, or RegisterCoordSysInfo methods. Create CoordSys objects from the
factory, or code-codespace (EPSG, SRID), PRJ string, MapBasic string, and other
Factory creation methods. There are also Military Grid Reference System conversion
methods in the CoordSys class.

Creating a CoordSys Object

The following sample code shows the creation of CoordSys objects several different
ways: using a MapInfo codespace; through EPSG; as longitude/latitude from a PRJ
string; from a MapBasic string; and through SRID.

VB example:

Public Shared Sub MapInfoGeometryCreateCoordSys()
 Dim factory As CoordSysFactory = Session.Current.CoordSysFactory

 ’ create CoordSys objects from srsName
 Dim csysWGS84 As CoordSys = factory.CreateCoordSys("EPSG:4326")
 Dim csysNAD83 As CoordSys = factory.CreateCoordSys_

("mapinfo:coordsys 1,74")
 Dim csysNAD27 As CoordSys = factory.CreateCoordSys("SRID:8260")

 ’ create CoordSys objects from code/codeSpace
 csysWGS84 = factory.CreateCoordSys("4326", CodeSpace.Epsg)
 csysNAD83 = factory.CreateCoordSys("coordsys 1,74", CodeSpace.MapInfo)
 csysNAD27 = factory.CreateCoordSys("8260", CodeSpace.Srid)

 ’ create CoordSys objects from user-defined parameters
 Dim dat As Datum = factory.CreateDatum(DatumID.WGS84)
MapXtreme 9.5 Developer Guide 345

 csysWGS84 = factory.CreateCoordSys(CoordSysType.LongLat, _
dat, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, nothing)

 dat = factory.CreateDatum(DatumID.NAD83)
 csysNAD83 = factory.CreateCoordSys(CoordSysType.LongLat, _

dat, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, nothing)
 dat = factory.CreateDatum(DatumID.NAD27ContinentalUS)
 csysNAD27 = factory.CreateCoordSys(CoordSysType.LongLat, _

dat, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, nothing)
 ’ create Long/Lat coordinate system
 csysWGS84 = factory.CreateLongLat(DatumID.WGS84)
 csysNAD83 = factory.CreateLongLat(DatumID.NAD83)
 csysNAD27 = factory.CreateLongLat(DatumID.NAD27ContinentalUS)

 ’ create from MapBasic string
 Dim csysRGF93 As CoordSys = _

factory.CreateFromMapBasicString("CoordSys Earth Projection 3, _
33, ""m"", 3, 46.5, 44, 49, 700000, 6600000")

 ’ create from PRJ string
 csysNAD83 = factory.CreateFromPrjString("1, 74")
Sub

Changing the Coordinate System of a Geometry Object
The next example illustrates how to convert a Geometry object from one coordinate
system to another.

VB example:

Public Shared Sub MapInfoGeomeTryCoordSys(ByRef coordSys As _
CoordSys, ByRef points() As DPoint, ByRef alternateCoordSys _
as CoordSys

' All Geometry constructors require a CoordSys parameter
' Note that the points array is assumed to be in coordSys

Dim lineString As LineString = New _
LineString(coordSys,points)

' The Geometry has a reference to the CoordSys used during
' construction. Unlike the coordinate data represented by the
' points array, the CoordSys' is not copied

If ReferenceEquals(coordSys, lineString.CoordSys) Then
Console.WriteLine("Geometry objects hold a reference to _

the CoordSys used during construction")
End If

' if you want to convert the object to another coordinate
' system, you need to make a new copy using one of the copy methods

If Not coordSys.Equals(alternateCoordSys) Then
Dim newGeometry as MapInfo.Geometry.Geometry = _

lineString.Copy(alternateCoordSys)
End If

End Sub
MapXtreme 9.5 Developer Guide 346

 16 – Spatial Objects and Coordinate Systems
Determining the Coordinate System of a Map in MapControl
The following code examples shows how to determine the coordinate system for a Map
object.

VB example:

Public Shared Sub _
MapInfo_Mapping_FeatureViewerGetDisplayCoordSys(ByVal map As Map)

 ’Load the Default Projection File so that we can get the name.

 MapInfo.Engine.Session.Current.CoordSysFactory.LoadDefault_
ProjectionFile()

 ’Get the Coordinate System object for current map in the MapControl
 Dim mapCoordSys As MapInfo.Geometry.CoordSys = _

map.GetDisplayCoordSys()

’Assign the name of the Coordinate System to a string variable.
’note: the CoordSysName function will return a blank string if the
’Coordinate System is not found in the current CoordinateSystemSet
’(loaded by the LoadDefaultProjectionFile above).

 Dim mapCoordSysName As String = _
MapInfo.Engine.Session.Current.CoordSysFactory.CoordSys_
Name(mapCoordSys)

End Sub

Adding Coordinate Systems to MapXtreme
If the MapInfoCoordinateSystemSet.xml file does not contain a coordinate system to
match your needs, you may add it to MapXtreme. This feature supports adding EPSG
codes and SRID codes to extend MapXtreme’s capabilities.

EPSG codes represent a collection of coordinate systems (known as codespaces)
maintained in the EPSG Geodetic Parameter Dataset under the auspices of the
International Association of Oil & Gas Producers (OPG). The OPG’s Survey and
Positioning Committee took over this responsibility from the European Petroleum Survey
Group in 2005.

SRID codes are unique spatial reference numbers that refer to codespaces for Oracle
Spatial tables.

(MapXtreme supports a third codespace called MapInfo.)

MapXtreme provides you with many of the common EPSG and SRID mappings. If you
need to register a different EPSG or SRID code to a particular coordinate system, this
feature provides you with two methods to do so.
MapXtreme 9.5 Developer Guide 347

To extend MapXtreme’s ability to use any EPSG or SRID codespace, you may add the
information programmatically, in which case, the coordinate system information will only
last as long as the MapXtreme Session. Or you may add it to the Web.config file for your
web application or app.config file for a desktop application as a more permanent solution.
Each is discussed below.

Register EPSG and SRID Codes Programmatically

The MapInfo.Geometry.CoordSysFactory class contains methods that allow you to
register EPSG and SRID codes to a specified coordinate system.

RegisterEPSGCode() and RegisterSRIDCode() each take two parameters: one being the
EPSG or SRID code that represents the codespace, the second is the coordinate system
information that first parameter will map to.

The following example demonstrates registering a fictional code with the Long/Lat NAD83
coordinate system.

VB example:

Public Shared Sub MapInfo_Geometry_RegisterEPSGCode()
 Dim factory As CoordSysFactory = Session.Current.CoordSysFactory
 ' create CoordSys objects from srsName
 Dim csysNAD83 As CoordSys = _

factory.CreateCoordSys("mapinfo:coordsys 1,74")
 ' 9998 is a fictional code for demonstration purposes
 Try
 factory.RegisterEPSGCode(9998, csysNAD83)
 Catch ae As ApplicationException
 'code already exists. Codes cannot be duplicated
 End Try
End Sub

 If the EPSG or SRID code already exists, an exception will be thrown indicating this
fact.

To determine if a coordinate system for the MapInfo, EPSG or SRID codespace is already
supported, call this method:

• MapInfo.Geometry.CoordSys.Code(codespace).

This method returns the first (or only) occurrence of the codespace that matches or null, if
it does not exist.

Similarly, to return the first SRSName in the list that matches the input codespace, call
this method:
MapXtreme 9.5 Developer Guide 348

 16 – Spatial Objects and Coordinate Systems
• MapInfo.Geometry.CoordSys.SRSName(codespace).

An SRSName (Spatial Reference System) represents the name of a coordinate reference
system written in GML (Geography Markup Language). This is typically, a friendly name
for the coordinate system, not a list of parameter values.

To get a list of all the codes and coordinate systems that are mapped to a particular
coordinate system, MapXtreme provides the following methods:

• MapInfo.Geometry.CoordSys.Codes(codeSpace)

• MapInfo.Geometry.CoordSys.SrsNames(codeSpace)

Keep in mind that the coordinate system information you added programmatically, will
only be maintained during the lifetime of the MapXtreme Session.

Register EPSG and SRID Codes to a Web or Desktop Configuration File

The second, and more permanent, way to add EPSG or SRID codes to MapXtreme, is by
adding the information to your web application’s Web.config file or your desktop

application app.config1 file. The code below in bold shows the information to copy and
paste into your config file. An explanation of the code follows.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="MapInfo.CoreEngine"

type="MapInfo.Engine.ConfigSectionHandler, MapInfo.CoreEngine,
Version=6.8.0.536, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1" />

</configSections>
 <appSettings>
 <add key="MapInfo.Engine.Session.UseCallContext" value="false" />
 </appSettings>

<MapInfo.CoreEngine>
<EPSG_Code_Mappings>

<EPSG_Code_Mapping>
<srsName>My Custom CRS</srsName>
<srsID>

<code>coordsys 8,74,8,-
110.0833333333,47.5,0.9999375,2624666.667,328083.3333</code>

<codeSpace>mapinfo</codeSpace>
<remarks>My Custom CRS</remarks>

</srsID>
<EPSG_Codes>

<EPSG_Code>9987</EPSG_Code>
<EPSG_Code>9988</EPSG_Code>
<EPSG_Code>9989</EPSG_Code>

1. If your desktop application does not have an app.config file, you can create one by adding it to your project from
the Visual Studio Application Configuration File template.
MapXtreme 9.5 Developer Guide 349

</EPSG_Codes>
</EPSG_Code_Mapping>

</EPSG_Code_Mappings>
<SRID_Code_Mappings>

<SRID_Code_Mapping>
<srsName>My Custom CRS</srsName>
<srsID>

<code>coordsys 8,74,8,-
114.0833333333,47.5,0.9999375,2624666.667,328083.3333</code>

<codeSpace>mapinfo</codeSpace>
<remarks>My Custom CRS</remarks>

</srsID>
<SRID_Codes>

<SRID_Code>9990</SRID_Code>
<SRID_Code>9991</SRID_Code>
<SRID_Code>9992</SRID_Code>

</SRID_Codes>
</SRID_Code_Mapping>

</SRID_Code_Mappings>
 </MapInfo.CoreEngine>
</configuration>

The code above shows that there are two sections of information to add. One is to identify

the correct CoreEngine dll and version number1, the second is to add elements for EPSG
and SRID code mappings.

An EPSG code mapping consists of an SRSName, SRS ID, and EPSG code(s). The
SRSID is further defined by the parameters and codespace for the coordinate system.

An SRID code mapping is similar to the EPSG code mapping, except it refers to the
Oracle Spatial identification number.

For more information on coordinate systems, see Appendix H: Elements of a Coordinate
System. For information on the MapInfo codespace, see Appendix G: Defining the
MapInfo Codespace.

1. To determine the correct version number for the MapInfo.CoreEngine assembly, from the Start menu, choose
Run and type Assembly in the Run dialog. Every registered MapXtreme assembly is listed in the global assembly
cache list.
MapXtreme 9.5 Developer Guide 350

17

17 – Working with Rasters and

Grids
The MapInfo.Raster namespace contains all of the classes that control
the use and display of raster and grid images in MapXtreme. Rasters
are computer graphics that are composed of pixels that render a whole
image. Many satellite images are rendered as raster images. Grid
images are thematic maps that show a continuous gradation of color to
represent interpolated information.

In this chapter:
 Overview of the MapInfo.Raster Namespace. 352
 Raster Images . 352
 Raster Handlers . 356
 Raster Handler Properties . 358
 MRR - Multi Resolution Raster Format. 358
 Benefits of MRR Technology . 359
 MRR support in MapXtreme . 362
 Configuring Custom Raster Handlers . 364
 Grid Images . 365
 Grid Creation . 368
 Grid Interpolators . 369
 Grid Style . 370

Overview of the MapInfo.Raster Namespace
The MapInfo.Raster namespace exposes the full functionality of Precisely’s C/C++ Raster
and Grid Engine APIs. Raster images are bitmaps that provide useful background and
reference layers to maps. Grid images are a type of theme that shows a continuous
gradation of color across the image. The gradation represents an interpretation of the
underlying data. Grid images are rasters that have data associated with them. A common
example is an elevation map. Rasters do not have any underlying data.

Raster Images
Raster images make excellent backgrounds for maps. For example, aerial photographs
that show real-world detail such as buildings, refineries, and vegetation are well-suited as
base layers for a map. Scanned paper maps are another example of a raster image. Use
a raster image as a base layer and overlay vector data such as street networks, point
locations representing customers, and postal boundaries, to create useful and visually
appealing maps.

Raster images used with vector data must be registered so that known geographic points
on the image coincide with the same features on the vector data. Additionally, company
logos and other art you wish to display in MapXtreme must be registered to some location
on earth, even though they are not true geo-referenced data. Many raster images
MapXtreme 9.5 Developer Guide 352

 17 – Working with Rasters and Grids
available today come with a registration file. Examples include GeoTIFF, ADRG, ASRP,
CADRG, and CIB. To register a raster image, you can bring it into MapInfo Professional
and register it there. The registration information is stored in a .TAB file.

Below are the raster image formats supported in MapXtreme:

• TIFF and GeoTIFF (*.tif)

• MrSID (*.sid)

• ECW (*.ecw)

• Spot (*.bil)

• JPEG (*.jpg)

• JPEG2000 (*.jp2, *.j2K)

• PCX (*.pcx)

• GIF (*.gif)

• Windows Bitmap (*.bmp)

• PNG (*.png)

• Photoshop (*.psd)

• Targa (*.tga)

• Windows Metafile (*.wmf)

• Windows Enhance Metafile (*.emf)

• Wireless BMP (.WBMP)

• Vertical Mapper Continuous Grid (*.grd)

• Vertical Mapper Classified Grid (*.grc)

• ADRG - ARC Digitized Raster Graphics (*.gen)

• ASRP - ARC Standard Raster Product (various file extensions)

• CADRG - Compressed ARC Digitized Raster Graphics (*.gen)

• CIB - Controlled Image Base (various file extensions)

• NITF - National Imagery Transmission Format (*.ntf)

• MRR - Multi Resolution Raster Format (*.mrr)

Additional raster formats may be supported on a system if a custom raster handler is
installed.
MapXtreme 9.5 Developer Guide 353

Raster Classes
The main classes for raster images are MapInfo.Raster.RasterInfo and RasterRead. Style
information is handled by MapInfo.Style.RasterStyle.

RasterInfo provides information about the height and width of the image in pixels, raster
format, color depth, and registration information. See the RasterInfo sample application
provided in .\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\RasterInfo

RasterRead is the class that reads the raster image and style information in order for the
image to be rendered.

RasterStyle is concerned with how the raster looks. You can control brightness and
contrast, display a color image as grayscale, set the transparency and translucency.
MapXtreme supports transparency for one color per image. That means that everywhere
that color exists in the image it will be invisible, which allows the layer below the image to
show through. Translucency is the degree of transparency for the entire image. If you
need a layer below a raster image to show through, set a high translucency (100 percent
is transparent).

Raster columns are read only so you cannot permanently change their style. However
you can programmatically set and get the image’s attributes such as brightness,
grayscale, and translucency. See the RasterStyle class in the online Developer
Reference.

Raster Images and Coordinate Systems
When you display a raster, grid or WMS image as a map layer, MapXtreme automatically
sets the rotation and projection of all the vector map layers, so that they match the
rotation and projection of the raster image.

If a map includes more than one raster, grid or WMS image layer, MapXtreme
automatically displays the map in the projection specified by the most visible raster
image. The coordinate system could then change as the map view changes (due to
zooming or panning) if a different image with a different projection becomes the most
visible. In this case, you cannot change the map's display coordinate system.

Raster Reprojection
Raster reprojection enables you to change the cartographic projection of a raster layer in
a map. Many types of raster images can be reprojected. Some examples include satellite
and aerial photo images, scanned maps, as well as grids and seamless raster tables.
MapXtreme 9.5 Developer Guide 354

 17 – Working with Rasters and Grids
You can control the reprojection of both raster and vector layers. When you add either a
raster or vector layer to a map, the new layer is reprojected into the current map window
projection.

When you change the projection of a map window that contains a combination of vector
and raster layers, all the layers, both raster and vector, can be reprojected to the new
map window projection.

You can access raster reprojection settings in the MapXtreme API, as well as in the user
interface of the Workspace Manager’s Layer Control. For information using raster
reprojection in the API, see the MapInfo.Mapping.RasterReprojectionMethod in the
MapXtreme Developer Reference. For information on the raster reprojection user
interface, see Raster Reprojection.

Reprojected Images in Workspaces

The raster reprojection properties can be read into and from a workspace.

MapXtreme can also write raster reprojection information from MapInfo Professional to an
.mws workspace. This capability enables you to create your workspace in MapInfo
Professional, and then load it into MapXtreme.

Once your workspace is loaded into MapXtreme, you can modify the raster reprojection
via the API or the through the user interface in the Workspace Manager’s Layer Control.

Raster Image Limitations
• You cannot select any features a raster layer.

• You cannot search for features a raster layer.

Code Sample: Adding a Raster Image to a Map
Adding a raster image to a map is the same as adding any other layer.

C# example:

Table MyTable = Session.Current.Catalog.OpenTable("MyRaster.tab");
FeatureLayer MyLayer = new FeatureLayer(MyTable);
MyMap.Layers.Add(MyLayer);

VB example:

Dim MyTable As Table = _ Session.Current.Catalog.OpenTable("MyRaster.tab")
Dim MyLayer As FeatureLayer = New FeatureLayer(MyTable)
MyMap.Layers.Add(MyLayer)
MapXtreme 9.5 Developer Guide 355

Raster Handlers
MapXtreme can use one of many different libraries to load a raster image. When a raster
image is loaded by MapXtreme, it searches through these DLLs and checks if the given
file can be read by that DLL. Once a DLL/Raster format match is made, MapXtreme
knows which DLL does the format handling for the file. The format handlers are DLL’s
named “xxxxxxxx.RHX”. The base part of the name is based on the format. The extension
always begins with RH, but can end in any letter (A-Z). When searching for a format
handler, MapXtreme searches the format alphabetically, starting with RHA and continuing
until RHZ. This process allows MapXtreme to prioritize which handlers are used. For
example, SPOT files are checked for before any other formats since they are just raw
data that can be confused with other formats. The SPOT handler's extension is RHD. The
Halo format handlers are named RHV. The LEADTOOLS format handlers are named
RHX.

Raster handlers are located by default in the \Program Files\ Common\ MapInfo\
MapXtreme\ 9.x.x\ RasterGridHandlers folder.

LEADTOOLS Win32 Pro provided by LEAD Technologies, Inc. and HALO Imaging
libraries provided by Media Cybernetics are included with MapXtreme. The LEADTOOLS
raster handler loads the entire raster image into memory at the time the image is
referenced in MapXtreme. This means that the image takes longer to load and may fail if
the image is very large due to extreme memory requirements, but panning and zooming
are faster.

The HALO raster handler only loads into memory what it needs to display, so it loads the
image faster, but panning and zooming is slower. Because of the HALO.RHV comes
before LEADTOOL.RHX alphabetically, the HALO handler will attempt to read in the
image first. To change this order, see Configuring Custom Raster Handlers.

Supported Formats

The following table shows the provided raster handlers and the formats they support.

Raster Handler Raster Format

SPOT.RHD Spot (.bil)

ECW5.RHD ECW (.ecw, .ers)

MRSID.RHE MrSID (.sid)

ADRGASRP.RHL ADRG, ASRP, USRP
MapXtreme 9.5 Developer Guide 356

 17 – Working with Rasters and Grids
There are a few raster formats that we do not support in multi-threaded applications (e.g.,
in an ASP.NET application). These formats are as follows:

CADRGCIB.RHL CADRG, CIB, NITF

TIFF.RHL TIF (.tif) *

VMGRID.RHL Vertical Mapper (.grd, .grc) †

HALO.RHV BMP, TIF, GIF, TGA, JPEG, PCX

LEADTOOL.RHX BMP, GIF, JPEG, JPEG2000, PNG, TIF,
PSD, WMF, EMF

MIRASTERHANDLERRT.RHZ MRR, GRD, GRC, TIF, BIL, BIP, BSQ,

ERS, ASC, FLT, ADF, ZIP‡

* Only handler that supports georeferencing for TIF. If another handler that supports TIFF
files is tried before this TIFF handler, you can lose support for Georeferenced TIFF files.
So, to support georeferenced TIFF files, this TIFF handler should be tried before any other
handler that supports TIFF.

† Can be displayed as either grid or raster. The .TAB file determines whether the image
should be drawn using the grid handler or the raster handler.

‡ Only in 64-bit environment.

Read

Vertical Mapper GRD, GRC

JPEG from Halo (The LeadTools JPEG
handler is threadsafe)

TIFF w/jpeg compression from Halo (The
LeadTools TIFF handler is threadsafe)

Export

JPEG 2000 (Win2K only) from LeadTools

TIFF CMYK from LeadTools

Raster Handler Raster Format
MapXtreme 9.5 Developer Guide 357

Raster Handler Properties
MapXtreme invokes raster handlers in alphabetic order, based on the last character in the
handler’s file extension. You can now control the order programmatically with two
properties in the MapInfo.Data.TableRaster class.

The TableInfoRaster.PreferredHandler property specifies which raster handler to use to
open a raster image. The raster engine attempts to use the specified handler to open the
raster image. If it fails, the normal process of invoking handlers alphabetically is followed.
If successful, the actual handler that is used is reported in the new property
TableInfoRaster.ActualHandlerUsed.

Note that this value is read from and stored in the ClientMetadata of the table. If a value
exists in a .TAB file's metadata it will be read in and recognized. If WriteTabFile is called
the value will be persisted into the begin_metadata section of the .TAB file. This property
is equivalent to TableInfo.ClientMetadata["\\PreferredRasterHandler"].

MRR - Multi Resolution Raster Format
MRR is a new raster data format that encompasses all types of raster data like image,
classified, discrete, and continuous. Though there are already more than a hundred
raster data formats, there exists a requirement for a new, unifying, format that handles all
types of data and provides new capabilities to improve the user experience when
visualizing and processing raster data.

The size and number of raster datasets available to the GIS professional is growing
rapidly. The resolution and coverage of remote sensing platforms increases with every
new generation of hardware. The physical number of satellites and other remote sensing
platforms in operation is increasing year on year. Storing, managing, visualizing and
processing this data is becoming increasingly challenging for data providers and
consumers.

To meet these challenges, Precisely has developed a new raster storage format called
‘MRR’. It provides a flexible solution for the entire spectrum of industry requirements. It is
a unifying and enabling technology. It unifies the storage of all kinds of raster data –
imagery, spectral imagery, continuous gridded data and thematic data – and removes the
barriers to working with different kinds of raster data in the same context. It enables the
highest quality visualization and processing of raster data – at any scale and for a raster
of any size.

The key enabling capabilities of the MRR format are listed below:

• Storage of image data, classified (thematic) data, continuous and discrete data.
MapXtreme 9.5 Developer Guide 358

 17 – Working with Rasters and Grids
• Removes all restrictions on the size of raster datasets which means it supports raster
datasets of virtually unlimited size.

• Extends the concept of a raster from a simple 2D array of cells to an extensible, sparse
matrix of tiles.

• Contains a data pyramid that provides access to data at any scale in linear time.

• Achieves efficient storage using lossless and lossy compression techniques via
industry standard compression codecs.

• Supports the temporal dimension, allowing data to be accumulated and accessed by
time.

• Supports a wide number of data types including complex numbers.

• Supports a wide and extensible number of data types including complex numbers.

• Stores one or more multi-banded fields.

• Provides local registration and cell size for each field, and tile decimation.

• Computes and stores high quality statistics to support rendering.

• For simplicity, an MRR is contained within a single file on disk.

Benefits of MRR Technology
The new MRR file format is an enabling technology which offers the following key
benefits:

• Extremely large raster/grid datasets - The MRR format has been designed to
address the difficulty of handling extremely large datasets. It supports a wide variety of
data types, and provides industry standard compression techniques and predictive
encoding techniques. The MRR format minimizes storage requirements and provides
efficient data access to extremely large raster files. It has been designed to deliver an
enhanced visualization experience by maintaining an overview data pyramid. This
guarantees efficient data visualization at any scale.

• Unified data - The MRR format is capable of storing all types of raster/grid data in
common use. It can be used to store numeric gridded data, imagery and classified
(thematic) data.

• Sparse data - Sometimes raster/grid datasets can be extremely large but only
sparsely populated with valid data. An example of such a dataset is a LiDAR survey
which follows along a pipeline for several 100 km but is only 100 m wide. In cases
such as these, the MRR format does not store values for the regions containing no
data, but still remains flexible enough to add additional data to the source file any time.
This allows extremely sparse datasets to be stored efficiently on disk, be rapidly
accessed and easily updated.
MapXtreme 9.5 Developer Guide 359

• Change in raster data - The MRR format provides unique capability to store changes
in raster/grid data over any period of time. Using the MRR format you can store and
then view changes in a dataset for a point in time or over a given period of time.

• Efficient memory management - The MapInfo Pro Advanced Application
Programming Interfaces (APIs) provide intelligent data caching which automatically
manage the use of system memory for the user. This automatic caching system
simplifies the programmer’s tasks when working with extremely large datasets.

Data Storage in MRR
An MRR dataset is stored in a single data file containing all raster data and metadata. The
underlying storage format uses 64-bit file structures enabling raster datasets of virtually
unlimited size to be created.

The MRR data format is more capable than virtually any other raster dataset currently
available and it introduces several new concepts in the raster data structure.

1. Fields

2. Bands

3. Tiles

4. Null Value

5. Pyramids

1. Fields

In an MRR, data is stored in one or more fields, each of which consists of one or more
data bands. There are four fundamental field types – Image, Image Palette, Classified
and Continuous. A field can contain the following data types:

• Image - An Image field contains a single band of color data. MRR supports a wide
variety of color data types including single-component and multi-component types
such as 24-bit Red Green Blue (RGB).

• Image Palette - An Image Palette field uses a restricted color palette. The color
palette can store color in any supported color type, just like an Image field. The
number of entries in the color palette is determined by the user and is virtually
unlimited. The MRR contains an integer index band that stores the color index for
every cell.

• Classified - A classified field has an integer index band that stores the class index for
each cell. An MRR can store many classification tables of varying sizes. The
classification table can contain any number of data channels of any supported data
type including integer and floating point numeric, date-time, color, strings and Binary
Large Objects (BLOB).
MapXtreme 9.5 Developer Guide 360

 17 – Working with Rasters and Grids
• Numeric (discrete) - Contains bit (1/2/4) or numeric (integer, float, complex, date
time) data bands. The data value for a cell represents the average value of the
measured quantity over the cell region.

• Numeric (continuous) - A continuous field contains one or more data bands of any
supported data type. Typically these bands will contain integer or floating point data,
complex numbers, date-time or color data. The data type of each band can be different
and each band can have a unique validity mask identifying whether the band value is
valid or invalid in each cell.

There is no restriction on how many fields are stored in an MRR - nor on the type of the
fields which are present. So it is possible, for example, to store both image data and
numeric data within a single MRR file.

Remote sensing platforms return multi-spectral data in multiple resolutions, generally an
integer multiple or fraction of the primary resolution. To support this every field in an MRR
has its own cell - world transform definition to allow users to set a unique cell size for each
field, if desired.

2. Bands

Each field may contain one or more data bands. Data bands may be ‘real’ indicating that
the band data is actually stored in the file or ‘virtual’ indicating the data is obtained on the
fly either from a ‘real’ band or from a classification table. In general, each band would
have the same data type and all bands would be closely related. For example different
frequencies of the electromagnetic spectrum from Landsat satellite data would be stored
in multiple bands. Similarly, image data fields would store color in bands for each color
(RGB) component.

3.Tiles

All data within an MRR is stored in tiles. The data in each tile may be compressed or
uncompressed. Image Palette, classified, and continuous data can be stored using
lossless compression such as LZ4, Zip (LZ77) or LZMA. Image data can be stored with
either lossless compression, or lossy compression such as PNG and JPEG.

4. Null Value

The concept of a ‘null’ value has been advanced in the MRR format. A ‘null’ value can be
stored for each field (and applies to all bands of that field) and records whether the value
of a cell is valid or invalid. If the cell is invalid, then the value of the data stored in the ‘null’
cell can be used to classify why the cell is invalid.
MapXtreme 9.5 Developer Guide 361

5. Pyramids

The MRR consists of a data pyramid of overviews to enable efficient and high quality
visualization. Each level of overview contains a representation of the data at a resolution
twice lower than its previous level. You can read data from any level of the pyramid, but
can only insert data into the base level.

Although a pyramid may increase the size of the dataset, it ensures visualization is of the
highest quality.

MRR support in MapXtreme
MapXtreme is bundled with the newly added MIRasterHandlerRT.rhz handler which
supports the display of MRR raster files created by MapInfo Pro 64-bit. This handler also
supports the display of other raster/grid formats including GRD, GRC, TIF, BIL, BIP, BSQ,
ERS, ASC, FLT and ADF, from a MapXtreme desktop or web application. The
MIRasterHandlerRT.rhz handler is located by default in \Program Files\ Common\
MapInfo\ MapXtreme\ 9.x.x\ RasterGridHandlers.

The “MIRasterHandlerRT.rhz” raster handler is only supported on 64bit platforms, so to
load and display MRR files your MapXtreme desktop or web application must be built as a
64 bit application. The raster handler operates in the same way as other raster handlers
like SPOT.RHD, ECW5.RHD, TIFF.RHL, LeadTool.RHX (refer to MapXtreme
DeveloperGuide.chm Raster Handlers section for additional information on Raster
handlers).

All raster/grid files which are loaded by the MIRasterHandlerRT.rhz handler are treated
by MapXtreme as “RASTER” image types, so the various “GRID” related MISql functions
(please refer MISQL_Reference.chm) like MI_GridMinValue, MI_GridMaxValue and
MI_GridValueAtPixel will not work with these files. All the “RASTER” related MI Sql
functions like MI_ImageFile, MI_ImagePixelWidth, MI_ImagePixelHeight are fully
supported.

On 64 bit platforms, MapXtreme will open Vertical Mapper .GRD and .GRC files using the
MIRasterHandlerRT handler, so these formats will be supported as “RASTER” rather than
“GRID” type files by MapXtreme. This will limit some of the grid related MISql functions
that would otherwise be available on 32 bit platforms.

MIRasterHandlerRT.rhz supports various raster/grid files including MRR, GRD, GRC, TIF,
BIL, BIP, BSQ, ERS, ASC, FLT and ADF. Refer to the table Supported Formats on
page 356 in this chapter for a list of raster/grid formats supported by this handler.
MapXtreme 9.5 Developer Guide 362

 17 – Working with Rasters and Grids
The MIRasterHandlerRT.rhz handler can be configured in the same way as all the other
supported raster handlers (refer Configuring Custom Raster Handlers). In addition to the
MIRasterHandlerRT.rhz has some additional configuration settings which are stored in a
configuration file called MIRasterPreferences.xml, which is located by default at \Program
Files\ Common\ MapInfo\ MapXtreme\ 9.x.x\ RasterGridHandlers. If you wish to limit the
MIRasterHandlerRT.rhz handler for a specific raster file format, then you can do so by
setting the “RenderEnabled” property for that format to = false. For example, to prevent
the MIRasterHandlerRT.rhz handler form loading GeoTif (.TIF) and ESRI ASCII Grid
(.ASC) files you could set “RenderEnabled = false” as below;

<RasterFormats>
 <Driver Type="Native">
 <Formats>
 <format desc="Multi-Resolution Raster" ext="mrr" RenderEnabled="true"/>
 <format desc="VerticalMapper Grid" ext="grd" RenderEnabled="true"/>
 <format desc="VerticalMapper Classified Grid" ext="grc"
RenderEnabled="true"/>
 <format desc="GeoTiff Image" ext="tif" RenderEnabled="false"/>
 <format desc="ESRI ASCII Grid" ext="asc" RenderEnabled="false"/>
 <format desc="ESRI Float Grid" ext="flt" RenderEnabled="true"/>
 </Formats>
</Driver>
</RasterFormats>

The following sample code demonstrates how you might load an MRR raster file using
MapXtreme.

C# example:

string mrrFile = “AvgFamilyIncome.TAB”;// tab file referring .MRR file
TableInfo tin = TableInfoRaster.CreateFromFile(mrrFile);
TableInfoRaster rasterTIN = tin as TableInfoRaster;
Table table = Session.Current.Catalog.OpenTable(rasterTIN);
// rest of the code
MapXtreme 9.5 Developer Guide 363

Configuring Custom Raster Handlers
You can configure your MapXtreme application to use a different raster handler than the
ones included in the distribution of MapXtreme or to support an entirely new raster type.
You can also change the precedence in which raster handlers are used.

In the default installation of MapXtreme, all raster handlers are placed in <program
files>\Common Files\MapInfo\MapXtreme\9.x.x\RasterGridHandlers. This is also the
location of the file mirasteru.dll. This is the recommended installation location of any other
raster handlers that you use in your application. If you use the default location, no other
configuration steps are necessary.

If you want to put your custom raster handler in a non-default location, then you must
specify the location of your custom raster handler in an application configuration file for a
desktop application, or in the Web.config file for a web application. To do this, define a
<Path> or a <SpecialPath> element under <ApplicationDataPaths>, then copy the
selected raster handler to that folder.

For example, to configure a desktop application custom raster handler in the non-default
MyAppData directory, you could use the following .config file.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="MapInfo.CoreEngine"

type="MapInfo.Engine.ConfigSectionHandler, MapInfo.CoreEngine,
Version=6.8.0.536, Culture=neutral,
PublicKeyToken=93e298a0f6b95eb1" />

</configSections>
<MapInfo.CoreEngine>

<ApplicationDataPaths>
<SpecialPath>

<Personal>MyAppData</Personal>
</SpecialPath>
<Path>c:\MyAppData</Path>

</ApplicationDataPaths>
</MapInfo.CoreEngine>

</configuration>

In this example, the <Personal> tag is a special place defined in the user’s My
Documents. This would refer to a folder called MyAppData in My Documents. Within the
<ApplicationDataPaths> tag, use either the <SpecialPath> or the <Path> tags. Using both
would mean that the raster handler could be put in either "MyAppData" folder. While this
would not be an error, it probably is not what you intend to accomplish. Since this is a
non-default configuration, you must also place the mirasteru.dll in that same directory.
MapXtreme 9.5 Developer Guide 364

 17 – Working with Rasters and Grids
Use the <SpecialPath> syntax if the application data is stored in a location relative to a
.NET Framework special system folder. For example, if your application data is stored in
a directory named MyAppData located under the “My Documents” directory, then the
entry in the configuration file could be:

<Personal>MyAppData</Personal>

where “Personal” is the value of the .NET Framework enumeration
Environment.SpecialFolder that represents the “My Documents” directory.

This configuration method can also be used to change the preferred raster handler for file
types that can be managed by more than one raster handler. For example, a JPEG file
can be handled by either Halo or LEADTOOLS (both of which are bundled in
MapXtreme). Normally, Halo has priority because its *.rhv file extension alphabetically
precedes the LEADTOOLS *.rhx extension. However, because MapXtreme first looks in
any <ApplicationDataPaths> defined in the configuration file, it will locate a specified
raster handler before looking for a handler in the default [CommonFiles] folder. So, for
example, you could copy a LEADTOOLS *.RHX handler in the defined folder and
configure MapXtreme to find and use that handler first.

Alternatively, you can rename file extensions in the [CommonFiles] folder so that the
desired raster handler appears first in the alphabetic list. However, this will affect all
applications developed with MapXtreme and may produce unintended side effects. Also,
if file extensions are changed in this manner, the renamed raster handlers will not be
deleted if MapXtreme is uninstalled. For these reasons, you may want to use the
configuration method to change the location and precedence of raster handlers.

Grid Images
Grid images show an interpolation of data values across an area. A grid image is created
from a data file in which data is measured at evenly-spaced points. The entire map area is
converted to a grid in which each grid cell represents a value. Grid values don't have to
be interpolated to produce a grid, although the data collection points need to be regularly
spaced. MapXtreme and MapInfo Professional create grids by interpolating values using
a grid handler.

In addition to the color gradations, grid images can also show hill, or relief, shading. Relief
shading allows the grid surface to be shaded according to a virtual light source. The
brightness of each grid cell corresponds to the light striking the surface and is adjusted
based on its orientation to the light source. This is well suited for elevation grid maps
where you can take surface slope and direction into account relative to the direction of the
MapXtreme 9.5 Developer Guide 365

light. Maximum brightness is assigned at points where the sun’s rays are perpendicular to
the surface. As the slope faces turn away from the light source, the brightness values are
lower.

Supported grid formats include:

• MapInfo Grid (*.mig)

• USGS DEM (*.dem)

• GTOPO30 (*.dem)

• DTED (*.dt0, *.dt1, *.dt2)

• Vertical Mapper Continuous Grids1 2(*.grd, .*grc)

Additional grid formats may be supported on a system if a custom grid handler is
installed.

Grid Classes
The main classes for grid images are MapInfo.Raster.GridInfo, GridRead,
GridCreatorFromFeatures, GridInflectionCalculator and HillShadeWrite. GridInfo and
GridRead are like RasterInfo and RasterRead, in this case, provide the ability to get
information about a grid file. Grids are created for a layer of data points using
GridCreatorFromFeatures. GridInflectionCalculator is used to set inflection values and
colors. HillShadeWrite allows you to add or alter relief shading to the grid. Many of the
properties of a grid are inherited from RasterInfo, including the image class, coordinate
system, raster control points and minimum bounding rectangle (MBR).

Code Sample: Adding a Grid Image to a Map
Adding a grid image to a map is the same as adding any other layer.

C# example:

Table MyTable = Session.Current.Catalog.OpenTable("MyGrid.tab");
FeatureLayer MyLayer = new FeatureLayer(MyTable);
MyMap.Layers.Add(MyLayer);

VB example:

Dim MyTable As Table = _ Session.Current.Catalog.OpenTable("MyGrid.tab")
Dim MyLayer As FeatureLayer = New FeatureLayer(MyTable)
MyMap.Layers.Add(MyLayer)

1. Can be displayed as either grid or raster. The .TAB file determines whether the image should be drawn using the
grid handler or the raster handler.

2. Not multi-thread safe.
MapXtreme 9.5 Developer Guide 366

 17 – Working with Rasters and Grids
Code Sample: Retrieving Data from a Grid Map
This example shows how to open and read information from a grid file.

VB example:

Public Shared Sub MapInfo_Raster_GridRead(ByVal strGridFilename _
As String)

Dim strHillshadeFilename As String = _
MapInfo.Raster.GridRead.DefaultHillshadeFilename(strGridFilename)
Dim session As ISession

session = MapInfo.Engine.Session.Current
Dim gridread As GridRead = New GridRead(strGridFilename,_

 strHillshadeFilename)
 Console.WriteLine(gridread)
End Sub

This example shows how to open and read cell values from a grid file.

VB example:

Public Shared Sub MapInfo_Raster_GridReadStartRead(ByVal _
gridread As GridRead, ByVal strGridFilename As String)

Dim strHillshadeFilename As String = _
gridread.DefaultHillshadeFilename(strGridFilename)

If gridread.StartRead() Then
Dim x As Integer = 0 ' TODO - set to a pixel column value
Dim y As Integer = 0 ' TODO - set to a pixel row value
Dim bIsNull As Boolean
Dim dValue As Double
If gridread.GetValue(x, y, bIsNull, dValue) Then

If bIsNull Then
' read a null cell
Console.Write("{0,20}", "NULL")

Else
' read a non-null cell, with value == dValue
Console.Write("{0,20}", dValue)

End If
End If
gridread.EndRead()

End If
End Sub
MapXtreme 9.5 Developer Guide 367

Grid Creation
MapXtreme provides the ability to create continuous grids using a writable grid handler
and interpolators. These grids are created programmatically using the
MapInfo.Raster.GridCreatorFromFeatures class, the Mig.ghl grid handler and one of two
supplied interpolators. Grids can be created from tables of data points or from selections.

Grids produced in MapXtreme are compatible with MapInfo Professional v 10.0.

A continuous grid is a map that is divided into a rectangular grid of cells, where each cell
contains a data value representing either a measured data point, or an interpolated value
based on the surrounding data points. The continuous grid displays the changing data
values using a continuous gradation of color across the map.

Previously MapXtreme was limited to reading a grid and getting back a list of its grid cell
values. It also could read information about a grid, such as hillshading and styles. The
ContinuousGridWrite class was available, but lacked the ability to use an interpolator
which would have created grids that better reflect its data points.

The MapInfo.Raster.GridCreatorFromFeatures is the main class to be called when
creating a continuous grid. It uses the MapInfo writable grid handler and an interpolator to
produce the continuous grid map.

The interpolators, IDW and TIN, provide algorithms for determining grid cell values
according to their particular formulas. IDW is best used for population data, while TIN is
used for terrain data. See Inverse Distance Weighted (IDW) Interpolator and Triangulated
Irregular Network (TIN) Interpolator.

If one of the provided interpolators does not meet your needs, you can create your own
by deriving it from the new IInterpolator interface. See IInterpolator Interface and the
MapInfo.Raster.Interpolators namespace in the Developer Reference.

If your data includes coincident (duplicate) data points in the same cell location, the grid
API provides an aggregator class to sum or average the points. Other available
aggregator methods are count, min and max. You can also create or use any aggregator
that implements IGridCellAggregator.

Other enhancements to the Grid API include the ability to clip the grid to match the outline
of the map boundary. Grids are created based on the minimum bounding rectangle of the
source data. If you wish your grid boundary to follow the outline of your map boundary,
you would set the GridCreatorFromFeatures.ClippingGeometry property to the Geometry
you wish the grid cells to be clipped against.
MapXtreme 9.5 Developer Guide 368

 17 – Working with Rasters and Grids
Once you have created a grid from your data points, you can modify characteristics such
as hill shading, styles and inflection points using the new Grid Style dialog and
Workspace Manager. See Grid Style for more information.

Grid Interpolators
MapXtreme provides two grid interpolators for creating a continuous grid: IDW and TIN.
The IDW and TIN interpolators are included in a separate namespace called
MapInfo.Raster.Interpolators.

In addition, MapXtreme provides an interface for creating your own interpolator.

Inverse Distance Weighted (IDW) Interpolator
The MapInfo.Raster.Interpolators.InverseDistanceWeighted interpolator class is one of
two grid interpolators provided with MapXtreme. The IDW interpolator is best suited for
data values such as population, or any data that yields arbitrary values over the grid
rather than be related to or influenced by, neighboring values. This interpolation method
also works well for sparse data.

The IDW interpolator calculates the values contained in the cells that cover the grid. Each
data point value that is included in the calculation is weighted by its distance from the
center of the cell. Because the interpolation is an inverse distance weighting calculation,
the farther the point is from the cell, the less influence its value will have on the resulting
cell value.

In IDW, an exponent determines how much influence each point will have on the result.
The higher the exponent the greater the influence closer points will have on the cell value.
Exponents can range from one to 10.

You can also choose an aggregation method for the values of source data points that are
in the same grid cell. Choose from: average, count, sum, min, and max.

For a code example of creating a grid using the IDW interpolator, see
MapInfo.Raster.GridCreatorFromFeatures class in the Developer Reference.

Triangulated Irregular Network (TIN) Interpolator
The second provided interpolator is called the Triangulated Irregular Network, or TIN. The
TIN works best for terrain data and for data points that have a linear progression or
relationship to each other across the grid, such as temperature.
MapXtreme 9.5 Developer Guide 369

The TIN interpolator produces triangles from a network of points that more closely
reproduces the original map terrain than the IDW interpolator. It draws lines between
points, dividing them into triangles and connecting all the points that it can. It creates a
mesh of connectivity so that the grid points can be interpolated. The interpolation is not
influenced by the neighboring original data values, so you do not get the "false bumping"
of data that you can get with the IDW interpolator.

The TIN parameters (object properties) can be altered to give more or less detail to the
map terrain. These properties include Tolerance (controls whether closely spaced points
are discarded), Distance (controls the output), and FeatureAngle (controls the sharpness
of the grid’s edge).

For more information, see MapInfo.Raster.Interpolators.TriangulatedIrregularNetwork
class in the Developer Reference.

IInterpolator Interface
We also provide support for building your own interpolator through the IInterpolator
interface. Derive your own interpolator from this interface to create grid cell values based
on your algorithm. See the MapInfo.Raster.IInterpolator interface in the Developer
Reference.

Grid Style
MapXtreme provides the ability to modify the inflection values and color of a continuous
grid image. Previously MapXtreme could only read the information from the grid.

Grid style support is provided programmatically through the MapInfo.Styles.GridStyle
class, via a GridStyleControl, and incorporated into Workspace Manager. A sample
application called GridForm also provides this capability. Changes to inflection values and
colors can be persisted to a workspace and loaded at a later time.
MapXtreme 9.5 Developer Guide 370

 17 – Working with Rasters and Grids
Grid Images and Inflections
A continuous grid image shows an interpolation of data values across an area. A grid is
made up of grid cells where each cell represents a value. These values are represented
on the map as a continuous color gradation that is bounded by the range of data values.

The point at which the color changes due to a change in the grid value or percentage is
known as an inflection. MapXtreme creates a GridInflectionCalculator object that
calculates inflection values based on one of several supported methods. The number of
inflection points for a grid coupled with the minimum and maximum range of data values
is used to determine the color gradation across the map. The color that represents the
inflection is applied to the grid as a FeatureOverrideStyleModifier.

Inflection Methods
MapXtreme supports the following calculation methods:

• Equal Cell Count–Calculates inflection values so that an equal number of cell values
are within the calculated percentage ranges.

• Equal Value Ranges–Calculates inflection values in a manner where each inflection
value range is the same size.

• Custom Cell Count–Same as Equal Cell Count, except uses custom percentage
ranges.

• Custom Value Ranges–Same as Equal Value Ranges, except uses custom inflection
values.
MapXtreme 9.5 Developer Guide 371

Inflection values and colors can be modified programmatically through the
MapInfo.Raster.GridInflectionCalculator class. A GridStyleControl is available from the
MapXtreme toolbox in Visual Studio.

This process is also incorporated into the Grid Style dialog in Workspace Manager. See
Grid Style.

 If you change either the values or percentages while the inflection methods are set
to Equal Value Ranges or Equal Cell Count, the methods become Custom Value
Range and Custom Cell Count, respectively.

Changes to inflection values and colors can be persisted to a workspace and loaded at a
later time.

Calculating Inflection Values and Colors for a Grid Layer
You can calculate inflection values and colors programmatically or through the Grid Style
dialog in Workspace Manager. The GridForm sample application also provides this
capability.

GridInflectionCalculator Class

The following code example shows how to create an initial set of values and colors and
then modify them. This code example is provided in the Developer Reference API
documentation under the MapInfo.Raster.GridInflectionCalculator class.

public static void MapInfo_Raster_GridInflectionCalculator(TableInfoGrid
tableInfoGrid)
{
 // Create 10 grid inflection values, by using the EqualRangeValues method,
using colors from orange to red.
 GridInflectionCalculator gridInflectionCalculator = new
GridInflectionCalculator(tableInfoGrid, InflectionMethod.EqualRangeValues, 10,
Color.Orange, Color.Red);

 // Modify the colors to go from green to brown.
 gridInflectionCalculator.CalculateStyles(Color.Green, Color.Brown);

 // Calculate 5 grid inflection values, by using the EqualRangeValues method.
 gridInflectionCalculator.CalculateValues(InflectionMethod.EqualRangeValues,
5);

}

MapXtreme 9.5 Developer Guide 372

 17 – Working with Rasters and Grids
Relief Shading
In addition to the color gradations, grid images can also show hill, or relief, shading. Relief
shading allows the grid surface to be shaded according to a virtual light source. The
brightness of each grid cell corresponds to the light striking the surface and is adjusted
based on its orientation to the light source. This is well suited for elevation grid maps
where you can take surface slope and direction into account relative to the direction of the
light. Maximum brightness is assigned at points where the sun’s rays are perpendicular to
the surface. As the slope faces turn away from the light source, the brightness values are
lower.

Hillshading is enabled via a checkbox in the GridStyle dialog. The horizontal and vertical
light source angles and scale factor are set in LayerControl. Programmatically, hillshading
can be added to a grid via the MapInfo.Raster.HillshadeWrite class.

Grid Style Dialog
The Grid Style dialog is where you can modify the style settings of a grid, including color,
inflection value, contrast, brightness, translucency, and more through a graphical user
interface (GUI). The style is applied to the grid layer as a FeatureOverrideStyleModifier.

To reach the Grid Style dialog, open a grid image in Workspace Manager. Select the grid
layer and right-click to display the Add Style Override menu item. In the Visibility tab, click
the Grid Image Style button to display the dialog. Each component of the Grid Style dialog
is explained below.

Color/Value/% (Percentage)

The Color/Value/% (Percent) grid box shows the current settings for inflection colors,
values and percentage.
MapXtreme 9.5 Developer Guide 373

To change the color, double-click on the color swatch and choose a new color from the
Color dialog palette.

The value and % settings come from the data in the grid. These values can change when
you modify settings in the Inflection Point Settings group of this dialog. That will cause a
re-calculation of the inflections and display new values. For example, you can edit the
values directly when you choose Custom Value Ranges and the percentage when you
choose Custom Cell Count.

 If you edit either the values or percentages while the inflection methods are set to
Equal Value Ranges or Equal Cell Count, the methods become Custom Value
Range and Custom Cell Count, respectively.

Color Adjustments

You can make adjustments to affect the color in the grid image. These changes are
applied equally to the entire layer.

Contrast

Use the Contrast scroll bar to adjust the contrast in the image. Slide the bar between 0 and 100% to set the
grid’s contrast level. You can use the cursor keys for fine adjustment.

Brightness

Use the Brightness scroll bar to adjust the brightness in the image. Slide the bar between 0 and 100% to set
the grid’s brightness level. You can use the cursor keys for fine adjustment.

Translucency

Use the Translucency slide bar to adjust the translucency for the image. Translucency can be set between 0
and 100%. An image with 0% translucency is completely opaque (cannot be seen through). An image with
100% translucency is completely transparent (completely invisible).

Gray scale

Check to show only gray scale colors in the grid.

Flip Colors Button

Click this button to invert the inflection colors. This affects only the beginning and ending colors at this time.

Inflection Point Settings

The inflection point settings allow you to set the method used to calculate inflections to
show how your data is distributed across an area. Equal Cell count and Custom Cell
Count are based on percentages. Equal Value Ranges and Custom Value Ranges are
based on values.

Equal Cell Count

Sets the inflections so that approximately an equal number of grid cells falls within the calculated percentage
ranges.
MapXtreme 9.5 Developer Guide 374

 17 – Working with Rasters and Grids
Equal Value Ranges

Spreads the inflections between the minimum and maximum of the source data range, where each inflection
value range is the same size.

Custom Cell Count

Choose this method when you want to use your own percentages and not ones that are evenly spread.

Custom Value Ranges

Choose this method when you want to use your own values and not ones that are evenly spread.

Number of Inflections:

Select from a list of 2 to 16 inflections or type a number between 2 and 255.

Round:

Choose from a list of rounding factors to be applied to inflection values. You may not see the effects of this
rounding if the spread method is based on cell count until inflection values are actually calculated.

Relief Shading

Relief shading allows you to shade your grid surface map according to the orientation of a
virtual light source. This enables you to take surface slope and direction into account
relative to the direction of the light. The Grid Style dialog provides a setting to enable or
disable relief shading.

To adjust the relief shading settings, you must first highlight the grid layer in Layer Control
and choose the Hillshade tab. Relief shading is not applied as a style override, as is the
inflection settings.

Light Source

The light source settings for horizontal, vertical angle and vertical scale are set in the
Layer Control dialog, under the Hillshade tab. This tab displays only when a grid layer is
selected and hillshading is enabled.

Horizontal Angle

Rotates the light source in the horizontal plane. Zero degrees corresponds to the light source shining from
due East. Positive angles rotate the light source counterclockwise, so, for example, 90 degrees places the
light source due North.

Vertical Angle

Rotates the light source in the vertical plane. Zero degrees places the light source at the horizon, and 90
degrees places it directly overhead. Specify angles between 180 and 360 degrees to have the light source
originate from under the surface.

Vertical Scale Factor

Specify a scale factor between 0 and 100. Increasing this scale factor exaggerates the surface vertically,
enhancing the shading effect. This can be useful for enhancing detail in relatively flat surfaces.

Recompute Hillshade

Click this button to recompute the hillshade after you make adjustments to the light source settings.
MapXtreme 9.5 Developer Guide 375

Inflection Values

These values show the minimum and maximum values in the grid table. These values are
not editable.

Min:

Shows the minimum data point value in the source table.

Max:

Shows the maximum data point value in the source table.

GridInfoForm Sample Application
MapXtreme provides C# sample applications that incorporate the
GridInflectionCalculator. Find these samples under the \Desktop\Features\GridinfoForm
under the \Samples\VisualStudio20xx folders.
MapXtreme 9.5 Developer Guide 376

18

18 – Working with Maps from

Tile Servers
MapXtreme supports the display of Tile Server TAB files created by
MapInfo Professional. This allows you to open and view map tiles,
such as Bing Maps and Spatial Server Tile Maps, from a MapXtreme
desktop or web application.

In this chapter:
 Tile Server Images . 378
 Tile Caching . 378
 Map Behavior with a Tile Server Layer . 379
 Using Tile Server Images . 379
 Tile Server Settings . 389
 Sample Code Snippets. 386
 Using TableInfoTileServer Class. 391
 Tile Server Sample Application. 391

Tile Server Images
Tiles are portions of maps that are stored on tile servers and on request, delivered as
images to the client application for display. MapXtreme opens and displays tile images in
the same way that it supports raster or WMS images. Images can be brought into
MapXtreme as individual layers or as part of an .MWS workspace. Tiles opened as a
layer are added as the bottommost layer to the map control.

Images from tile servers make excellent backgrounds for maps. For example, aerial
photographs that show real-world detail such as buildings, refineries, and vegetation are
well-suited as base layers for a map. Use a tile server image as a base layer in your
MapXtreme web or desktop application. Overlay vector data such as street networks,
point locations representing customers, and postal boundaries, to create useful and
visually appealing maps.

Tile Server files from MapInfo Professional consist of a TAB file and associated XML file
that contains the URL to the tile server. The TAB file provides the coordinate system
information MapXtreme needs to display the layer accurately and in line with vector data
you are likely to have in your map.

MapXtreme supports two types of tile servers: QuadKey and LevelRowColumn. See
Using Tile Server Images on page 379.

MapXtreme has built-in caching support for tiles for faster access of tile images. The
cache is maintained during the session that the desktop or web application is open. See
Tile Caching on page 378.

You can also apply style overrides to Tile Server layers to control the translucency,
brightness, contract and grayscale of the images, in the same way as you do for raster
layers. See Raster Classes on page 354.

Tile Caching
MapXtreme caches the tiles of the referred tile server onto disk and performs the
rendering. If tiles are needed to be drawn on a map control, typically due to zooming and
panning, and are not available in the cache, they are requested from the server and
added to the cache. The TileServer cache will persist on disk until you close the
MapXtreme-based desktop or web application.

TileSever cache is stored in MapXtreme folder under TEMP or TMP directory by default.
MapXtreme 9.5 Developer Guide 378

 18 – Working with Maps from Tile Servers
Map Behavior with a Tile Server Layer
The coordinate system for the Tile Server layer is defined in the TAB file, which is not
changeable at render time. When you display a tile server image as a map base layer,
MapXtreme forces the already visible layers (vector, raster, WMS, etc.) to be drawn in the
same projection as the Tile Server layer. The coordinate system of the map is also
changed to match the Tile Server layer. If other raster layers are present in the map,
raster re-projection is not allowed until the Tile Server layer is visible. To enable raster re-
projection for other raster layers, you must remove the visible Tile Server layers.

If a map includes more than one Tile Server layer, MapXtreme automatically displays the
map in the projection specified by the most visible tile server image. A newly added Tile
Server layer will be added on top of existing Tile Server layers.

For better visibility and smooth text rendering, by default the map's anti-aliasing and
translucency properties are set to true whenever any Tile Server layer is being added.
These settings persist until you manually disable these properties.

Using Tile Server Images
Tile server images are a very popular way to bring more information into your map. They
are more efficient than WMS since only the tiles that cover the map view at the current
zoom and center are returned.

MapXtreme supports four types of tile servers: QuadKey, LevelRowColumn, WMTS and
Custom Resolution Tile Service.

QuadKey
QuadKey is a mechanism that Bing Maps Tile System uses to uniquely identify its tiles at
a particular level. Images from Bing include the attribute QuadKey in the URL. In order to
access Bing Maps, you must acquire a Bing Key from Microsoft. See
http://msdn.microsoft.com/en-us/library/ff428642.aspx. See Using TableInfoTileServer
Class on page 391 for more on how to set the key.

MapXtreme also supports the localized Bing Maps.

MapXtreme provides sample TAB /XML files for three types of Bing Maps: Aerial, Road
and Hybrid.

The XML file should be in conformance with the TileServerSchema.xsd available at the
installation path “C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x”. For
example:
MapXtreme 9.5 Developer Guide 379

http://msdn.microsoft.com/en-us/library/ff428642.aspx

<?xml version="1.0" encoding="utf-8"?>
<TileServerInfo Type="QuadKey">
 <Url>http://ecn.t3.tiles.virtualearth.net/tiles/a{QUADKEY}.jpg?g=392</Url>
 <MaxLevel>23</MaxLevel>
 <TileSize Height="256" />
 <AttributionText Font="Font ("Tahoma",257,8,16777215,0)">Microsoft
Bing © 2011 Microsoft Corporation</AttributionText>
</TileServerInfo>

Note that the value of Type attribute of the TileServerInfo element is "QuadKey".

LevelRowColumn
LevelRowColumn is another way to uniquely identify tiles. The level, row and column is
expressed as part of the URL.

The XML file should be in conformance with the TileServerSchema.xsd available at the
installation path “C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x”. For
example:

<?xml version="1.0" encoding="utf-8"?>
<TileServerInfo Type="LevelRowColumn">
 <Url>http://tile.openstreetmap.org/{LEVEL}/{ROW}/{COL}.png</Url>
 <MinLevel>0</MinLevel>
 <MaxLevel>18</MaxLevel>
 <TileSize Height="256" Width="256" />
 <AttributionText Font="Font ("Tahoma",257,8,16777215,0)">© 2011
OpenStreetMap contributors, CC-BY-SA</AttributionText>
</TileServerInfo>.

Note that the value of Type attribute of the TileServerInfo is "LevelRowColumn".

WMTS (Web Map Tile Service)
Web Map Tile Service (WMTS) is an OGC standard that provides guidelines for a web
service to host pre-rendered map tiles of spatially referenced data using tile images with
predefined content, extent, and resolution.

MapXtreme supports consumption of such a service via Tile server TAB/XML files,
through which WMTS version, CapabilitiesUrl and GetTilesUrl can be specified.

The XML file should be in conformance with the WmtsServerSchema.xsd available at the
installation path “C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x”. For
example:

<?xml version="1.0" encoding="utf-8"?>
<TileServerInfo Type="WMTS">

<CapabilitiesUrl>http://sampleserver6.arcgisonline.com/arcgis/rest/services/Wor
MapXtreme 9.5 Developer Guide 380

 18 – Working with Maps from Tile Servers
ldTimeZones/MapServer/WMTS?request=GetCapabilities&service=WMTS&version
=1.0.0</CapabilitiesUrl>
 <Version>1.0.0</Version>
<GetTilesUrl>http://sampleserver6.arcgisonline.com/arcgis/rest/services/WorldTi
meZones/MapServer/WMTS?&service=WMTS&request=GetTile&version=1.0.0&
amp;layer=WorldTimeZones&style=default&format=image/png&tileMatrixS
et=default028mm&tileMatrix={TileMatrix}&TileRow={TileRow}&TileCol={
TileCol}</GetTilesUrl>
</TileServerInfo>

Note that the value of Type attribute of the TileServerInfo is "WMTS".

MapXtreme supports following tile server types via Tile server TAB files created by
MapInfo Professional:

• MapInfo Pro

• Spectrum Spatial

• ArcGIS

• OSM

• MapQuest

Custom Resolution Tile Service
MapXtreme.NET supports consumption of tile servers which provide tiles of custom
resolution at different zoom levels. Unlike standard tile servers, these tile servers provide
a level-wise list of resolutions, which do not necessarily differ by a factor of two with
increasing zoom level.

Like other tile servers, this type of tile server can also be consumed in MapXtreme either
by a combination of .TAB/.XML files or via APIs.

A new schema “CustomTileServerSchema.xsd” has been introduced to specify a set of
rules for the .XML file and is available at common files path.

“C:\Program Files\Common Files\MapInfo\MapXtreme\9.2”.

An example .xml is given below:

<?xml version="1.0" encoding="utf-8"?>
<TileServerInfo Type="CustomLevelRowColumn">

<Url>https://someserver/{LEVEL}/{COL}/{ROW}</Url>
<MinLevel>0</MinLevel>
<MaxLevel>9</MaxLevel>
<Resolutions>

<Resolution Level="0">41.015625</Resolution>
<Resolution Level="1">20.5078125</Resolution>
<Resolution Level="2">10.25390625</Resolution>
<Resolution Level="3">5.126953125</Resolution>
MapXtreme 9.5 Developer Guide 381

<Resolution Level="4">2.5634765625</Resolution>
<Resolution Level="5">1.28173828125</Resolution>
<Resolution Level="6">0.640869140625</Resolution>
<Resolution Level="7">0.3204345703125</Resolution>
<Resolution Level="8">0.16021728515625</Resolution>
<Resolution Level="9">0.080108642578125</Resolution>

</Resolutions>
<Origin>NW</Origin>

<TileOrigin X="-48683.0" Y="6708835.0"/>
</TileServerInfo>

MapXtreme supports consumptions of custom tile servers with both top-left and bottom-
left origins.

 Note: As of now, implementation of consuming custom tile servers, supports only
those servers which supply map tiles of 256X256 pixels.

For more details, please refer “MapXtreme_DeveloperReference.chm”.

Consuming Tile Layers via APIs (without
.tab/.xml file)
MapXtreme.Net now supports opening all supported types of tile layers via APIs. Now no
need to keep the .TAB/.XML file handy when opening tile layer. User just has to provide
the properties of the tile servers in an object and use that object to open layer. Code
examples are provided later in this document. For consuming tile layer without .tab/.xml
files, user need to create object of “TileServerTableInfo” and fill appropriate properties of
this object and then use this table info to open the table.
MapXtreme 9.5 Developer Guide 382

 18 – Working with Maps from Tile Servers
Details about the properties in “TileServerTableInfo”:

Properties Descriptions

AttributionFont Specifies the font to be used to display attribution
text of the tiles supplied by tile Server. This property
is applicable to all tile servers other than
TileServerType.WMTS and is optional. Font should
be specified as a string. For example, "Font
("Tahoma",257,8,16777215,0)".

Coordsys Specifies the Coordsys to be used. This property is
applicable to all tile servers and is mandatory.
Create a coorsys using coordsys factory of your
choosing and set it in this property.

CustomResolutions Specifies the CustomResolutions supported by the
CustomLevelRowColumn tile Server. It is list of
double values. This property is applicable to all
TileServerType.CustomLevelRowColumn type tile
servers and is mandatory.

CustomTileOrigins Specifies the CustomTileOrigins supported by the
CustomLevelRowColumn tile Server. It is list of
DPoints. This property is applicable to all
TileServerType.CustomLevelRowColumn type tile
servers and is mandatory.

Extents Specifies the Extents of the layer of the tile server.
This property is applicable to all tile servers and is
Optional. Extents can also be set via CoordSys
property. If not defined, it will take default extents of
the selected Coordsys. To specify extent manually,
create a DRect with bounds and set it in this
property.
MapXtreme 9.5 Developer Guide 383

Extents Specifies the Extents of the layer of the tile server.
This property is applicable to all tile servers and is
Optional. Extents can also be set via CoordSys
property. If not defined, it will take default extents of
the selected Coordsys. To specify extent manually,
create a DRect with bounds and set it in this
property.

IgnoreExceptions Specifies whether to ignore exceptions from
tileserver or not. This property is applicable to all tile
servers and is optional.

MaxLevel Specifies the max level supported by the tile Server.
This property is applicable to all tile servers but is
optional for TileServerType.WMTS and mandatory
for rest.

MinLevel Specifies the min level supported by the tile Server.
This property is applicable to all tile servers and is
optional.

Origin Specifies the origin of the tiles supplied by tile
Server. This property is applicable to all tile servers
other than TileServerType.WMTS and is optional.
It's possible values are NW/SW only. Default NW is
used.

OverrideCoordinateOrder Specifies whether to flip coordinates of the tilematrix
sets or not, if needed.

ReadTimeout Specifies the read timeout in seconds. This property
is applicable to all tile servers and is optional. By
default, implementation uses 60 seconds for read
timeout.

RequestTimeout Specifies the request timeout in seconds. This
property is applicable to all tile servers and is
optional. By default, implementation uses 60
seconds for read timeout.

Properties Descriptions
MapXtreme 9.5 Developer Guide 384

 18 – Working with Maps from Tile Servers
StartTileNum Specifies the Start tile number of the tiles supplied
by tile Server. This property is applicable to all tile
servers other than TileServerType.WMTS and is
optional.

TileHeight Specifies the Height in pixel of the tiles supplied by
tile Server. This property is applicable to all tile
servers other than TileServerType.WMTS and is
mandatory.

TileWidth Specifies the Width in pixel of the tiles supplied by
tile Server. This property is applicable to all tile
servers other than TileServerType.WMTS and is
optional.

TileServerUrl Specifies the URL of the tile Server. This property is
applicable to all tile servers other than
TileServerType.WMTS is mandatory.

TileServerInfoType Determines the type of the Tile Server. For different
tileserver types, different properties are applicable.
This property is mandatory and must be set before
calling OpenTable. For supported types, see
“TileServerInfoType” enum.

WMTSCapablitiesUrl Specifies the capabilities URL of the WMTS tile
Server. This property is only applicable for
TileServerType.WMTS is mandatory.

WMTSGetTilesUrl Specifies the GetTiles URL of the WMTS tile Server.
This property is only applicable for
TileServerType.WMTS and is mandatory.

WMTSVersion Specifies the Version of the WMTS tile Server. This
property is only applicable for
TileServerType.WMTS and is optional. Default
Value for this property is "1.0.0".

Properties Descriptions
MapXtreme 9.5 Developer Guide 385

TileServerType Enumeration
Enum for different types of TileServers Supported by MapXtreme.

For more details, please refer “MapXtreme_DeveloperReference.chm”.

Sample Code Snippets

Opening Tile Server via APIs
You can open a normal Tile Server using the example below.

//Create object of TableInfoTileServer by passing alias for table.
TableInfoTileServer ti = new TableInfoTileServer("BingAerial");

//Specify the tile server Properties.
//ti.TileServerInfoType, ti.TileServerUrl, ti.MaxLevel, ti.TileHeight,
ti.Coordsys properties are mandatory.

Invalid Default value of the Enum.

Bing This type is used to specify that server being used is
of Bing type. Bing Maps Platform (previously
Microsoft Virtual Earth) is a geospatial mapping
platform produced by Microsoft.

QuadKey This type is used to specify that server being used is
of Quadkey type.

LevelRowColumn This type is used to specify that server being used is
of Level Row Column type.

WMTS This type is used to specify that server being used is
of WMTS type. A Web Map Tile Service (WMTS) is
a standard protocol for serving pre-rendered
georeferenced map tiles over the Internet.

CyberJapan This type is used to specify that server being used is
of Level Row Column Japanese type.

CustomLevelRowColumn This type is used to specify that server being used is
of Level Row Column type and supports custom
resolutions at each level.
MapXtreme 9.5 Developer Guide 386

 18 – Working with Maps from Tile Servers
ti.TileServerInfoType = TileServerType.Bing;
ti.TileServerUrl = "http://someserver/tiles/a{QUADKEY}.jpg?g=392";
ti.MaxLevel = 23;
ti.TileHeight = 256;
ti.AttributionFont = "Font ("Tahoma",257,8,16777215,0)";

//Create the coordsys
CoordSysFactory factory = Session.Current.CoordSysFactory;
CoordSys coordSys = factory.CreateFromMapBasicString("CoordSys Earth
Projection 10, 157, \"m\", 0");
//Set the coordsys in tableInfo object.
ti.Coordsys = coordSys;
ti.Extents = new DRect(-20037508.3428, -20037508.343, 20037508.3428,
20037508.343);

//Open the table, If any mandatory property is missing for a particular type
of TS,
//a relevant execption will be thrown here.
Table tileTable = Session.Current.Catalog.OpenTable(ti);

//Do other things with opened table. For example, add the table to the current
map and load it in mapcontrol
//MapControl.Map.Load(new MapTableLoader(tileTable));

Opening WMTS via APIs
You can open a WMTS layer using the example below.

//Create object of TableInfoTileServer by passing alias for table.
TableInfoTileServer ti = new TableInfoTileServer("wmts");

// Specify the Web Map tile service(WMTS) Properties.
//ti.TileServerInfoType, ti.WMTSCapablitiesUrl, ti.WMTSGetTilesUrl,
ti.WMTSVersion,
//t.Coordsys properties are mandatory.
ti.TileServerInfoType = TileServerType.WMTS;
ti.WMTSCapablitiesUrl="http://someserver/WMTService.aspx?request=GetCapabilit
ies&service=WMTS&version=1.0.0";
ti.WMTSGetTilesUrl="http://someserver?&service=WMTS&request=GetTile&version=1
.0.0&layer=orto&style=default&format=image/png&tileMatrixSet=someTileMatrixSe
t&tileMatrix={TileMatrix}&TileRow={TileRow}&TileCol={TileCol}";
ti.WMTSVersion = "1.0.0";

//Create the coordsys
CoordSysFactory factory = Session.Current.CoordSysFactory;
CoordSys coordSys = factory.CreateFromMapBasicString("CoordSys Earth
Projection 1, 115");

//Set the coordsys in tableInfo object.
ti.Coordsys = coordSys;
MapXtreme 9.5 Developer Guide 387

ti.Extents = new DRect(51.8749637851, 6.36653951224, 61.3062175074,
11.0821663734);

//Open the table, If any mandatory property is missing for a particular type
of TS,
//a relevant execption will be thrown here.
Table tileTable = Session.Current.Catalog.OpenTable(ti);

//Do other things with opened table. For example,
//Add the table to the current map and load it in mapcontrol
//MapControl.Map.Load(new MapTableLoader(tileTable));

Opening Custom Tile Server via APIs
You can open a Custom Tile Server using the example below.

//Create object of TableInfoTileServer by passing alias for table.
TableInfoTileServer ti = new TableInfoTileServer("CustomTileServer");

// Specify the CustomLevelRowColumn tile server Properties.
//ti.TileServerInfoType, ti.TileServerUrl, ti.MaxLevel, ti.CustomResolutions,
//ti.CustomTileOrigins, t.Coordsys properties are mandatory.
ti.TileServerInfoType = TileServerType.CustomLevelRowColumn;
ti.TileServerUrl="http://someserver/tile/{LEVEL}/{ROW}/{COL}";
ti.MaxLevel = 10;

//set the resolutions in CustomResolutions
List<double> resolution = new List<double>();
resolution.Add(169.33367200067735);
resolution.Add(84.66683600033868);
resolution.Add(42.33341800016934);
resolution.Add(21.16670900008467);
resolution.Add(10.583354500042335);
resolution.Add(5.291677250021167);
resolution.Add(2.6458386250105836);
resolution.Add(1.3229193125052918);
resolution.Add(0.6614596562526459);
resolution.Add(0.33072982812632296);
resolution.Add(0.19843789687579377);

ti.CustomResolutions = resolution;

//set the TileOrigins\TileOrigin in CustomTileOrigins
List<Tuple<double, double>> tileOrigins = new List<Tuple<double, double>>();
tileOrigins.Add(new Tuple<double, double>(-5220400.0, 4470200.0));
ti.CustomTileOrigins = tileOrigins;

//Create the coordsys
CoordSysFactory factory = Session.Current.CoordSysFactory;
CoordSys coordSys = factory.CreateFromMapBasicString("CoordSys Earth
Projection 8,79,7,-2,49,0.9996012717,400000,-100000");
ti.Coordsys = coordSys;
MapXtreme 9.5 Developer Guide 388

 18 – Working with Maps from Tile Servers
//Set the coordsys in tableInfo object.
ti.Coordsys = coordSys;
ti.Extents = new DRect(481634.4445551128, 60383.01832330043,
703156.6809428951, 236630.6370551856);

//Open the table, If any mandatory property is missing for a particular type
of TS,
//a relevant execption will be thrown here.
Table tileTable = Session.Current.Catalog.OpenTable(ti);
//Do other things with opened table. For example,
//Add the table to the current map and load it in mapcontrol
//MapControl.Map.Load(new MapTableLoader(tileTable));

Authentication to Tile Server
Depending on the tile server (Quadkey or LevelRowColunm) being referred by the TAB
file, MapXteme may need to provide credentials to the tile server. In case of the QuadKey
type tile server like Bing Tile Map (Aerial, Roads and Hybrid), a Bing key is required to
setup the authentication. The Bing Key can be specified to MapXtreme-based application
as described in Tile Server Settings on page 389.

If any tile server referred by the TAB file requires user credentials (user & password), then
for a desktop application the authentication dialog will be presented to the user.

Tile Server Settings
Before loading a tile server TAB or workspace into a map control, several settings must
be configured, either at the system level or programmatically through the
MapInfo.Engine.TileServerSettings class. Tile Server settings will be set for the entire
MapXtreme application instance.

License Key for Bing Maps
Use the Registry key variable "SOFTWARE\MapInfo\MapXtreme\9.x.x\TileServerKey" to set
the tile server key required by TileServer TAB file in the workspace.

Use the system environment path variable MI_TILE_SERVER_KEY to set tile server key
required by TileServer TAB file in the workspace.

A trial Bing Tile Server key can be obtained from Microsoft. For more information, visit
http://msdn.microsoft.com/en-us/library/ff428642.aspx.
MapXtreme 9.5 Developer Guide 389

http://msdn.microsoft.com/en-us/library/ff428642.aspx

Via the Web or Desktop Configuration File
For a MapXtreme web application and/or standalone application you can set the tile
server settings in Web.Config and/or app.config file as follow:

<add key="MapInfo.Engine.Session.Workspace.TileServerSettings"
value="ReadTimeOut:60; RequestTimeOut:60; TileServerKey:XXXXXXXXXXXXXXXXXX" />

Via MapInfo.Engine.TileServerSettings Class
MapXtreme’s API provides the MapInfo.Engine.TileServerSettings class to set settings
for tile server (See Using TableInfoTileServer Class on page 391). By default MapXtreme
has following values for tile server settings:

MapInfo.Engine.TileServerSettings.ReadTimeOut 60 seconds

MapInfo.Engine.TileServerSettings.RequestTimeOut 60 seconds

MapInfo.Engine.TileServerSettings.Key "" (empty string)

 Note: These setting override existing settings and will be used until they are
changed.

Sample Code for TileServerSettings class
MapInfo.Engine.TileServerSettings class can be used to set the values as following
code snippet

C# example:

public static void MapInfoSetTileServerSettings()
{

 MapInfo.Engine.TileServerSettings tssetting = new
TileServerSettings();
 tssetting.Key = "";
 tssetting.ReadTimeout = 70;
 tssetting.RequestTimeout = 70;
 Session.Current.TileServerSettings = tssetting;
 //Table and/or workspace opening code, for example, here.
 }

VB example:
Public Shared Sub MapInfoSetTileServerSettings()
MapXtreme 9.5 Developer Guide 390

 18 – Working with Maps from Tile Servers
 Dim tssetting As MapInfo.Engine.TileServerSettings = New TileServerSettings
 tssetting.Key = ""
 tssetting.ReadTimeout = 70
 tssetting.RequestTimeout = 70
 Session.Current.TileServerSettings = tssetting
 'Table and/or workspace opening code, for example, here.
End Sub

Using TableInfoTileServer Class
MapInfo.Data.TableInfoTileServer class can be used to open tile server tab file.

C# example:
public static void MapInfoDataTableInfoTileServer(Map map)
 {
 TableInfo tableInfo = TableInfo.CreateFromFile("BingAerial.tab");
 TableInfoTileServer tableInfoTileServer = tableInfo as TableInfoTileServer;
 tableInfoTileServer.PreferredHandler = "leadtool.rhx";
 Table table = Session.Current.Catalog.OpenTable(tableInfoTileServer);
 try {
 map.Load(new MapTableLoader(table));
 }catch (Exception ex){
 String str = ex.ToString();
 // user code
 }
 }

VB example:
Public Shared Sub MapInfoDataTableInfoTileServer(ByVal map As Map)
 Dim tableInfo As TableInfo = tableInfo.CreateFromFile("BingAerial.tab")
 Dim tableInfoTileServer As TableInfoTileServer = CType(tableInfo,
TableInfoTileServer)
 tableInfoTileServer.PreferredHandler = "leadtool.rhx"
 Dim table As Table = Session.Current.Catalog.OpenTable(tableInfoTileServer)
 Try
 map.Load(New MapTableLoader(table))
 Catch e As Exception
 Console.WriteLine("Exception caught : {0}", e)
 End Try
 'user code
End Sub

Tile Server Sample Application
MapXtreme 9.5 Developer Guide 391

A Tile Server sample (C#) application for desktop is available to help you gain more
insight on how to use the tiling capability. It is located in your MapXtreme install directory
as noted below for 32-bit and 64-bit installations:

C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio2015\Desktop\Features\TileServer

C:\Program Files
(x86)\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio2015\Desktop\Features\TileServer

C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio2017\Desktop\Features\TileServer

C:\Program Files
(x86)\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio2017\Desktop\Features\TileServer
MapXtreme 9.5 Developer Guide 392

19

19 – Working with

GeoPackage
MapXtreme provides support for opening, displaying, creating and
editing GeoPackage files which is an open source format created by
OGC.

In this chapter:
 Overview. 394
 Opening a GeoPackage file . 394
 Opening a GeoPackage Tab file . 396
 Enable GeoPackage as cache for RDB (SQL/Oracle) tables. 396
 Create and Save GeoPackage file programmatically 397

Overview
GeoPackage is an open format for Geospatial Information defined by OGC
(http://www.geopackage.org). It is a new SQLite-based extension defined by the OGC to
promote portability of data across platforms and products.

According to OGC definition for GeoPackage:

“A GeoPackage is a platform-independent SQLite database file that may contain:

• vector geospatial features

• tile matrix sets of imagery and raster maps at various scales

• metadata

Since a GeoPackage is a database, it supports direct use, meaning that its data can
be accessed and updated in a "native" storage format without intermediate format
translations. GeoPackages are interoperable across all enterprise and personal
computing environments, and are particularly useful on mobile devices like cell phones
and tablets in communications environments with limited connectivity and bandwidth.

This OGC® Encoding Standard defines the schema for a GeoPackage, including table
definitions, integrity assertions, format limitations, and content constraints. The
allowable content of a GeoPackage is entirely defined in this specification."

Opening a GeoPackage file
GeoPackage table and GeoPackage Tab file can be opened using Workspace Manager.
GeoPackage file can be opened from File Menu by selecting filter as below:
MapXtreme 9.5 Developer Guide 394

 19 – Working with GeoPackage
After open it will show the list of tables in the database and particular table can be
selected to open.

Opening a GeoPackage file has been added to OpenFileDlg and will be available in all
those application which make use of OpenFileDlg of MapXtreme (v8.1 and above).

 If the GeoPackage table being opened have a Coordinate System which is not
supported by MapXtreme then that table will not be opened.

To open a GeoPackage file programmatically use the code below:

TableInfoGeopackage infoGeoPackage = new TableInfoGeopackage(“table alias”);
infoGeoPackage.DatabasePath = tablePath; //Path to the GeoPackage file .gpkg
infoGeoPackage.DatabaseTableName = “Table Name”; //Table to be opened in
GeoPackage
TableInfo tableInfo = infoGeoPackage;//Create the Table Info object.
Table
openTable=MapInfo.Engine.Session.Current.Catalog.OpenTable(tableInfo);//Open
table

A GeoPackage database may contain multiple tables so it is required to mention the
name of the table to be opened in the database.

 MapXtreme (v8.1 and above) only supports Feature Tables of GeoPackage.

To return the list of tables stored in the GeoPackage database below piece of code can
be used:

GeopackageDataSourceDefinition gpkgDSDef = new
GeopackageDataSourceDefinition(“c:\data\test.gpkg”); //path to gpkg file
MapXtreme 9.5 Developer Guide 395

GeopackageDataSource gpkgDS =
GeopackageDataProvider.Instance.OpenDataSource(gpkgDSDef, null) as
GeopackageDataSource;
List<IDataSourceNamedTable> tablesList = gpkgDS.GetSchemaNamedTables("main",
new string[] { "" }) as List<IDataSourceNamedTable>; //Get the list of tables
in database.

Opening a GeoPackage Tab file
A GeoPackage tab file, which references a Feature Table by name within a GeoPackage
database, may be created using MapXtreme (v8.1 and above) programmatically and
MapInfo Pro (v15.2.2). Multiple tab files may reference to the same database since one
database may contain multiple Feature Tables.

To open a GeoPackage Tab in MapXtreme file, use the code below:

TableInfo infoGeoPackage = TableInfoGeopackage.CreateFromFile(“Path to Tab
file”);
Table openedTable = Session.Current.Catalog.OpenTable(infoGeoPackage);

Opened table will have table type as GeoPackage

openedTable.TableInfo.TableType == TableType.Geopackage

GeoPackage tab file created using MapInfo Pro (v15.2.2) can be opened in MapXtreme
(v8.1 and above) and vice versa.

Enable GeoPackage as cache for RDB
(SQL/Oracle) tables
User has the option to use GeoPackage as Cache for RDB Tables. Following Metadata
properties should be configured for to enable this functionality.

TableInfoServer tis = new TableInfoServer("GeoPackageCacheAPITest");
tis.ConnectString = "Driver={SQL Server Native Client
11.0};DATABASE=QADB;Server=ServerName;UID=UserName;PWD=Password";//
"DSN=ServerDSN ";
tis.Query = "Select * From Table";
tis.Toolkit = ServerToolkit.Odbc;
CacheParameters cp = new CacheParameters(CacheOption.All);
cp.StorageType = CacheStorageType.Geopackage; //Cache Type as Geoackage.
tis.CacheSettings = cp;
MapXtreme 9.5 Developer Guide 396

 19 – Working with GeoPackage
Multiple RDB tables are cached in the same GeoPackage Cache database. The benefit
for using the GeoPackage for the cache is that MXT will use fewer temporary files which
is important for environments where the number of available file handles becomes
limiting.

 Note: When using GeoPackage as a cache format, MapXtreme will store
information that is not supported by the standard (such as coordinate system
information and styles information). It is advisable not to use Cache file directly.

Create and Save GeoPackage file
programmatically
GeoPackage table can be created using TableInfoGeopackage API. This will allow user
to create and save .gpkg file along with its Tab file at the specified path.

TableInfoGeopackage tig = new TableInfoGeopackage("GeoPackageTest");
tig.Temporary = true;
Column col = new Column();
tig.Columns.Add(ColumnFactory.CreateIndexedIntColumn("ROWNUM"));
tig.Columns.Add(ColumnFactory.CreateStringColumn("StrName", 40));
tig.Columns.Add(ColumnFactory.CreateIndexedDoubleColumn("Doubleval"));
CoordSysFactory csf = new CoordSysFactory();
CoordSys wgs84 = csf.CreateLongLat(DatumID.WGS84);
tig.Columns.Add(ColumnFactory.CreateFeatureGeometryColumn("GEO", wgs84));
tig.Columns.Add(ColumnFactory.CreateStyleColumn());
tig.DatabasePath = _tempPath + "GeoPackageTest.gpkg";
tig.DatabaseTableName = "GeoPackageTest";
tig.TablePath = _tempPath + "GeoPackageTest.TAB";
Table _miTable = Session.Current.Catalog.CreateTable(tig);

The above code will create a GPKG database along with its TAB file and will save that file
at TablePath. If GPKG database already exists then table will be added to the existing
Database.

Once the table gets created then Features can be inserted, updated and deleted from the
table. MapXtreme can only create GeoPackage tables for which EPSG code and OGC
“Well Known Text” description is available for the Coordinate System. List of supported
Coordinate Systems in MapXtreme can be found in “MapInfoCoordinateSystemSet.xml”
at installation path “C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x”.

For Persistence support if a GeoPackage Table has been opened using Tab file, .GPKG
file or has been opened or created programmatically, appropriate information is persisted
in the workspace file (.mws) in MapXtreme and will be reloaded when workspace is
reopened.
MapXtreme 9.5 Developer Guide 397

 Note: As per GeoPackage Specification Requirements - " Every feature table or
view in a GeoPackage SHALL have a column with column type INTEGER and
PRIMARY KEY AUTOINCREMENT column constraints".

Due to above rule when a new GeoPackage Table is created then ID column is added to
the column list by default. So the column order of the newly created table may differ from
the order supplied.

GeoPackage standard does not support capture of styling information with the data. As a
result, MapXtreme will apply a default styling to the data. Users should prefer to use layer
style overrides and/or themes on their GeoPackage feature layers to display the data in
the desired way.

MapInfo Pro (v15.2.2) will store default styling in the .TAB file which MapXtreme (v8.1 and
above) will recognize and it is applied on the GeoPackage table.
MapXtreme 9.5 Developer Guide 398

20

20 – Geocoding
This chapter covers the MapXtreme namespaces for geocoding and
provides descriptions and examples for writing applications that will
access geocoding servers or services.

In this chapter:
 Overview of the MapInfo.Geocoding Namespace 400
 Main Geocoding Classes . 401
 Understanding the Geocoding Model . 403
 Geocoding a Location. 405
 Using Constraints for Accurate Geocoding. 409
 Understanding Accuracy for Close Matches. 413

Overview of the MapInfo.Geocoding
Namespace
The MapInfo.Geocoding namespace provides interfaces and classes for geocoding
address records. Geocoding is the process of determining the geographic location of a
street address, intersection, place or postal code in order to pinpoint the location on a
map. The geocoding client sends requests via HTTP to Precisely’s geocoding server or
geocoding web service product. The server and web service are not included in the
purchase of MapXtreme.

Perhaps you are building a find the nearest application in which your users provide their
geographic location, in the form of an address, and receive a map that shows where they
are in relation to the closest ATM machine. To perform this task, you need more than an
address to display a location on a map. These geographic locations (addresses,
buildings, points of interest) translate to coordinates on the Earth’s surface. You need the
Latitude/Longitude, or coordinate, values to pinpoint and map the location. The
MapXtreme geocoding client gives you these values determined (geocoded) from a place
name, street address, postal code, or from the intersection of two streets.

In addition to returning the coordinate values, the geocoding client can return a complete
description of the place, which is useful when only partial information is known. The
geocoding client may return zero, one, or more responses to a request depending on the
request preferences, the method being employed, the specified preferences, and the
match criteria.

The MapXtreme geocoding client also has Gazetteer type functionality (world/country/city
Geocoder), that geocodes a partial address. For example, an address containing only a
city, state, place name, landmark, or airport.

Using the geocoding capabilities, you get those coordinates by matching the input
address to one that already has the coordinates. You supply one or more addresses in a
single request document. Incomplete addresses can be processed as well. The server
returns a complete address that you can use to clean up your input addresses. The
server returns zero, one or more responses to a service request, depending on the quality
of the data and the request preferences. Responses typically include a list of one or more
potential matches, called candidates, and result codes that indicate the positional
accuracy of the candidates. Your application will then need to resolve the response by
choosing the appropriate address candidate to retrieve the coordinates.
MapXtreme 9.5 Developer Guide 400

 20 – Geocoding
Main Geocoding Classes
Geocoding is supported using either a MapInfo geocoding server or the Envinsa Location
Utility Service. One of these resources needs to be deployed and made available via a
URL. To create the appropriate geocoding client, use the GeocodeClientFactory class.
The interface for both clients is similar as they both use the same classes for geocode
requests, preferences, and responses.

The main interface for using the geocoding client is called
MapInfo.Geocoding.IGeocodeClient. This interface defines a geocoding client object. It
has a single method, Geocode, that takes a request as input and returns a response
containing candidate addresses (addresses that are a potential match for the input
address). Other classes include: GeocodeRequest, GeocodeResponse,
GeocodeClientFactory, GeocodingConstraints, AddressCandidates,
GeocodeMatchCode, and CandidateAddress.

The following diagram illustrates the interfaces and classes that make up the Geocoding
namespace:
MapXtreme 9.5 Developer Guide 401

GeocodeRequest
The GeocodeRequest class sends a request to the geocoding server or service. Its
properties include AddressList, a list of addresses to be geocoded, and Length, the
number of items in the address list. Input addresses can include a variety of information,
including street address or intersection, primary and secondary postal code, and country
code.

GeocodeResponse
The GeocodeResponse class contains a response for each address in the
GeocodeRequest. The response contains address candidates, which are those
addresses considered to be possible matches for the input address. Note that a
GeocodeRequest that contains multiple addresses will yield a GeocodeResponse object
that includes a list of candidate addresses for each input address.

GeocodeClientFactory
This class returns an IGeocodeClient which you use to send a GeocodeRequest and
receive a GeocodeResponse. The method GetMmjHttpClient uses the geocoding client
that speaks to an instance of the MapInfo MapMarker Java servlet. Use the method
GetEnvinsaGeocodeClient to send requests to the Location Utility Service in MapInfo
Envinsa 4.0.

GeocodingConstraints
This class contains the preferences that can be set when geocoding. All are set/get
properties that return true or false (default).

AddressCandidates
This class is a list of possible address matches that is returned in a GeocodeResponse.

BaseGeocodeMatchCode and GeocodeMatchCode
These are classes that implement the IGeocodeMatchCode interface. The interface
exposes a ResultCode property that is a string that describes how well the match was
made. BaseGeocodeMatchCode is returned when a request is sent to the Envinsa
Location Utility Service. GeocodeMatchCode extends BaseGeocodeMatchCode. It is
returned when a geocode request is sent to a MapMarker server. GeocodeMatchCode
includes additional convenience properties to determine which parts of the address
MapXtreme 9.5 Developer Guide 402

 20 – Geocoding
matched. Among them, StreetAddressMatch and MunicipalityMatch return a value of true
if the candidate matched the street and municipality. For details on result codes see
Understanding Accuracy for Close Matches.

CandidateAddress
This class defines an address that was geocoded. Its properties include Address, the
address for the geocoded address, GeocodeMatchCode, which explains how well the
address was geocoded, and Point, the geometry that represents the candidate address.

Understanding the Geocoding Model
The geocoding client is based on a model of relative matching that is governed by a set of
weights that scores each portion of the address against candidate records (possible
matches) in the data. The resulting scores are summed and the candidate’s total score is
used to determine the best match or matches. A close match is made when there is a
candidate that scores well above other candidates. In addition, the matching routine uses
a set of geocoding preferences to determine whether certain matching conditions are
required or relaxed. For example, the default preferences include relaxing a match on
postal code, but requiring a match on the house number and street name. This gives the
best return of hit rate with the fewest erroneous matches (false positives) and the best
performance.

Geocoding Trade-offs
With a relative matching system such as the geocoding client, there are trade-offs that
must be considered in light of how you use the geocoded data. Consider questions like
the following:

• What level of matching accuracy are you looking for (unique address match, close
match)?

• What level of geographic accuracy do you need for your geocoded points (street level,
ZIP Code centroid)?

• Is your goal to geocode as many records as possible?

The answers to these questions are driven by how you intend to use the geocoded
records. For example, perhaps you are determining the location of a new retail store and
need to know the distribution of current and potential customers. In this case, you want to
geocode as many of these customers as possible and do not need an exact street
address match for each one. Geocoding to postal code centroid is fine for your analysis.
MapXtreme 9.5 Developer Guide 403

On the other hand, if you, as a utility service coordinator, need to know where your
customers are in relation to neighborhood gas lines, the positional accuracy of each
customer is of critical importance to you. Geocoding to street level with strict matching
preferences is your best strategy.

A Few Words About Addresses
The quality of the address data is of utmost importance in geocoding. A clean input
address that follows standard address conventions for the locale, will yield better results
than incomplete or poorly formed addresses.

This section is an overview of address quality for both the input addresses as well as the
matching reference address. To get the most out of geocoding, it’s important to
understand the address structure of your data and the data to which you are matching.

Input Addresses

Input addresses are those addresses you wish to geocode. These are addresses that do
not contain geographic coordinates and thus cannot be located on a map.

Input addresses are made up of several components that the geocode server examines
to determine a match. Address number, street name and street prefixes and suffixes can
be contained in an input address. Prefixes are commonly directional in nature, such as
North or South and exist only for some addresses. Suffixes are typically the type of street,
Street, Road, Avenue Other information you might find in an input address is an
apartment or route number.

Input addresses can contain a full or partial address and can contain spelling variations.
For example, LaSalle Street as input will match to LaSalle St. However LaSalle without a
street suffix may not because the address could really be LaSalle Ave.

The MapXtreme geocoding client can use so-called “dirty” data and incomplete
addresses. This client accommodates both U.S. and non-U.S. addresses, provided the
server contains the appropriate reference addresses.

Reference Addresses

Reference addresses are those that the server matches against the input addresses.
These records contain the geographic coordinates required to locate the address on a
map. Reference addresses are maintained on the server and are updated regularly
through maintenance programs to accommodate new addresses. They have been
standardized based on conventions of the locale. For example, in North America, street
numbers precede the street name. In other parts of the world, the street number may
follow the street name.
MapXtreme 9.5 Developer Guide 404

 20 – Geocoding
Typically the reference address contains the essential components: address number,
street name and prefix, if one exists, and suffix. For non-U.S. locales, additional
information such as apartment number, may not be contained in the reference address
and thus, ignored in the input address.

What are Custom User Dictionaries?
There may be situations where the MapInfo Address Dictionary, provided with the server
or service, does not contain the desired coverage for the areas or regions in which you
are interested. Also users may have their own custom data they may prefer to use (for
example, the data for all the company stores in the country). For these purposes users
can use their own dictionaries that contain this kind of data.

The geocode client supports the use of custom dictionaries. A custom dictionary is a table
of streets and address ranges that you match ungeocoded records against. You can use
as many custom dictionaries as you need when geocoding. Refer to the server or service
documentation for more information on creating custom user dictionaries.

What is World Geocoding?
The geocoding client allows you to geocode in different countries by specifying the
country code in the input address. The geocode world component is different from the
MapMarker-based component, which provides one country or area per component. The
geocode world component provides city and postal code data coverage for 238 countries
or areas, and street level data coverage for nine countries. Note that for both options
access to data is licensed, and requires having a valid data license file. For information on
Geocoding World, please contact your Precisely sales representative.

Geocoding a Location
Geocoding a location helps visualize your data relationships. For example, once address
records are geocoded, they can be used by the routing client to display them as driving
directions between two addresses (locations). Once data has geographic references,
spatial searches can be performed to answer questions such as "Find all customers
within 10 miles of this location." All geocode requests can:

• Geocode an incomplete address and return a complete set of address information (a
normalized address).

• Indicate the number of exact or close matches in the response for a particular address
supplied in the geocoding request.
MapXtreme 9.5 Developer Guide 405

• Process one or more addresses in a single geocoding request.

• Provide information on the quality of the result by using a match code.

Using the GeocodeRequest class you can send a request to the geocoding server or
service. Its properties include AddressList (a list of addresses to be geocoded), Length
(the number of items in the address list), and GeocodeContraints (see Using Constraints
for Accurate Geocoding for more information). As part of the input address, you can
include a variety of information, including street address, intersections, primary and
secondary postal codes, place names, and a country code. The level of information
included in the input address will determine the level and accuracy of the geocode result
candidates.

Using the geocoding client, you can perform various levels of geocoding:

Street Address Geocoding
You can use geocoded street address information to display on a map or to perform
spatial searches and queries. For example, this is useful for displaying store locations
and the customers who are part of a store loyalty program on a map to determine market
regions. For street address geocoding, use the Address class to specify the available
information for the input address.

How do I Geocode an Address?

The following example shows how to geocode a street address in C# using the geocoding
client. There are three sections to a geocode request: Define the parameters, create the
street and address objects, and create the geocode request.

See also a Geocode sample application provided in
..MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\Geocode\cs.

Define your Parameters

To populate the address object you must define your address parameters. In addition to
the address parameters, you must also define the server or service URL.

//Define the server URL
String MMJUrl = "";

//Define the address parameters
String streetName = "One Global View";
String cityName = "Troy";
String stateName = "NY";
String zipCode = "12180";
String countryCode = "USA";

//The following are optional address parameters
MapXtreme 9.5 Developer Guide 406

 20 – Geocoding
String directionalPrefix = "";
String typePrefix = "";
String typeSuffix = "";
String directionalSuffix = "";

Create the Address

Populate the address by creating the Street, StreetAddress, and Address objects.

//Create a Street object
MapInfo.Geocoding.Street street =

new MapInfo.Geocoding.Street(
directionalPrefix,
typePrefix,
streetName,
typeSuffix,
directionalSuffix);

//Create a StreetAddress object
MapInfo.Geocoding.StreetAddress streetAddress =

new MapInfo.Geocoding.StreetAddress(street);

//Create an Address object
MapInfo.Geocoding.Address address =

new MapInfo.Geocoding.Address(streetAddress, countryCode);
address.PrimaryPostalCode = zipCode;
address.PlaceList =

new MapInfo.Geocoding.Place[]
{new MapInfo.Geocoding.Place(

cityName,
MapInfo.Geocoding.NamedPlaceClassification.Municipality),

new MapInfo.Geocoding.Place(
stateName,

MapInfo.Geocoding.NamedPlaceClassification.CountrySubdivision)};

Create the Geocode Request

Once the address object is created, add the address to a list and use the list to create the
geocode request. Using the GeocodeClientFactory, define whether the request is being
sent to the geocode server or service. Use the GetMmjHttpClient method for a request
sent to the geocode server or GetEnvinsaLocationUtilityService method for a request
sent to the geocode service.

//Add the address to a list of addresses
MapInfo.Geocoding.Address[] addressList = {address};

//Create the geocode request
MapInfo.Geocoding.GeocodeRequest geoRequest =

new MapInfo.Geocoding.GeocodeRequest(addressList);

//Create the geocoding client
MapInfo.Geocoding.IGeocodeClient geoClient =
MapXtreme 9.5 Developer Guide 407

MapInfo.Geocoding.GeocodeClientFactory.GetMmjHttpClient(MMJUrl);

//Send the request and get the response
MapInfo.Geocoding.GeocodeResponse geoResponse = geoClient.Geocode(geoRequest);

Street Intersection Geocoding
Street intersections can be made up of different address types or address elements, and
the request may have different levels of accuracy or preferences. For example, a mobile
subscriber could use street intersection geocoding to enter the nearest street intersection
to view a map of their location on the mobile device. For street intersection geocoding,
use the StreetIntersection class and specify a Street and an IntersectingStreet property.

Postal Code Geocoding
Postal code centroids represent the centre of a postal code region. Being able to locate
these centroids on a map lets you perform demographic analysis to find market regions to
target for advertising or direct mail. For postal code level geocoding, use the Address
class specifying only the PrimaryPostalCode information.

Gazetteer Type Geocoding
As part of the geocoding client, you can perform a world, country, or city geocode
operation that can find the position of a partial address containing only the city, state, or a
place name. The following operations are supported:

• Search, based on country, country subdivision, city, city subdivision, landmark, or
airport to return the position.

• The pattern search capability supports a wildcard character (*) as a search value in
one or more fields to return all available values for that particular field.

Batch Geocoding
Batch geocoding is supported using the IGeocodeClient.BatchRequests property. This
property sets the number of addresses that will be sent to the server for a single
operation. The defaults number of addresses is 25. The BatchRequest property must be
greater than 0 and less than 500. When submitting addresses to the
IGeocodeClient.Geocode() method, you may exceed the number specified in the
BatchRequest property. If this occurs, the geocode operation containing these addresses
will be broken down into multiple operations, where each operation contains no more than
the number specified in the BatchRequest property.
MapXtreme 9.5 Developer Guide 408

 20 – Geocoding
 A small number for BatchRequst (e.g., 2) will slow performance. A high number for
BatchRequest (e.g., 500) may result in memory issues. The performance of batch
geocoding is dependent on system configuration.

Using Constraints for Accurate Geocoding
The geocode client allows you to set the match restrictions, fallback, and multiple match
settings when geocoding input addresses using the GeocodeConstraints class. Here you
set the preferences to be as strict or relaxed as you need. The settings that give you the
best compromise among match rate, accuracy, and performance, are:

• Require an exact match for house number and street name.

• Do not fall back to postal code centroid.

• Return close matches only.

The strictest matching conditions require an exact match on house number, street name,
postal code and no fallback to postal code centroids. The server or service, in essence,
looks for an exact street address match within the postal code named in your input
address.

What are the Match Constraints?
The match constraints control how to match a given input address, the number or
candidates returned for each address, and what auxiliary information will be returned. An
input address may not exactly match a real world address possibly due to incomplete or
incorrect information. The GeocodeConstraints class contains a series of properties to
determine which pieces of the address are considered most important, and what to do
when an exact match is not found.

The IGeocodeClient.DefaultGeocodeConstraints property can be used to retrieve the
defaults from the server or service if possible. The geocode client will use the defaults
from the server or service if no GeocodeConstraints are supplied.

Each of the following preferences impact the level of record matching that the geocode
server or service employs:

• CloseMatchesOnly – Returns only those geocoded results that are close match
candidates. The address candidates are ranked according to how closely the input
address matches the MustMatchXXX preferences. Only those candidates flagged as
close matches (true) are returned. The default is false.
MapXtreme 9.5 Developer Guide 409

• MustMatchAddressNumber – Only candidates matching the address number are
considered close. The default is true.

• MustMatchMainAddress – Only candidates matching the street name are considered
close. This does not prevent Soundex matches from being considered. (For example,
"Muller Strasse" for "Mueller Strasse" may still be considered close). It does prevent
expanded street name manipulation (misspelling), such as considering juxtaposed
letters (For example, "Muleler Strasse" for Mueller Strasse"), if the input street does
not generate a close match. The default is true.

• MustMatchCountry – Only candidates matching Country are considered close. The
default is true. It is recommended that this preference is not changed.

• MustMatchCountrySubdivision – Only candidates matching Country Subdivision
are considered close. The default is true. CountrySubdivision may be different in each
country. For example, in USA, it is state, in CAN, it is province.

• MustMatchCountrySecondarySubdivision – Only candidates matching Country
Secondary Subdivision are considered close. The default is false.
CountrySecondarySubdivision are different for each country. For example, in the USA
it is county, in Canada, it is Census Division.

• MustMatchMunicipality – Only candidates matching Municipality are considered
close. The default is true. An example of a Municipality is a town or city.

• MustMatchMunicipalitySubdivision – Only candidates matching Municipality
Subdivision are considered close. The default is false. An example of a
MunicipalitySubdivision is an MSA (Metropolitan Statistical Area), or a borough of a
city (such as Bronx or Brooklyn in New York City).

• MustMatchPostalCode – Only candidates matching postal code are considered
close. The default is false.

• MustMatchInput – Only candidates matching all input preferences are considered
close, regardless of what is set for that particular preference. The default is false.

• FallbackToGeographic – In case a street geocode request produces no candidate,
this option determines whether geocoding is performed at the centroid of the
geographic region. The resulting point is located at the geographic centroid of the area
where it is possible to obtain the highest level of accuracy. The default value is set to
false.

• FallbackToPostal – In case a street geocode request produces no candidate, this
option determines whether geocoding is performed on the postal code centroid. The
default value is set to false.

• OffsetFromStreet – Determines the distance from the street segment at which the
address is positioned. This value is used to prevent addresses across the street from
each other from being given the same point. For example, a house with number 50 on
a segment that spans from 40 to 60 is interpolated as the midpoint of the segment. The
OffsetFromStreet positions the point perpendicular from the road, so that houses on
MapXtreme 9.5 Developer Guide 410

 20 – Geocoding
the left side of the street appear on the left, and the houses on the right side of the
street appear on the right. The default value for OffsetFromStreet is 25 meters. The
Distance class is used to specify the OffsetFromStreet by defining the value and unit of
measure.

• OffsetFromCorner – Determines the distance from the end (corner) of a street
segment at which the address is positioned. This value is used to prevent addresses
at street corners from being given the same point of the intersection.
OffsetFromCorner positions the point parallel to the street (based on the street
address) a distance along the segment. For example, a house with number 40 on a
segment that spans from 40 to 60 is positioned so that its point is not located at the
street intersection. The default value for OffsetFromCorner is 25 meters. The Distance
class is used to specify the OffsetFromCorner by defining the value and unit of
measure.

• MaxCandidates – Defines the maximum number of candidates returned in a
response. The actual number of candidates returned may be less than this maximum
value. A value of -1 is used to mean return all candidates that meet the other
constraints. The default is 3 when using the MapInfo geocoding server. The default is -
1 (all) when using the Envinsa Location Utility Service.

• MaxRanges – This preference controls whether a geocode operation returns the
exact number for a street address or a range of numbers. If the MaxRanges is set to 0,
then no ranges are returned and only the exact address number is returned. If the
MaxRanges is set to a value greater than 0, then that number of street address
numbers is returned. The default value for MaxRanges is 0. For example, if
MaxRanges is set to 5, then the service returns up to 5 matches within the address
range. A value of -1 returns all suitable matches.

• MaxRangeUnits – Defines the maximum number of candidate range units to be
returned per candidate range. The default value for MaxRangeUnits is zero (0).

• GeocodeType – Determines the type of geocoding when available from the server.
Refer to your server or service documentation for information on geocode type
support.

• LocalGeocodeConstraints – Allows you to set country specific constraints which are
specific to that country and that geocoder. These values are always Key/Value pairs.
Refer to your server or service documentation for information on available local
constraints.

• DictionaryUsage – Specifies if the server address dictionary is to be used by itself, if a
configured user dictionary is to be used by itself, or if both of them are to be used. If
both are to be used, a preference of one over the other can be requested. By default
the AD_AND_UD option is used. This option indicates that the server address
dictionary and any user dictionaries that are configured should be used. For
information on creating and accessing user dictionaries, refer to your server or service
documentation.
MapXtreme 9.5 Developer Guide 411

• UseCASSRules – Specifies if CASS level geocoding should be used by the server
(US only). CASS certification is a process by which a table of mailing addresses is
standardized to meet U.S. Postal Service® (USPS) requirements for bulk mailing
discounts. The geocoding client performs this address standardization under strict
matching conditions set by the U.S. Postal Service while it geocodes your records. You
must deploy a version of the US geocode data component that supports CASS in
order to use CASS geocoding. Contact your MapInfo sales representative to obtain a
current version in order to comply with CASS address standardization. The default is
false.

Impact of Relaxing Match Constraints
Relaxing the conditions broaden the area in which it searches for a match. For example,
by relaxing the postal code, a search will be performed for candidates outside the postal
code but within the city of your input address. Consider the following when you are
determining the settings for geocoding:

Relaxing Postal Codes

When postal codes are relaxed, a search is performed on a wider area for a match. While
this results in slower performance, the match rate is higher because the request does not
need to match exactly when it compares match candidates.

Relaxing Subdivisions and Municipalities

When these are relaxed, a search is performed on the street address matched to the
particular postal code, and considers other cities or subdivisions that do not match the
name, but do match the postal code.

Relaxing Street Name

A search is performed that looks at all candidates with names that sound like the input
address or that are spelled improperly. This slows down the performance. On the plus
side, since more candidates are examined, the match rate increases. If your table is
indexed, the time difference between performance and match rate is reduced.

Relaxing House Number

Performance is not significantly affected when the house number setting is relaxed. It
does, however, affect the type of match if the candidate address corresponds to a
segment that does not contain any ranges. The type of match can also be affected when
MapXtreme 9.5 Developer Guide 412

 20 – Geocoding
the house number range for a candidate does not contain the input house number. If you
are relaxing the house number, it is recommended that you set the maximum ranges to
be returned to a value higher than 0.

Understanding Accuracy for Close Matches
The ranking of the results is based on the close match of the request. For the
GeocodeMatchCode class, the geocoding server or service returns a result code for
every record it attempts to match based on the combination of GeocodeConstraints in the
request and server or service configuration. The code represents the success or failure of
the geocoding operation and conveys information about the quality of the match. The
codes fall into five major categories:

• Single Close Match (S Category)

• Best Match from Multiple Candidates (M Category)

• Postal Code Centroid Matches (Z Category)

• Geographic Centroid Matches (G category)

• Non-Match Codes

For either S or M category result codes, each character of the code tells how precisely the
geocode operation matched each address component.

The following example is a close match candidate:

S5HPNTSCZA

Category Description Example

H House number 115

P Street prefix direction North

N Street name Main

T Street type Place

S Street suffix direction SE

C City name New York

Z Postal code 80302

A Address Dictionary A
MapXtreme 9.5 Developer Guide 413

The following example is not a close match candidate:

S5-PNTSC-A

A dash in the result code indicates a conflict. If the postal code in the request conflicts
with one found by the geocode in the data (input was 28031, value found is 28013), the
resultant string contains a dash instead of a Z (For example, S5HPNTSC-A).

Single Close Match (S Category)
Matches in the S category indicate that the record was matched to a single address
candidate. The first character (S) reflects that the geocoding server found a street
address that matches the record. The second position in the code reflects the positional
accuracy of the resulting point for the geocoded record.

• S1 – single close match, point located at postal code centroid

• S2 – single close match, point located at ZIP+2 centroid (US centric)

• S3 – single close match, point located at ZIP+4 centroid (US centric)

• S4 – point located at the center of a shape point path (shape points define the shape
of the street polyline)

• S5 – point located at a street address position

• S6 – point located at centroid of geometry postal code. (For example, large buildings
having their own codes). This represents the highest accuracy available

• SX – point located at street intersection

• SO – no coordinates available (very rare occurrence)

Best Match from Multiple Candidates (M Category)
Matches in the M category indicate that there is more than one close match candidate for
the record and the server or service has chosen the best one of those candidates. As in
the S category, the second position in the code of M category matches the positional
accuracy of the resulting point object.

• M1 – multiple close matches, point located at postal code centroid

• M2 – multiple close matches, point located at ZIP+2 centroid (US centric)

• M3 – multiple close matches, point located at ZIP+4 centroid (US centric)

• M4 – multiple close matches, point located at the center of a shape point path (shape
points define the shape of the street polyline)

• M5 – multiple close matches, point located at a street address position (highest
accuracy available)
MapXtreme 9.5 Developer Guide 414

 20 – Geocoding
• M6 – multiple close matches, point located at point postal code location

• MX – multiple close matches, point located at street intersection

• M0 – multiple close matches, no coordinates available

Postal Code Centroid Matches (Z Category)
Matches in the Z category indicate that no street match was made, either: 1) because
there is no close match and you allowed the server or service to fall back to postal code
centroid; 2) the address is a P.O. Box or rural address; or 3) you set the server or service
to match to postal code centroids. The resulting point is located at the postal code
centroid with four possible accuracy levels.

• Z1 – Postal code centroid match

• Z2 – ZIP+2 centroid match (US centric)

• Z3 – ZIP+4 centroid match (highest accuracy available, US centric)

• Z6 – Postal code centroid match for point ZIP

• Z0 – Postal code match, no coordinates available (very rare)

 Point ZIPs are ZIP Codes without an area. These include P.O. Box ZIPs and
Unique ZIPs (single site, building, or organization). When using a non US address
dictionary, the results in this category will still be a Z.

Geographic Centroid Matches (G category)
Matches in the G category indicate that no street match was made. This takes place
when no close match is found, and the server or service is configured to fall back to the
geographic centroid. The resulting point is located at the geographic centroid with the
following possible accuracy levels.

• G0 – areaName0 centroid (country)

• G1 – areaName1 centroid (country subdivision)

• G2 – areaName2 centroid (country secondary subdivision)

• G3 – areaName3 centroid (municipality)

• G4 – areaName4 centroid (municipality subdivision)

Non-Match Codes
The following result codes indicate no match was made:
MapXtreme 9.5 Developer Guide 415

N – No close match. These records can be re-geocoded interactively using MapInfo
geocoding products or during subsequent automatic passes under different matching
conditions.

NX – No close match for street intersections.

ND – The server or service could not find the Address Dictionary for the given postal
code or municipality/country subdivision. These records can also be re-geocoded once
the Address Dictionary is available.

NG – The user marked these records during geocoding as non-geocodable. The
server or service does not attempt to match these records again until the code is
removed.
MapXtreme 9.5 Developer Guide 416

21

21 – Routing
This chapter covers the MapXtreme namespace for Routing and
provides descriptions and examples for writing applications that will
access routing servers or services.

In this chapter:
 Overview of MapInfo.Routing Namespace 418
 Calculating Routes . 419
 Advanced Route Options . 423
 Iso Routing (Drive-Time and Drive-Distance) 428
 Updating a Request Using Routing Data . 433

Overview of MapInfo.Routing Namespace
The MapInfo.Routing namespace provides an interface and classes for incorporating a
MapXtreme routing client into your application, in a similar fashion to the geocoding
client. The routing client sends requests via HTTP to Precisely’s routing server or routing
web service product. The server and web service are not included in the purchase of
MapXtreme.

Using the routing capabilities, you can determine the shortest or fastest path (route)
between two points, with the ability to add various advanced routing options. You can
return the route geometry (layout of the route for map display), turn-by-turn directions,
and a route summary of total distance and time. Additionally, you can create routes that
include intermediate points and preferences that avoid certain road features, such as
highways or certain locations.

The routing capabilities include important analytical tools, allowing you to calculate drive-
time and drive-distance (isoChrone and isoDistance), and the ability to use transient
updates to avoid certain road types or to recalculate a route. The routing client
functionality is divided into four logical groups:

• Calculating Routes

• Advanced Route Options

• Iso Routing (Drive-Time and Drive-Distance)

• Updating a Request using Routing Data

Main Routing Classes
Routing is supported using either a MapInfo routing server or the Envinsa Route service.
One of these resources needs to be deployed and made available via a URL. To create
the appropriate routing client, use the RouteClientFactory class. The interface for both
clients is similar as they both use the same classes for route requests, preferences, and
responses.

Using the routing client you can determine the shortest or fastest path (route) between
two locations, add intermediate locations (ViaPoint class), avoid locations or road types
(AvoidList, PointExclude, SegmentExclude classes), get driving directions
(RouteInstructionsRequest class), get the route geometry (RouteGeometryRequest
class), and customize your routes using numerous preferences resulting in more
meaningful analysis. The routing client includes important analytical tools, allowing you to
calculate drive-time and drive-distance (isoChrone and isoDistance), and the ability to
use transient updates to avoid certain road types or to recalculate a route. The routing
client functionality is divided into three logical groups:
MapXtreme 9.5 Developer Guide 418

 21 – Routing
1. Calculating routes using the RouteRequest class for point-to-point and multi-point
routes, and the MatrixRouteRequest class for matrix routes.

2. Calculating drive-time and drive-distance using the IsoChroneRequest class for drive-
time and the IsoDistanceRequest class for drive-distance.

3. Calculating routes with transient updates to produce more accurate and meaningful
routes using the TransientUpdate class.

The following diagram illustrates the interfaces and classes that make up the Routing
namespace:

Calculating Routes
There are three types of route calculations (determining shortest or fastest route) that can
be performed: simple routes (point-to-point), multi-point routes, and matrix route
requests.
MapXtreme 9.5 Developer Guide 419

Point-to-Point Routing
One of the most common routing requirements is for simple driving directions where a
customer inputs two addresses, two points, or any combination, and gets back a route.
The route will be calculated from a specified start point to a specified end point.

At the simplest level of point-to-point routing, the response includes a route summary.
This summary includes the distance and time of the route. There are numerous additions
you can make to a point-to-point route request to return additional information in the
response. These additions are:

• Routing Preferences

• Driving Directions

• Route Geometry

• Avoiding Points, Features, and Segments

• Time-Based Routing

• Updating a Request using Routing Data

A point-to-point route is created using the RouteRequest class. Refer to the Developer
Reference for API-level syntax and descriptions.

The following code sample is an example of a simple point-to-point route:

Public Shared Sub New_RouteRequest()
 ’ Create the start point and end point
 Dim coordSys As MapInfo.Geometry.CoordSys = _

Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")
 Dim dpt1 As MapInfo.Geometry.DPoint = _

New MapInfo.Geometry.DPoint(-74, 42)
 Dim dpt2 As MapInfo.Geometry.DPoint = _

New MapInfo.Geometry.DPoint(-74, 41)
 Dim startPoint As MapInfo.Geometry.Point = _

New MapInfo.Geometry.Point(coordSys, dpt1)
 Dim endPoint As MapInfo.Geometry.Point = _

New MapInfo.Geometry.Point(coordSys, dpt2)
 ’ Create the point list
 Dim pointList As WayPointList = _

New WayPointList(startPoint, endPoint)
 ’ Create the route plan object
 Dim plan As RoutePlan = _

New RoutePlan(pointList)
 ’ Create the request object
 Dim request As RouteRequest = _

New RouteRequest(plan, DistanceUnit.Mile)
End Sub
MapXtreme 9.5 Developer Guide 420

 21 – Routing
Multi-Point Routing
Multi-point routing is the ability to route via points. The routing server will find the shortest
time or distance through all the points. This can be used for complex directions. These
directions are a requirement for customers who wish to plan daily drop-offs, or customer
visits such as distribution and repair companies, or general field sales. Typically, a start
and end point are defined plus a series of stops are added into the calculation. There is
no difference between multi-point route and point-to-point route except for the via points
between the start and end locations.

Similar to point-to-point routes, there are numerous additions you can make to a multi-
point route request to return additional information in the response. These additions are:

• Routing Preferences

• Driving Directions

• Route Geometry

• Avoiding Points, Features, and Segments

• Time-Based Routing

A multi-point route is created using the RouteRequest class. To add intermediate points to
a route, WayPointList must consist of at least one ViaPoint. Refer to the Developer
Reference for API-level syntax and descriptions.

The following code sample shows how to create a WayPointList consisting of a startPoint,
endPoint, and ViaPoint:

Public Shared Sub New_WayPointList()
 ’ Create a start point and end point
 Dim coordSys As MapInfo.Geometry.CoordSys =_

Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")
 Dim dpt1 As MapInfo.Geometry.DPoint = _

New MapInfo.Geometry.DPoint(-74, 42)
 Dim dpt2 As MapInfo.Geometry.DPoint = _

New MapInfo.Geometry.DPoint(-73, 42)
 Dim dpt3 As MapInfo.Geometry.DPoint = _

New MapInfo.Geometry.DPoint(-73.562, 42)

 Dim startPoint As MapInfo.Geometry.Point = _
New MapInfo.Geometry.Point(coordSys, dpt1)

 Dim endPoint As MapInfo.Geometry.Point = _
New MapInfo.Geometry.Point(coordSys, dpt2)

 Dim intermediatePoint As MapInfo.Geometry.Point = _
New MapInfo.Geometry.Point(coordSys, dpt3)

 ’ Create the intermediate point object
 Dim point As ViaPoint = New ViaPoint(intermediatePoint)
 ’ Create the collection
MapXtreme 9.5 Developer Guide 421

 Dim pointList As ViaPointList = New ViaPointList
 ’ Append the object to the collection.
 pointList.Append(point)
 ’ Create the WayPointList object
 Dim list As WayPointList = _

New WayPointList(startPoint, endPoint, pointList)
End Sub

Matrix Routing
Matrix routing allows you to find the shortest or fastest paths between a number of start
points and a number of end points, and return the route costs. The costs are the total time
and distance of the individual routes. The matrix route feature is extremely useful for
situations where you have 3 start points and 50 destination points, where you want to find
the shortest paths between all the start points and all the destinations, and return the
routes’ costs.

The order of the points and number of sequences in the response are determined by the
number of start and end points in the request. For example, if two start points and two end
points are specified in the request, the response will contain the following order of
sequences (where S is start and E is end): S1 to E1, S1 to E2, S2 to E1, S2 to E2.

Typically, this calculation can be used to determine service response time and coverages
for specific services such as a fire house or police station. You may require these
calculations to ensure they can provide adequate coverage for service level agreements
such as having one or more people who can respond to an incident within 20 minutes of
first notification. At the simplest level of matrix routing, a list of sequences will be included
in the response. Each sequence includes the start and end point, as well as the distance,
and time. There are numerous additions you can make to a matrix route request to return
additional information in the response. These additions are:

• Routing Preferences

• Avoiding Points, Features, and Segments

• Updating a Request Using Routing Data

A matrix route is created using the MatrixRouteRequest class. The matrix route request
must consist of a MatrixRouteCost and may include a MatrixRoutingPreferences. Refer to
the Developer Reference for API-level syntax and descriptions.
MapXtreme 9.5 Developer Guide 422

 21 – Routing
Advanced Route Options
There are numerous advanced capabilities that can be added to your routing
applications. This section highlights these important capabilities used to customize your
point-to-point, multi-point, and matrix route requests.

Routing Preferences
You can specify various preferences for each type of route you are calculating. All of
these preferences are optional, but can be very important in determining the accuracy of
the route and helping you create a more meaningful route. You can return the route with
fastest time from the start point to the end point or the shortest distance from the start
point to the end point. If specified, these preferences will override the route optimization
settings defined in the server or service configuration. The preferences may be
overridden by server preferences if the server preferences are more restrictive.

The type of route calculation (point-to-point, multi-point, or matrix) determines which route
preferences are available to use. The following list outlines the available route
preferences:

• DistanceUnit - You can specify the distance unit for all of the route calculations. The
most common units are Kilometer, Meter, Mile, Yard, and Foot. If a value is not
specified, the default setting will be used (Mile).

• RouteMethod - Determines the general type of route preference to perform. The route
client can either perform Fastest or Shortest route calculations. If a value is not
specified, the default setting will be used (Fastest).

• OptimizeIntermediatePoints (only used in multi-point routes) - Determines if the via
points are to be traversed in the order specified in the request or have the route client
find the optimal route using these via points. By default (false) the route client will
traverse the specified points in the order in the request. When set to true, the optimal
route using the via points is calculated.

• StopThreshold (only used in multi-point routes) - Sets the route calculation algorithm
stop threshold. The route algorithm will stop calculating and return the current ‘best’
route when the difference in time or distance between the route candidates remaining
in the algorithm reaches the stop threshold. Valid values are any positive numbers. For
best performance, a positive number less than one is recommended. Setting the stop
threshold is a balancing factor between accuracy and speed. The lower the threshold
value on average, the more accurate the result and the longer the route will take to
calculate. The stop threshold has a minimal effect on routes with few via points (under
10). The default is 0.01 (1 percent).
MapXtreme 9.5 Developer Guide 423

• TimeOut - Sets the route calculation algorithm time out value. The time out value is in
seconds. The default time out is 600 seconds. The route algorithm will stop calculating
once the time out value is reached.

• TimeUnit - Sets the unit of measure for all routes durations. The default time unit is
Minute.

• TavelPreferences - Allows you to specify unique routing abilities for modifying road
type priority of travel. To add travel preferences you can specify a road type and a road
type preference. Routing can be performed on priority basis by setting the
RoadTypePreference to High, Medium, Low, or Avoid. The road types with the higher
priority will be chosen over those with the lower priorities when the route is calculated.
You can also use the Avoid RoadTypePreference to avoid a particular road type. One
of the more often used travel preference is to set the FERRY RoadType to Low, which
will only use ferry routes if that is the only mean of travel to the destination.

• TravelTime (point-to-point and multi-point) - Sets the start or end travel time for the
route request. Refer to Time-Based Routing for more information on how to define the
travel time and other time-based routing options.

• Updates - Allows you to include transient updates in your route request that
temporarily modify road or segment speed and road types. Refer to Transient Updates
for more information on including updates.

The RoutingPreferences and MatrixRoutingPreferences classes are the starting point
when defining route preferences. Refer to the Developer Reference for syntax and
descriptions.

Driving Directions
Driving directions can be returned for a point-to-point or multi-point route. These
instructions list the step-by-step procedure for the route. Each segment of the route will
return the step that needs to be performed (for example, Begin, Turn Right), the name of
the street, the direction, the distance, and the time. There are numerous options for
driving directions including focusing the directions to a particular section of the route,
changing the wording and format of the directions, and changing the language for the
directions.

There are two places where this can be configured/requested. The first place is in the
server or service settings. The second place is using the RouteInstructionsRequest class
setting the ReturnDirections property to true.

Modifying Direction Preferences

The following list describes the available preferences used to modify driving directions:
MapXtreme 9.5 Developer Guide 424

 21 – Routing
• DirectionBreakTurnAngle - Sets the turn angle value that determines when a street
is broken into a new directions string. Sometimes, when following a route a street will
make a significant turn while keeping the same name. By using this value, the user
can specify the turn angle at which a new direction should be started. Valid values are
0 to 180 degrees. The default is 45 degrees.

• DirectionsGeneratorName - Specifies a custom, server-side directions generator to
be used to create the route directions. If the server or service is configured with one or
more directions generators, this preference may be used to force directions generation
to be handled by a specific generator. For instance, setting “myGenerator” will force
the server or service to use the generator that has been configured with the name
"myGenerator”. Use this preference only if your server or service has been configured
with a custom direction generator. Refer to your server or service documentation for
instructions on how to create and use direction generators.

• Focus - Specifies the focus of the route. A focused route is a subset of the whole route
that concentrates on either the beginning or end of the route. A route focused at the
start will route the user from their origin to (and including) the first major highway. A
route focused at the end will route the user from the last major highway in the route
(including that highway) to the destination. If there are no major highways in the route,
the focused route will be the same as an unfocused route. NONE signifies directions
for the whole route will be returned, START signifies that the start of the route will be
returned, or END signifies that the end of the route will be returned. The default is
NONE.

• ShowDistance - Indicates whether or not to return the distance of a direction in the
driving directions. The default is true.

• ShowPrimaryNameOnly - Specifies whether or not to show only the primary street
names. It is often the case that a street contains multiple names. This is used to
indicate whether all names for the street should be shown in the directions or only the
primary name. If set to true, only the primary name of the street will be used in the
directions. If set to false, the primary name and all alternate names will be used. The
default is false.

• ShowTime - Indicates whether or not to return the time it takes to follow a direction in
the driving directions. The default is true.

• Style - Specifies the type of directions to return. The client can return two types of
directions, normal and terse. Normal is the standard driving direction instructions. For
example “Turn left on Yonge Blvd and travel Southeast (1 s)”. Terse directions are
shorter directions that are more suitable for wireless devices. For example “L on Yonge
Blvd”. This can be set to NORMAL or TERSE. The default setting is NORMAL.
MapXtreme 9.5 Developer Guide 425

Setting the Direction Language

You can manipulate the output language of your route instructions by changing the
UserLocale property. The route client uses ISO standard locale code
<language>_<country> (for example, French is fr_FR, German is de_DE). Currently the
route client supports EN, FR, DA, DE, FI, NL, NO, ES, PT, IT, SV. English (en_US) is the
default language.

Route Geometry
The ability to create a route geometry is a vital capability in creating maps and analysis of
a route. The route geometry is the visual representation of the route. By default the route
geometry is not returned. However, you can return the route geometry in the response by
setting the ReturnGeometry property to true.

Avoiding Points, Features, and Segments
You can avoid or exclude types of roads, points, or route segments. Before determining a
route, you may already know of a road or location that you would like to avoid based on
traffic information, accidents, holidays, rush hour, or any other known factor.

There are three types of avoids or excludes: points, features, and segments:

Avoiding Points

Currently there are two methods to avoid points along the route. You can use the Points
property of the AvoidList class or you can exclude any number of points from a route
request using the PointExclude class.

 Using the PointExclude class is the recommended method to avoid points.

Avoiding Features

Currently there are two methods to avoid features (road types) along the route. The
TravelPreferences property of the RoutingPreferences class can be used to avoid any
road type. See Routing Preferences for more information on using the TravelPreference
property.

The route client also provides another method to avoid highways when calculating routes.
This feature is useful when you want to limit routes to local roads. You can use the
Features property of the AvoidList class and define Highway as the avoid feature.
MapXtreme 9.5 Developer Guide 426

 21 – Routing
Avoiding Segments

You can exclude any number of route segments (ID) from a route request using the
SegmentExclude class. The segment ID is a unique identifier assigned to each line, road,
or section of the route data. You can determine the segment ID for a particular section of
the route by returning them in a previous route response. See Returning Segment
Information for more information on how segment ID’s are returned in a route response.

 If the route cannot be calculated or there is no way to get a destination using the
avoid or exclude, then the route directions will not be returned.

Time-Based Routing
Time-based routing is a key component for delivery systems, mobile work forces, and
calculating accurate drive times and routes. You can specify a start or end time for your
route or a stop duration for each intermediate point in a multi-point route. For example,
you can specify that the route should start at location A and pass through locations B, C,
and D where you spend five minutes at each talking to customers or loading your trucks.
The route will then end at location E.

Start and End Times

Part of time-based routing is being able to specify the start or end time for a route. Start
and end times in routing are important when other time-of-day preferences are used. For
example if the server is configured with data that represents rush hour traffic patterns, the
start or end time for your route may be of importance for analysis. The start and end time
can be set using the TravelTime class. The following properties are used to control the
travel time:

• DateTime - Specifies the date and time to either start or end a route calculation.

• TimeZone - Specifies the time zone used in the travel time. The time zone is defined
using an hour offset value from Greenwich Mean Time (GMT).

• TravelTimePreference - Specifies if the travel time defined is a start or end time. The
two members are defined using StartTravel or EndTravel.

The following code example shows how to set the travel time for the route. This example
includes the StartTravel preference, defining the start time (year, month, day, hour (24
hour clock), minute, second) and time zone:

Public Shared Sub New_TravelTime()
 Dim startTime As DateTime = New DateTime(2005, 5, 1, 14, 0, 0)
 Dim timeZone As MapInfo.Routing.TimeZone = _

New MapInfo.Routing.TimeZone(-4)
MapXtreme 9.5 Developer Guide 427

 Dim travelTime As MapInfo.Routing.TravelTime = _
New MapInfo.Routing.TravelTime(startTime, _
TravelTimePreference.StartTravel, timeZone)

End Sub

Stop Times

At any intermediate point during a route you can specify a stop time. This time is added to
the overall time along the route. The stop time is particularly useful for defining time that
the user is going to spend at a particular location along the route (for example, loading
and unloading time of a delivery truck) for a multi-point route. A stop can be added to the
ViaPoint class by specifying a Stop and a StopTime property:

• Stop - You can specify whether to stop at a viapoint. By default no stops are calculated
at viapoints (false). You can specify if you want to stop at the viapoint by defining the
Stop equal to true.

• StopTime - Adds a stop time to any viapoint along the route. The stop time is defined
by the TimeSpan, and will be added to the total time for the route. The default stop time
is 0 (zero). A TimeSpan can be represented as a string in the format "[-]d.hh:mm:ss.ff"
where "-" is an optional sign for negative TimeSpan values, the "d" component is days,
"hh" is hours, "mm" is minutes, "ss" is seconds, and "ff" is fractions of a second. For
example, a TimeSpan defined as "11.13:46:40" is equivalent to 11 days, 13 hours, 46
minutes, and 40 seconds.

Iso Routing (Drive-Time and Drive-Distance)
IsoChrones and isoDistances can be extremely valuable information for making
decisions. An isoChrone is a polygon or set of points representing an area that can be
traversed in a network from a starting point in a given amount of time. An isoDistance is a
polygon or set of points representing the area that is a certain distance from the starting
point. They can be used to determine a drive-time or drive-distance boundary from a
location. Users in retail, banking, and insurance, can use this service to determine the
potential market or risk for any given asset. These boundaries may then be used for
further analyses such as determining which prospects in a mailing list are within an iso
boundary so they may be notified of new services available or a new store opening.

Creating an IsoChrone (Drive-Time)
When creating an isoChrone, you are looking for one or more polygons/set of nodes
which represents an area that can be travelled in a given amount of time (drive-time cost)
from a starting location.
MapXtreme 9.5 Developer Guide 428

 21 – Routing
The cost specifies the time used to calculate the isoChrone. The cost represents the time
it takes to travel from the starting point to the calculated points on the road network. You
can specify multiple costs to produce concentric bands (multiple isoChrones) that visually
represent different distances that can be reached along the road network. Associated with
multiple costs are a tags. You can specify a tag, or ID, for each cost in the request, that
will identify the appropriate isogram result (geometry) in the response.

There are numerous preferences you can specify in the IsoChronePreferences and
IsogramPreferences classes. These preferences allow you to obtain a desired output for
your analysis.

IsoChronePreferences

The following preferences are available in the IsoChronePreferences class:

• DefaultAmbientSpeed - Determines the off-road network speeds where they are not
specified. Roads not identified in the network can be driveways or access roads,
among others. For instance, if you are at a point with five minutes left on an isoChrone
on the off-road network, boundary points would be put at a distance based on the
ambient speed and the time left. So, if the ambient speed in this case was 15 miles per
hour, boundary points would be put at a distance of 1.25 miles.

• AmbientSpeedOverride - Overrides an ambient speed for a specific road type. The
ambient speed can be overridden for all road types. For example, it may be set to 30
Mph for major urban roads on the weekends due to busy traffic:

IsogramPreferences

The following preferences are available in the IsogramPreferences class:

• BandingStyle - Specifies the style of banding to be used in the result. Banding styles
are the types of multiple time or distance bands that can be displayed based on
multiple costs. The styles include Donut (each boundary is determined by subtracting
out the next smallest boundary) or Encompassing (each boundary is determined
independent of all others). Multiple isoChrone bands may be requested by specifying
multiple cost factors, such as asking for the isoChrone 5 minutes away and 15 minutes
away from the same starting point. These end up as approximate concentric bands.
The user may choose to show both complete sets of data (Encompassing style, which
shows everything) or just the band between the two (Donut style), for everything
between 5 and 15 minutes away.

Donut banding can result in routing server problems when two boundaries (times) are
almost identical. There are three request settings you can use to avoid this situation:

a. Do not use the maximum off road distance setting if possible with Donut banding. If
you must use this setting, set it as large as possible.
MapXtreme 9.5 Developer Guide 429

b. Do not use a low ambient speed setting with Donut banding.
c. Do not make requests with cost increments that are small relative to the cost. For

example, requesting 4, 5, and 6 minute costs (1 minute increments starting at 4
minutes) is not likely to be a problem, but 120, 121, and 122 minute costs may be a
problem. The larger the cost the larger the cost increments will need to be.

The above example shows the geometries returned for an Encompassing style banding of cost
5, 10, and 15 minutes from the starting point. Notice how each geometry includes the area of
the prior isoChrone.

The above example shows the geometries returned for a Donut style banding of cost 5, 10, and
15 minutes from the starting point. Notice how each geometry begins at the end of the prior
geometry, excluding the area of the prior isoChrone.

• MajorRoadsOnly - Determines what road network is used in the calculation. The
network can include major roads only or all roads. A major road is a main road or
highway. If you choose to use major roads, performance will improve, but accuracy
may decrease. The images below illustrate the behavior of the major roads option. The
image on the left shows MajorRoadsOnly set to true while the image on the right
shows MajorRoadsOnly set to false. Notice that the service uses side streets and
other types of secondary roads when calculating the iso response if MajorRoadsOnly
is set to false.
MapXtreme 9.5 Developer Guide 430

 21 – Routing
• MaxOffRoadDistance - Specifies the maximum amount of distance to come off the
road network when using the ambient speed. The default setting for this property is no
limit, allowing off-road travel to occur to the maximum of the isoChrone. The server
may not be able to generate a response for a maximum off-road distance set to a very
small value.

• ReturnAccesibleNodes - Specifies the type of isogram or feature to be returned from
an isoChrone request be a set of nodes (MultiPoint). By default,
ReturnAccesibleNodes is False. When this property is true, all of the points along the
road network that can be reached for the isoChrone calculation will be returned.

• ReturnGeometry - Specifies the type of isogram or feature to be returned from an
isoChrone request be a geometry (MultiPolygon). By default, ReturnGeometry is true.
False will return all of the points along the road network that can be reached for the
isoChrone calculation.

• ReturnHoles - Specifies whether or not to return holes in the response. Holes are
areas within the larger boundary that cannot be reached within the desired time or
distance, based on the road network. These pockets of territory are often
neighborhoods of local roads that are cumbersome to traverse. Holes can be returned
as is, or removed entirely. This setting will only apply if ReturnGeometry is set to true
(default). If this property is not specified, the default setting, false, will be used.

• ReturnIslands - Specifies whether or not to return islands in the response. Islands are
small areas outside the main boundary that can be reached within the desired time or
distance. These areas are frequently located off exit ramps of major highways. Islands
can be returned as is, or removed entirely. This setting will only apply if
ReturnGeometry is set to true (default). If this property is not specified, the default
setting, false, will be used.

• SimplificationFactor - Specifies the reduction factor for polygon complexity. The
simplification factor indicates what percentage of the original points should be returned
or that the resulting polygon should be based on. The polygon or set of points may
contain many points. The simplification factor is a decimal number between 0 and 1.0
MapXtreme 9.5 Developer Guide 431

(1 being 100 percent and 0.01 being 1 percent). Lower numbers mean lower storage
and lower transmission times. This setting will only apply if geometry is the result type.
If this property is not specified, the default setting 0.05 (5 percent) will be used. The
images below illustrate the behavior of the simplification factor option. The image on
the left shows the simplification factor set to 0.01 while the image on the right shows
the simplification factor set to 1.

• TimeOut - Specifies the amount of time allowed for the server to create the isogram.
The default value for this property is 600 seconds (10 minutes).

Creating an IsoDistance (Drive-Distance)
When creating an isoDistance, you are looking for one or more polygons/set of nodes
which represent the area that can be travelled along a road network, given a distance
(drive-distance cost) from a starting location.

The cost specified for an isoDistance request is similar to an isoChrone except the cost
value is a measure of distance used to calculate the isogram. The cost represents the
distance required to travel from the starting point to the calculated points on the road
network. You can specify multiple costs to produce concentric bands (multiple
isoDistances) that visually represent different distances that can be reached along the
road network. Associated with multiple costs are tags. You can specify a tag, or ID, for
each cost in the request, that will identify the appropriate iso result (geometry) in the
response.

The following code sample shows how to define an IsoDistanceDefinition. The response
will create an isogram (geometry) using the point as the center and a cost in miles (pt,
DistanceUnit.Mile) defining the boundary:

Public Shared Sub New_IsoDistanceDefinition()
 ’ Create a point
MapXtreme 9.5 Developer Guide 432

 21 – Routing
 Dim coordSys As MapInfo.Geometry.CoordSys = _
Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")

 Dim dpt As MapInfo.Geometry.DPoint = _
New MapInfo.Geometry.DPoint(-74, 42)

 Dim pt As MapInfo.Geometry.Point = _
New MapInfo.Geometry.Point(coordSys, dpt)

 ’ Create a definition
 Dim def As IsoDistanceDefinition = _

New IsoDistanceDefinition(pt, DistanceUnit.Mile)
End Sub

There are numerous preferences you can specify in the IsoDistancePreferences and
IsogramPreferences Classes. These preferences allow you to obtain a desired output for
your analysis. The preferences specified in the IsogramPreferences Class are the same
for both an isoDistance and isoChrone request. For a description of the
IsogramPreferences, refer to IsogramPreferences.

IsoDistancePreferences

The following preferences are available in the IsoDistancePreferences Class:

• DefaultPropagationFactor - Determines the off-road network percentage of the
remaining cost (distance) for which off network travel is allowed when finding the
isoDistance boundary. Roads not identified in the network can be driveways or access
roads, among others. The propagation factor is a percentage of the cost used to
calculate the distance between the starting point and the isoDistance. For example, if
you were at a point with five miles left to go on an isoDistance on the off-road network,
boundary points would be put at a distance based on the propagation factor and the
distance left. So, if the propagation factor was 0.16, boundary points would be put at a
distance of 0.8 miles.

• PropagationFactorOverrides - Overrides the propagation factor for a specific road
type. The propagation factor can be overridden for all road types. For example, it may
be set to 0.24 for major urban roads:

Updating a Request Using Routing Data
Being able to access and your route data, then use this information to create more
accurate and meaningful routes, is a very useful capability. After you create a route and
get a route response, you may realize that the result contains a location or segment you
don't want to pass, and a road type or segment where you may want to reduce or
increase the speed. MapXtreme provides capabilities to return segment information on
MapXtreme 9.5 Developer Guide 433

your route data and use the information in your route data to modify/update route
requests (transient updates). This means you can update the routing network without
reprocessing the base data.

The transient update process is comprised of two steps:

1. Return the route data segment information in a route response. This information is
required to determine the segments used for the road type or speed update. For more
information, refer to Returning Segment Information.

2. Based on information returned in your response, make temporary updates to the route
data. This is called transient updates. These changes are submitted within a route
request, and are only valid when the server or service is handling that particular
request. This capability can be used to include some dynamic traffic/accident data or
to set the preferences for a particular road type. For more information, refer to
Transient Updates.

Returning Segment Information
In order to avoid or update the road type or speed data for a road segment you will need
to know the segment ID and other road information. MapXtreme provides the ability to
return the road segment data including information such as the segment ID, name,
distance, road type, speed, travel time, geometries, and other important data.

By default, segment information is not returned in a route request. Use the class, and set
ReturnSegmentData to true.You also have the options of defining the units of measure for
both the velocity and angle for the returned information. By default the VelocityUnit is Mph
(miles per hour) and the AngleUnit is Degree. The segment data is the data that is
necessary to create the driving directions and contains detailed information on each
segment in the route. The segment information returned includes:

• the street names (including alternate names)

• the languages for the street names

• compass direction

• segment ID

• one way boolean

• roundabout boolean

• toll road boolean

• road type

• speed limit

• turn angle
MapXtreme 9.5 Developer Guide 434

 21 – Routing
• time to traverse the segment

• distance along the segment

Transient Updates
In order to create more accurate and meaningful route calculations, you can make
temporary changes to the route data. The changes are submitted within each route
request and are only valid when the server or service is handling that particular request.
You can use this feature to avoid a particular highway during rush hour or lower the speed
of the road segment in the request, representing real life traffic patterns, producing more
accurate time based routing. A transient update can be included in any type of route
request (point-to-point, multi-point, or matrix route). By making these types of
modifications, you have the ability to:

• set the speed of a point, segment, or road type.

• change (increase or decrease) the speed of a point, segment, or road type by some
value.

• change (increase or decrease) the speed of a point, segment, or road type by some
percentage.

• set the road type for a segment.

When defining speeds in transient updates, there are essentially three types, each speed
value defined differently:

• Speed - specifies the new speed of the segment.

• Relative - specifies an increase or decrease for the speed by a relative value. These
values represent a change in speed. For example a value of 10, will increase the
default speed by 10, while a value of -10 MPH will decrease the default speed by 10
MPH.

• Percentage - specifies an increase or decrease for the speed by a percentage. Values
are between -100 and 100. For example a speed of 50 would increase the speed by
50 percent of the default speed (a speed of 30 MPH would increase to 45 MPH), while
a speed of -50 would decrease the speed by 50 percent of the default speed (a speed
of 30 MPH would decrease to 15 MPH).

Using Transient Update to Modify a Segment

After you get a route response, you may realize that the result contains a particular route
segment or group of segments (roads) where you know traffic is slower or faster, or you
may want to update the road type in a request. You can use a transient update to set the
speed of the road segments or road types, recalculating the route for more accurate
results. Use the following classes to perform the various segment transient updates:
MapXtreme 9.5 Developer Guide 435

• SegmentRoadTypeUpdate - Updates the road type for the segment. The following
code sample shows how to specify a new road type for the defined segment ID
“S1256”, RoadType.MAJOR_ROAD_URBAN

• SegmentSpeedUpdate - Updates the speed of the segment with a new speed.

The following sample shows how to define a new speed of 50 miles per hour
(Velocity(50, VelocityUnit.Mph)) for the specified route segment (S1256):

Public Shared Sub New_SegmentSpeedUpdate()
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(50, VelocityUnit.Mph)
 ’ Create the update object
 Dim update As SegmentSpeedUpdate = New SegmentSpeedUpdate("S1256", velocity)
End Sub

• SegmentRelativeSpeedUpdate - Updates the speed of the segment with a change in
speed.

The following sample shows how to increase the speed by 5 miles per hour (Velocity(5,
VelocityUnit.Mph)) for the specified route segment (T1256):

Public Shared Sub New_SegmentRelativeSpeedUpdate()
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(5, VelocityUnit.Mph)
 ’ Increase the speed by 5 mph.
 Dim update As SegmentRelativeSpeedUpdate = New
SegmentRelativeSpeedUpdate("T1256", velocity)
End Sub

• SegmentPercentageSpeedUpdate - Updates the speed of the segment with
percentage of the default speed.

The following sample shows how to increase the speed for the specified route segment
by 20 percent (“S1256”, 20):

Public Shared Sub New_SegmentPercentageSpeedUpdate()
 ’ Increase the speed by 20 percent.
 Dim update As SegmentPercentageSpeedUpdate = New
SegmentPercentageSpeedUpdate("S1256", 20)
End Sub
MapXtreme 9.5 Developer Guide 436

 21 – Routing
Using Transient Update to Modify a Point

After you get a route response, you may realize that the result contains some locations
(points) where you know traffic is slower or faster. You can use a transient update to set
the speed of the road segments closest to the point, recalculating the route for more
accurate results. Use the following classes to perform the various point transient updates:

• PointSpeedUpdate - Updates the speed of the closest segment to the point with a
new speed.

The following sample shows how to define a new speed of 50 miles per hour
(Velocity(50, VelocityUnit.Mph)) for the road closest to the defined point (pt):

Public Shared Sub New_PointSpeedUpdate()
 ’ Create a point
 Dim coordSys As MapInfo.Geometry.CoordSys =
Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")
 Dim dpt As MapInfo.Geometry.DPoint = New MapInfo.Geometry.DPoint(-74, 42)
 Dim pt As MapInfo.Geometry.Point = New MapInfo.Geometry.Point(coordSys, dpt)
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(50, VelocityUnit.Mph)
 ’ Create the update object
 Dim update As PointSpeedUpdate = New PointSpeedUpdate(pt, velocity)
End Sub

• PointRelativeSpeedUpdate - Updates the speed of the closest segment to the point
with a change in speed.

The following sample shows how to increase the speed by 5 miles per hour (Velocity(5,
VelocityUnit.Mph)) for the road closest to the defined point (pt):

Public Shared Sub New_PointRelativeSpeedUpdate()
 ’ Create a point
 Dim coordSys As MapInfo.Geometry.CoordSys =
Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")
 Dim dpt As MapInfo.Geometry.DPoint = New MapInfo.Geometry.DPoint(-74, 42)
 Dim pt As MapInfo.Geometry.Point = New MapInfo.Geometry.Point(coordSys, dpt)
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(5, VelocityUnit.Mph)
 ’ Increase the speed by 5 mph.
 Dim update As PointRelativeSpeedUpdate = New PointRelativeSpeedUpdate(pt,
velocity)
End Sub

• PointPersentageSpeedUpdate - Updates the speed of the closest point to the
location by a percentage of the default speed.
MapXtreme 9.5 Developer Guide 437

The following sample shows how to increase the speed for the road closest to the define
point by 20 percent (pt, 20):

Public Shared Sub New_PointPercentageSpeedUpdate()
 ’ Create a point
 Dim coordSys As MapInfo.Geometry.CoordSys =
Session.Current.CoordSysFactory.CreateFromPrjString("1, 104")
 Dim dpt As MapInfo.Geometry.DPoint = New MapInfo.Geometry.DPoint(-74, 42)
 Dim pt As MapInfo.Geometry.Point = New MapInfo.Geometry.Point(coordSys, dpt)
 ’ Increase the speed by 20 percent.
 Dim update As PointPercentageSpeedUpdate = New
PointPercentageSpeedUpdate(pt, 20)
End Sub

Using Transient Update to Modify Road Type Speeds

Before determining a route, you may already know some travel information (for example.
construction, accident, or rush hour), and want to reduce or increase the speed of a
particular road type. For example, you can lower the speed for all highways. Taking into
consideration holiday weekend travel. You also have the option to lower the chance of a
particular road type being used in the route calculation. When determining the fastest
route, you can decrease the travel speed for a particular road type which will set those
roads to a lower priority, and decrease the chance of them being used in the calculation.
Use the following classes to perform the various road type transient updates:

• RoadTypeSpeedUpdate - Updates the speed of a particular road type with a new
speed.

The following sample shows how to define a new speed of 50 miles per hour
(Velocity(50, VelocityUnit.Mph)) for all urban major roads
(RoadType.MAJOR_ROAD_URBAN):

Public Shared Sub New_RoadTypeSpeedUpdate()
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(50, VelocityUnit.Mph)
 ’ Create the update object
 Dim update As RoadTypeSpeedUpdate = New
RoadTypeSpeedUpdate(RoadType.MAJOR_ROAD_URBAN, velocity)
End Sub

• RoadTypeRelativeSpeedUpdate - Updates the speed of the road type with a change
in speed.

The following sample shows how to increase the speed by 5 miles per hour (Velocity(5,
VelocityUnit.Mph)) for all urban major roads (RoadType.MAJOR_ROAD_URBAN):
MapXtreme 9.5 Developer Guide 438

 21 – Routing
Public Shared Sub New_RoadTypeRelativeSpeedUpdate()
 ’ Create the velocity object
 Dim velocity As Velocity = New Velocity(5, VelocityUnit.Mph)
 ’ Increase the speed by 5 mph.
 Dim update As RoadTypeRelativeSpeedUpdate = New
RoadTypeRelativeSpeedUpdate(RoadType.MAJOR_ROAD_URBAN, velocity)
End Sub

• RoadTypePercentageSpeedUpdate - Updates the speed of the road type with
percentage of the default speed.

The following sample shows how to increase the speed for all urban major roads by 20
percent (RoadType.MAJOR_ROAD_URBAN, 20):

Public Shared Sub New_RoadTypePercentageSpeedUpdate()
 ’ Increase the speed by 20 percent.
 Dim update As RoadTypePercentageSpeedUpdate = New
RoadTypePercentageSpeedUpdate(RoadType.MAJOR_ROAD_URBAN, 20)
End Sub
MapXtreme 9.5 Developer Guide 439

MapXtreme 9.5 Developer Guide 440

22

22 – Linear Referencing
This chapter covers a MapXtreme capability for mapping and
analyzing linear networks using M (measure) values associated with
MultiCurve feature geometries.

In this chapter:
 What is Linear Referencing . 442
 Using M values for Linear Referencing. 442
 Curve Order . 446
 Linear Referencing Sample Application . 446

What is Linear Referencing
Linear referencing is an alternative reference system to the traditional coordinate
reference systems that tie locations of linear features to points on the earth. Linear
referencing is used in many fields, including water resource management, transportation,
and oil and gas exploration. Any physical asset that you can map as part of a linear
network can hold data that describes the asset or a condition or event related to that
asset. The data is stored as an M, or measure value, on the MultiCurve object along with
the X and Y coordinates for the location. The M values can then be further mapped and
analyzed for better resource management.

M values are the cornerstone of linear referencing. M values hold the measure, whatever
it may be. Points along a linear feature are referenced from an established known point
that is relative to something else. A classic example is the mile marker post along a
highway. The ID of the mile marker is some M value that refers to some distance from a
known location, typically a highway intersection or county boundary.

M values are commonly used by infrastructure and transportation data managers to
better visualize, query, monitor and analyze assets, conditions and events that exist along
a line. For example, an emergency call center operator can determine the location of a
stranded motorist from the mile marker the motorist provides to the operator. The mile
marker location is already known to the call center. With this information in hand, the call
center can dispatch the appropriate personnel to the proper location.

For an overview of the Geometry model that supports MultiCurves and M values, see
Chapter 16 Spatial Objects and Coordinate Systems.

Using M values for Linear Referencing
MapXtreme offers a number of operations that use the measure (M) value for MultiCurve
geometries to provide linear referencing and dynamic segmentation capabilities. The
methods are defined as part of an instantiable
MapInfo.Geometry.LinearReferencingOperations class, which provides flexibility for
adding properties or extending behaviors as needed.

These operations allow you to show simultaneous multiple attributes of your linear
network, known as dynamic segmentation, without requiring the storage of multiple
copies of the same geometry. For example, a highway can be represented by separate
linear features that represent pavement condition, lane type, and pavement material.
They are all representing the same real-world geometry, but this gives you an easier view
of multiple types of information.
MapXtreme 9.5 Developer Guide 442

 22 – Linear Referencing
Linear Referencing Sample Application provided in MapXtreme

The linear referencing methods follow the OGC Simple Feature Specification as it applies
to one dimensional MultiCurve geometries. MultiCurves can consist of several disjointed
curves. That is, two Curves can be contained within the MultiCurve for which the end of
one Curve does not match the beginning of the other Curve. The operations, however,
may be given a start and end measure with the expectation that the measure is applied
across the entire MultiCurve. In this and similar scenarios, we assume that even though
the actual location data differs (X, Y) between the end of one curve and the start of
another curve, MapXtreme assumes the measure values are the same. Consider as an
example, a highway network in which some highways cross but do not intersect because
one highway runs over the other on a bridge. In those cases, the highway underneath
may actually have the linear representation show a physical break before and after the
other highway.

The methods provided in the LinearReferencingOperations class can be organized into
three categories:

• Measure value determination methods

• Linear referencing operations

• Dynamic Segmentation operation (PerpendicularOffset)

The following sections provide a brief introduction to these operations. See also
MapInfo.LinearReferencing namespace for compete details.
MapXtreme 9.5 Developer Guide 443

Measure Value Determination Methods
The operations that form this category are helper methods to assist in setting and
managing measure values on a MultiCurve. Use them to fill in missing nodes along a
MultiCurve when you have at least two M values, or if no M values are present, using a
relative start and end node to set M values. Often the values are known for one or two
specific locations and the rest can be proportionally computed based on distance.

• CalculateMissingMeasures(MultiCurve)

• SetMeasures (MultiCurve, double startMeasure, double endMeasure)

• SetMeasuresAsDistance(MultiCurve, double startDistance)

• DropMeasures (MultiCurve)

• ScaleMeasures(MultiCurve, double scale)

• TranslateMeasures(MultiCurve, double offset)

• TranslateMeasures(MultiCurve)

• Reverse(MultiCurve)

Linear Referencing Operations
The second set of operations use a linear referencing system along a MultiCurve
geometry to locate points at a specific measure value or extract sub-curves between two
measure values. While MapXtreme can store reference measure values at the nodes of
the MultiCurve that is input into these methods, not all user data actually has the
reference system stored in the geometry (or they are using a storage technology that
does not facilitate retaining this information). These methods, therefore, generally have
two overloaded forms, one in which the reference system is managed within the input
MultiCurve, and another in which the reference system is supplied as a start and end
measure corresponding to the first and last node of the input MultiCurve geometry.

• LocateAlong(MultiCurve, double Measure)

• LocateAlong(MultiCurve, double startMeasure, double endMeasure, double
Measure)

• LocateMeasure (MultiCurve, Point)

• LocateMeasure (MultiCurve, double startMeasure, double endMeasure, Point)

• LocateBetween(MultiCurve, double subCurveStartMeasure, double
subCurveEndMeasure)

• LocateBetween(MultiCurve, double startMeasure, double endMeasure, double
subCurveStartMeasure, double subCurveEndMeasure)
MapXtreme 9.5 Developer Guide 444

 22 – Linear Referencing
FeatureGeometry.Distance Method

The MapInfo.Geometry.FeatureGeometry class includes an overload to the Distance
method that MapXtreme uses to locate measure values along a MultiCurve when the
input point is not located on the curve. This method returns a MultiCurve that represents
the shortest or longest distance between the input point off the curve and the projected
point on the curve. To specify shortest or longest, the minimumDistance must be passed
in as a boolean. Shortest distance is true. The returned MultiCurve is the input for the
LocateMeasure methods which returns a point on the MultiCurve closest (or farthest)
from the input point.

If the MultiCurve and the Point that is passed in are in different coordinate systems, then
the Distance operation is performed in the coordinate system of MultiCurve instance. The
resulting FeatureGeometry is always in the same coordinate system as MultiCurve
instance.

Dynamic Segmentation Operation (PerpendicularOffset)
Perpendicular offset is an operation that produces a new MultiCurve from an existing one.
This is different from the above methods that extract a sub-curve with the same
underlying x,y coordinates. This operation creates a parallel offset MultiCurve that is
some distance measured perpendicularly from the original MultiCurve. This new
MultiCurve can then be further acted upon, such as querying its attributes and analyzing
the results.

PerpendicularOffset is used in the field of dynamic segmentation for a linear network
whereby you can subdivide a MultiCurve into segments based on M values. For example,
a road construction application would use the M values of a road network that describe
the status of sections of a highway under construction or repair. Each segment can be
displayed on a map, offset from the actual road, with a distinct color code or marking to
indicate at a glance its status. For an example of a dynamic segmentation application
using Perpendicular, see Linear Referencing Sample Application.

The following is the syntax of the PerpendicularOffset() method:

• PerpendicularOffset(MultiCurve, double distance)

• PerpendicularOffset(MultiCurve, double distance, DistanceUnit, int resolution)

A distance value that is positive will be interpreted as a perpendicular direction to the right
of the line when traversing in the order of the nodes (e.g., node i to node i+1). A negative
distance would be to the left. A distance of zero is not allowed.

The resolution is used to interpolate points along the arcs created for rounding corners.
Values of 0 or larger are supported, up to an including 36. The default value is 1.
MapXtreme 9.5 Developer Guide 445

This operation preserves the measure values, if present, of the original MultiCurve.
Elevation (Z) values from the original MultiCurve are not preserved.

Curve Order
The MapInfo.LinearReferencing namespace includes the ICurveSorter interface to
handle the sort order of individual curves that make up a MultiCurve. Sort order is
important when you are calling any of the following linear referencing operations:

• CalculateMissingMeasures

• SetMeasures

• SetMeasuresAsDistance

• LocateAlong

• LocateMeasure

• LocateBetween

Without specifying a sort order, MapXtreme returns the longest curve first, while the
remaining curves are returned in an unknown order. When using
CalculateMissingMeasures on an unordered MultiCurve, for example, MapXtreme could
calculate the wrong M values for a node based on its position in the MultiCurve. Providing
the correct sort order would eliminate that problem.

The ICurveSorter interface provides a SortCurves method which returns the curve order
as an array of integers. You would then use the array to get to the list of curves. See the
Developer Reference for a code example.

 Ordering of curves does not change the x,y position of the nodes.

The interface also provides a DefaultCurveSorter class that, when implemented, only
returns the component curves as advertised by the MultiCurve itself. No ordering is done
through its SortCurve method.

Linear Referencing Sample Application
Provided in the Samples folder of your MapXtreme installation is a linear referencing
sample application that generates multiple parallel line segments representing different
characteristics of the road. In this example, road data that indicates pavement conditions,
MapXtreme 9.5 Developer Guide 446

 22 – Linear Referencing
maximum speed zones and number of lanes are displayed as offset MultiCurves along
the actual roadway to show the condition or characteristic of a particular road section.
Each characteristic or condition is shown in a different line style.

In a typical MapXtreme table, attributes are applied to the feature as a whole. In linear
networks, a feature has attributes, known as Measure values, that apply to segments of
its linear geometry representation. For example, a roadway typically has sections of good
quality or poor quality surface conditions, or sections that are under repair. These
conditions would rarely coincide with the entire road segment, nor do they coincide
exactly with a node on the MultiCurve. However, through a linear referencing system that
uses measure values that are relative to the feature, rather than to the location on earth,
segment data can be captured, queried, displayed and analyzed in new and useful ways.

Through its linear referencing operations, MapXtreme can dynamically segment
MultiCurves based on these M values. See Using M values for Linear Referencing for a
description of the supported operations.
MapXtreme 9.5 Developer Guide 447

MapXtreme 9.5 Developer Guide 448

23

23 – Web Feature Service
MapXtreme provides the ability to host and/or access map feature data
from internet or private intranet Web Feature Services (WFS).

In this chapter:

 Web Feature Service . 450
 Understanding WFS 1.0.0 Server Operations 451
 Configuring a WFS 1.0.0 Server. 455
 Understanding WFS 2.0.0 Server Operations 462
 Configuring a WFS 2.0.0 Server. 468
 Using the MapXtreme WFS Client Programmatically 475
 Creating a Map Layer from a WFS Response 479

Web Feature Service
MapXtreme provides a Web Feature Service (WFS) implementation to send requests
over the Internet or through a private intranet to retrieve geospatial data encoded in
Geography Markup Language. While a Web Map Service yields a map image, requests
to a WFS Server will generate GML, a form of XML that can capture geographic data.

With version 1.0.0, a basic WFS client can send three kinds of requests to a WFS server.
A get capabilities request asks a server to list the geographic data it can provide and the
operations that can be applied to that data. A describe feature type request asks a server
to describe the data it can provide for a geographic feature. Finally the server can be
asked to provide the actual data using GetFeature request.

In addition to this, a WFS client can send two additional requests to a WFS 2.0 server i.e.,
ListStoredQueries and DescribeStoredQueries. A ListStoredQueries operation returns a
list of the stored queries currently maintained by the WFS server. A DescribeStoredQuery
operation returns detailed metadata about each stored query maintained by the WFS
server. These two operations are supported in WFS 2.0.0 version only.

Geographic data from a WFS consists of descriptions about the data. At this point the
retrieved data is not viewable as a map layer in MapXtreme. However, using
MapXtreme’s WfsClient, the GML output can be converted into a form MapXtreme can
work with: MultiFeatureCollections. These feature collections can then be treated like any
other FeatureCollection in MapXtreme whereby you can apply themes, labels and
perform a variety of analytical operations.

The MapXtreme WFS 1.0.0 server implementation complies with the Basic WFS
conformance class and WFS 2.0.0 server implementation complies with the Simple WFS
conformance class. MapXtreme’s WFS implementation does not support the Transaction
WFS specification at this time.

Requests for features via MapXtreme’s WFS implementation are made with HTTP GET
or HTTP POST requests. The response is returned in GML2 by default; however, a
request can explicitly ask for a response in GML3.

MapXtreme’s support for WFS consists of two parts—a WFS Server and WFS Client.
This chapter explains how to configure a WFS server if you want to host your own data for
others to access. See Configuring a WFS 2.0.0 Server.

If you are interested in accessing data from other WFS servers on the internet or from a
private intranet, see Using the MapXtreme WFS Client Programmatically.
MapXtreme 9.5 Developer Guide 450

 23 – Web Feature Service
Understanding WFS 1.0.0 Server Operations
There are three WFS Server operations that provide the basis for the MapXtreme WFS
server implementation: GetCapabilities, DescribeFeatureType, and GetFeature.

GetCapabilities

A GetCapabilities request is a query of a WFS server to learn more about what the server
offers in terms of geographic data and operations that can be performed on that data. The
response to a GetCapabilities request is an XML document describing the operations that
the WFS supports and a list of all feature types that it can service. You would request the
service’s capabilities the first time you access a WFS server.

GetCapabilities is supported via HTTP GET and HTTP POST.

The following is the XML output from a GetCapabilities request. Some of the key
elements are shown in bold text, including supported capabilities, available feature
types, and filtering operations for requesting a subset of a feature type’s data.

<?xml version="1.0" encoding="utf-8" ?>
- <WFS_Capabilities xmlns:ogc="http://www.opengis.net/ogc"
xmlns:miwfs="http://www.mapinfo.com/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.opengis.net/wfs/1.0.0/WFS-capabilities.xsd"
version="1.0.0" updateSequence="0" xmlns="http://www.opengis.net/wfs">
- <Service>
 <Name>Sample WFS Server</Name>
 <Title>Sample WFS Server</Title>
 <OnlineResource>http://localhost/Wfs/GetFeature.ashx</OnlineResource>
 </Service>
- <Capability>
- <Request>
- <GetCapabilities>
- <DCPType>
- <HTTP>
 <Get onlineResource="http://localhost/Wfs/GetFeature.ashx" />
 <Post onlineResource="http://localhost/Wfs/GetFeature.ashx" />
 </HTTP>
 </DCPType>
 </GetCapabilities>
- <DescribeFeatureType>
- <SchemaDescriptionLanguage>
 <XMLSCHEMA />
 </SchemaDescriptionLanguage>
- <DCPType>
- <HTTP>
 <Get onlineResource="http://localhost/Wfs/GetFeature.ashx" />
 <Post onlineResource="http://localhost/Wfs/GetFeature.ashx" />
 </HTTP>
MapXtreme 9.5 Developer Guide 451

 </DCPType>
 </DescribeFeatureType>
- <GetFeature>
- <ResultFormat>
 <GML2 />
 </ResultFormat>
- <DCPType>
- <HTTP>
 <Post onlineResource="http://localhost/Wfs/GetFeature.ashx" />
 </HTTP>
 </DCPType>
 </GetFeature>
 </Request>
 </Capability>
- <FeatureTypeList>
- <Operations>
 <Query />
 </Operations>
- <FeatureType>

<Name>miwfs:USA</Name>
 <Title>Title for usa</Title>
 <Abstract>Abstract for USA</Abstract>
 <Keywords>Keywords for USA</Keywords>
 <SRS>epsg:4326</SRS>
 <LatLongBoundingBox minx="-179.62816" miny="18.925255" maxx="-66.951403"
maxy="71.42856" />
 </FeatureType>
 </FeatureTypeList>
- <ogc:Filter_Capabilities>
- <ogc:Spatial_Capabilities>
- <ogc:Spatial_Operators>
 <ogc:BBOX />
 <ogc:Equals />
 <ogc:Disjoint />
 <ogc:Intersect />
 <ogc:Within />
 <ogc:Contains />
 </ogc:Spatial_Operators>
 </ogc:Spatial_Capabilities>
- <ogc:Scalar_Capabilities>
 <ogc:Logical_Operators />
- <ogc:Comparison_Operators>
 <ogc:Simple_Comparisons />
 <ogc:NullCheck />
 </ogc:Comparison_Operators>
- <ogc:Arithmetic_Operators>
 <ogc:Simple_Arithmetic />
 </ogc:Arithmetic_Operators>
 </ogc:Scalar_Capabilities>
 </ogc:Filter_Capabilities>
 </WFS_Capabilities>
MapXtreme 9.5 Developer Guide 452

 23 – Web Feature Service
DescribeFeatureType

After finding the available feature type with GetCapabilities request, the
DescribeFeatureType request asks for detailed information about one or more of the
available feature types. In MapXtreme a WFS feature type is represented by a table, and
a WFS feature is equivalent to a row of information from a table. The response to a
DescribeFeatureType request includes the name of the feature type (the name of the
table) and the names and types of the properties (names and types of the columns) in the
table. The results are returned in an XML schema document in GML format.

DescribeFeatureType is supported via HTTP GET and HTTP POST. The Schema
returned will have the form whereby each property in the feature type becomes an
element.

MapXtreme does not return the following column types as properties:

• MIDbType.Binary

• MIDbType.CoordSys

• MIDbType.Grid

• MIDbType.Key

• MIDbType.Raster

• MIDbType.Style

The following shows a portion of a DescribeFeatureType response document. In this
case, the request is for a feature type called USA. The USA feature type has several
properties represented by the geometry column OBJ, and data columns for State and
State_Name.

<?xml version="1.0" encoding="utf-8" ?>
- <schema targetNamespace="http://www.mapinfo.com/wfs"
xmlns:miwfs="http://www.mapinfo.com/wfs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">
 <xs:import namespace="http://www.opengis.net/gml"
schemaLocation="http://schemas.opengis.net/gml/2.1.2/feature.xsd" />
 <xs:import namespace="http://www.opengis.net/wfs"
schemaLocation="http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd" />
 <xs:element name="USA" type="miwfs:USA_Type" substitutionGroup="gml:_Feature"
/>
- <xs:complexType name="USA_Type">
- <xs:complexContent>
- <xs:extension base="gml:AbstractFeatureType">
- <xs:sequence>
- <xs:element name="Obj" minOccurs="0" maxOccurs="1">
- <xs:complexType>
- <xs:sequence>
MapXtreme 9.5 Developer Guide 453

 <xs:element ref="gml:_Geometry" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="State" nillable="false" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="State_Name" nillable="false" type="xs:string" minOccurs="0"
maxOccurs="1" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </schema>

GetFeature

Once you know the available feature types and their properties, the final step to retrieving
WFS feature information is sending a GetFeature request. This request specifies which
feature and properties to fetch. In order to retrieve a subset of features, use filtering
operations to constrain the query both spatially and/or non-spatially. See Code Example:
Requesting Features Using Filters.

GetFeature is supported via HTTP POST.

Among the OGC-supported parameters, Request and TypeName are required.
PropertyName, Filter, FeatureID and others are optional. TypeName is optional when
FeatureID is specified. For further details, see the OGC Web Feature Service
Implementation Specification.

The following is a portion of a sample GetFeatureResponse for a feature type called USA.

<?xml version="1.0" encoding="utf-8" ?>
- <wfs:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"
xmlns:gml="http://www.opengis.net/gml" xmlns="http://www.mapinfo.com/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs
http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd http://www.mapinfo.com/wfs
http://localhost/Wfs/GetFeature.ashx?REQUEST=DescribeFeatureType&SERVICE=WFS&VE
RSION=1.0.0&TYPENAME=miwfs:USA">
- <gml:boundedBy>
 <gml:null>inapplicable</gml:null>
 </gml:boundedBy>
- <gml:featureMember>
- <USA>
 <State>AK</State>
 </USA>
 </gml:featureMember>
- <gml:featureMember>
- <USA>
 <State>AL</State>
MapXtreme 9.5 Developer Guide 454

 23 – Web Feature Service
 </USA>
 </gml:featureMember>
- <gml:featureMember>
- <USA>
 <State>AR</State>
 </USA>
 </gml:featureMember>
- <gml:featureMember>
- <USA>
 <State>AZ</State>
 </USA>
 </gml:featureMember>
- <gml:featureMember>
- <USA>
 <State>CA</State>
 </USA>
 </gml:featureMember>
- <gml:featureMember>
- <USA>
 <State>CO</State>
 </USA>
 </gml:featureMember>
...
</wfs:FeatureCollection>

Configuring a WFS 1.0.0 Server
If you have spatial data you wish to make available to others, you first must configure a
WFS server to describe what data and capabilities you are offering. There are two
configuration files that you need to provide to accomplish this. This discussion assumes
you have a working knowledge of schemas and web services.

You do not need to configure a WFS server if you are only interested in accessing
someone else’s WFS server to retrieve features. See Using the MapXtreme WFS Client
Programmatically.

The main configuration steps that are addressed in this section are:

Step1: Create or modify a Web.config file to include the MapXtreme-specific WFS
information and the correct handlers for IIS classic or integrated pipeline mode.

Step 2: Create a valid WFS Server configuration file that contains information about the
data you are hosting. This file must validate against the WFS schema file
(MXP_WFSConfiguration_1_0.xsd) to avoid errors when you run the WFS Server.

Step 3: Configure and test the WFS Server setup. Instructions for IIS 7, IIS 8.5 and IIS 10
configuration are provided.
MapXtreme 9.5 Developer Guide 455

On the MapXtreme product media, we provide sample Web.config and WFS
configuration files that you can use as a guide for creating your own files. The Web.config
file defines how the ASP process in handled. The WFSSample.xml defines the data
sources and feature definitions you want your WFS server to provide.

The schemas for the MapXtreme workspace and WFS server are also located on the
product media.

Step 1: Create a Web.config File
The Web.config is a standard configuration file for a web application. To use it for a
MapXtreme WFS server, you must edit it to provide MapXtreme-specific WFS information
and to define how the ASP.NET process will be handled.

1. Create a folder to contain the Web.config and the WFSSample.xml. In this example,
the location is called c:\wfs.

2. Copy the Web.config and WFSSample.xml from the MapXtreme product media to this
folder.

3. Open Web.config In a text editor and modify the <appSettings"> line to point to the
WFS configuration file.

<configuration>

<appSettings>
<add key="configFile" value="C:\wfs\WFSSample.xml" />

4. For IIS 7/8.5/10 classic mode, update the version number and PublicKeyToken (if
necessary) for the MapInfo.Wfs.Server and the MapInfo.CoreEngine assemblies
installed on your system (bold type below).

Assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32 or GAC_64.

<system.web>
<httpHandlers>

<add verb="GET,POST" path="*.ashx" type="MapInfo.Wfs.WfsHttpHandler,
MapInfo.Wfs.Server, Version=9.2.0.XXX, Culture=neutral,
PublicKeyToken=4ac3224575145b20"/>

</httpHandlers>
<httpModules>

<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,
Version=9.2.0.XXX, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator" />

 </httpModules>

5. For IIS 7/8.5/10 Integrated pipeline mode, copy the following section into the
web.config. You do not need to comment out the <system.web> section to run in
MapXtreme 9.5 Developer Guide 456

 23 – Web Feature Service
integrated pipeline mode. However, if you need to run in IIS 7 classic mode, you must
comment out this <system.webServer> section.

Follow the instructions in step 4 to update the assembly versions for
MapInfo.CoreEngine and MapInfo.Wfs.Server.

<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<directoryBrowse enabled="true" />

<modules>
<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,

Version=9.2.0.XXX, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator"/>

</modules>
<handlers>

<add name="WFSHandler" verb="GET,POST" path="*.ashx"
type="MapInfo.Wfs.WfsHttpHandler, MapInfo.Wfs.Server, Version=9.2.0.XXX,
Culture=neutral, PublicKeyToken=4ac3224575145b20"/>

</handlers>
</system.webServer>

6. Save this file and copy it to the location you created in step 1.

Step 2: Create a Valid WFS Configuration File for Hosted
Features
The WFSSample.xml is a WFS configuration file provided with MapXtreme. This file
defines information about your WFS server, including its name, title, abstract, the URL to
the WFS Server and the data you want to host.

1. Open WFSSample.xml in a text editor and modify the OnlineResource line to include
the URL of your WFS Server. Change localhost to what is appropriate for your WFS
server.

<mxp-wfs:Service>
<mxp-wfs:Name>Sample WFS Server</mxp-wfs:Name>
<mxp-wfs:Title>Sample WFS Server</mxp-wfs:Title>
<!-- The following is the URL of the WFS server -->
<mxp-wfs:OnlineResource>http://localhost/wfs/GetFeature.ashx</mxp-

wfs:OnlineResource>
</mxp-wfs:Service>

You can modify other elements as you see fit, including the server name, title, abstract,
fees, access constraints and more.

2. Register the tables that the WFS serves by creating a Table element for each table.
The value for the <mxp-wfs:DataSourceDefinition> id must match the value for <mxp-
wfs:Name>. You can include the tables in any order.
MapXtreme 9.5 Developer Guide 457

3. In the <DataSourceDefinitionSet>, modify the MYPATH variable to reflect the actual
path to your data.

The following is a portion of the WFSSample.xml that identifies two tables of features.

<mxp-wfs:Table>
<mxp-wfs:Name>USA</mxp-wfs:Name>
<mxp-wfs:Title>Title for usa</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for USA</mxp-wfs:Abstract>
<mxp-wfs:Keywords>Keywords for USA</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:TABFileDataSourceDefinition id="USA">
<mxp:DataSourceName>USA</mxp:DataSourceName>
<mxp:FileName>MYPATH\USA.TAB</mxp:FileName>

</mxp:TABFileDataSourceDefinition >
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>
<mxp-wfs:Table>

<mxp-wfs:Name>US_HIWAY</mxp-wfs:Name>
<mxp-wfs:Title>Title for US_HIWAY</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for US_HIWAY</mxp-wfs:Abstract>
<mxp-wfs:Keywords>Keywords for US_HIWAY</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:TABFileDataSourceDefinition id="US_HIWAY">
<mxp:DataSourceName>US_HIWAY</mxp:DataSourceName>
<mxp:FileName>MYPATH\US_HIWAY.TAB</mxp:FileName>

</mxp:TABFileDataSourceDefinition >
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>

4. If your WFS will be hosting data that is stored on a RDBMS, specify <ConnectionSet>
and <ConnectionMember> elements, following the example below:

<mxp:ConnectionSet>
<mxp:DBConnection dbType="sqlserver">

 <mxp:ConnectionName>sqlserver2k</mxp:ConnectionName>
 <mxp:ODBCConnectionString>DRIVER={SQL
Server};DATABASE=YOURDB;Server=YOURSERVER;UID=YOURUSER;PWD=YOURPASSWORD;QuotedI
D=No;Trusted_Connection=No;Network=DBMSSOCN;Address=YOURSERVER,YOURSERVERPORT</
mxp:ODBCConnectionString>
 </mxp:DBConnection

</mxp:ConnectionSet>
...

<mxp-wfs:Table>
<mxp-wfs:Name>MySQLServerTable</mxp-wfs:Name>
<mxp-wfs:Title>Title for MySQLServerTable</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for MySQLServerTable</mxp-wfs:Abstract>
<mxp-wfs:Keywords>Keywords for MySQLServerTable</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:DBDataSourceDefinition id="MySQLServerTable">
<mxp:DataSourceName>MySQLServerTable</mxp:DataSourceName>
MapXtreme 9.5 Developer Guide 458

 23 – Web Feature Service
<mxp:ConnectionMember>
<mxp:ConnectionName>my_sqlserver2000_advserver</mxp:ConnectionName>

</mxp:ConnectionMember>
<mxp:DBQuery>

<mxp:Query>select * from MySQLServerTable</mxp:Query>
</mxp:DBQuery>
<mxp:DBDataSourceMetadata/>

</mxp:DBDataSourceDefinition>
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>

Step 3: Configuring and Testing the WFS Server
Once you have edited the Web.config and WFSSample.xml files, you must register your
WFS server with Internet Information Services and finally, test your setup.

1. Right-click on your WFS folder (for example, c:\wfs) and choose Sharing and Security.
From the Web Sharing tab, choose the Share this folder radio button. If you wish to set
an alias for your web server, click the Add button.

2. Open IIS (From the Start menu > Control Panel > Administrative Tools > Internet
Information Services). Expand the Default Web Site and locate your WFS server (by
folder name or by alias, if you set one).

3. Right-click on the Web site and choose Properties. Under the ASP.NET tab, choose
4.0.30319 from the drop-down list for the ASP.NET version (The MapXtreme 9.2
assemblies are compiled under the v4.8 Framework).
MapXtreme 9.5 Developer Guide 459

4. In the same Properties dialog, under the Directory Security tab, click the Edit button at
the top right. In the Authentication Method dialog box, select the Anonymous Access
check box. This allows users of your WFS service to skip the username/password
authentication process. Click OK twice and close the IIS window.

5. Test your setup by sending a GetCapabilities request from a web browser. In the
address box type:

http://localhost/wfs/GetFeature.ashx?request=GetCapabilities&service=WFS&vers
ion=1.0.0

substituting your web server for localhost. If you have set an Alias to your web server,
be sure to include that in your URL. For example:

http://localhost/My_WFS/GetFeature.ashx?request=GetCapabilities&service=WFS&v
ersion=1.0.0
MapXtreme 9.5 Developer Guide 460

 23 – Web Feature Service
A successful test will return a web page similar to the illustration below. If the
capabilities are not returned, review your configuration files to ensure everything has
been entered correctly. Since you are creating the configuration files by hand, It is very
easy to include typos or have missing tags.

6. To learn about the properties for the returned feature types, send a
DescribeFeatureType request:

http://localhost/My_wfs/GetFeature.ashx?REQUEST=DescribeFeatureType&SERVICE=
WFS&VERSION=1.0.0&Typename=miwfs:USA

This request returns a description of the properties for the feature type USA, including
two column names: State and State_Name.

7. To request features from the USA table, send a GetFeature request.

http://localhost/My_wfs/GetFeature.ashx?REQUEST=GetFeature&SERVICE=WFS&VERSIO
N=1.0.0&Typename=miwfs:USA&propertyname=miwfs:State_Name

This request returns features from the USA table as a FeatureCollection. Notice in the
URL that we requested only one of the two column properties, State_Name, for the
USA table. If we had not specified any property name, all properties in the table would
be returned.
MapXtreme 9.5 Developer Guide 461

Understanding WFS 2.0.0 Server Operations
There are five WFS Server operations that provide the basis for the MapXtreme WFS
server implementation: GetCapabilities, DescribeFeatureType, GetFeature,
ListStoredQueries, and DescribeStoredQueries.

GetCapabilities

A GetCapabilities request is a query of a WFS server to learn more about what the server
offers in terms of geographic data and operations that can be performed on that data. The
response to a GetCapabilities request is an XML document describing the operations that
the WFS supports and a list of all feature types that it can service. You would request the
service’s capabilities the first time you access a WFS server.

GetCapabilities is supported via HTTP GET and HTTP POST.

The following is the XML output from a GetCapabilities request. Some of the key
elements are shown in bold text, including supported capabilities, available feature
types, and filtering operations for requesting a subset of a feature type’s data.

<wfs:WFS_Capabilities xmlns:ogc="http://www.opengis.net/ogc"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns="http://www.opengis.net/wfs/2.0"xmlns:gml="http://www.opengis.net/gml/3.2
" xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:mxp="http://www.mapinfo.com/mxp/wfs"
MapXtreme 9.5 Developer Guide 462

 23 – Web Feature Service
xmlns:xlink="http://www.w3.org/1999/xlink"xmlns:miwfs="http://www.mapinfo.com/w
fs" xmlns:cdf="http://www.opengis.net/cite/data"
xmlns:mxt="http://www.mapinfo.com/mxt"
xmlns:cgf="http://www.opengis.net/cite/geometry"xmlns:xsi="http://www.w3.org/20
01/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wfs/2.0
http://schemas.opengis.net/wfs/2.0/wfs.xsd" version="2.0.0" updateSequence="0">
<ows:ServiceIdentification>

<ows:Title>Sample WFS Server</ows:Title>
<ows:ServiceType>WFS</ows:ServiceType>
<ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>

</ows:ServiceIdentification>
<ows:ServiceProvider>

<ows:ProviderName>Sample WFS Server</ows:ProviderName>
</ows:ServiceProvider>
<ows:OperationsMetadata>

<ows:Operation name="GetCapabilities">
<ows:DCP>

<ows:HTTP>
<ows:Get xlink:href="http://localhost/WFS/GetFeature.ashx"/>
<ows:Post xlink:href="http://localhost/WFS/GetFeature.ashx"/>

</ows:HTTP>
</ows:DCP>

<ows:Parameter name="AcceptVersions">
<ows:AllowedValues>

<ows:Value>2.0.0</ows:Value>
</ows:AllowedValues>

</ows:Parameter>
</ows:Operation>
<ows:Operation name="DescribeFeatureType">

<ows:DCP>
<ows:HTTP>

<ows:Get xlink:href="http://localhost/WFS/GetFeature.ashx"/>
<ows:Post xlink:href="http://localhost/WFS/GetFeature.ashx"/>

</ows:HTTP>
</ows:DCP>
<ows:Parameter name="outputFormat">

<ows:AllowedValues>
<ows:Value>application/gml+xml; version=3.2</ows:Value>

</ows:AllowedValues>
</ows:Parameter>

</ows:Operation>
<ows:Operation name="GetFeature">

<ows:DCP>
<ows:HTTP>

<ows:Get xlink:href="http://localhost/WFS/GetFeature.ashx"/>
<ows:Post xlink:href="http://localhost/WFS/GetFeature.ashx"/>

</ows:HTTP>
</ows:DCP>
<ows:Parameter name="outputFormat">

<ows:AllowedValues>
<ows:Value>application/gml+xml; version=3.2</ows:Value>

</ows:AllowedValues>
MapXtreme 9.5 Developer Guide 463

</ows:Parameter>
</ows:Operation>
<ows:Operation name="ListStoredQueries">

<ows:DCP>
<ows:HTTP>

<ows:Get xlink:href="http://localhost/WFS/GetFeature.ashx"/>
<ows:Post xlink:href="http://localhost/WFS/GetFeature.ashx"/>

</ows:HTTP>
</ows:DCP>

</ows:Operation>
<ows:Operation name="DescribeStoredQueries">

<ows:DCP>
<ows:HTTP>

<ows:Get xlink:href="http://localhost/WFS/GetFeature.ashx"/>
<ows:Post xlink:href="http://localhost/WFS/GetFeature.ashx"/>

</ows:HTTP>
</ows:DCP>

</ows:Operation>
<ows:Constraint name="ImplementsSimpleWFS">

<ows:NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue>

</ows:Constraint>
<ows:Constraint name="KVPEncoding">

<ows:NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue>

</ows:Constraint>
<ows:Constraint name="XMLEncoding">

<ows:NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue>

</ows:Constraint>
</ows:OperationsMetadata>
<wfs:FeatureTypeList>
<wfs:FeatureType xmlns:miwfs="http://www.mapinfo.com/wfs">

<Name>miwfs:Deletes</Name>
<Title>Title for Deletes</Title>
<Abstract>Abstract for Deletes</Abstract>
<ows:Keywords>

<ows:Keyword>Fifteen</ows:Keyword>
</ows:Keywords>
<wfs:DefaultCRS>urn:ogc:def:crs:EPSG::32615</wfs:DefaultCRS>
<ows:WGS84BoundingBox>

<ows:LowerCorner>-92.999549019421679 4.5240149772284033</ows:LowerCorner>
<ows:UpperCorner>-92.999549019421679 4.5240149772284033</ows:UpperCorner>

</ows:WGS84BoundingBox>
</wfs:FeatureType>
</wfs:FeatureTypeList>
<fes:Filter_Capabilities>

<fes:Conformance>
<fes:Constraint name="ImplementsQuery">

<ows:NoValues/>
<ows:DefaultValue>TRUE</ows:DefaultValue>

</fes:Constraint>
MapXtreme 9.5 Developer Guide 464

 23 – Web Feature Service
<fes:Constraint name="ImplementsSpatialFilter">
<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
<fes:Constraint name="ImplementsMinTemporalFilter">

<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
<fes:Constraint name="ImplementsTemporalFilter">

<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
<fes:Constraint name="ImplementsMinSpatialFilter">

<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
<fes:Constraint name="ImplementsFunctions">

<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
<fes:Constraint name="ImplementsExtendedOperators">

<ows:NoValues/>
<ows:DefaultValue>FALSE</ows:DefaultValue>

</fes:Constraint>
</fes:Conformance>

</fes:Filter_Capabilities>
</wfs:WFS_Capabilities>
</WFS_Capabilities>

DescribeFeatureType

After finding the available feature type with GetCapabilities request, the
DescribeFeatureType request asks for detailed information about one or more of the
available feature types. In MapXtreme a WFS feature type is represented by a table, and
a WFS feature is equivalent to a row of information from a table. The response to a
DescribeFeatureType request includes the name of the feature type (the name of the
table) and the names and types of the properties (names and types of the columns) in the
table. The results are returned in an XML schema document in GML format.

DescribeFeatureType is supported via HTTP GET and HTTP POST. The Schema
returned will have the form whereby each property in the feature type becomes an
element.

MapXtreme does not return the following column types as properties:

• MIDbType.Binary

• MIDbType.CoordSys

• MIDbType.Grid
MapXtreme 9.5 Developer Guide 465

• MIDbType.Key

• MIDbType.Raster

• MIDbType.Style

The following shows a portion of a DescribeFeatureType response document. In this
case, the request is for a feature type called USA. The USA feature type has several
properties represented by the geometry column OBJ, and data columns for State and
State_Name.

<schema xmlns:miwfs="http://www.mapinfo.com/wfs"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns="http://www.w3.org/2001/XMLSchema"targetNamespace="http://www.mapinfo.com
/wfs" attributeFormDefault="unqualified" elementFormDefault="qualified">
<xs:import namespace="http://www.opengis.net/cite/data"
schemaLocation="http://localhost/WFS/GetFeature.ashx?REQUEST=DescribeFeatureTyp
e&SERVICE=WFS&VERSION=2.0.0&TYPENAMES=cdf:Fifteen"/>
<xs:import namespace="http://www.mapinfo.com/mxt"
schemaLocation="http://localhost/WFS/GetFeature.ashx?REQUEST=DescribeFeatureTyp
e&SERVICE=WFS&VERSION=2.0.0&TYPENAMES=mxt:Other"/>
<xs:import namespace="http://www.opengis.net/cite/geometry"
schemaLocation="http://localhost/WFS/GetFeature.ashx?REQUEST=DescribeFeatureTyp
e&SERVICE=WFS&VERSION=2.0.0&TYPENAMES=cgf:Points"/>
<xs:import namespace="http://www.opengis.net/gml/3.2"
schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
<xs:import namespace="http://www.opengis.net/wfs/2.0"
schemaLocation="http://schemas.opengis.net/wfs/2.0/wfs.xsd"/>
<xs:element name="Deletes" type="miwfs:Deletes_Type"
substitutionGroup="gml:AbstractFeature"/>
<xs:complexType name="Deletes_Type">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element name="id" nillable="false" type="xs:string" minOccurs="0"
maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</schema>

GetFeature

Once you know the available feature types and their properties, the final step to retrieving
WFS feature information is sending a GetFeature request. This request specifies which
feature and properties to fetch. GetFeature is supported via HTTP POST and HTTP GET.

The following is a portion of a sample GetFeatureResponse for a feature type called USA.
MapXtreme 9.5 Developer Guide 466

 23 – Web Feature Service
<cdf:Fifteen xmlns:wfs="http://www.opengis.net/wfs/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns="http://www.opengis.net/cite/data"xmlns:xsi="http://www.w3.org/2001/XMLSc
hema-instance" xmlns:cdf="http://www.opengis.net/cite/data" gml:id="Fifteen.1"
xsi:schemaLocation="http://www.opengis.net/wfs/2.0
http://schemas.opengis.net/wfs/2.0/wfs.xsd http://www.opengis.net/cite/data
http://182.71.43.203:8080/WFS/GetFeature.ashx?REQUEST=DescribeFeatureType&SERVI
CE=WFS&VERSION=2.0.0&TYPENAME=cdf:Fifteen">
<gml:pointProperty>

<gml:Point gml:id="Fifteen_b298de14-ef6f-4cbc-a021-f7e73ed70316"
srsName="urn:ogc:def:crs:EPSG::4326">

<gml:coordinates>-92.999549,4.524015</gml:coordinates>
</gml:Point>

</gml:pointProperty>
</cdf:Fifteen>

ListStoredQueries

A ListStoredQueries operation returns a list of stored queries currently maintained by the
WFS server. This operation is valid for WFS version 2.0.0 only.

ListStoredQueries is supported via HTTP GET and HTTP POST. For further details, see
the OGC Web Feature Service Implementation Specification.

The following is a portion of a sample ListStoredQueries response:

<wfs:ListStoredQueriesResponse xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fes="http://www.opengis.net/fes/2.0"xmlns:wfs="http://www.opengis.net/wfs
/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:ows="http://www.opengis.net/ows/1.1"xmlns:xlink="http://www.w3.org/1999/x
link" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs/2.0
http://localhost:8080/geoserver/schemas/wfs/2.0/wfs.xsd">

<wfs:StoredQuery id="urn:ogc:def:query:OGC-WFS::GetFeatureById">
<wfs:Title xml:lang="en">Get feature by identifier</wfs:Title>
<wfs:ReturnFeatureType/>

</wfs:StoredQuery>
</wfs:ListStoredQueriesResponse>

MapXtreme supports WFS 2.0.0 Simple Profile so only GetFeatureById stored query is
supported. Changing the StoredQueries.xml may have unknown behavior on the server
response.

DescribeStoredQueries

A DescribeStoredQuery operation returns detailed metadata about each stored query
maintained by the WFS server. This operation is valid for WFS version 2.0.0 only.
MapXtreme 9.5 Developer Guide 467

A description of an individual query may be requested by providing the ID of the specific
query. If no ID is provided, all queries are described.

The following is a portion of a sample DescribeStoredQuery response:

<wfs:DescribeStoredQueriesResponse xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fes="http://www.opengis.net/fes/2.0"xmlns:wfs="http://www.opengis.net/wfs
/2.0" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:ows="http://www.opengis.net/ows/1.1"xmlns:xlink="http://www.w3.org/1999/x
link" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs/2.0
http://localhost:8080/geoserver/schemas/wfs/2.0/wfs.xsd">

<wfs:StoredQueryDescription id="urn:ogc:def:query:OGC-WFS::GetFeatureById">
<wfs:Title xml:lang="en">Get feature by identifier</wfs:Title>
<wfs:Parameter name="ID" type="xs:string"/>
<wfs:QueryExpressionText isPrivate="true"

language="urn:ogc:def:queryLanguage:OGC-WFS::WFS_QueryExpression"
returnFeatureTypes=""/>

</wfs:StoredQueryDescription>
...
</wfs:DescribeStoredQueriesResponse>

Configuring a WFS 2.0.0 Server
If you have spatial data that you wish to make available to others, first of all, you must
configure a WFS server to describe what data and capabilities you are offering. There are
three configuration files that you need to provide to accomplish this. This discussion
assumes you have a working knowledge of schemas and web services.

You do not need to configure a WFS server if you are only interested in accessing
someone else’s WFS server to retrieve features. See Using the MapXtreme WFS Client
Programmatically.

The main configuration steps that are addressed in this section are:

Step1: Create or modify a Web.config file to include the MapXtreme-specific WFS
information and the correct handlers for IIS classic or integrated pipeline mode.

Step 2: Create a valid WFS Server configuration file that contains information about the
data you are hosting. This file must validate against the WFS schema file
(MXP_WFSConfiguration_2_0.xsd) to avoid errors when you run the WFS Server.

Step 3: Configure and test the WFS Server setup. Instructions for IIS 7, IIS 8.5 and IIS 10
configuration are provided.
MapXtreme 9.5 Developer Guide 468

 23 – Web Feature Service
On the MapXtreme product media, we provide sample Web.config, WFS configuration
and StoredQueries.xml files that you can use as a guide for creating your own files. The
Web.config file defines how the ASP process is handled. The WFSSample.xml defines
the data sources and feature definitions you want your WFS server to provide.

The StoredQueries file defines the stored queries supported by the server. WFS 2.0.0
server Simple Profile supports only GetFeatureById. There is no need to change this file
while setting up WFS 2.0.0 server.

The schemas for the MapXtreme workspace and WFS 2.0.0 server are also located on
the product media.

Step 1: Create a Web.config File
The Web.config is a standard configuration file for a web application. To use it for a
MapXtreme WFS server, you must edit it to provide MapXtreme-specific WFS information
and to define how the ASP.NET process will be handled.

1. Create a folder to contain the Web.config and the WFSSample.xml. In this example,
the location is called c:\wfs.

2. Copy the Web.config, WFSSample.xml and StoredQueries.xml from the MapXtreme
product media folder “WFS_Config_Files\WFS2.0” to this folder.

3. Open Web.config in a text editor and modify the <appSettings"> line to point to the
WFS configuration file.

<configuration>

<appSettings>
<add key="configFile" value="C:\wfs\WFSSample.xml" />

4. For IIS 7/8.5/10 classic mode, update the version number and PublicKeyToken (if
necessary) for the MapInfo.Wfs.Server and the MapInfo.CoreEngine assemblies
installed on your system (bold type below).

Assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32 or GAC_64.

<system.web>
<httpHandlers>

<add verb="GET,POST" path="*.ashx" type="MapInfo.Wfs.WfsHttpHandler,
MapInfo.Wfs.Server, Version=9.2.0.XXX, Culture=neutral,
PublicKeyToken=4ac3224575145b20"/>

</httpHandlers>
<httpModules>

<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,
Version=9.2.0.XXX, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator" />

 </httpModules>
MapXtreme 9.5 Developer Guide 469

5. For IIS 7/8.5/10 Integrated pipeline mode, copy the following section into the
web.config. You do not need to comment out the <system.web> section to run in
integrated pipeline mode. However, if you need to run in IIS 7 classic mode, you must
comment out this <system.webServer> section.

Follow the instructions in step 4 to update the assembly versions for
MapInfo.CoreEngine and MapInfo.Wfs.Server.

<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<directoryBrowse enabled="true" />

<modules>
<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,

Version=9.2.0.XXX, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator"/>

</modules>
<handlers>

<add name="WFSHandler" verb="GET,POST" path="*.ashx"
type="MapInfo.Wfs.WfsHttpHandler, MapInfo.Wfs.Server, Version=9.2.0.XXX,
Culture=neutral, PublicKeyToken=4ac3224575145b20"/>

</handlers>
</system.webServer>

6. Save this file and copy it to the location you created in step 1.

Step 2: Create a Valid WFS Configuration File for Hosted
Features
The WFSSample.xml is a WFS configuration file provided with MapXtreme Media folder
“WFS_Config_Files\WFS2.0”. This file defines information about your WFS server,
including its name, title, abstract, the URL to the WFS Server and the data you want to
host.

1. Open WFSSample.xml in a text editor and modify the OnlineResource line to include
the URL of your WFS Server. Change localhost to what is appropriate for your WFS
server.

<mxp-wfs:Service>
<mxp-wfs:Name>Sample WFS Server</mxp-wfs:Name>
<mxp-wfs:Title>Sample WFS Server</mxp-wfs:Title>
<!-- The following is the URL of the WFS server -->
<mxp-wfs:OnlineResource>http://localhost/wfs/GetFeature.ashx</mxp-

wfs:OnlineResource>
</mxp-wfs:Service>

You can modify other elements as you see fit, including the server name, title, abstract,
fees, access constraints and more.
MapXtreme 9.5 Developer Guide 470

 23 – Web Feature Service
2. Register the tables that the WFS serves by creating a Table element for each table.
The value for the <mxp-wfs:DataSourceDefinition> id must match the value for <mxp-
wfs:Name>. You can include the tables in any order.

3. In the <DataSourceDefinitionSet>, modify the MYPATH variable to reflect the actual
path to your data.

The following is a portion of the WFSSample.xml that identifies two tables of features.

<mxp-wfs:Table>
<mxp-wfs:Name>USA</mxp-wfs:Name>
<mxp-wfs:Title>Title for usa</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for USA</mxp-wfs:Abstract>
<mxp-wfs:Keywords>Keywords for USA</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:TABFileDataSourceDefinition id="USA">
<mxp:DataSourceName>USA</mxp:DataSourceName>
<mxp:FileName>MYPATH\USA.TAB</mxp:FileName>

</mxp:TABFileDataSourceDefinition >
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>
<mxp-wfs:Table>

<mxp-wfs:Name>US_HIWAY</mxp-wfs:Name>
<mxp-wfs:Title>Title for US_HIWAY</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for US_HIWAY</mxp-wfs:Abstract>
<mxp-wfs:Keywords>Keywords for US_HIWAY</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:TABFileDataSourceDefinition id="US_HIWAY">
<mxp:DataSourceName>US_HIWAY</mxp:DataSourceName>
<mxp:FileName>MYPATH\US_HIWAY.TAB</mxp:FileName>

</mxp:TABFileDataSourceDefinition >
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>

4. If your WFS will be hosting data that is stored on a RDBMS, specify <ConnectionSet>
and <ConnectionMember> elements, following the example below:

<mxp:ConnectionSet>
<mxp:DBConnection dbType="sqlserver">

 <mxp:ConnectionName>sqlserver2k</mxp:ConnectionName>
 <mxp:ODBCConnectionString>DRIVER={SQL
Server};DATABASE=YOURDB;Server=YOURSERVER;UID=YOURUSER;PWD=YOURPASSWORD;QuotedI
D=No;Trusted_Connection=No;Network=DBMSSOCN;Address=YOURSERVER,YOURSERVERPORT</
mxp:ODBCConnectionString>
 </mxp:DBConnection

</mxp:ConnectionSet>
...

<mxp-wfs:Table>
<mxp-wfs:Name>MySQLServerTable</mxp-wfs:Name>
<mxp-wfs:Title>Title for MySQLServerTable</mxp-wfs:Title>
<mxp-wfs:Abstract>Abstract for MySQLServerTable</mxp-wfs:Abstract>
MapXtreme 9.5 Developer Guide 471

<mxp-wfs:Keywords>Keywords for MySQLServerTable</mxp-wfs:Keywords>
<mxp:DataSourceDefinitionSet>

<mxp:DBDataSourceDefinition id="MySQLServerTable">
<mxp:DataSourceName>MySQLServerTable</mxp:DataSourceName>
<mxp:ConnectionMember>

<mxp:ConnectionName>my_sqlserver2000_advserver</mxp:ConnectionName>
</mxp:ConnectionMember>
<mxp:DBQuery>

<mxp:Query>select * from MySQLServerTable</mxp:Query>
</mxp:DBQuery>
<mxp:DBDataSourceMetadata/>

</mxp:DBDataSourceDefinition>
</mxp:DataSourceDefinitionSet>

</mxp-wfs:Table>

Step 3: Configuring and Testing the WFS 2.0.0 Server
Once you have edited the Web.config and WFSSample.xml files, you must register your
WFS server with Internet Information Services and finally, test your setup.

1. Create an Application Pool in IIS 7 or above. Based on the Web Service you want to
run i.e., 32-bit or 64-bit, set the application pool to enable or disable 32-bit or 64-bit as
needed.

2. Set the Integrated or Classic mode of pool based on the WFS server configuration.

3. Add new application to the just added application pool.

4. Enable Directory Browsing for application settings.

5. Test your setup by sending a GetCapabilities request from a web browser. In the
address box type:

http://localhost/wfs/GetFeature.ashx?REQUEST=GetCapabilities&SERVICE=WFS&VERS
ION=2.0.0

substituting your web server for localhost. If you have set an Alias to your web server,
be sure to include that in your URL. For example:

http://localhost/My_WFS/GetFeature.ashx?REQUEST=GetCapabilities&SERVICE=WFS&V
ERSION=2.0.0.

A successful test will return a web page similar to the illustration below. If the
capabilities are not returned, review your configuration files to ensure everything has
been entered correctly.
MapXtreme 9.5 Developer Guide 472

 23 – Web Feature Service
6. To learn about the properties for the returned feature types, send a
DescribeFeatureType request:

http://localhost/My_wfs/GetFeature.ashx?REQUEST=DescribeFeatureType&SERVICE=
WFS&VERSION=2.0.0&Typename=miwfs:USA

This request returns a description of the properties for the feature type USA, including
column names such as, State, State_Name, FIPS_Code etc.

7. To request features from the USA table, send a GetFeature request.

http://localhost/My_wfs/GetFeature.ashx?REQUEST=GetFeature&SERVICE=WFS&VERSIO
N=2.0.0&Typename=miwfs:USA&propertyname=miwfs:State_Name&count=1
MapXtreme 9.5 Developer Guide 473

This request returns one feature from the USA table as a FeatureCollection. Notice in
the URL that we requested only one column property State_Name for the USA table.

8. To find out all the Stored Queries supported by the server send a request as

http://localhost/My_wfs/GetFeature.ashx?REQUEST=ListStoredQueries&SERVICE=WFS
&VERSIO N=2.0.0

WFS 2.0.0 Simple Profile only supports GetFeatureById so only this query will be
returned in the result.

9. To get the details about the Stored Queries what all parameters are required and their
return types send a request as below.

http://localhost/My_wfs/GetFeature.ashx?REQUEST=DescribeStoredQueries&SERVICE
=WFS&VERSIO N=2.0.0
MapXtreme 9.5 Developer Guide 474

 23 – Web Feature Service
Using the MapXtreme WFS Client
Programmatically
MapXtreme comes with a WFS Client that you can use programmatically to access data
from OGC-compliant Web Feature Services. The MapXtreme WfsClient provides the
ability to interact with any WFS 1.0.0 and WFS 2.0.0 compliant Server at the API level.
The WfsClient and related classes are located in the MapInfo.Wfs.Client namespace and
use the WFS Basic portion of the OGC specification.

Using the WfsClient class, you can call the following methods on any WFS 1.0.0 and
WFS 2.0.0 compliant server: GetCapabilities, DescribeFeatureType, and GetFeature.
With WFS 2.0.0 you can call two additional methods ListStoredQueries and
DescribeStoredQueries.

public void MapInfo_Wfs_Client(RequestMethod requestMethod, string
wfsServerUrl, string wfsServerVersion)
{
 int httpRequestTimeOut = 1000000;

 // First we need to create WfsClient object.
 MapInfo.Wfs.Client.WfsClient objWfsClient = new WfsClient(wfsServerUrl,
wfsServerVersion, httpRequestTimeOut);

 // Now get the list of capabilities and list out the tables available
 MapInfo.Wfs.Client.WfsCapabilities capabilities =
objWfsClient.GetCapabilities(requestMethod);

 // Get list of the stored queries currently maintained by the WFS server
 StoredQueries supportedListStoredQueries =
objWfsClient.ListStoredQueries(requestMethod);

 foreach (MapInfo.Wfs.Client.StoredQuery sq in
supportedListStoredQueries.ListStoredQueries){
MapXtreme 9.5 Developer Guide 475

 System.Console.WriteLine("\nStoredQuery: " + sq.id);
 }

 // call DescribeFeature() to get the table schema.
 // call GetFeature() to get Features:
 // MultiFeatureCollection usa = objWfsClient.GetFeature(TypeNames,
null, null, -1, null);
 // create a new mem table with table schema

 // Get detailed metadata about all stored query maintained by the WFS
server, if the server version is 2.0.0.
 StoredQueryDescriptions storedQueriesDescs =
objWfsClient.DescribeStoredQueries(requestMethod);

 foreach (StoredQueryDescription storedQueryDesc in
storedQueriesDescs.StoredQueryDescriptionList){
 System.Console.WriteLine("\n StoredQueryDescription: " +
storedQueryDesc.Id);
 }

 // Get detailed metadata about a single stored query maintained by the WFS
server, if the server version is 2.0.0.
 string storedQueryId = "urn:ogc:def:query:OGC-WFS::GetFeatureById";
//assign stored query Id here.

 StoredQueryDescription storedQueriesDesc =
objWfsClient.DescribeStoredQueries(requestMethod, storedQueryId);

 System.Console.WriteLine("\n StoredQueryDescription: " +
storedQueriesDesc.Id);

}

Using Filters in WFS Queries
Filters can be applied to a GetFeature request using the IFilter interface. A filter may
either be spatial or non-spatial (scalar). Spatial queries such as Bbox and Within allow
you to get features that exist in a certain area. Scalar filters allow you to query against
specific properties of a feature type. Compound filters like AND and OR may also be
used.

MapXtreme WFS supports the following filter operations.

• Spatial operators: BBox, Equals, Disjoint, Intersects, Within, Contains

• Non-spatial comparison operators: Logical operators: AND, OR, and NOT;
PropertyIsEqualTo, PropertyIsGreaterThan, PropertyIsGreaterThanOrEqualTo,
PropertyIsLessThan, PropertyIsLessThanOrEqualTo, PropertyIsNotEqualTo,

• Simple arithmetic operators: Add, Div, Mul, Sub
MapXtreme 9.5 Developer Guide 476

 23 – Web Feature Service
 The HTTP protocol mandates a URL length for a GetFeature request of no more
than 2048 characters. Keep in mind that a filter could easily create a URL much
larger than that, which will cause an exception.

Code Example: Requesting Features Using Filters

The following C# code example illustrates how filters on WFS data can be used to return
only the data you need. In this case, we query the WFS server to learn what features are
available, then request that it return only features that match the population column of
WorldCap with a value of 1,000,000 or greater. The output from the GetCapabilities and
GetFeatures methods is displayed after the code example.

private void doWFS()
 {

string wfsUrl = @"http://localhost/MXTWFS/GetFeatures.ashx";
string wfsVersion = "2.0.0";

/// first we need to get the list of capabilities and list out the tables ///
available

MapInfo.Wfs.Client.WfsCapabilities capabilities =
MapInfo.Wfs.Client.WfsClient.GetCapabilities(

MapInfo.Wfs.Client.RequestMethod.GET, wfsUrl, wfsVersion);
MapInfo.Wfs.Client.FeatureTypeList featureTypeList =

capabilities.FeatureTypeList;
IList featureTypes = featureTypeList.FeatureTypes;

foreach (MapInfo.Wfs.Client.FeatureType featureType in featureTypes)
 {

System.Console.WriteLine("FeatureType: " + featureType.Name);
 }

/// Now we can look at a specific table to see its contents
string featureTypeName = "miwfs:WorldCap"; // Name taken from

/// the above output
MapInfo.Data.MultiFeatureCollection mfc =

MapInfo.Wfs.Client.WfsClient.GetFeature(wfsUrl,
new string[] { featureTypeName }, null, "GML3", -1, null,

wfsVersion);
 DisplayFeatureCollection(mfc[0]);

 /// Now we can apply a filter
MapInfo.Wfs.Client.IFilter filter = new

MapInfo.Wfs.Client.PropertyIsGreaterThanOrEqualTo(
new MapInfo.Wfs.Client.PropertyName(wfsUrl, "CAP_POP"),
new MapInfo.Wfs.Client.Literal("1000000"));

/// Create the Query container
///
MapXtreme 9.5 Developer Guide 477

IList queries = new MapInfo.Wfs.Client.Query[] {
new MapInfo.Wfs.Client.Query(new
MapInfo.Wfs.Client.TypeName("http://www.mapinfo.com/wfs",

"WorldCap"), null, filter)};

/// Run the filter and return the subset.
///

mfc = MapInfo.Wfs.Client.WfsClient.GetFeature(wfsUrl,
queries, "GML3", -1, wfsVersion);

DisplayFeatureCollection(mfc[0]);
 }

The output of the above GetCapabilities code is:

FeatureType: miwfs:Ocean
FeatureType: miwfs:WldCty25
FeatureType: miwfs:World
FeatureType: miwfs:WorldCap

The first GetFeature call returns all the features (rows) in WorldCap, a portion of which is
shown below. The first line shows the columns for the WorldCap data, the remaining lines
show the individual rows of data.

Obj, Capital, Country, Cap_Pop, MI_Style,
Point,Abidjan,IVORY COAST,2700000,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Abu Dhabi,UNITED ARAB
EMIRATES,722000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Accra,GHANA,949000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Addis Ababa,ETHIOPIA,1423111,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Agana,GUAM,132726,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Algiers,ALGERIA,1483000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Alma-ata,KAZAKHSTAN,1108000,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Alofi,NIUE,3300,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Amman,JORDAN,936000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Amsterdam,NETHERLANDS,694656,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
...

From the filtered GetFeature call, only those rows of data that satisfy
PropertyIsGreaterThanOrEqualTo a population of 1,000,000 are returned. Notice Abu
Dhabi is not included in the results since its population is listed as 722,000.

Obj, Capital, Country, Cap_Pop, MI_Style,
Point,Abidjan,IVORY COAST,2700000,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Addis Ababa,ETHIOPIA,1423111,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Algiers,ALGERIA,1483000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
MapXtreme 9.5 Developer Guide 478

 23 – Web Feature Service
Point,Alma-ata,KAZAKHSTAN,1108000,MapInfo.Styles.SimpleVectorPointStyle: 12
point,
Point,Ankara,TURKEY,2553000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Baghdad,IRAQ,3400000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
Point,Baku,AZERBAIJAN,1115000,MapInfo.Styles.SimpleVectorPointStyle: 12 point,
...

Filtering with a Spatial Operator

The following example shows how to use a spatial query in a GetFeature request. In this
case, it is asking for all the rows in the Europe table that satisfy the specified minimum
bounding rectangle. This is accomplished using the spatial operator Bbox, a typical
spatial operation that most WFS servers support.

/// Now lets find rows in an MBR

// WGS84 - Europe
 MapInfo.Geometry.DRect bbox = new MapInfo.Geometry.DRect(-11.69,
35.36, 48.77, 65.05);
 mfc = MapInfo.Wfs.Client.WfsClient.GetFeature(
 wfsUrl,
 new string[] { featureTypeName },
 bbox,
 null,
 "GML3",
 -1);
 DisplayFeatureCollection(mfc[0]);

Creating a Map Layer from a WFS Response
If you wish to bring WFS feature data into MapXtreme as a map layer for further analysis,
it is necessary for you to run code that parses the GML and creates a
MultiFeatureCollection.

Parsing the WFS Response

Parsing the response is not specified in the WFS specification, nor does the specification
describe an exact format for the results of a GetFeature request. The WFS specification
only states that the request must be at least GML2. Since there are many versions of
GML2, and in order for the MapXtreme WFS client to be able to correctly convert the
GML2 response from a WFS Server, you must create a parser to convert the GML2
GetFeature response to a MapXtreme MapInfo.Data.MultiFeatureCollection. This is done
by implementing the IWfsReader interface and registering that implementation with the
MapInfo.Wfs.Client.WfsReaderFactory class. Registration must occur on a per URL and
MapXtreme 9.5 Developer Guide 479

wfs version basis, that is, if you want to interact with two WFS Servers that have the same
GetFeature response, the specific IWfsReader implementation must be registered twice
for each server URL.

The following code example illustrates the complete process from requesting features to
creating a map layer and displaying the features in a map. The code for this example is
contained in the WfsClient sample application located in the Samples folder under your
MapXtreme installation.

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Xml.Schema;

using MapInfo.Data;
using MapInfo.Engine;
using MapInfo.Mapping;
using MapInfo.Wfs.Client;

namespace MapInfo.Wfs.Client.Samples {

/// <summary>
/// Simple sample to demonstrate how to register a WfsReader to handle
/// requests from a specific Wfs server, get the capabilities of the server,
/// get the schema for a feature type located on the server and getting all
/// of the features from the server.
/// </summary>
class SimpleSample {

private const string URL = "http://www.mapinfo.com/miwfs";

 private const string defaultExportFileName = "WfsClient.gif";

[STAThread]
static void Main(string[] args) {

 string exportFileName = defaultExportFileName;
 if (args.Length > 0 && args[0] != null && args[0].Trim().Length != 0)
exportFileName = args[0];

// register URL with a specific WFS reader
WfsReaderFactory.RegisterHandler(URL, typeof(WfsReader));

// Get the WFS capabilities of the WFS server using the HTTP GET method.
try
{

// Get the WFS capabilities of the WFS server using the HTTP GET
method.

WfsCapabilities Capabilities =
WfsClient.GetCapabilities(RequestMethod.GET, URL);

}

MapXtreme 9.5 Developer Guide 480

 23 – Web Feature Service
catch
{

MessageBox.Show("Please check if " + URL + " is a valid WFS URL");
return;

}

// Do something with the the WfsCapabilities here...

// Get the schema for the USA feature type
string[] TypeNames = new string[] { "miwfs:USA" };

// Do something with the schema here...
XmlSchema usaSchema = WfsClient.DescribeFeatureType(URL, TypeNames);

// Get all features from the USA feature type
MultiFeatureCollection usa = WfsClient.GetFeature(URL, TypeNames, null,

null, -1, null);
IFeatureCollection fc = usa[0];

// iterate over the Usa MultiFeatureCollection and add each
// IFeatureCollection to a MemTable, etc...
TableInfoMemTable memTableInfo = new TableInfoMemTable("myMemTable");
foreach (Column c in fc.Columns) {

memTableInfo.Columns.Add(c);
}
Table memTable = Session.Current.Catalog.CreateTable(memTableInfo);
memTable.InsertFeatures(fc);

// create a layer from the MemTable
FeatureLayer featureLayer = new FeatureLayer(memTable);

// create the map and add the layer
Map map = Session.Current.MapFactory.CreateEmptyMap(new Size(500, 500));
map.Layers.Add(featureLayer);

 // export the map to a file
 using (MapExport mx = new MapExport(map))
 {
 mx.Format = ExportFormat.Gif;
 mx.Export(exportFileName);
 }

// clean up the map
Session.Current.MapFactory.Remove(map);

}
}

}

MapXtreme 9.5 Developer Guide 481

MapXtreme 9.5 Developer Guide 482

24

24 – Web Map Service
MapXtreme provides the ability to deploy and access Web Map
Services (WMS) so that you can get WMS maps from a variety of
sources or provide maps to others.

In this chapter:
 Introduction to MapXtreme’s Web Map Service484
 Understanding WMS Operations .484
 Code Example: Requesting a WMS Layer.487
 WMS and Coordinate Systems .488
 MapXtreme WMS and Authentication .489
 Setting up a MapXtreme WMS Server .490
 Configuring Layer Information for a WMS Server 499

Introduction to MapXtreme’s Web Map Service
The MapXtreme Web Map Service (WMS) allows clients to request and servers to deliver
spatially referenced map images over the Internet or private intranet. MapXtreme gives
you the tools to both deploy a WMS Server for others to query, and supports the
incorporation of WMS Client capabilities into your application to request images from a
WMS Server. The WMS Server and Client implementations are based on the 1.3.0
OpenGIS® Web Map Service Implementation Specification, which can be found at
www.opengis.org. The MapXtreme WMS Server meets the compliancy requirements for
the 1.3.0 and 1.1.1 Web Map Service.

 For more information on WMS 1.3.0 support, see the MapXtreme Release Notes.

A basic WMS classifies its geo-referenced information holdings into layers and offers
predefined styles in which to display those layers. A WMS that conforms to the OGC
specification may support the transparent pixel definition for some image formats as well.
Transparent pixels allow you to use retrieved WMS images as raster overlays and not
solely as the background layer for a map. The quantity and quality of data available is
determined by the individual WMS Server.

There is a growing amount of geo-spatial data available, provided by governments,
corporations, and other organizations, that users can retrieve to enhance the accuracy
and completeness of their maps. Companies with land use and water use data can add
elevation and population information from the U.S. Census Bureau, or from a local data
provider. Combining traffic pattern data with store location information can provide insight
into establishing additional store locations or can optimize marketing and product
placement efforts. As a developer, you can customize routing requests to include
particular hotel, attraction, or vacation destinations by extending the WMS code. The
possibilities are limited only by your need and your imagination.

Understanding WMS Operations
MapXtreme WMS follows the 1.3.0 and 1.1.1 OGC specifications for basic WMS service.
There are three WMS operations:

• GetCapabilities

• GetMap

• GetFeatureInfo
MapXtreme 9.5 Developer Guide 484

http://www.opengeospatial.org/standards/wms

http://www.opengeospatial.org/standards/wms

 24 – Web Map Service
GetCapabilities

Before requesting a WMS map, it is necessary to find out the names of available layers,
styles in use, spatial information in use, and other information that the WMS server
provides. GetCapabilities is an HTTP request that retrieves service-level metadata over
the Internet or intranet, including the server name, the layer names, abstracts about the
data and the acceptable request parameters.

In MapXtreme, GetCapabilities is the first step in collecting information from a WMS
server. The capabilities are then used to request a map image.

GetMap

Once you know the capabilities of the WMS server, a GetMap request is issued to request
a map image of one or more of the WMS server’s map layers. Based on the WMS Server
capabilities, a GetMap request includes the following.

• Version–Request version

• Layers–one or more layers of map data

• Styles–display styles for rendering the layers. If this is not specified, default styles will
be used.

• A bounding box–the area to be included in the map image in

• CRS–for WMS 1.3.0, or SRS (WMS 1.1.1) the coordinate reference system for the
map in the form of namespace:identifier.

• Output format–a MIME type such as GIF and PNG, for the output map image

• Output size–height and width in pixels of the map image

• Background color–a hexadecimal red-blue-green color value such as 0xFFFFFF
(required when transparency is true)

• Transparency–a true/false setting that indicates if the layer can be used as a
transparent overlay to other layers.

GetFeatureInfo

Once a GetMap request has been successfully completed the user may want further
information about the features included in the map. The GetFeatureInfo operation returns
information regarding the layers in the map and the queryable attributes of each layer.
This operation is controlled by the WMS Server, however, the server may not offer this
capability.
MapXtreme 9.5 Developer Guide 485

Using MapXtreme as a WMS Client
You can request a WMS map image programmatically using the MapXtreme WMS client
via MapInfo.Data.TableInfoWMS. This section provides code snippets that illustrate how
to use MapXtreme as a WMS client. In addition, a WMSPreview sample application is
located in the Desktop samples folder after installation.

GetCapabilities

In MapXtreme, you do not call GetCapabilities directly. Your request for a map is
contained in a call using an WMSClient that takes a capabilities instance as input.

// build the capabilities
ICapabilities capabilities = WmsClientUtilities.GetCapabilities

(url, "1.3.0");

// create the WMS client
WmsClient wmsClient = new WmsClient(capabilities);
wmsClient.AddLayer("WORLD");
wmsClient.Srs = "EPSG:4326";
wmsClient.BGColor = Color.Blue;
wmsClient.MimeType = "image/gif";

You must supply the URL to the server you wish to reach. The version is optional. The
MapXtreme Client appends the required information following the ? in an HTTP request
to make a complete request of the server’s capabilities. For example:

http://www.mapsanddata.xyz/gis/services/maps/hydrography/MapServer/WMSServer?re
quest=GetCapabilities&service=WMS&version=1.3.0

If the version is not specified and you are accessing a MapXtreme WMS Server that
supports both, then the response for 1.3.0 is returned.

There is are overloaded methods that take an array of strings for the version number. The
order of the versions is dependent on what you are looking for. The first successful match
is returned.

GetCapabilities also supports user defined parameters in a request. Use the method that
takes a NameValueCollection. See the Developer Reference for details.

The GetCapabilities response is returned in an XML document that MapXtreme reads
and from which it creates the capabilities object.

GetMap

MapXtreme takes care of calling GetMap for you when you place a table object
representing the request as a layer in your MapXtreme map. The code example below
builds on the example in the GetCapabilities section.
MapXtreme 9.5 Developer Guide 486

 24 – Web Map Service
// create the table info
TableInfoWms wmsTableInfo= new TableInfoWms

("MyWmsTable", wmsClient);

// create the table
Table wmsTable = Session.Current.Catalog.OpenTable(wmsTableInfo);

// creates a FeatureLayer from the table entry
FeatureLayer featLyr = new FeatureLayer(wmsTable);

For more information on TableInfoWms see WMS in the Supported Table Types on
page 172. See also the TableInfoWms class in the Developer Reference.

GetFeatureInfo

The input for a GetFeatureInfo request are the bounds of a map and the pixel coordinates
where the user clicked on the map with an Info tool.

// Get the feature info

Byte[] info = WmsClientUtilities.GetFeatureInfo(new DRect(45.0, 45.0, 90, 90),
640, 480, new String[] {"WORLD"}, new Point(300,200), "text/xml"));

MemoryStream memoryStream = new MemoryStream(byteArray);
memoryStream.Seek(0, SeekOrigin.Begin);
XmlDocument doc = new XmlDocument();
doc.Load(memoryStream);
//parse the xml doc as desired.

Code Example: Requesting a WMS Layer
To request a WMS layer programmatically with MapXtreme, follow the code example
below.

 MapXtreme’s implementation of WMS limits the size of the returned image to 4000
pixels each for width and height.

// build the capabilities
ICapabilities capabilities = WmsClientUtilities.GetCapabilities

(url, "1.1.1");

// create the WMS client
WmsClient wmsClient = new WmsClient(capabilities);
wmsClient.AddLayer("WORLD");
wmsClient.Srs = "EPSG:4326";
wmsClient.BGColor = Color.Blue;
wmsClient.MimeType = "image/gif";
MapXtreme 9.5 Developer Guide 487

// create the table info
TableInfoWms wmsTableInfo= new TableInfoWms

("MyWmsTable", wmsClient);

// create the table
Table wmsTable = Session.Current.Catalog.OpenTable(wmsTableInfo);

// creates a FeatureLayer from the table entry
FeatureLayer featLyr = new FeatureLayer(wmsTable);

WMS and Coordinate Systems
MapXtreme provides support for three CRS authority coordinate systems that can be
returned in a GetCapabilities request.

• CRS:84 - Longitude/latitude WGS 84. This is equivalent to EPSG:4236 in WMS 1.1.1.

• CRS:83 - Longitude/latitude NAD 83. This is equivalent to EPSG:4269 in WMS 1.1.1.

• CRS:27 - Longitude/latitude NAD 27. This is equivalent to EPSG:4267 in WMS 1.1.1.

In addition, the MapXtreme API provides a public method RegisterCRSCode() for you to
register other longitude/latitude projections in the CRS codespace.

Map and Image Bounds

EX_GeographicBoundingBox

The EX_GeographicBoundingBox is a new parameter for WMS 1.3.0 that defines the
minimum bounding rectangle of the layer in decimal degrees. Its purpose is to facilitate
geographic searches without requiring coordinate transformation by the search engine.

The attributes for EX_GeographicBoundingBox are westBoundLongitude,
eastBoundLongitude, southBoundLatitude, northBoundLatitude.
EX_GeographicBoundingBox is supplied regardless of what CRS the WMS server
supports. It may be approximate if the data are not natively in geographic coordinates.

The equivalent parameter in WMS 1.1.1 is LatLongBoundingBox with attributes minx,
miny, maxx and maxy in EPSG:4326 longitude/latitude.
MapXtreme 9.5 Developer Guide 488

 24 – Web Map Service
BoundingBox

Each layer delivered by a WMS 1.3 server must have at least one bounding box. The
coordinates are presented in the order required by the coordinate system authority. In the
example of an EPSG and CRS code, the bounding box coordinates are in reverse order
to each other.

<BoundingBox CRS="EPSG:4326" minx="-59.100605" miny="-86.389389"
maxx="16.755765" maxy="-32.336389"/>
<BoundingBox CRS="CRS:84" minx="-86.389389" miny="-59.100605" maxx="-32.336389"
maxy="16.755765"/>

This means for EPSG:4326, the minx is the southern most latitude and miny is the
western most longitude. For the CRS:84, minx is the western most longitude and miny is
the southern most latitude.

MapXtreme also supports optional BoundingBox attributes for resx resy to describe the
spatial resolution.

Image Stretching

WMS requires that the image returned from a GetMap request correspond to both the
BBOX and image size (WIDTH, HEIGHT) parameters. This is so that the returned image
not unreasonably stretched to fit the bounding box.

MapXtreme WMS and Authentication

Basic Authentication
MapXtreme's WMS Client implements support for managing the basic authentication
protocol when making service requests against a secured WMS server. The
authentication credentials can be defined on the WmsRequest object, prior to initiating
the service request, allowing for programmatic control of the authentication via the API. If
the WmsRequest does not have the proper credentials, and the client receives an
Unauthorized error message from the server, a Windows dialog, prompting the user for
the credentials, will be displayed. The use of the credentials dialog may be disabled, in
which case the authentication exception is returned directly to the calling application for
handling.

Upon successful authentication with a WMS Server, the credentials for the server will be
cached for the lifetime of the client session. The client can make subsequent WMS
requests to the server, or make requests to other servers, with or without authentication,
without having to re-authenticate.
MapXtreme 9.5 Developer Guide 489

To support integration of authentication into existing MapXtreme WMS Client
implementations, the semantics of the WmsRequest UserDefinedParameters have been
extended to include support for a set of well-known authentication parameters, which
maps directly to the set of authentication properties on the WmsRequest object model.
Setting the authentication properties via the object model directly, or indirectly via the
UserDefinedParameters has the exact same effect.

For more information, see the WmsRequest class in the Developer Reference.

Setting up a MapXtreme WMS Server
MapXtreme provides a WMS server that is compliant with the OGC WMS 1.3.0 and 1.1.1
specifications.

To set up your own WMS Server you must configure a server connection to IIS and create
the XML file necessary for providing the data connection required to host a Web Map
Service. We assume you have a working knowledge of WMS and the MapXtreme
workspace schema???.

The WMS Server runs inside of Microsoft Internet Information Services (IIS). The
following are the configuration steps for setting up a WMS Server.

Step1: Create or modify a Web.config file to include the MapXtreme-specific WMS
information and the correct handlers for IIS classic or integrated pipeline mode.

Step 2: Create a valid WMS configuration file that contains information about the data
you are hosting. This file must validate against the WMS schema file
(MXP_WMS_Configuration_1_2.xsd) to avoid errors when you run the WMS Server.

Step 3: Configure and test the WMS Server setup. Instructions for IIS7 and IIS6
configuration are provided.

On the MapXtreme product media, we provide sample Web.config and WMS
configuration files that you can review and modify for your own needs. The Web.config
file defines how the ASP.NET process is handled and the WMS server’s relationship to
MapXtreme. The WMSSample.xml defines the data sources and layer definitions that you
can use as a model for your WMS server implementation.

Step 1: Create a Web.config File
The Web.config is a standard configuration file for a web application. Here the file is
modified to provide MapXtreme-specific WMS information and to define how the
ASP.NET process will be handled.
MapXtreme 9.5 Developer Guide 490

 24 – Web Map Service
MapXtreme supports IIS 7/8.5/10 in both classic and Integrated pipeline modes.

1. Create a folder to contain the Web.config and the configuration file WMSSample.xml.
In this example, the location is called c:\wms. Copy the Web.config and
WMSSample.xml from the MapXtreme product media to this folder.

2. Open Web.config In a text editor and modify the <appSettings"> line to point to the
WMS configuration file.

<configuration>
<appSettings>

<add key="configFile" value="C:\wms\WMSSample.xml" />

3. For IIS 7/8.5/10 classic mode, update the version number and PublicKeyToken (if
necessary) for the MapInfo.Wms.Server and the MapInfo.CoreEngine assemblies
installed on your system (bold type below).

Assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32 or GAC_64.

<system.web>
<httpHandlers>

<add verb="GET,POST" path="*.ashx" type="MapInfo.Wms.WmsHttpHandler,
MapInfo.Wms.Server, Version=9.x.x.x, Culture=neutral,
PublicKeyToken=4ac3224575145b20"/>

</httpHandlers>
<httpModules>

<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,
Version=9.x.x.x, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator" />

 </httpModules>

4. For IIS 7/8.5/10 Integrated pipeline mode, copy the following section into the
web.config. You do not need to comment out the <system.web> section to run in
integrated pipeline mode. However, if you need to run in IIS 7/8.5/10 classic mode, you
must comment out this <system.webServer> section.

Follow the instructions step 3 to update the assembly versions for
MapInfo.CoreEngine and MapInfo.Wms.Server.

<system.webServer>
<validation validateIntegratedModeConfiguration="false"/>
<directoryBrowse enabled="true" />

<modules>
<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,

Version=9.x.x.x, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator"/>

</modules>
<handlers>

<add name="WMSHandler" verb="GET,POST" path="*.ashx"
type="MapInfo.Wms.WmsHttpHandler, MapInfo.Wms.Server, Version=9.x.x.x,
Culture=neutral, PublicKeyToken=4ac3224575145b20"/>
MapXtreme 9.5 Developer Guide 491

</handlers>
</system.webServer>

5. Save the web.config file and copy it to the location you created in step 1.

Step 2: Create a Valid WMS Configuration File for Hosted Data
The WMSSample.xml is a WMS configuration file provided with MapXtreme. This file
defines information about your WMS server, including its name, title, abstract, the URL to
the WMS Server and the data you want to host.

1. Open WMSSample.xml in a text editor and modify <mxp-wms:OnlineResource> line to
point to your WMS Server.

You can modify other elements as you see fit, including the server name, title, abstract,
keyword lists and vocabularies, contact information, fees, and access constraints.

<mxp-wms:Service>
<mxp-wms:Name>Sample WMS Server</mxp-wms:Name>
<mxp-wms:Title>Sample WMS Server</mxp-wms:Title>
<mxp-wms:Abstract>This is a sample WMS server</mxp-wms:Abstract>
<mxp-wms:KeywordList>

<mxp-wms:Keyword vocabulary="ISO 19115:2003">biota</mxp-wms:Keyword>
<mxp-wms:Keyword vocabulary="ISO 19115:2010">biota</mxp-wms:Keyword>
<mxp-wms:Keyword>rivers</mxp-wms:Keyword>

</mxp-wms:KeywordList>
<!-- The following is the URL of your WMS server, here assume it is

localhost -->
<mxp-wms:OnlineResource>http://localhost:port/WMS/GetMap.ashx</mxp-

wms:OnlineResource>
<mxp-wms:Fees>$10</mxp-wms:Fees>
<mxp-wms:AccessConstraints>none</mxp-wms:AccessConstraints>

</mxp-wms:Service>

2. Register your data layers by modifying the paths in the <DataSourceDefinitionSet>.
Every layer you wish to serve on your WMS needs an entry. The following is a portion
of the WMSSample.xml that identifies TAB files for a sample WMS Server:

<!-- The following data sources reference local TAB files, you need to
replace MYPATH with the real path to those tab files. -->

<TABFileDataSourceDefinition id="id1" readOnly="false"
xmlns="http://www.mapinfo.com/mxp">

<DataSourceName>STATES</DataSourceName>
<FileName>MYPATH\USA.TAB</FileName>

</TABFileDataSourceDefinition>
<TABFileDataSourceDefinition id="id2" readOnly="false"

xmlns="http://www.mapinfo.com/mxp">
<DataSourceName>US_HIWAY</DataSourceName>
<FileName>MYPATH\US_HIWAY.TAB</FileName>
MapXtreme 9.5 Developer Guide 492

 24 – Web Map Service
</TABFileDataSourceDefinition>
<TABFileDataSourceDefinition id="id5" readOnly="false"

xmlns="http://www.mapinfo.com/mxp">
<DataSourceName>OCEAN</DataSourceName>
<FileName>MYPATH\OCEAN.TAB</FileName>

</TABFileDataSourceDefinition>

3. Describe the layers you want to host on your WMS server under the <mxp-
wms:WMSLayer> section. You will need one entry for every layer you plan to offer on your
WMS server. Layers can also be nested so that by requesting a parent layer, all the
child layers are included in the response.

The following example is the entry for a single layer called States. The bold text below
call out the elements added in support of WMS 1.3.0.

For more information about how to build these entries, see Configuring Layer
Information for a WMS Server.

<mxp-wms:WmsLayer>
<mxp-wms:Name>States</mxp-wms:Name>
<mxp-wms:Title>States</mxp-wms:Title>
<mxp:SRSName>EPSG:4326</mxp:SRSName>
<mxp-wms:Attribution type="FGDC:1998">

<mxp-wms:Title>Attribution</mxp-wms:Title>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/metadata/roads.txt">
</mxp-wms:OnlineResource>
<mxp-wms:LogoURL width="500" height="600">

<mxp-wms:Format>text/plain</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/metadata/roads.txt">
</mxp-wms:OnlineResource>

</mxp-wms:LogoURL>
</mxp-wms:Attribution>
<mxp-wms:MetadataURL type="FGDC:1998">

<mxp-wms:Format>text/plain</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/metadata/roads.txt" />
</mxp-wms:MetadataURL>
<mxp-wms:MetadataURL type="ISO19115:2003">

<mxp-wms:Format>text/xml</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/metadata/roads.xml" />
</mxp-wms:MetadataURL>
<mxp-wms:FeatureListURL>

<mxp-wms:Format>text/xml</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/featurelist/feature1.xml" />
</mxp-wms:FeatureListURL>
<mxp-wms:FeatureListURL>

<mxp-wms:Format>text/plain</mxp-wms:Format>
MapXtreme 9.5 Developer Guide 493

<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="simple" xlink:href="http://localhost/featurelist/feature2.xml" />

</mxp-wms:FeatureListURL>
<mxp-wms:WmsStyleSet>

<mxp-wms:WmsStyle>
<mxp-wms:Name>BlueFill</mxp-wms:Name>
<mxp-wms:Title>Blue Fill</mxp-wms:Title>
<mxp-wms:Abstract>This is a blue area fill with a red border.</mxp-

wms:Abstract>
<mxp-wms:LegendURL width="100" height="100">

<mxp-wms:Format>image/gif</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/WMS/legends/1.gif" />
</mxp-wms:LegendURL>
<mxp-wms:LegendURL width="200" height="200">

<mxp-wms:Format>image/gif</mxp-wms:Format>
<mxp-wms:OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="http://localhost/WMS/legends/2.gif" />
</mxp-wms:LegendURL>
<AreaStyle xmlns="http://www.mapinfo.com/mxp">

<!-- The following defines the red border -->
<LineStyle stroke="red" width="1" width-unit="mapinfo:imagesize

pixel">
<Pen>mapinfo:pen 2</Pen>

</LineStyle>
<!-- The following defines the blue fill -->
<Interior fill-opacity="0" fill="(#id7)">

<Defs>
<Pattern id="id7">

<Bitmap uri="mapinfo:brush 2">
<ColorAdjustmentSet>

<ColorAdjustment color-1="nonWhite" color-2="blue" opacity="1"/>
<ColorAdjustment color-1="white" opacity="1"/>

</ColorAdjustmentSet>
</Bitmap>

</Pattern>
</Defs>

</Interior>
</AreaStyle>

</mxp-wms:WmsStyle>
</mxp-wms:WmsStyleSet>
<mxp-wms:MinScaleDenominator>10</mxp-wms:MinScaleDenominator>
<mxp-wms:MaxScaleDenominator>20</mxp-wms:MaxScaleDenominator>
<FeatureLayer id="id8" name="STATES" alias="STATES" volatile="unknown"

xmlns="http://www.mapinfo.com/mxp">
<DataSourceRef ref="id1"/>

</FeatureLayer>
</mxp-wms:WmsLayer>

4. Save WMSSample.xml after you are through adding feature layer information.
MapXtreme 9.5 Developer Guide 494

 24 – Web Map Service
Register your WMS server with Internet Information Services (IIS) and test your setup.
Follow the instructions for IIS7

Step 3a: Configure and Test the WMS Server using IIS 7/8.5/10
1. Right-click on your WMS folder (for example, c:\wms) and choose Properties. Select

the Sharing tab and click the Share button. Add the IUSR account to the user list. Click
Share, then Done to return to the Properties dialog. Click the Security tab. Add IUSR
account to the security list.

For information on setting up permissions for the IUSR account, see Understanding
Built-In User and Group Accounts in IIS 7/8.5/10.

2. Open the IIS 7 manager. Right-click on Sites and then choose Add Website from the
menu. In the dialog that displays, name your site (e.g., "WMS") and navigate to the
physical path of the WMS folder. Click the Connect As button and ensure that
application use is checked. Assign a free port number to the website, or use the
default 80. Click OK.

3. Click Application Pools in the left pane. Right-click on the new application pool that
IIS7 has created for your WMS website ("WMS") and choose Advanced Settings.
Change the .Net Framework Version to 'v4.0' Click OK.
MapXtreme 9.5 Developer Guide 495

http://learn.iis.net/page.aspx/140/understanding-built-in-user-and-group-accounts-in-iis/
http://learn.iis.net/page.aspx/140/understanding-built-in-user-and-group-accounts-in-iis/

Step 3b: Configure and Test the WMS Server with IIS7/8.5/10
1. Right-click on your WMS folder (for example, c:\wms) and choose Sharing and

Security. From the Web Sharing tab, choose the Share this folder radio button. If you
wish to set an alias for your web server, click the Add button and supply a name in the
dialog.
MapXtreme 9.5 Developer Guide 496

 24 – Web Map Service
2. Open IIS (From the Start menu > Control Panel > Administrative Tools > Internet
Information Services). Expand the Default Web Site and locate your WMS server (by
folder name or by alias, if you use one).

3. Right-click on the Web site and choose Properties. Under the ASP.NET tab, choose
4.0.30319 for the ASP.NET version (The MapXtreme assemblies are compiled under
the 4.8 Framework).

4. In the same Properties dialog, under the Directory Security tab, click the Edit button at
the top right. In the Authentication Method dialog box, select the Anonymous Access
check box. This allows users of your WMS service to skip the username/password
authentication process. Click OK twice and close the IIS window.

5. Test your setup by sending a GetCapabilities request from a web browser. In the
address box type:
MapXtreme 9.5 Developer Guide 497

http://localhost/wms/GetMap.ashx?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=
1.3.0

substituting your web server for localhost. If you have set an Alias to your web server,
be sure to include that in your URL. For example:

http://localhost/My_WMS/GetMap.ashx?REQUEST=GetCapabilities&SERVICE=WMS&VE
RSION=1.3.0

A successful test will return a web page similar to the illustration below. If the
capabilities are not returned, review your configuration files to ensure everything has
been entered correctly. Since you are creating the configuration files by hand, It is very
easy to include typos or have missing tags.

6. If you make any changes to the WMSSample.xml after you access the WMS Server,
you will need to reset IIS in order for your changes to take affect. To reset IIS, from a
command prompt type:

c:\>IISreset

7. To request a test map image, send a GetMap request, following the example below:

http://My_Wms/GetMap.ashx?service=WMS&VERSION=1.3.0&SRS=epsg:4267&REQUEST=Get
Map&LAYERS=States&STYLES=&BBOX=-
180,0,0,90&WIDTH=800&HEIGHT=600&FORMAT=image/gif

The WMS server returns a map image of the States layers.
MapXtreme 9.5 Developer Guide 498

 24 – Web Map Service
Configuring Layer Information for a WMS
Server
Layers are described in a WMS Server configuration file according to elements laid out in
the MXP_WMSConfiguration_1_2.xsd schema. New for WMS 1.3 are in bold. These
elements include:

• Name–a name of the layer that is used to reference the layer in requests.

• Title–a name of the layer that is readable by the user.

• Abstract–a longer narrative description of the layer.

• KeywordLIst and Vocabulary attribute–List of keywords or keyword phrases to help
catalog searching. Vocabulary indicates the authority of the keywords.

• SRSNameSet–the spatial reference system(s) that applies to this layer. If more than
one SRS can be used on the layer, each one can be listed. This list is unordered and
applies to parent and child layers.

• Attribution–identifies the source of the geographic information.

• MetadataURL–a link to detailed, standardized metadata about the data corresponding
to a particular layer.

• FeatureListURL–points to a list of the features represented in a Layer.

• MinScaleDenominator and MaxScaleDenominator–define the appropriate range of
scales for a WMS map
MapXtreme 9.5 Developer Guide 499

• WmsStyleSet–An unordered set of pre-defined styles supported by this layer and any
child layers. The WmsStyleSet is a collection of WmsStyles, each bearing a name,
title, abstract and reference to a style definition. Each style can have a LegendURL
that points to an image of a legend for that style.

WMS layers can be made up of a single layer of data or a hierarchical collection of layers.
A basic implementation of WMS allows the client to specify which layers it needs, as well
as the coordinate system and styles for those layers that will be rendered as a map
image.

Your job, as developer of a WMS Server, is to decide how to assemble your data into
WMS layers. For example, you may have geographic data broken out into 10 separate
.TAB files, such as boundary files, point files and polyline files. In your WMS configuration
file, you can represent these 10 layers as a single WMS layer or you can keep them as
individual layers. If your data is offered to a WMS client as a single layer, the client will get
all 10 layers represented in a single WMS image. In this case, the client cannot separate
out the information they do not want.

If, however, you provide the 10 layers as individual layers, the WMS client can choose
one, some or all of those layers to be returned in a single image, or perhaps in multiple
images, depending on their needs. You must decide when configuring your WMS Server
how much flexibility you will offer users.

You can also nest your layers so that by requesting the parent layer, the child layers are
included in the map image.

Using a MapXtreme Workspace to Build a WMS Configuration File

To build up the layer information in your WMS configuration file, consider extracting
information about each layer from a previously saved MapXtreme Workspace (.MWS).

The following is an excerpt from an .MWS created with MapXtreme Workspace Manager
that defines a layer called "World Countries". The .MWS layout is an XML file that follows
the schema contained in MXP_Workspace_1_5.xsd.

<FeatureLayer id="id10" name="World Countries" alias="world" volatile="unknown">
 <Visibility visible="true">
 <VisibleRange enabled="false">
 <ZoomRange uom="mapinfo:length mi" minInclusive="true"
maxInclusive="false">0 0</ZoomRange>
 </VisibleRange>
 </Visibility>
 <DataSourceRef ref="id4" />
 </FeatureLayer>
MapXtreme 9.5 Developer Guide 500

 24 – Web Map Service
Now, this same layer information is contained in a WMS configuration file. Notice the
information is nearly identical, except that each tag contains "mxp:" to indicate these
elements belong to the MapXtreme workspace schema (MXP_Workspace_1_5.xsd).

<mxp:FeatureLayer id="id10" name="World Countries" alias="world"
volatile="unknown">

<mxp:Visibility visible="true">
<mxp:VisibleRange enabled="false">

<mxp:ZoomRange uom="mapinfo:length mi" minInclusive="true"
maxInclusive="false">0 0</mxp:ZoomRange>

</mxp:VisibleRange>
</mxp:Visibility>
<mxp:DataSourceRef ref="id4" />

</mxp:FeatureLayer>

You can build your layers by designing them in Workspace Manager and copying the
information into your WMS configuration file. See Chapter 27 Workspace Manager.

Feature Layers and More

You are not limited to including Feature layer information in your WMS layers. For
example, you can also capture label, themes and style overrides in Workspace Manager
and paste those sections in your WMS Configuration file.

Here is a portion of an .MWS that defines a graduated symbol theme for a population
layer. Notice that every element that defines the theme is captured here. When you paste
this into your WMS configuration file, remember to include in each element mxp:

<ObjectThemeLayer id="id8" name="Graduated Symbol Theme on World Capitals by
Cap_Pop" alias="GraduatedSymbolThemeLayer1" volatile="unknown">
 <Visibility visible="true">
 <VisibleRange enabled="false">
 <ZoomRange uom="mapinfo:length mi" minInclusive="true"
maxInclusive="false">0 0</ZoomRange>
 </VisibleRange>
 </Visibility>
 <DataSourceRef ref="id4" />
 <FeatureGraduatedSymbolTheme id="id9">
 <Alignment>
 <HorizontalAlignment>center</HorizontalAlignment>
 <VerticalAlignment>center</VerticalAlignment>
 </Alignment>
 <SymbolBaseSize useScale="false">
 <MapScale>1.0</MapScale>
 <DataValueAtSize>20000000</DataValueAtSize>
 <PositiveSymbol>
 <PointStyle>
 <FontSymbol size="18" size-unit="mapinfo:length pt"
stroke="red" stroke-opacity="1" text=""" family="MapInfo 3.0 Compatible" />
 </PointStyle>
 </PositiveSymbol>
MapXtreme 9.5 Developer Guide 501

 <NegativeSymbol visible="false">
 <PointStyle>
 <FontSymbol size="18" size-unit="mapinfo:length pt"
stroke="blue" stroke-opacity="1" text=""" family="MapInfo 3.0 Compatible"
/>
 </PointStyle>
 </NegativeSymbol>
 <SymbolGraduation>sqrt</SymbolGraduation>
 </SymbolBaseSize>
 <SymbolLayout />
 <NumericValueExpression>
 <AttributeName>Cap_Pop</AttributeName>
 </NumericValueExpression>
 <SymbolLegendRowOverrideSet>
 <SymbolLegendRowOverride visible="false" row="4" />
 <SymbolLegendRowOverride visible="false" row="5" />
 <SymbolLegendRowOverride visible="false" row="6" />
 </SymbolLegendRowOverrideSet>
 </FeatureGraduatedSymbolTheme>
 </ObjectThemeLayer>
MapXtreme 9.5 Developer Guide 502

25

25 – Vector Tile Service
MapXtreme provides the ability to deploy an XYZ Vector Tile Server. It
supports the Mapbox Vector Tile (MVT) format for tile generation.
Mapbox Vector Tile is an open standard that specifies a space-efficient
encoding format for tiled geographic vector data using Google Protocol
Buffers. This vector format can be used as an alternative to raster
image formats (PNG, GIF, and JPG/JPEG) in the Map Tiling Service
and the Web Map Tile Service (WMTS).

In this chapter:
 Introduction to Vector Tiles . 504
 MapXtreme Vector Tile Service . 504
 Setting up a MapXtreme Vector Tile Server 504
 Configuring Server Metadata Parameters 510

Introduction to Vector Tiles
Vector tiles are square shaped portions of map called tiles. It enables you to deliver map
data in small chunks to a browser or other client application for map visualization
purposes. The small file size enable faster map rendering and better performance.

Vector tiles contains vector geometries and metadata such as road names, place names
or house numbers in structured format. Vector tiles can be rendered on request by a
client, like a web browser or a mobile app or a desktop GIS application. They can also be
rendered on the fly on a server.

Vector tiles offer the following advantages over raster tiles.

• Tiles can be produced more quickly.

• Compared to a tiled raster map, data transfer is also greatly reduced.

• Map Styles can be changed without downloading more content as styling can be
applied at the client end itself.

MapXtreme Vector Tile Service
MapXtreme 9.2 provides the ability to deploy an XYZ Vector Tile Server. It supports the
Mapbox vector tile (MVT) format for tile generation. Mapbox Vector Tile is an open
standard that specifies a space-efficient encoding format for tiled geographic vector data
using Google Protocol Buffers. This vector format can be used as an alternative to raster
image formats (PNG, GIF, and JPG/JPEG) in the Map Tiling Service, the Web Map Tile
Service (WMTS). For more information about the MVT format, see Mapbox specification.

Setting up a MapXtreme Vector Tile Server
This section contains the guidelines for setting up and consuming an ASP.NET vector tile
server using MapXtreme 9.2.

To set up your own Vector Tile Server you must configure a server connection to IIS and
create the XML file necessary for providing the data connection required to host a Vector
Tile Service.

On the MapXtreme product media, we provide sample Web.config and Vector Tile Server
configuration files that you can review and modify for your own needs. The Web.config
file defines how the ASP.NET process is handled and the Vector Tile server’s relationship
to MapXtreme. The VTSample.xml defines the tile sets that you can use as a model for
your Vector Tile server implementation.
MapXtreme 9.5 Developer Guide 504

https://www.mapbox.com/vector-tiles/specification/

 25 – Vector Tile Service
After installation, these sample files along with a sample Leaflet Client are also placed at
the following path:

C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudioxxxx\Web\Features\VectorTiling.

Configure a Vector Tile Server
The Vector Tile Server runs inside of Microsoft Internet Information Services (IIS). The
following are the configuration steps for setting up a Vector Tile Server.

Step 1: Create a Web.config File
The Web.config is a standard configuration file for a web application. Here the file is
modified to provide MapXtreme-specific Vector Tile Server information and to define how
the ASP.NET process will be handled.

MapXtreme supports IIS 7/8.5/10 in both Classic and Integrated pipeline modes.

1. Create a folder to contain the Web.config and the configuration file VTSample.xml. In
this example, the location is called c:\vts. Copy the Web.config and VTSample.xml
from the MapXtreme product media to this folder.

2. Open Web.config In a text editor and modify the <appSettings"> line to point to the
Vector Tile Server configuration file.

<appSettings>
<!-- Use this setting to specify the location of the VectorTile Server

configuration file -->
<add key="configFile" value="C:\Program

Files\MapInfo\MapXtreme\9.2.0\Samples\VisualStudio2015\Web\Features\VectorTil
ing\Server\VtSample.xml" />

 </appSettings>

3. For IIS 7/8.5/10 classic mode, update the version number and PublicKeyToken (if
necessary) for the MapInfo.VectorTile.Server and the MapInfo.CoreEngine assemblies
installed on your system (bold type below).

Assemblies are located in C:\Windows\Microsoft.NET\assembly\GAC_32 or GAC_64.

<system.web>
<customErrors mode="Off" />

<httpHandlers>
<add verb="GET,POST" path="*.mvt"

type="MapInfo.VectorTile.Server.HttpHandler,MapInfo.VectorTile.Server,
Version=9.2.0.xxx, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1" />
MapXtreme 9.5 Developer Guide 505

</httpHandlers>
<httpModules>

<add type="MapInfo.Engine.WebSessionActivator, MapInfo.CoreEngine,
Version=9.2.0.xxx, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
name="WebSessionActivator" />

 </httpModules>

4. For IIS 7/8.5/10 Integrated pipeline mode, copy the following section into the
web.config. You do not need to comment out the <system.web> section to run in
integrated pipeline mode. However, if you need to run in IIS 7/8.5/10 classic mode, you
must comment out this <system.webServer> section.

Follow the instructions step 3 to update the assembly versions for
MapInfo.CoreEngine and MapInfo.VectorTile.Server.

<system.webServer>
 <directoryBrowse enabled="true" />

<handlers accessPolicy="Read, Execute, Script">
<remove name="ISAPI-dll" />
<add verb="*" path="*.mvt" name="HttpHandler"

type="MapInfo.VectorTile.Server.HttpHandler,MapInfo.VectorTile.Server,
Version=9.2.X.X, Culture=neutral, PublicKeyToken=93e298a0f6b95eb1"
modules="IsapiModule"
scriptProcessor="C:\Windows\Microsoft.NET\Framework64\v4.0.30319\aspnet_isapi.d
ll" />

</handlers>
 </system.webServer>

5. Save the web.config file and copy it to the location you created in step 1.

Step 2: Create a Valid Vector Tile Service Configuration File for
Hosted Data
The VTSample.xml is a Vector Tile Server configuration file provided with MapXtreme.
This file defines information about your Vector Tile server, including the data you want to
host, the coordsys in which the data will be served, bounds of the tile grid, etc.

1. MapXtreme allows hosting of multiple tile sets over one server instance. Each tile set
should have a unique identifier (specified via its "id" attribute) and contains a
<DataSourceDefinitionSet>, which in turn can contain one or more map layers.
Register your map layers in an existing <TileSet> by adding map layers in its
<DataSourceDefinitionSet> or add a new <TileSet>. The following is a portion of the
VtSample.xml that defines a <TileSet> for a sample Vector Tile Server.

<!-- The following data sources reference local TAB files, you need to replace
MYPATH with the real path to those tab files. -->
MapXtreme 9.5 Developer Guide 506

 25 – Vector Tile Service
<mxp-vt:TileSets>
<mxp-vt:TileSet id="Set1" CacheEnabled="on">

<mxp:DataSourceDefinitionSet>
<mxp:TABFileDataSourceDefinition id="World">

<mxp:DataSourceName>World</mxp:DataSourceName>
<mxp:FileName>MYPATH\World.tab</mxp:FileName>

</mxp:TABFileDataSourceDefinition>
<mxp:TABFileDataSourceDefinition id="USA">

<mxp:DataSourceName>USA</mxp:DataSourceName>
<mxp:FileName>MYPATH\USA.tab</mxp:FileName>

</mxp:TABFileDataSourceDefinition>
</mxp:DataSourceDefinitionSet>

</mxp-vt:TileSet>
</mxp-vt:TileSets>

2. By default, the tiles of a <TileSet> are served in EPSG:3857 Coordsys with world
bounds. Optionally, you can also specify custom Coordsys and TileBounds. For
example,

<mxp-vt:TileSet id="Set2">
<mxp:DataSourceDefinitionSet>

<mxp:TABFileDataSourceDefinition id="World">
<mxp:DataSourceName>World</mxp:DataSourceName>
<mxp:FileName>MYPATH\World.tab</mxp:FileName>

</mxp:TABFileDataSourceDefinition >
<mxp:TABFileDataSourceDefinition id="Counties">

<mxp:DataSourceName>Counties</mxp:DataSourceName>
<mxp:FileName>MYPATH\UK.TAB</mxp:FileName>

</mxp:TABFileDataSourceDefinition>
</mxp:DataSourceDefinitionSet>

<mxp-vt:TargetCoordSys>
<mxp-vt:SRSName>EPSG:27700</mxp-vt:SRSName>

</mxp-vt:TargetCoordSys>

<mxp-vt:TileBounds minx="200000.0" miny="34000.0" maxx="700000.0"
maxy="600000.0"/>

</mxp-vt:TileSet>

3. By default, each tile of a <TileSet> is cached inside the directory specified by the
<Cache>/<CacheDir> element. This option can be turned off by setting the TileSet’s
CacheEnabled attribute to "off".

Register your Vector Tile server with Internet Information Services (IIS) and test your
setup. Follow the instructions for IIS7.

Step 3: Configure a Vector Tile Server using IIS 7/8.5/10
MapXtreme 9.5 Developer Guide 507

1. Right-click on your VTS folder (for example, c:\vts) and choose Properties. Select the
Sharing tab and click the Share button. Add the IUSR account to the user list. Click
Share, then Done to return to the Properties dialog. Click the Security tab. Add IUSR
account to the security list.

For information on setting up permissions for the IUSR account, see Understanding
Built-In User and Group Accounts in IIS 7/8.5/10.

2. Open the IIS 7 manager. Right-click on Sites and then choose Add Website from the
menu. In the dialog that displays, name your site (e.g., "MyVTSServer") and navigate
to the physical path of the VTS folder. Click the Connect As button and ensure that
application use is checked. Assign a free port number to the website, or use the
default 80. Click OK.

3. Click Application Pools in the left pane. Right-click on the new application pool that
IIS7 has created for your website and choose Advanced Settings. Change the .Net
Framework Version to 'v4.0' Click OK.
MapXtreme 9.5 Developer Guide 508

http://learn.iis.net/page.aspx/140/understanding-built-in-user-and-group-accounts-in-iis/

 25 – Vector Tile Service
Step 4: Testing the Vector Tile Server
Test your setup by requesting a tile from a web browser. In the address box type:

http://localhost/VTSER/GetTile/Set1/{z}/{y}/{x}.mvt

Substitute your web server for localhost.

A successful test will return a Mapbox vector tile, which is a binary stream and cannot be
viewed on a browser. However, the tiles that we get can be consumed by the sample
Leaflet Client present in the Samples folder along with the sample server.

The sample client is a small JavaScript application build on top of the Leaflet
MapBoxVectorTile Plugin (https://github.com/SpatialServer/Leaflet.MapboxVectorTile).

To access the data hosted over the sample server, you need to provide the server’s
GetTile url in the L.TileLayer.MVTSource API, as is done in VTClient.js.

var mvtSource = new L.TileLayer.MVTSource({
url:"http://localhost/VTSER/GetTile/Set1/{z}/{y}/{x}.mvt", debug: true,
clickableLayers: ["World","USA"], getIDForLayerFeature: function(feature) {
return feature.properties.id;
}

Now open the VTClient.html in any web browser to view the data hosted on the server.

If caching is enabled in the server metadata file, then the tiles will be cached in the
specified cacheDirectory.
MapXtreme 9.5 Developer Guide 509

When Error logging option is enabled and there is an exception, a log is generates at the
ErrorLogDir path C:\ErrorLog as specified in VtSample.xml.

If you make any changes to the VtSample.xml after you access the Vector Tiles Server,
you will need to reset IIS in order for your changes to take affect. To reset IIS, from a
command prompt type the following command.
c:\>IISreset

Configuring Server Metadata Parameters
Layers are described in a Vector Tile Server configuration file according to elements laid
out in the MXP_VT_Configuration.xsd schema. These elements include:

NamespaceUri - The namespace that the data is located in.

OnlineResource - The URL of this server.

TileSets - Holds the list of tile sets that this server will serve. At least one tile set must be
present in the list.

TileSet - Holds the description of a tile set. The server will serve the layers exactly in the
order in which the tables are defined here.

TargetCoordSys - The reference projection of the tiles served by this server for this tile
set. If not specified, EPSG:3857 (Web Mercator) coordsys will be used by default.

SRSName - A coordinate system identified in the form codespace:code.

TileBounds - Bounds used to form the tile grid for this tile set. If not specified, bounds of
the coordsys specified by the TargetCoordSys element will be used. If TargetCoordSys is
also not specified, then default bounds of EPSG:3857 coordsys, ie, (- 20026376.39, -
20048966.10, 20026376.39, 20048966.10) will be used.

ClippingBufferRatio - This ratio defines the buffer around the tiles at which the features
are clipped. Its default value is 0.001, which means that for tiles of extent 4096, the
default buffer size is (4096X0.001=) 4.

CacheDir - Cache Directory Path. If CacheEnabled is On for any TileSet, then this
element is mandatory. In such a case, the tiles of that tileset will be cached in separate
folder inside this directory. The folder name will be same as the identifier (value of the “id”
attribute) of this tile-set.

ErrorLog - Option to enable or disable to log the internal server Error for requested tiles.
It is Off by default.
MapXtreme 9.5 Developer Guide 510

 25 – Vector Tile Service
ErrorLogDir - ErrorLog Directory Path. By default, ErrorLogDir is temp path of the
system if ErrorLogEnabled is ON.
MapXtreme 9.5 Developer Guide 511

MapXtreme 9.5 Developer Guide 512

26

26 – Web Map Tile Service
Web Map Tile Service (WMTS) is an OGC Standard that provides a
solution to serve digital maps using pre-rendered map tiles of spatially
referenced data using tile images with predefined content, extent, and
resolution. For more details, refer OGC document Ref No 07-057r7
(http://portal.opengeospatial.org/files/?artifact_id=35326).

In this chapter:
 WMTS support in MapXtreme . 514
 WmtsClient Class . 514

WMTS support in MapXtreme
MapXtreme provides the ability to access pre-rendered map tiles hosted by an OGC
WMTS compliant server that supports HTTP GET requests with KVP (Key-Value Pair)
and/or REST(Representational State Transfer) encodings.

This is all possible through MapXtreme’s object model, an API of 100 percent managed
code that was developed on Microsoft’s .NET Framework. The Framework’s Common
Language Runtime (CLR) provides the foundation that makes simplified development a
reality.

There are two ways to consume a WMTS service in MapXtreme:

• For built-in support, use Tile Server TAB/XML files generated by MapInfo Pro similar to
Bing tile server tab file. For more information, see section WMTS (Web Map Tile
Service) of Chapter 18 of this document.

• Use WMTS client classes for customized support. MapXtreme’s MapInfo.Wmts
namespace provides WmtsClient class to access the OGC compliant WMTS servers
(without TAB file). The MapXtreme WmtsClient can request tiles served by a WMTS
server via APIs, and the application can then mosaic the tiles and clip them into a final
image.

In this chapter, we will explain the second approach.

WmtsClient Class
The WmtsClient is a concrete class that allows an application to communicate with OGC
compliant WMTS server. WmtsClient class have all the APIs support which are
mandatory for any OGC WMTS compliant servers i.e. GetCapabilities, GetTile and
optional GetFeatureInfo.

The WMTS interface allows a client to receive three types of resources in response to the
following three types of requests.

• GetCapabilities

• GetTile

• GetFeatureInfo

GetCapabilities

The client initiates interaction with a WMTS server by requesting its ServiceMetadata
document via a GetCapabilities request. In MapXtreme, this happens at the time of
instantiation of MapInfo.Wmts.WmtsClient object.
MapXtreme 9.5 Developer Guide 514

 26 – Web Map Tile Service
The ServiceMetadata document lists the layers and the tiles available in each layer, in
each graphical representation style, in each format, in each coordinate reference system,
at each scale, and over each geographic fragment of the total covered area. The
ServiceMetadata document also declares the communication protocols and encodings
(KVP or REST) through which the client can interact with the server.

GetTile

After fetching the ServiceMetadata document, the client can use the information in that
document to discover how to perform valid requests for tiles via GetTile requests.

A GetTile request contains the following parameters.

• Version - WMTS standard version, currently only version 1.0.0 is supported in
MapXtreme.

• Layer - Layer identifier

• Style - Style identifier

• Format - Output format of the tile (png, jpeg, etc.)

• TileMatrixSet - TileMatrixSet identifier

• TileMatrix - TileMatrix identifier

• TileRow - Row index of tile matrix

• TileCol - Column index of tile matrix

GetFeatureInfo

WMTS servers may support optional GetFeatureInfo requests for information about the
features present at a particular pixel location on a map tile. In such a case, the client can
make GetFeatureInfo requests by including the following parameters in addition to the
ones that are required in a GetTile request.

• J - Row index of a pixel within the tile.

• I - Column index of a pixel within the tile.

• InfoFormat - Output format of the retrieved information.

Code Example: Requesting a WMTS Layer

The following example demonstrates how to request a WMTS layer programmatically
with MapXtreme.

string wmtsUrl = @"http://maps.warwickshire.gov.uk/gs/gwc/service/wmts";
string version = "1.0.0";
MapXtreme 9.5 Developer Guide 515

// Create an instance of WmtsClient. This sends requests to fetch the
ServiceMetadata document.

MapInfo.Wmts.WmtsClient client = new MapInfo.Wmts.WmtsClient(wmtsUrl,
version);

//Capabilities property gives access to the ServiceMetadata document.
MapInfo.Wmts.IWmtsCapabilities capabilities = client.Capabilities;

//Create a GetTile request from capabilities.

MapInfo.Wmts.GetTileRequest tileRequest = new
MapInfo.Wmts.GetTileRequest();

//Select the first layer in the layers list.
IWmtsLayer firstLayer = capabilities.LayerInfos.First();

 tileRequest.Layer = firstLayer.Identifier;

//Select the first TileMatrixSet of the selected layer.
 tileRequest.TileMatrixSet =
firstLayer.TileMatrixSetLinks.First().TileMatrixSet;

IWmtsTileMatrixSet tileMatrixSet = null;

//Get the contents of selected tileMaxtrixSet from the list of
TileMatrixSets.

foreach (IWmtsTileMatrixSet tmSet in capabilities.TileMatrixSets)
{

if (tmSet.Identifier.Equals(tileRequest.TileMatrixSet))
{

tileMatrixSet = tmSet;
break;

}
}

// Select the first TileMatrix of the selected TileMatrixSet.
tileRequest.TileMatrix = tileMatrixSet.Matrices.First().Identifier;

// Select the first format in the list of supported image formats.
tileRequest.Format = firstLayer.Formats.First();

// Select the tile at position (0,0) in the tile-matrix.
tileRequest.TileRow = 0;
tileRequest.TileCol = 0;

//Execute the GetTile request.
byte[] tileBytes = client.GetTile(tileRequest);

System.Drawing.Image img = System.Drawing.Image.FromStream(new
MemoryStream(tileBytes));

Assertion.AssertEquals(img.RawFormat,
System.Drawing.Imaging.ImageFormat.Png);
MapXtreme 9.5 Developer Guide 516

 26 – Web Map Tile Service
//Check whether the server supports GetFeatureInfo operation.
if (capabilities.IsGetFeatureInfoSupported)
{

// Check if the layer is queryable, ie, any infoFormats are specified
for this layer.

if (firstLayer.InfoFormats != null && firstLayer.InfoFormats.Count()
> 0)

{
//Create a GetFeatureInfo request to retrieve feature info of pixel

(10,10) of the tile.
MapInfo.Wmts.GetFeatureInfoRequest fiRequest = new

MapInfo.Wmts.GetFeatureInfoRequest(tileRequest, 10, 10,
firstLayer.InfoFormats.First());

//Execute the GetFeatureInfo request.
byte[] featureInfo = client.GetFeatureInfo(fiRequest);

}
}

MapXtreme 9.5 Developer Guide 517

MapXtreme 9.5 Developer Guide 518

27

27 – Workspace Manager
The Workspace Manager utility that comes with MapXtreme enables
you to create and manage XML-based workspace files (.MWS format).
The Workspace Manager’s convenient user interface allows you to
easily assemble the tables that make up your map, apply many
additional settings, and save the map as a workspace. Your completed
workspace is then ready for use in your own applications, or for use in
print or file output.

In this chapter:
 Features of the Workspace Manager . 520
 Workspace Format and Contents . 521
 Workspace Manager Menu Commands . 521
 Layer Control . 533
 Export/Import Theme and Style . 548
 Using Workspace Manager Features . 549

Features of the Workspace Manager
The Workspace Manager allows you to control most of the settings that can be stored in a
workspace file. For example, a workspace can contain information about cartographic
legends and adornments; however, the Workspace Manager does not provide any
options for creating cartographic legends or adornments. To create cartographic legends
or adornments, use the API.

Through the Workspace Manager, you can:

• Load XML workspaces, tables, geosets, and MapInfo workspaces (.mws not .wor
files).

• Save workspaces as .MWS.

• Control which tables are opened as part of a workspace.

• Create and load named connections using the Named Connection Manager.

• Add, remove, and view one or more maps.

• Toggle among maps using the tabs across the top of the Map window.

• Set properties for map and layer visibility, layer and label styles, and themes with the
built in layer control.

• Add, remove, or alter custom labels.

• Create group layers, which allow you to organize your layers into logical groupings, so
that you can show or hide the entire group with a single click.

• View multiple next and previous map views.
MapXtreme 9.5 Developer Guide 520

 27 – Workspace Manager
• Use map tools for navigation and manual label placement, and use selection tools to
verify that layer selectability settings are correct.

• Preview and print maps.

• Quickly open recent workspaces from the recent file list

• Create translucent effects for maps, labels, and theme layers

• Create curved labels for polyline features.

• Add a graticule layer to your map.

• Reproject raster layers to current map window projection.

• Reproject a map window made up of raster and vector layers to a different projection.

• Add extensions to add custom functionality to Workspace Manager and Layer Control.

Workspace Format and Contents
The workspace file is an XML document (.MWS) that contains the locations, descriptions,
and metadata of all the maps, tables, layers, and settings that make up the workspace.
Because it is XML, the workspace is portable, which means that you can share the
workspace with other users working on different computers, on different networks, across
locales.

In MapXtreme, the portability of the XML workspace is implemented with named
connections. Named connections enable you to define alternative drive, path, and
database connection information based on your own environment, so that you can use
workspaces created by others. All paths and connection strings are resolved when the
workspace is opened. You can set up named connections directly in the Workspace
Manager (File > Manage Named Connections). For more information on the XML
workspace structure, please see Appendix C: Understanding the MapInfo Workspace.

Workspace Manager Menu Commands
This section explains each menu command available in the Workspace Manager.

File Menu Commands
The commands in the File menu provide all the standard File menu capabilities, such as
opening, saving and printing files, as well as some features unique to the Workspace
manager. Each command is described below.
MapXtreme 9.5 Developer Guide 521

New Workspace

Creates a new empty map to which you can then add tables using either the Add tool in
layer control or the Open Tables command from the File menu. If changes have been
made to the current workspace, you will be asked if you want to save the changes before
the new workspace is created.

Open

Opens an existing workspace or table. If changes have been made to the current
workspace, you will be asked if you want to save the changes before the existing
workspace is opened. The Open Tables command enables you to open one or more
tables and add them to your map.

Insert Workspace

Adds the maps and tables from one or more workspaces into the current workspace.

Close Workspace

Prompts you to save any changes and closed the workspace.

Save Workspace

Saves your map as a workspace.

Save As

Save a copy of the workspace to a new filename.
MapXtreme 9.5 Developer Guide 522

 27 – Workspace Manager
Save Using Named Connections

Saves named connection information to the workspace. See also Manage Named
Connections.

Close All Tables

The Close All Tables command closes all of the open tables.

Manage Tables

The Manage Tables command displays a dialog box that lists the tables that make up the
map and enables you to open additional tables for possible inclusion in the map. Click
Open to display the Open dialog box and open a table. The table you opened is added to
the list of open tables in the Manage Tables dialog box. Then you can add the table to the
map using the Add tool, which is located over the Workspace Manager layer control
window.

To close a table, click a table from the list to highlight it. The Close button is activated.
Click Close to close the table. Layers referencing the table you closed are removed from
the map.

A workspace can open tables that are not already in a map.

Manage Named Connections

A named connection describes a connection to a data source using an alias. You can
create the following types of named connections: FilePath, DatabaseSource, ODBC, or
Oracle OCI. After you specify the connect string or file path, you can save it as XML for
later retrieval. You can set a default connection so that when you run Workspace
Manager, the connection to your data source is available. Named connections are also
saved to the workspace.
MapXtreme 9.5 Developer Guide 523

Page Setup

The Page Setup command enables you to specify the paper size, orientation, and
margins of the printed map. You can also use this option to access printer-specific
settings.

Print

The Print command enables you to print your map to paper or file output. In the Print
dialog box, specify the printer to use, the page range you want to print if your job is
multiple pages, and the number of copies to print. Printer properties enable you to set
layout and other options that are specific to the printer you are using. The Print to file
check box enables you to print your output to a file.

Print Preview

Use the Print Preview command to see how your output is going to look before you print
it.

Recent Workspaces

Recent Workspaces shows a list of recently opened workspaces.

View Menu Commands
This menu allows you to show or hide Toolbars, Status Bar and Layer Control.
MapXtreme 9.5 Developer Guide 524

 27 – Workspace Manager
Map Menu Commands

Use the commands in the Map menu to add and remove maps, manipulate the view of
the map, and create thematic maps. The view commands are also available in a popup
menu. Right-click in the Workspace Manager map window to display the menu.

Manage Maps

From this menu the Manage Maps dialog appears where you can add or remove maps,
set a map as default, rename the map and/or alias and show/hide the legend tab (if map
has a legend). The New command enables you to create a new map window using the
tables that are currently open. The Manage Workspace Maps also provide the number of
layers and legends in the map.

Layer Control

This menu command allows you to bring up the Layer Control dialog. It is active when the
View > Layer Control is unchecked and Layer Control is not visible. For a description of
Layer Control’s features, see Layer Control Tools.

Change View

The Change View command enables you to change the current view of the map—that is,
what area of the map is currently displayed in the window. You can change the zoom and
scale of the map to your own settings. You can also set the center of the map window, or
change the rotation angle.
MapXtreme 9.5 Developer Guide 525

The Change View dialog box allows you to choose the units (miles, kilometers, etc.) for
the zoom width and for the center X/Y coordinates (meters, degrees, etc.). Whatever
units you choose in the Change View dialog box are also used in the layer control. For
example, if you want all distances in the layer control to be displayed in kilometers instead
of miles, display the Change View dialog box and choose kilometers from the units list
that appears next to the Zoom field.

View Entire Layer

Use the View Entire Layer command to see an entire layer, or all the layers in the map.
The View Entire Layer dialog box shows a list of the layers that make up the map. Select
the desired layer from the list, or choose All Layers so that all the layers are completely
in view, and click OK. The map redraws to display the entire layer.

Previous View

Use the Previous View command to return to the previous view of your map.

Next View

The Next View command is available after you have used Previous View. Use it to
redisplay the view of the map that was on the screen before you used the Previous View
command.

The Previous View and Next View commands can be used together to toggle back and
forth between two views of your map. These commands are also available as tools on the
toolbar.

Preserve Scale/Zoom

Use the Preserve Scale and Preserve Zoom commands to keep the zoom and/or the
scale the same as you change the size and shape of the map.
MapXtreme 9.5 Developer Guide 526

 27 – Workspace Manager
Redraw

Use the Redraw command to redraw the map.

View Selection

Use the View Selection command to zoom in or out on a selected object or objects.

Theme Wizard

You can create feature themes and label themes via the Map > Theme Wizard menu
command. Feature themes include ranged, individual value, dot density, graduated
symbol, and pie and bar charts. Label themes include ranged and individual value.

If your map includes at least one set of labels, which are displayed in a label layer, you
can create a label theme. A label theme assigns different label styles (colors, font size
etc.) to each label, based on the data in your table. For example, use a label theme to
show the prominence of locations over others. A ranged label theme groups labels based
on a similar data value, such as population. Cities that fall within a certain population
range are labeled using one style, while cities in other ranges are labeled in another style,
typically a less prominent style to indicate city size without having to label using the
population value.

The Theme Wizard walks you through 3 dialogs to create your theme.

To create a theme:

1. Choose Map > Theme Wizard.

The Create Theme: Step 1 of 3 dialog box appears.

2. Select either a Feature theme or a label theme, and choose the type of theme you
want to create.

3. Click Next.

The Create Theme: Step 2 of 3 dialog box appears.

4. Select the table you want to shade.

5. Choose the data you want to use. Select either a column from the table that contains
the data, or select Expression to use an expression to derive the data you want from
the table.

6. Click Next.
MapXtreme 9.5 Developer Guide 527

The Create Theme: Step 3 of 3 dialog box appears. Here you can customize theme
type settings, styles, and the legend. (See How to Apply Translucent Effects to
Themes for instructions on applying translucency effects to a thematic map.)

7. Click Apply to apply the customized settings.

8. Click OK when you are finished.

The Ignore Zeros option on the Step 2 of 3 dialog is available when creating Pie and Bar
chart themes and IndividualValue themes on Features or Labels. Note that when this
option is set, the performance of the theme building operation in Workspace Manager
may be affected.

To modify a theme, highlight the theme in the Layer tree and click the Theme tab that
displays. Click the Modify Theme button to make any changes to the theme.

To remove the theme from the Layer list, right-click on the name of the theme and choose
Remove. You can also rename the theme and show/hide this layer from the Layer tree.

Tools Menu Commands
The Workspace Manager’s Tools menu provides access to the map tools via menu
commands. These tools enable you to zoom in and out on the map, change the position
of the map, and select map objects in various ways. These same tools are also available
on the Workspace Manager toolbar. Each tool is explained below.
MapXtreme 9.5 Developer Guide 528

 27 – Workspace Manager
Arrow

This is a basic pointing tool. It does not select map features.

Zoom In

Use the Zoom In tool to get a closer area view of your map. To zoom in on a map:

1. Choose Tools>Zoom In to activate the tool.

Your cursor changes to a magnifying glass with a plus sign in it.

2. Click on your map.

The map redraws at a closer area view, centering itself at the point you clicked.

Zoom Out

Use the Zoom Out tool to get a wider area view of your map. To zoom out on a map:

1. Choose Tools>Zoom Out to activate the tool.

Your cursor changes to a magnifying glass with a minus sign in it.

2. Click on your map.

The map redraws at a wider area view, centering itself at the point you clicked.

One tool Zoom In and Zoom Out

To zoom in and out using the same zoom tool, hold down the Control key. When using the
Zoom In tool with Control you will zoom out stepwise with each click. When using the
Zoom Out tool while holding down the Control key, you will zoom in stepwise with each
click.

Pan

Use the Pan tool to reposition your map without changing the zoom level. For example,
you might want to redirect the view of your map so that a certain country or city is in the
center. To pan your map:

1. Choose Tools>Pan to activate the tool.

Your cursor changes to a hand icon.

2. Click on the map, and while holding down the mouse button, drag the map to the
desired position.

The map redraws reflecting the new position.
MapXtreme 9.5 Developer Guide 529

Select

Use the Select tool to select objects one at a time or to select all objects that are generally
in the same area.

To select an object using the Select tool:

1. Choose Tools>Select to activate the tool.

The cursor changes to an arrow.

2. Click the object on the map you want to select.

The selected object is highlighted.

Radius Select

Use the Radius Select tool to select all objects that fall within a given radius. For example,
you have a table of blood donors and a table of blood donation sites. Using the Radius
Select tool, you could create a temporary list of blood donors that live within a one-half-
mile radius of each blood donation site.

Note that the Radius Select tool selects all objects whose centroid falls within the circle.
The object does not have to be completely bounded by the circle. To select objects within
a radius:

1. Choose Tools>Radius Select to activate the tool.

The cursor changes to a selection arrow with a small circle underneath it when you
move the cursor over the map.

2. Click a place on the map that you would like to use as the center point of your radius
search. For example, if you want to select all the fire hydrants that fall within two miles
of a fire station, click the fire station and use that as the center point.

3. Hold down the mouse button and drag the mouse away from the center point.

The Workspace Manager draws a circle around the point and reports the radius of
the circle in the StatusBar (lower left corner of the screen).

4. When you have the desired radius release the mouse button.

Workspace Manager highlights all map objects that fall within that circle.

Rectangle Select

Use the Rectangle Select tool to select objects within a rectangle. By clicking and
dragging using the Rectangle Select tool, you create a dotted rectangle, or marquee box
around objects you want to select.
MapXtreme 9.5 Developer Guide 530

 27 – Workspace Manager
Note that the Rectangle Select tool selects all objects whose centroid falls within the
rectangle. The object does not have to be completely bounded by the rectangle .To select
objects within a rectangle:

1. Choose Tools>Rectangle Select to activate the tool. The cursor changes to a
selection arrow with a small rectangle underneath it when you move the cursor over
the map.

2. Click a place on the map outside of the area you want to include in the marquee box.

3. Hold down the mouse button and drag the mouse to form a dotted rectangle around
the points you want to select.

4. When you have reached the desired rectangle size release the mouse button.

Workspace Manager highlights all map objects that fall within that rectangle.

Polygon Select

The Polygon Select tool selects map objects within a polygon that you draw on a map.

To select objects with the Polygon Select tool:

1. Choose Tools>Polygon Select to activate the tool.

The cursor changes to a selection arrow with a small polygon underneath it when
you move the cursor over the map.

2. Click the map location at which you want to place the first end point of the polygon.
Move the cursor over your map in any direction.

Workspace Manager draws a line from the point where you clicked to the cursor.

3. Click to create another endpoint. Continue to move the cursor and click until you have
the desired number of sides to your polygon.

4. To close the polygon, make your last click as close as possible to the first click, or
double-click on the last point.

Workspace Manager closes the polygon and selects the objects that are within it.

Label

The Label tool is used to manually add labels to a map at the location where the user
clicks. Both horizontal and curves labels can be drawn with the label tool. In its simplest
use the Label tool draws a label with the default settings. But MapXtreme’s extensive
labeling capabilities provides a tremendous number of style, position and visibility options
that you can use to bring your labels to life. See also Label Layer Settings and Curved
Labels.
MapXtreme 9.5 Developer Guide 531

Extensions Menu Commands
Beginning with MapXtreme v7.0.0, you can load custom .NET assemblies into
Workspace Manager to extend its functionality via the Extensions menu. For example,
you may wish to have multiple tab windows, each with settings that apply to a different
map. Extensions can also add menu items to any of the Workspace Manager menu,
including the Extensions menu.

This menu provides two commands: Load Extension and Manage Extensions.

Load Extension

This command displays an Open dialog where you can navigate to the location of your
custom extensions. Extensions are created and saved as .DLLs using the file naming
convention <your_extension>.WorkspaceManager.Extensions.dll.

Manage Extensions

This command displays the Extension Manager dialog where you can load or unload
extensions, and modify properties of an extension. The loaded extensions display in the
list box showing name, version and assembly location.

To learn how to create custom extensions, see Workspace Manager Extensions in
Appendix B: Customizing MapXtreme.
MapXtreme 9.5 Developer Guide 532

 27 – Workspace Manager
Layer Control
The Workspace Manager application window is divided into two main sections. The layer
control window and commands are located on the left, and the map window is on the
right. The layer control window consists of the layer tree, which displays the opened
map(s) and all of its accompanying layers, and the dialog box tabs that contain map and
layer settings.

The layer control features of the Workspace Manager enable you to assemble the layers
of your map and apply settings to individual layers or the entire map that govern how the
layer(s) or map display.

Layer Control Tools
The tools across the top of the Layer Control allow you to add, move, and remove layers
from the layer tree window easily:

• The Add tools allows you to open tables, and insert group layers and label layers into
your map.

• The Remove Selected Item tool removes the selected layer from the map.

• The Up and Down toolbar buttons enable you to move layers up and down the layer
list, changing the order in which they are displayed.

Layer Tree
The layer control displays a tree showing the map and all layers in the map, including
theme, label, and graticule layers. The layer tree allows you to perform these operations:
MapXtreme 9.5 Developer Guide 533

Map Alias

When you hover the mouse over the Map node (the node at the top of the layer tree), the
tooltip shows the map alias. The tooltip aids developers who need to know the map alias
(for example, you need to specify a map alias when setting properties on web controls).

You can change a map alias by right-clicking on a map name and choosing Set Map
Alias.

Displaying Layers

The check box next to each layer on the layer tree allows you to toggle the visibility of a
layer with a single click.

Changing the Layer Order

To change the order of the layers, you can select a layer and click the Up or Down toolbar
button. Alternately, you can drag a layer up or down to change its position in the list.

There are several special cases that involve drag-and-drop actions:

• To move a layer into a group layer, drag the layer onto the group.

• To add a new label source to a label layer, drag a layer onto the label layer.

If you do not want to move a layer into a group—if, instead, you want to reposition the
layer so that it is located above the group layer—hold down the Shift key before
completing the drag-and-drop action. Similarly, if you do not want to add a new label
source to a label layer, hold down the Shift key.

Displaying Context Menus

Each map or layer in the layer tree has a context menu. To display a context menu, right-
click on the map or layer, or press Shift+F10 to display the menu for the currently-
selected layer.

The items on the context menu depend on the type of layer specified. In particular, note
the following:
MapXtreme 9.5 Developer Guide 534

 27 – Workspace Manager
• To add a style override to a layer, display the context menu and choose Add Style
Override. Note that each layer can have multiple style overrides, each with a different
zoom range; this allows you set up the map so that points appear to grow larger, and
roads appear to grow wider, as you zoom in.

You can also add style overrides to seamless raster layers. When the style override is
highlighted, you can access the Raster Image Style dialog from the Visibility tab.

• To rename any item in the layer tree, right-click the item and choose Rename.
Alternately, you can press F2 to rename the selected item. Note that renaming a layer
in this manner does not rename the original table; the rename operation simply
changes the text that is displayed in the layer tree. The information is stored in the
workspace file when the workspace is saved.

• To remove a layer in the layer tree, right-click the item and choose Remove.
Alternately, you can press the Del key to delete the layer.

• By default, a layer is selectable when it is added to a map. This is controlled by the
Selectable check box of the Options tab in Layer Control (see Options). However, you
can designate it as the only selectable layer, and all other layers will be set to
unselectable. This is very convenient if you have a map with many layers but only want
one layer to have selectable features. To specify only one layer as selectable:

a. Right-click the layer name in the Layer Control or access the context menu.
b. Select Make This the Only Selectable Layer. This single map layer now has

selectable features. That is, you can use any of the selection tools to select objects
on the map. All other map layers will be unselectable.

Layer Control Tabs
The layer control tabs underneath the layer tree provide additional settings and controls
that you can apply to the map as well as to each layer in the map. Different tabs control
map and layer settings. The tabs that appear depend on whether the map or a layer is
highlighted in the layer tree, as well as what kind of layer is highlighted. For example,
when you highlight the map in the layer tree, the map tabs appear; when you highlight a
layer, the layer tabs appear. If you highlight a theme, label, or graticule layer, tabs that are
specific to those layers will appear. The next sections explain the options in each of the
tabs.

Map Settings
When you select a map in the layer tree, the following tabs are available: View, Editing,
Tools, Style, Coordinate System, and Extents.
MapXtreme 9.5 Developer Guide 535

View

The View tab enables you to control the overall appearance of the map. You can set the
zoom level, scale, a center point (in degrees), and a rotation angle. Click the Apply
button to apply your settings.

A new Translucency trackbar has been added in this tab in version 8.1 and later that
enables you to set the translucency of the selected layer.

 For raster reprojection, set the rotation angle in this tab and turn the reprojection
on/off from the Raster Reprojection tab. See Raster Reprojection.

Editing

The options in the Editing tab enable you to control certain map editing tasks such as the
styles used for drawing objects (if your application uses drawing tools), resizing objects,
and moving and deleting object nodes.
MapXtreme 9.5 Developer Guide 536

 27 – Workspace Manager
The style boxes enable you to specify the default styles of any drawing tools that your
application uses. Click on a box to open the corresponding style dialog box. The settings
you select are saved in the workspace. When a user opens the workspace in an
application that uses drawing tools, the application uses these style settings when the
user draws objects on the map.

You can also specify whether you want to delete or move duplicate nodes. Check the
appropriate checkbox.

You can specify an Edit mode for the map:

• None – No editing can be done on the map.

• Allow moving and resizing – Map objects can be moved and resized.

• Allow node editing – Nodes can be moved or deleted.

• Allow node adding – You can add nodes to objects.

The Edit mode you select applies to all editable layers in the map. You control a layer’s
editability by checking the box Editable on the layer’s Options tab.

When in Edit mode, it is a good idea to turn on the nodes for your map features. Highlight
the layer node (not the map node) and check the box on the Visibility tab.

To control whether labels are editable, check or clear the checkbox Labels are editable.

For an example that utilizes Edit mode, see Editing a FeatureGeometry with the Select
Tool.

Tools

The Tools tab enables you to control the display of InfoTips, activate Snap to Nodes and
set a snap tolerance, and activate Dynamic Selection tools.

The Show InfoTips checkbox controls whether information about the feature displays in a
pop-up when you hover over the feature with a select tool. See Options.

If the Snap To Node check box is selected, map tools such as the Select tool will
automatically search for nodes that are nearby. If a node is nearby, a crosshair will appear
to indicate the position of the nearest node. For example, you might want to select the
Snap To Node check box if you are using the Radius Search tool, and you want to make
sure that the search is centered at the exact location of a point feature on your map. The
Snap To Node feature is particularly important in applications that provide drawing tools,
because users often need to draw features at the exact location of existing features.

The Snap Tolerance setting specifies how far the tools will search for “snappable” nodes.
You can choose which layers use the Snap to Node feature. For example, you might want
to turn on Snap To Node, but only have the snap crosshair appear when the cursor is
MapXtreme 9.5 Developer Guide 537

near a feature in a particular layer. To turn the Snap To Node feature on or off for a
specific layer, select the layer in the layer tree, then select or clear the Snap To Node
check box in the Options tab.

The Dynamic Selection Tools check box controls whether features are selected
immediately (while you are using the selection tool) or selected when you release the
mouse button to finish using the selection tool:

If the Dynamic Selection Tools check box is not selected, selection tools do not actually
select any features on the map until you finish using the tool. For example, the Radius
Select tool will not select any features until you specify a radius and release the mouse
button.

If the Dynamic Selection Tools check box is selected, features become selected or de-
selected dynamically as you drag the mouse. For example, if you use the Radius Select
tool, you will see more features become selected as you drag the mouse to enlarge the
radius.

Style

The options in the Style tab enable you to control translucency and anti-aliasing
properties.

• Use Anti-Aliasing–Use this option to smooth jagged edges of lines, curves, and
region borders when representing a high-definition rendition at a lower resolution.
When you select Use Anti-Aliasing, Enable Translucency is also selected
automatically. Whenever Enable Translucency is deselected, Use Anti-Aliasing is
automatically deselected.

• Enable Translucency–Use this option to allow translucent values in style colors and
layers when drawing the map onto the screen, printer, or file export. When
translucency is enabled, you can use the translucency trackbar in style dialogs.

This property has no effect on raster translucency; however, Enable Translucency
must be selected to print translucent raster images.
MapXtreme 9.5 Developer Guide 538

 27 – Workspace Manager
 Rendering higher quality maps by enabling translucency and anti-aliasing,
particularly in a map with three or more transparent layers, will often result in a
slower rendering speed.

For more information on anti-aliasing and translucency, see Enhanced Rendering with
GDI+ Translucency and Anti-Aliasing.

Coordinate System

The Coordinate System tab indicates the coordinate system of the map, and enables you
to change the coordinate system.

To do this:

1. Click the Coordinate System button to display the Choose Coordinate System dialog
box.

2. Select a coordinate system from the list, and click OK.

Extents

In the map, the Extents tab shows the extents of the current map view. Click the View
Entire Map button to see all of the map.

Raster Reprojection

The Raster Reprojection tab enables you to specify reprojection settings for raster and
vector layers in your map.

You can control the reprojection of both raster and vector layers. When you add either a
raster or vector layer to a map, the new layer can be reprojected into the current map
window projection.

When you change the projection of a map window that contains a combination of vector
and raster layers, all the layers, both raster and vector, can be reprojected to the new
map window projection.

These settings also exposed in the MapXtreme API. See the RasterReprojection and
RasterReprojectionResampling properties in the MapInfo.Mapping.FeatureViewer class
in the Developer Reference for more information.
MapXtreme 9.5 Developer Guide 539

Use the Raster Reprojection check box to turn Raster Reprojection on or off. Select the
check box to turn it on; clear it to turn it off. Raster reprojection is off by default, which
means that reprojection is not performed when a raster layer is added to a map.

Use the Reprojection Method settings to specify how raster reprojection is performed.
Choose one of the following:

• Optimized–Raster reprojection for an image is determined by the look of the
destination rectangle after transformation into the source image space. If the
destination rectangle looks like a "rigorous" rectangle, that is, two sides of the
rectangle are parallel to the x-axis and two sides are parallel to the y-axis, then the
standard Windows functions stretch the source image in both directions. If the image
fails the rectangle text, the reprojection is performed using the specified resampling
method.

• Always–Raster reprojection is always performed. MapXtreme calculates the image’s
coordinates based on a precise formula and then the pixels are resampled using either
the Cubic Convolution or Nearest Neighbor methods.

Use the Reprojection Resampling settings to specify a resampling method for the
reprojected raster image.

Resampling is a method of restoring the pixel value (usually proportional to the brightness
of a spot on the ground object covered by the instant field of view of the image sensor) of
the destination raster image based on the source image being a discrete representation
of the initial continuous brightness field.

The pixel values of the destination image can be calculated using one of two resampling
methods: Cubic Convolution and Nearest Neighbor. Choose one of the following:

• The Cubic Convolution method provides the best "restoration" of pixel values
because of their discreteness. In Cubic Convolution, a pixel in the destination image is
calculated based on the pixel values in a 4x4 pixel window centered at the basic pixel
in the source image. The coordinates of the basic pixel are calculated for every pixel of
the destination image based on a special optimized procedure. Pixels are then
MapXtreme 9.5 Developer Guide 540

 27 – Workspace Manager
weighted based on the basic pixel coordinates. In general, we recommend that you
use the Cubic Convolution resampling method for aerial images and satellite raster

images to get a better image quality. 1

• The Nearest Neighbor method replaces the pixel value in the reprojected image with
the base pixel value from the source image. This resampling method takes less time to
render than the Cubic Convolution method, but it may be less precise. In general, we
recommend that you use the Nearest Neighbor resampling method for raster maps,
grids, and scanned maps to get faster results.

To change the rotation angle of the raster reprojection, go to the View tab, provide an
angle and click Apply. See View.

Layer Settings
When you click on a map layer node in the Layer tree, the following tabs are available in
Layer Control.

Visibility

Select the Visible check box to make the map layer visible. Selecting the check box next
to the layer in the layer tree has the same effect.

Select the Display Within Range check box to specify either a zoom range or scale
range in which the layer appears. If you select a zoom range, specify the minimum and
maximum zoom in miles. The layer appears within this range. If you select a scale range,
specify the closest and farthest scale. The layer appears within this scale range.

You can also select Show Nodes, Show Centroids, and Show Line Direction to display
these items on the map layer. Nodes are the points that define segments of a line or
multiline or polygon. A centroid is the center of a map object. Line direction is the direction
in which the line was drawn (this is helpful on street layers to indicate the proper
addressing sequence). Display these elements when you wish to edit map features. The
Editable checkbox is located on the Options tab.

Options

The Options tab check boxes facilitate editing and customizing a feature layer:

• Selectable–When the Selectable check box is selected, objects in the layer can be
selected using either the Tool menu commands or the Selecting tools in the toolbar.
Clear the Selectable check box for any layer you do not want to select from.

1. The Cubic Convolution algorithm used in MapXtreme is based on the work of S.K. Park and R.A. Schowengerdt,
Computervision, Graphics and Image Processing (1983, Volume 23, pp. 258-272).
MapXtreme 9.5 Developer Guide 541

• Editable–Select the check box to make the layer editable.

• Drawing Tools can add features –Select this check box if you are preparing this
workspace for use in an application that provides drawing tools, and you want the
drawing tools to create new features in this layer.

• Show InfoTips–Select the Show InfoTips check box to display InfoTips when you
hover over map objects in the selected layer. The InfoTip text consists of the result of
the expression in the InfoTip Expression field. For example, if the expression is a
column in your table, the InfoTips comprise the values from that column. If the
expression is a calculation that uses column information in your table, the InfoTips
comprise the results of that calculation.

• Snap to Nodes – Select to turn the Snap To Node feature on or off for a specific layer,
select the layer in the layer tree, then select or clear the Snap To Node check box.

• InfoTip Expression – Control the InfoTip you want displayed in the InfoTip for the
layer. You can display more than the first column in your table. See Chapter 10
Creating Expressions.

Settings in the Options tab are unaffected by the layer’s visibility. You will be able to see
the Options tab settings regardless of whether the layer is currently visible.

Extents

For a layer, the Extents tab shows the extents of the selected layer. Click the View Entire
Layer button to see all of the layer, or click View Default Area to see the default view of
the layer.

Information

The Information tab provides information about the selected layer. It gives the name of
the table and its path, the type of table, e.g., MapInfo table, and its coordinate system.

Theme Layer Settings
When you click on a theme layer, the following tabs are available in Layer Control.

Visibility

When a theme layer is selected, the Visibility tab options control the display of the
selected theme. Select the Visible check box to display the theme layer; clear the check
box to turn off the theme display.
MapXtreme 9.5 Developer Guide 542

 27 – Workspace Manager
Select the Display Within Range check box to specify either a zoom range or scale
range in which the theme appears. If you select a zoom range, specify the minimum and
maximum zoom distance. Your theme appears within this range. If you select a scale
range, specify the closest and farthest scale. Your theme appears within this scale range.

Theme

The Theme tab indicates the type of thematic map and the expression used to obtain the
values. The Theme tab also enables you to modify your thematic map. Click Modify
Theme to change the styles or legend.

Label Layer Settings
When you click on a label layer in the layer tree, the Visibility tab is available at the bottom
of the Layer Control. When you expand the label layer to see the label sources, additional
tabs display that control the appearance and content of labels in label sources:
AutoLabel, Style, Text, Position, and Rules.

Visibility

When a label layer is selected, the options in the Visibility tab control the display of labels.
Select the Visible check box to display labels; clear the check box to turn off label display.

Select the Display Within Range check box to specify either a zoom range or scale
range in which the labels display. If you select a zoom range, specify the minimum and
maximum zoom distance. Your labels display within this range. When you use a zoom
range, the maximum value is exclusive—the layer is only visible if the map’s zoom is less
than the maximum value. So, if you set the maximum zoom value to 5000 miles, and then
you zoom the map to exactly 5000 miles, the layer disappears.

If you select a scale range, specify the closest and farthest scale. Your labels display
within this scale range.

Click Clear Label Modifications to return the labels to their default state. This button
removes individual labels that were manually added with the Label tool and restores
labels to their original position.

AutoLabel

The AutoLabel tab enables you to create and manage the display of autolabels. Select
the Create labels automatically check box to generate autolabels for your map. Select
the Display Within Range check box to specify either a zoom range or scale range in
MapXtreme 9.5 Developer Guide 543

which the autolabels display. If you select a zoom range, specify the minimum and
maximum zoom distance. If you select a scale range, specify the closest and farthest
scale. Your autolabels display within this scale range.

Style

The Styles tab controls the style of label text and label lines. For label text, use the Text
style box to access the Text Style dialog box. You can specify the font, color, background,
and other text effects for the labels. For label lines, use the Line style box to access the
Line Style dialog box, where you set the style of the label lines. In the Label Lines group,
choose whether you want no label lines, simple lines, or lines with an arrow.

 Label lines are not supported for curved labels. MapXtreme can load label lines
created in MapInfo Professional or if label lines are created using a customized
label tool. See Curved Labels.

Text

The Text tab enables you to specify an expression that produces the label text from a
column or derived information in the table.

Position

Use the settings in the Position tab to set the orientation, offset, and rotation of the labels.

The label’s orientation is the label’s position relative to its anchor point. Click one of the
buttons to select an orientation.

Label offset is how far away a label is from its anchor point in pixels.

The label rotation is the angle at which the label is drawn. There are three Rotation
settings:
MapXtreme 9.5 Developer Guide 544

 27 – Workspace Manager
• Rotate labels with segments–Select this option if you are labeling line features such
as highways, and you want each label to be drawn at an angle that will make the label
run parallel to the nearest segment of the highway.

• Curve labels along segments–Select this option if you are labeling line features such
as highways, and you want the label text to follow the shape of the highways (that is,
you want curved labels). Turning anti-aliasing on via the Style tab in Layer Control will
improve the look of the resulting curved labels. For more information, see Curved
Labels.

• Specific angle–Specify an angle in degrees, such as zero degrees to make all labels
horizontal.

Rules

The Rules tab enables you to set certain conditions for displaying labels on your map:

Allow Duplicate Text Select the Allow Duplicate Text check box to allow duplicate labels for
different objects to display, e.g., Portland, OR and Portland, ME. This option is also used
with street maps to label street segments individually.

Allow Overlapping Text Select the Allow Overlapping Text check box to allow labels to be
drawn on top of each other. Some labels do not display because they overlap labels that
have been given higher priority on the map.

Label Partial Objects Select the Label Partial Objects check box to label polylines and
objects whose centroids are not visible in the Map window.
MapXtreme 9.5 Developer Guide 545

Maximum Labels Specify the maximum number of labels you want displayed. For
example, sort your data so that the most prominent (largest population, highest revenue,
highest growth rate,etc) is at the top of your table. To display only the top 100 of these
records, put 100 in the Maximum labels box. Records that are below the 100-record cutoff
will not display labels, thus the 100 labels that do display will make a bigger impact on
your map.

Per-Label Priority Expression This expression field is optional. If you leave this expression
field blank, features within a single label source are labeled in an unpredictable manner.
For example, you might find that some small cities are labeled, while some major cities
are not labeled because there is not enough room. If you specify an expression (which
must be numeric), then the expression will be calculated for each feature on the visible
portion of the map, and features that have a larger value will be given a higher labeling
priority. To specify an expression, click the Set button.

For example, suppose you are configuring the labels for the WorldCapitals layer, which
contains point features that represent cities. You probably want the cities with the largest
population to have the highest labeling priority. In this case, you would specify a labeling
expression such as:

cap_pop

The cap_pop column represents the population of each capital city. When you specify a
Per-Label Priority Expression of cap_pop, you are specifying that the cities with the
largest population should have the highest labeling priority. As a result, the most populous
cities will be labeled first, while other cities will be labeled only if there is enough room left
over.

Per-Table Priority Expression This expression field is optional. A label layer can contain
multiple label sources; for example, you might have one label source representing a set
of labels for World Countries, and another label source representing a set of labels for
World Capitals (cities). By default, the label source at the top of the list has the highest
priority. If you want to assign a higher priority to a label source, you can either move that
label source up (in the layer control’s list of label sources), or you can specify a Per-Table
Priority Expression for each label source.

For example, if you give the World Countries label source a per-table priority expression
of 10, and give the World Capitals label source a per-table priority expression of 5,
country labels will have priority over capital city labels.

Group Layer Settings
Highlight the Group Layer node in Layer Control and a Visibility tab displays. Here you
control visibility settings that apply to all layers in the group.
MapXtreme 9.5 Developer Guide 546

 27 – Workspace Manager
To apply different visibility settings to each layer in the group, highlight the layer that is
shown under the Group Layer and make the changes in the Visibility tab that displays.

Style Override Settings
When you highlight a style override layer in Layer Control, the Visibility tab displays. Here
you control whether the style override is visible and at what zoom range. The Style
buttons are accessible here for you to set the area, line, symbol and text styles for the
layer.

Choose from two drawing modes: Normal and Superimpose. Normal drawing mode
draws the layer using the style override. Superimpose draws the style override on top of
the layer.

Graticule Layer Settings
When you click on a graticule layer, the following tabs are available at the bottom of the
Layer Control.

Visibility

Line/Label Properties
MapXtreme 9.5 Developer Guide 547

Line Spacing

Extents

After making any changes in this tab, click Set Extents to activate the changes.

For more information on Graticules, see Graticule Layers.

Export/Import Theme and Style
This feature allows you to export themes or styles applied on a given layer to an XML file.
Later on, this exported theme and style XML can be imported on any similar layer. This is
particularly useful when you create and apply complex display setting on a layer and you
want to preserve it for reuse.

There are two ways to use this feature:

• Using Layer Control

• Using MapXtreme API interface

Using Layer Control

1. Once you are ready to export the theme and style, display the context menu by right-
clicking on the map or layer.
MapXtreme 9.5 Developer Guide 548

 27 – Workspace Manager
2. From the context menu, choose Export Theme and Style.

3. Enter a name for your xml file.

This exported theme XML can be imported on any similar layer.

Using MapXtreme API interface

You can also use this feature programmatically. Refer to Export/Import Theme and Style.

 If there are two or more layers in the map, which belongs to same table (.TAB file) and you

apply any of Pie, Bar or Graduated symbol theme on any of these layers (for example,

layer1), then theme/style export operation on any of these layer (for example, layer2) will

contain Pie, Bar or Graduated symbol theme as well. The reason behind this behavior is

that Pie, Bar and Graduated symbol themes are connected to underlying table (.TAB)

instead of layers.

Using Workspace Manager Features
This section shows you how to apply some of Workspace Manager’s features to enhance
the cartographic quality of your maps. The following topics are covered:
MapXtreme 9.5 Developer Guide 549

• Enhanced Rendering with GDI+ Translucency and Anti-Aliasing

• Creating Translucent Effects

• Curved Labels

• Graticule Layers

Enhanced Rendering with GDI+ Translucency and Anti-Aliasing
Microsoft Windows GDI+ is the portion of the Windows XP operating system or Windows
Server 2003 operating system that provides two-dimensional vector graphics, imaging,
and typography. GDI+ improves on Windows Graphics Device Interface (GDI, the
graphics device interface included with earlier versions of Windows) by adding new
features and optimizing existing features. GDI+ rendering in MapXtreme allows you to
create translucent labels, themes, and layers, as well as apply anti-aliasing that will
smooth the jagged edges of lines, curves, and region borders when representing a high-
definition rendition at a lower resolution.

You can enable GDI+ rendering in the API through two new properties—
EnableTranslucency and SmoothingMode— in the MapInfo.Mapping.DrawingAttributes
and MapInfo.Mapping.LegendDrawing Attributes classes. You can also enable these
properties using the Style tab in Workspace Manager’s Layer Control.

 Anti-aliasing can only be used when translucency is enabled. This is enforced both
by the user interface via the Workspace Manager and programmatically. When you
select Use Anti-Aliasing, Enable Translucency is also selected automatically.
Whenever Enable Translucency is deselected, Use Anti-Aliasing is automatically
deselected.

The following maps demonstrate label translucency and anti-aliasing effects on roads and
highways. Notice the smoothness of the region borders and polylines when anti-aliasing
is enabled.
MapXtreme 9.5 Developer Guide 550

 27 – Workspace Manager
A translucency trackbar (TrackBarValuePicker control) in all style dialogs (Line Style,
Area Style, Symbol Style, Text Style, etc.) enables you to pick a percent value between 0-
100 using the sliding trackbar or the numeric selection box. However, this trackbar only
works when translucency is enabled.

To programmatically change a color's translucency, use the
System.Drawing.Color.FromArgb() method. This allows you to specify an alpha value for
the desired color (in GDI+, the alpha channel is the portion of pixel color data reserved for
transparency information). For more information, see the .NET documentation..

Before GDI+ Enhanced Rendering: After GDI+ Enhanced Rendering:
MapXtreme 9.5 Developer Guide 551

http://msdn.microsoft.com/en-us/library/system.drawing.color.fromargb.aspx

Translucency in all colors is supported and tools will work properly when translucency is
enabled or disabled. The Enable Translucency option has no effect on the display or
export of translucent raster images, although it must be enabled to print them.

 Rendering higher quality maps by enabling translucency and anti-aliasing,
particularly in a map with three or more transparent layers, will often result in a
slower rendering speed.

Creating Translucent Effects
Applying translucent effects to the colors of map features and labels or to the color of
spread styles of a theme layer enables you to see other features of the map through the
color.

How to Apply Translucent Effects to a Map

The following map contains a translucent city boundary region. The partial overlap of this
region over the “Watervliet” label shows the difference between the uncovered part of the
label (the first two letters of “Watervliet”) and the covered part of the label. The label itself
is also translucent over the rest of the map.

To add translucent effects to a layer, use a style override to change the original style of
the layer.
MapXtreme 9.5 Developer Guide 552

 27 – Workspace Manager
 When you programmatically superimpose an override style modifier (OverrideType
= AddNew), the first style drawn is the feature's style. Since the superimposed style
is translucent, the features show through it.

1. In Workspace Manager’s Layer Control, select the "root" node in the layer control (this
corresponds to the map). In the Style tab select Enable Translucency.

2. Select the layer you want to add translucency to, move it to the top of the list, then add
a style override.

3. On the Visibility tab for the style override, click the style button that is specific to the
objects in that layer. For this example click the Area style button.

The Area Style dialog appears.
MapXtreme 9.5 Developer Guide 553

4. Use the translucency trackbar to select the level of translucency you want to apply.
Each color has its own translucency level.

Alternatively, the newly added Opacity property or the translucency trackbar added in the
LayerControl's View tab can be used.

How to Apply Translucent Effects to Labels

The previous example also showed a translucent label similar to a watermark. If you turn
off visibility on the translucent city boundary region, the label looks as follows:

If you want to add a translucent label over your map as shown by this example:

1. In Workspace Manager’s Layer Control, select the "root" node in the layer control (this
corresponds to the map). In the Style tab select Enable Translucency.

2. Select the label source in the layer control and go to the Style tab.
MapXtreme 9.5 Developer Guide 554

 27 – Workspace Manager
3. Click the Text style button to display the Text Style dialog.

4. Use the translucency trackbar to select how translucent you want your label color to
be. The above example shows text at 80% foreground translucency.

How to Apply Translucent Effects to Themes

You can apply translucent effects to thematic maps. The following example shows a
ranged theme applied to a city boundary layer. The layer is positioned on top of the rest of
the layers.

If translucency is enabled, you can select a translucent value for the start and end theme
ranges (bins), and automatically spread the color. This will also automatically spread the
translucent value between the start and end theme bins. For example, the theme in the
above map has a translucency value of 75% for the start bin (gray) and 50% for the end
bin (red). Since this theme has 3 bins, the middle bin is automatically given a
translucency value of 63% (50 through 75 spread equally).

Curved Labels
Curved labels are labels that follow the curve of a line. They enhance the appearance of
map features that are made up of lines, such as streets and rivers.
MapXtreme 9.5 Developer Guide 555

Curved labels are generated in the Workspace Manager by selecting the label layer, then
selecting Curve labels along segments in the Position tab. For information on rendering
curved labels via the API, see the ILayout Interface section of the MapXtreme Developer
Reference.

MapXtreme attempts to create a curved label for every arc and polyline record in a map,
just as it does for non-curved labels. For example, in street maps, the street can be made
of several polylines or one long polyline. The length and number of the polylines, the rules
that govern whether a curved label can be created, and the labeling options you choose,
all affect which curved labels are created and where they display.

Some polyline and arc segments in your layer data may not contain label name entries.
When this occurs, MapXtreme cannot display labels for that segment.

Several rules determine whether MapXtreme can display a curved label:

• MapXtreme can only draw curved labels using TrueType fonts. If you select a non-
TrueType font, a comparable TrueType font is substituted and the label you chose may
display differently than expected. Also, if you change a horizontal label using a non-
TrueType to a curved label, the new label may display differently due to the font
substitution.

• Part of the label string must fit along the arc or polyline that it is labeling. If it cannot fit,
MapXtreme determines that the label is too long and discards it.

• MapXtreme cannot draw curved labels for polylines that are very jagged, however, it
depends on the curvature of the line.

• Although a street segment appears to be straight, the label may be curved. This
happens because the polyline data for the street segment contains a curve that is not
visible at the current zoom level. The label is following the curve of the street even
though the curve isn’t visible. If you zoom in on the map to a close enough distance,
you will be able to see the curve in the street.

• Labels that curve onto themselves are discarded and do not display.

• Curved labels follow the same rules for overlap detection, duplicate text, and partial
segment labeling as non-curved labels. Each of these rules affect how and when the
labels are displayed.

• You can create curved labels with the Label tool at any point along an arc or polyline.

• You cannot drag curved labels as you can other labels; however, you can reposition
them with the Label tool.

• The Label Lines controls are disabled for curved labels.

• Curved and non-curved labels persist for layers in the workspace.

• You cannot underline curved labels.
MapXtreme 9.5 Developer Guide 556

 27 – Workspace Manager
• Curved labels are always drawn smoothly whether or not translucency and anti-
aliasing are enabled.

Bi-Directional String Support in Curved Labels

Curved labels are supported in languages that read right to left. Support was added for
the Uniscribe library that ships with Windows, which handles contextual glyph shaping
and reordering bi-directional scripts such as Hebrew and Arabic. Its methods can analyze
and break apart strings using complex scripts into separate runs which can then be
reordered for display.

Curved Labels Created in MapInfo Professional

Curved label display settings available in MapInfo Professional can be saved to an .MWS
workspace and loaded into MapXtreme. Changes to the position of a curved label made
in MapInfo Professional can also be saved to an .MWS workspace and loaded into
MapXtreme. The following describes the display settings and position modifications that
MapXtreme can load:

• Although MapXtreme does not support creating label lines for curved labels in
Workspace Manager, it can load label lines created in MapInfo Professional or if label
lines are created using a customized label tool.

• MapXtreme can load callout lines for labels that contain a custom (user-defined)
location for the line endpoint. For example, if you move the endpoint of a label in
MapInfo Professional and save it to a workspace (.MWS), the endpoint is positioned
as expected when the workspace is opened in MapXtreme. MapXtreme loads and
saves custom line ends but does not support creating them.

• Curved labels created in MapInfo Professional and saved to an MWS display in the
same location in MapXtreme.

• Labels that have been dragged to a new location in MapInfo Professional can be
displayed as curved labels in MapXtreme. When the label changes are saved to an
.MWS workspace and the workspace is opened in MapXtreme, the labels will display
as curved labels when the curved label option is turned on. Note, however, if the label
in MapInfo Professional was dragged and then rotated prior to being saved to the
workspace, MapXtreme will not curve the label. This is because MapInfo Professional
has modified the angle of the label, which MapXtreme honors over the curved label
setting.

Creating Curved Labels

To position labels along a curve:

1. In Workspace Manager, open the map you want to change the labels for.

2. Highlight the layer source that contains the labels you want to change.
MapXtreme 9.5 Developer Guide 557

3. Verify that the labels are visible.

4. Click the Position tab. In the Rotation section, select Curve labels along segments to
display the labels along the curve of the line.

5. If necessary, use the Orientation buttons on the Position tab to set the label’s position
relative to its anchor point. When you select:

Left, the curved labels are left-justified starting at the beginning of the arc/polyline

Center, the curved labels are centered on the midpoint of the arc/polyline

Right, the curved labels are right-justified at the end of the arc/polyline

 The length of the polyline(s) affect how the label is positioned. The longer the
polyline(s), the more predictably the labels display.

Repositioning Curved Labels

You can use the Label tool on the Main toolbar to reposition curved labels. Make sure you
have already selected the Curve labels along segments option on the Position tab for
the label source you want to change.

1. Highlight the layer you want to move the labels for in the list.

2. In the Options tab, select the Selectable check box.

3. Highlight the label source where you want to move curved labels.

4. Click (the Label tool) on the Main toolbar.
MapXtreme 9.5 Developer Guide 558

 27 – Workspace Manager
5. Click the line on which you want to reposition the label.

6. Click the new location for the label until the label is positioned where you want it.

 If the segment you select does not have a label name associated with it in the
data, no label is displayed.

Graticule Layers
Graticules are grids (lines of latitude and longitude) that overlay the map, spaced at a
regular distance (for example, every five degrees, every fifteen degrees). They are used
to establish a frame of reference.

In many ways, graticules behave just like other layers. However, a graticule layer differs
from other layer types in the following ways:

• Graticule layers are not editable like other types of layers. That is, you cannot add new
features to them.

• Although you can configure graticule label style and position, you cannot create a label
layer on a graticule layer.

• You cannot create a thematic layer on a graticule layer.

Adding Graticule Layers

You can add graticules directly from the Layer Control (right-click on the map node to
access the context menu):
MapXtreme 9.5 Developer Guide 559

By default, the graticule spacing and extents are determined based on the zoom and size
of the map window. So when you add a graticule layer to a map, graticule lines appear
regardless of the zoom level.

Managing Graticule Layers

After you have added a graticule layer, you can manage and customize the layer from the
Layer Control in a number of ways.

• Control graticule layer visibility and zoom/scale settings

• Show and configure spacing of major and minor graticule lines

• Control visibility and style of graticule labels and lines

• Specify the extents (in degrees, feet, or meters) of the graticule (east, west, north,
south).

• Move the layers up and down in the Layer Control order

• Remove the graticule layer (the context menu is the only way to remove a graticule
layer)

• Create multiple graticule layers and Group Layers

See Graticule Layers for more information.

Graticule layers are indicated by a graticule icon, as shown below:
MapXtreme 9.5 Developer Guide 560

28

28 –Using the GeoDictionary

Manager
The GeoDictionary Manager is a utility that comes with MapXtreme to
aid in your Mapping applications. This chapter deals with how to use
this tool.

In this chapter:
 Using the GeoDictionary Manager . 562
 Changes in the GeoDictionary Manager. 562
 The GeoDictionary Manager’s User Interface 562
 The GeoDictionary File . 566

Using the GeoDictionary Manager
The GeoDictionary Manager application is designed to support the manipulation of a
GeoDictionary file. The GeoDictionary is an XML file containing registration information
about the MapInfo tables that can be matched by your application during automatic
databinding. Only MapInfo tables that can or will be matched against should be registered
in the GeoDictionary.

There is no need to register every .tab file that an application uses in the GeoDictionary,
and in fact there is some overhead in having unnecessary files registered. You only need
to register those tables against which you would like to match.

Changes in the GeoDictionary Manager
The GeoDictionary Manager for MapXtreme is, in appearance, very similar to the utility
that was included in MapX and previous versions of MapXtreme. The major difference is
that now the underlying file (*.dct) is an XML file and completely editable using a text or
XML editor.

The GeoDictionary Manager’s User Interface
This section describes the user interface for the GeoDictionary Manager.

Run GeoDictionary Manager
To run the GeoDictionary Manager when you want to manually register layers:

• Start -> All Programs -> MapInfo -> MapXtreme -> GeoDictionaryManager.

The GeoDictionary Manager is displayed. The file last opened is reloaded upon
start-up.
MapXtreme 9.5 Developer Guide 562

 28 – Using the GeoDictionary Manager
Part Description

GeoDictionary The GeoDictionary edit box contains the full path to the
GeoDictionary that is currently being managed. The button (to
the right of the GeoDictionary edit box) allows the user to
browse for another GeoDictionary to manage. Both binary and
XML GeoDictionary files can be opened, but only the XML
format is saved.

Registered
tables

The Registered Tables list box contains a list of the friendly
names for all tables registered in the GeoDictionary. Highlight
a particular table to either unregister it or modify its properties.
Double-clicking a table brings up the Properties dialog box to
edit those properties.

Register The Register button brings up the common File Open dialog
box, with the Files of Type combo box set to “MapInfo Tables
(*.tab)”. After the table has been chosen from the file picker,
the Table Properties dialog for that table is displayed. If you
choose multiple files in the File Open dialog box, a Properties
dialog box is opened for each table added.

Unregister Pressing this button removes the selected table from the
GeoDictionary. You can also select multiple tables (by shift-
clicking) for unregistering. The Unregister button does not
remove the files from the disk.
MapXtreme 9.5 Developer Guide 563

Set the matching table properties for a given table using the Properties dialog box. To
access the Properties Dialog box, click the Properties button, or double-click on any table
name in the Registered Tables list.

Properties The Properties button brings up the Table Properties dialog
box for the selected table. See the Table Properties dialog box
below.

New The New button clears the fields on the screen allowing the
creation of a new GeoDictionary file. When you choose to
close this GeoDictionary file you are prompted to save your
changes.

Save The Save button saves the current file as XML, regardless of
the format of the file when it was opened.

Save As The Save As button allows you to save the current file to a new
name or location.

Exit The Exit button closes the application. If you have modified the
GeoDictionary file you are prompted to save your changes.

Part Description
MapXtreme 9.5 Developer Guide 564

 28 – Using the GeoDictionary Manager
Part Description

MapInfo Table Read-only edit box containing the file name of the
MapInfo table if it is located in the same directory of the
GeoDictionary, or the relative pathname to the file if it
is not. If the file is located on a different drive or
volume, the full path is displayed.

Description This field provides a mechanism for changing the
friendly name for the table. This control is defaulted to
the Description tag in the .TAB file, or the filename if
the Description tag is not found, but can be changed by
the user. Note that changes to the description in the
GeoDictionary Manager are only be stored in the
GeoDictionary and is not reflected in the table itself.
This allows the GeoDictionary Manager to easily work
with read-only data, e.g., data on CD-ROMs.

Match Percentage This field is initially populated with the default value for
the GeoDictionary and can be altered for specific
tables by changing this value. Values must be between
1 and 100.

Field Information This list box contains a list of all the indexed columns
in the table. If the box for a given column is checked,
that field is searched during the matching process.

Table used to refine
searches

This field allows the user to set a refining table to
determine exact match for data that is not unique in a
particular index.

Some tables, e.g., US Counties, contain indexed
columns that are not unique. In that situation, a refining
table is necessary to determine an exact match for
data. If the table has non-unique indexed columns, use
this field to specify a table to use to match against to
find unique entries.

Associated maps that
this table belongs to

This list box shows the particular Workspaces,
GeoSets, or other files of which this particular table is a
part.
MapXtreme 9.5 Developer Guide 565

The GeoDictionary File
The GeoDictionary file (*.dct) can be manipulated manually if you choose to skip using
the GeoDictionary Manager. If you understand and can write XML easily then this is a
viable alternative to using the GeoDictionary Manager. The .dct file is straight XML.

Sample .dct file
The following is a sample GeoDictionary file, GeoDic_US.dct. This file is a very simple
GeoDictionary provided as an example of the structure.

<?xml version="1.0" encoding="Windows-1252" standalone="yes"?>
<!--GeoDictionary file-->
<GeoDictionary>

<DefaultMatchThreshold>80</DefaultMatchThreshold>
<MatchTables>

<MatchTable>
<TablePath>US_CNTY.TAB</TablePath>
<TableDescription>US county boundary</TableDescription>
<RefineTableName>USA.TAB</RefineTableName>
<MatchThreshold>90</MatchThreshold>
<AssociatedMaps>

<AssociatedMap>USA.GST</AssociatedMap>
</AssociatedMaps>
<MatchFields>

<MatchField>
<FieldName>County</FieldName>

</MatchField>
<MatchField>

<FieldName>Fips_code</FieldName>
</MatchField>

</MatchFields>
</MatchTable>

Add This displays a common file picker to allow you to
choose GeoSets, Workspaces, or other files to
associate with the particular Tab file. Selecting one or
more files adds them to the list of associated maps.
You can select multiple files by holding down the shift
or control keys while clicking.

Remove Deletes the selected geoset, workspace, or other
filename from the list of associated maps.

Part Description
MapXtreme 9.5 Developer Guide 566

 28 – Using the GeoDictionary Manager
</MatchTables>
</GeoDictionary>

The elements in the structure correspond to individual fields and controls in the
GeoDictionary Manager as defined in the following table:

XML Element
Table Properties
Dialog Box Field Description

GeoDictionary none The root element of the file

DefaultMatchThres
hold

none The DefaultMatchThreshold is the
threshold of matching when a specific
MatchThreshold is not defined for a
particular table.

This value cannot be set using the
GeoDictionary Manager.

MatchTables none The container elements for the registered
MatchTables. There should be a single
MatchTable element for each item in the
Registered Table list.

MatchTable MapInfo Table. The filename for each table to be
matched.

TablePath MapInfo Table. The relative path for each MatchTable.

TableDescription Description field (also
the name that
appears in the
Registered Tables list
in the main dialog
box.

The friendly name for the MatchTable.

RefineTableName Table used to refine
searches

The related table with which to refine
matching.

MatchThreshold Match Percentage The match threshold for this MatchTable.
If none is specified, the
DefaultMatchThreshold is used.
MapXtreme 9.5 Developer Guide 567

AssociatedMaps,
AssociatedMap

Associated maps to
which this table
belongs.

This list box shows the particular
Workspaces and GeoSets of which this
particular table is a part.

MatchFields none This element is a container for MatchField
and FieldName elements.

MatchField,
FieldName

Field Information list
box.

Each item in the list box that is checked to
be searched for automatch and binding.

XML Element
Table Properties
Dialog Box Field Description
MapXtreme 9.5 Developer Guide 568

29

29 – Location Intelligence API

Integration in MapXtreme
This chapter contains information about accessing Precisely’s Location
Intelligence APIs using the application created in MapXtreme.

In this chapter

 Overview. 570
 MapXtreme LIAPI Integration . 570
 Sample Application . 571

Overview
The Location Intelligence API enables developers to access Precisely’s extensive
collection of industry-trusted location data. The Location Intelligence APIs facilitate you in
building innovative location-based applications for multiple platforms. The developers can
use this locational data to develop apps for commercial and consumer markets. For more
information visit, https://developer.precisely.com.

You can now make use of Location Intelligence API SDK (downloadable from Precisely’s
LI API portal and github) and MapXtreme together in the same application to build
innovative location-based applications. We are providing a Sample application as well to
demonstrate how these two SDKs can be used together to create location based
application. The sample applications are placed at C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio2017.

MapXtreme LIAPI Integration
In order to support LIAPI integration, MapXtreme has provided the following capabilities:

Token Management
The LI API uses OAuth 2.0-based security for authentication and authorization to ensure
security for any business-critical private information. MapXtreme supports the OAuth2
token for the client application. For this we have provided a property named
“PBAPI.AccessToken” in the session class itself. Whenever the client application asks for
token, it returns a new valid token. For example, “String token =
Session.Current.PBAPI.AccessToken”.

You can cache this token for all subsequent LI API calls until the token expires.
Alternatively, you can ask for a new token from the session for every LIAPI call.

For generating token, MapXtreme needs user to specify the credentials. We have
introduced two variables PBAPI_Key and PBAPI_Secret for users to specify their
credentials. These variables are present in the registry key as well as in the environment
variables. User can specify them in any or both of these places. MapXtreme first looks for
the credentials into the registry key entry, and if it does not find it there then it will look into
the environement variables.
MapXtreme 9.5 Developer Guide 570

https://developer.precisely.com/
https://developer.precisely.com/

 29 – Location Intelligence API Integration in MapXtreme
Geometry Conversion
Location Intelligence API gives response in JSON format. Based on the type of LIAPI
called, the response may or may not contain spatial data. If the response contains spatial
information, MapXtreme converts the spatial data or geometries from the JSON response
into MapInfo geometry. The client application can use this MapInfo geometry to show it on
map.

The MapXtreme API takes geometry part of the JSON response as input and returns
feature geometry as response as displayed in the image below.

Sample Application
In the sample application, the first dialog looks like the image below. Click on “Test
LIAPIs” button.
MapXtreme 9.5 Developer Guide 571

The LIAPIs Input Form dialog box opens. In this dialog you can test GeoCoding API or
GeoRoute API or both at the same time.

 To use this sample you need to provide the credentials, i.e., PBAPI_Key and
PBAPI_Secret.

For using GeoCoding API, select an address that you want to GeoCode. For GeoRoute
API, select Source and Destination addresses, along with zero, one or multiple
intermediate addresses and click OK. Refer to (image) below.
MapXtreme 9.5 Developer Guide 572

 29 – Location Intelligence API Integration in MapXtreme
Now, the you can see the geocoded location of address on the map and a route from
source to destination on the map.
MapXtreme 9.5 Developer Guide 573

MapXtreme 9.5 Developer Guide 574

A

A – How to Create and

Deploy a MapXtreme
Application
This appendix is designed as a tutorial to demonstrate the
simplicity of creating, packaging, and deploying a MapXtreme
application. At the end of this tutorial you will have gone through
all the steps to successfully develop, package, and deploy a
well-implemented mapping application.

This tutorial assumes that you have already successfully
installed Visual Studio and are familiar with the use of that
product. If you are not familiar with Visual Studio, there are many
resources available on the Microsoft MSDN web site. Look at
msdn.microsoft.com/developerscenter/. You should also have
installed MapXtreme. The code fragments contained within this
document were implemented using Visual Basic. For many of
the sample applications, we also provide C# .NET samples.

In this appendix:
 Customizing MapXtreme Samples . 576
 Building a Desktop Application . 576
 Building a Web Application . 588

http://msdn.microsoft.com/developercenters/

Customizing MapXtreme Samples
This appendix contains two tutorials:

• Building a Desktop Application

• Building a Web Application

These tutorials guide you through customizing MapXtreme desktop applications and Web
Applications and preparing them for deployment.

Building a Desktop Application
We are going to base our desktop application on one of the thematic sample applications
provided with MapXtreme. The desktop sample applications are already working mapping
applications. With some simple modifications, you can customize a sample application for
your own needs. You can use the modifications outlined in this tutorial as a model for
customizing any desktop MapXtreme project. All the desktop sample applications
provided with MapXtreme were created from the map application template provided in the
product. See Creating Applications in Visual Studio for more information.
MapXtreme 9.5 Developer Guide 576 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
Running a Sample Application
Let’s start by running the ThemeLegend application to see what it looks like.

1. In Visual Studio, choose File>Open > Project/Solution, and open the project for the
sample application called ThemeLegend. The default path to this project is:

C:\Program Files\MapInfo\MapXtreme\9.x.x\Samples\VisualStudio\Desktop\
Features\ThemeLegend\vb\ThemeLegendVB.vbproj

(where x is the release number of the version of MapXtreme you are using).

2. Choose Debug > Start Debugging, or press F5 to run the application.

The application displays a standard map of the United States with a theme based on
the land area of each state. The larger states are shaded in blue and the smaller states
are shaded in white. The legend shows the color assigned to each range of land area
values.

The tools provided with the application enable you to perform some basic functions.
You can open tables, zoom in or out on a particular region, select regions on the map,
move the map, and access Layer Control to apply specific settings to each layer. You
might want to practice using the tools to get a feel for how the application works and
what your users will experience.

3. When you are finished, close the active Form1 window to stop the application and
return to Design mode.

Modifying Your Application
Next, we’ll make some modifications to the ThemeLegend code to show how you can
customize a sample application. We will change the following elements of the application:
MapXtreme 9.5 Developer Guide 577 Developer Guide

• data source

• number of ranges (bins)

• range type

• range colors

• legend location

• toolbar

1. In Visual Studio, move your cursor to the Solution Explorer and right click on
MapForm1.vb. Choose View Code to display the code page.

If you have MapForm1.vb displayed in Design mode, you can right-click anywhere on
the form, and choose View Code.

 All sample applications discussed in this tutorial were taken from the MapXtreme
distribution DVD. The line numbers referenced may not correspond exactly with
the code in your installation.

2. A new tab displays to show the application code. Scroll down the code page to
familiarize yourself with the code. Notice that the majority of the action in the
application takes place in the Form1() class. This is where we will make our changes.

3. Let’s change the data source on which the theme is based. To do this, we’ll need to
change the name of mexicothe table that the application uses and specify a different
FeatureLayer. Make the following changes:

• On line 210 change the table from usa.tab to mexico.tab.

This loads the Mexico map instead of the USA map.

• On line 218, change the FeatureLayer from usa to mexico.

4. The image below highlights the code changes with red boxes.
MapXtreme 9.5 Developer Guide 578 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
5. Choose Debug > Start Debugging (or press F5) to run the application and see your
changes. Close the Form1 window when you are finished.
MapXtreme 9.5 Developer Guide 579 Developer Guide

.

The application creates the same type of theme using Mexico data. You can pass in
any data source that fits this theme by changing the name of the table and the
FeatureLayer.

Next, let’s make changes to the theme itself. By manipulating the parameters passed
to the RangedTheme constructor we can change the way the theme is calculated and
displayed.

6. Highlight the word RangedTheme in the code and press F1 (line 212). The help topic
for RangedTheme displays on the screen. You can read this topic to see what each
parameter does when it is passed to the constructor.

7. We’ll increase the number of ranges, or bins, in the theme. On line 221 change the
number of bins from 5 to 8. (A bin is a range consisting of a maximum and minimum
value and is used by themes to group together like values for the purpose of shading.)

8. Next, we’ll change the distribution method of the ranges. The distribution method
indicates how the ranges are calculated. On line 221, change EqualCountPerRange to
EqualRangeSize. In the EqualRangeSize distribution method, each range has an equal
number of values.

9. The image below highlights the code changes with a red box.
MapXtreme 9.5 Developer Guide 580 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
10.Choose Debug > Start Debugging (or press F5) to build and run the modified
application. Notice that the number of theme bins has increased and the distribution
method has changed. Close the Form1 window when you are finished.

Next we’ll change the color of the ranges. You have two options for how you would like
to modify the colors. You can set a particular color for each bin, or you can set colors
for the first and last bin. The shading of the bins in between will graduate from the first
to the second color. Currently, the code specifies that the color ranges from white to
blue. Let’s change the colors to range from blue to red.

11.To change the color of the ranges, we’ll need to edit the fill style colors. Make sure the
code view is displayed and make the following changes:
MapXtreme 9.5 Developer Guide 581 Developer Guide

• To change the color of the first bin, on line 231, change WhiteFillStyle to
BlueFillStyle

• To change the color of the second bin, on line 241, change BlueFillStyle to
RedFillStyle

Every bin in between will have a shade between blue and red.

12.Choose Debug > Start Debugging (or press F5) to build and run the modified
application. The colors of the map have changed to reflect our new settings. Close the
Form1 window when you are finished.

Because we have made a number of changes, the legend is now partially blocking the
view of the map. We’ll move the legend so that we can see all of the map. We could
use the pan tool to move the map, but panning would not be a permanent change to
the application. The new map position would be in effect only for as long as the
application is running. Instead, we’ll change the position of the legend
programmatically.

13.Make sure the code page is displayed and make the following change to the legend
location:

• On line 258, replace “mapControl1.Size.Width - legend.Size.Width” with “0”

This changes the X coordinate of the legend location to be at the left side of the
frame. We are leaving the Y coordinate as it is.

14.The image below highlights the code changes with a red box.
MapXtreme 9.5 Developer Guide 582 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
15.Choose Debug > Start Debugging (or press F5) to build and run your application.
Now the legend is in its new location. Close the Form1 window when you are finished.

The last modification we’ll make is to add a Label tool to the toolbar.

16.In Visual Studio, open MapForm1.vb in Design mode.

17.From the Menu and Toolbars group in the Toolbox, choose ToolStrip and click on the
MapControl where you wish to add a Label tool. A split button appears.
MapXtreme 9.5 Developer Guide 583 Developer Guide

18.Click the down arrow on the split button and choose the LabelToolStripButton from the
list of buttons.

Notice that a Label tool displays on the form in the upper left corner and is
automatically assigned to mapControl1 in the Properties windows.
MapXtreme 9.5 Developer Guide 584 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
As you can see, you can use the samples as a base for your own customization. You can
substitute your own data, modify themes, and add tools easily. Other modifications we
could make to this thematic map include:

• Using a different column from the data source (table) so that the theme is based on a
different value, for example population. Don’t forget to refresh the legend to match.

• Adding additional themes and legends.

• Adding additional tools.

Building Under Release Mode
When you have completed the modifications, you are ready to do a release build. The
release build is the build of the application that you will release to customers. or internal
users. To make a release build:

1. Choose Build > Configuration Manager.

2. In the Active Solution Configuration drop-down list, change the build type to
Release.

3. Click Close in the Configuration Manager dialog box.

4. In Solution Explorer, right-click on the ThemeLegendVB project and choose Build.

When you are finished, see Packaging Your Desktop Application.
MapXtreme 9.5 Developer Guide 585 Developer Guide

Packaging Your Desktop Application
This section of the tutorial shows you how to package your desktop application. A
package is a collection of files and directories required for a software product. A product
must be built into one or more packages so that it can be transferred to a distribution
medium, such as a CD-ROM or DVD-ROM.The package for a desktop application
consists of a Setup.exe file, which contains all the files needed to install and run your
desktop application.

MapXtreme was designed to make this process as simple as possible. Using features in
Visual Studio as well as automation in MapXtreme, the correct merge modules will be
included in your package. A merge module (MSM) is a single package that contains all
files, resources, registry entries, and setup logic necessary to install a component. A list
of MSMs can be found in Deploying Your Application as well as a discussion about
MapXtreme’s runtime installer and other options available to you.

Creation of setup project can be enabled in Visual Studio 2015/2017 by installing "Visual
Studio Installer Projects Extension". For more information see:

https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d

or

http://blogs.msdn.com/b/visualstudio/archive/2014/04/17/visual-studio-installer-projects-
extension.aspx

Create a Setup Project

We will first need to create a setup project for our solution. The Setup project enables you
to create the Setup.exe file.

1. In the Solution Explorer, click on the name of the Solution to highlight it and choose
File > Add New Project. The Add New Project dialog box displays on the screen.

2. In the Project types list, expand Other Project Types, and click on Setup and
Deployment and choose Visual Studio Installer.

If your project is not part of a Solution, you will not see the Add Project shortcut. You
can add the Setup project from File > Add Project and choose Setup. A solution will be
created along with the Setup project.

3. Highlight Setup Project. Enter a name and location for the Setup project, and click
OK. Visual Studio displays the File System of the new setup project.
MapXtreme 9.5 Developer Guide 586 Developer Guide

https://visualstudiogallery.msdn.microsoft.com/9abe329c-9bba-44a1-be59-0fbf6151054d
http://blogs.msdn.com/b/visualstudio/archive/2014/04/17/visual-studio-installer-projects-extension.aspx
http://blogs.msdn.com/b/visualstudio/archive/2014/04/17/visual-studio-installer-projects-extension.aspx

 A – How to Create and Deploy a MapXtreme Application
4. Next, we need to add the data files. In the Solution Explorer, right-click on your setup
project and choose Add > File from the menu.

5. In the Add > File dialog box, select All Files from the dropdown list in the Files of Type
box, then navigate to the location of your data files.

6. Select all of the files you need to add to the setup project.

7. Click Open. The files are added to the Solution Explorer, under the ThemeLegendVB
project.

8. Repeat steps 5-8 if you have files in different paths to add to your setup project.

 If you are deploying this application to another machine, the absolute paths for
the data on the development computer and the deployment computer must be
identical.

To view or change the path that the setup file is written to:

1. Right-click on the setup project and choose Properties from the menu.

2. In the Setup Property Pages, the Output File Name can be changed. This is also
where you choose the configuration (debug or release) to build into the setup file.

If you wish to place your built application in the Start menu, on the File System Tab, right
click on the User’s Programs Menu and click Create shortcut to User’s Programs Menu
and set the name and properties as needed. Alternatively, a script can be written to place
the program on the start menu exactly where you would like it placed (for example, in a
sub-menu).
MapXtreme 9.5 Developer Guide 587 Developer Guide

Similarly, to place a shortcut on the user’s desktop, right click on the User’s Desktop and
click Create shortcut to User’s Programs Menu and set the name and properties as
needed. Alternatively, a script can be written to create the shortcut and place it on the
user's desktop.

Optional Step: Add Workspace Manager and GeoDictionary Manager

If you wish, include the MapXtreme utilities Workspace Manager and GeoDictionary
Manager in your package, so your customers can use them.

Build the Setup Project

When you build the setup project, a Setup.exe file is created that contains all the data,
compiled code, and necessary MSMs for the project. This Setup project is part of your
MapXtreme solution.

When you are finished building the setup project, then build the solution. When you build
the entire solution, Visual Studio will compile and build the mapping application and then
compile and build the Setup.exe file for installation. Your package is now complete and
ready for deployment.

Deploying Your Desktop Application
Now that you have built your desktop application and packaged all the components for
deployment, the final step is to get it onto the production workstation.

To deploy your application, you must deliver the Setup.exe file you created to your end
user. You can copy the Setup.exe file to a CD-ROM or DVD-ROM to provide a means of
delivering the file. When the user launches the Setup.exe executable file on their
computer, the installation starts and walks them through the installation. That’s all there is
to it!

Building a Web Application
In this tutorial, we are going to base our application on a Web Thematics sample that is
provided with MapXtreme. The MapXtreme Web samples are Visual Studio Web
Application projects. They contain a fully functioning Web application, include pre-loaded
data to support the application, and handle state management.

Running a Sample Web Application
Let’s start by running the Thematics Web sample to see what it looks like.
MapXtreme 9.5 Developer Guide 588 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
1. In Visual Studio, choose File > Open Project and open the folder for the sample
ThematicsVB. The default path to this folder is:C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\Web\Features\Thematics\ThematicsVB
(where x is the release number of the version of MapXtreme you are using).

2. Choose Debug>Start Debugging (or press F5 to run the sample in Debug mode).

The Thematics sample Web Application project contains a background map of the world,
a pull-down menu listing different themes to be applied and attribute columns from a MS
Access table as well as an Apply button that applies the themes. The Web page contains
the standard tool buttons that are included in MapXtreme web templates: ZoomIn,
ZoomOut, Center and Pan. The application also includes a Layer Control so that you can
set which layers are visible and view the current map zoom level.
MapXtreme 9.5 Developer Guide 589 Developer Guide

For more information, see Components of a MapXtreme Web Application.

When you are finished, close the Web page, but leave the project open.

Modifying Your Application

To modify this sample application, let’s look at the code behind page, WebForm1.aspx.vb.
The code behind page is the code that represents the HTML for the Web form.

 This Thematics sample Web application is designed very differently than its
desktop sample application counterpart. The most important difference is that the
Web sample is tightly coupled to the data table and data column names. These
items cannot simply be changed as was the case in the desktop sample.

In the code behind page, we will make some simple theme property value and range color
changes. These modifications will change the themes display when the user runs The
method where we will make our changes is in the CreateThemeOrModifier method, on
line 244. The first change is to the Dot Density theme and how it will be displayed.

1. In Visual Studio, move your cursor to the Solution Explorer and right click on
WebForm1.aspx. Choose View Code to display the code behind page,
WebForm1.aspx.vb.

If you have WebForm1.aspx displayed in Design mode, you can right-click anywhere
on the form, and choose View Code.
MapXtreme 9.5 Developer Guide 590 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
 All sample applications discussed in this tutorial were taken from the MapXtreme
distribution DVD. The line numbers referenced may not correspond exactly with
the code in your installation.

Scroll down the code page to familiarize yourself with the code.

2. Make the following changes:

• ·Under the ThemeAndModifierTypes.DotDensityTheme case statement, go to line
288 and change Color.Purple to Color.DarkGreen

When the application is run, this will change the display color of the dots when
selecting the Dot Density Theme.

• ·On line 289, change the ValuePerDot property from 2000000 to 5000000.

This will change the number of dots displayed based on population. The result will
be a fewer number of dots.

In the image below, the code changes are highlighted with red boxes.

3. Choose Debug>Start Debugging (or press F5) to build and run the Web application.
Once the page is displayed in the browser, select DotDensityTheme theme, and then
check Pop_1994.

The color of the dots on the map is now dark green.
MapXtreme 9.5 Developer Guide 591 Developer Guide

Now let’s make one more simple change to the Web sample. This change is to the
Range Theme.

4. Make the following changes:

• Under the ThemeAndModifierTypes.RangedTheme case statement, go to line 276
and change the bin count parameter from 5 to 8.

This will change the number of data bins for the theme.

• On the same line, line 276, change the bin distribution method from
EqualCountPerRange to NaturalBreak.

This will change the way that the data is divided in data bins.

5. Choose Debug>Start Debugging (or press F5) to build and run the Web application
with these new changes. Once the page is displayed, select RangedTheme, and then
check Pop_1994.

Notice how the theme has changed with more data bins (color codings) and how the
countries have changed theme color based on the new data distribution method.
MapXtreme 9.5 Developer Guide 592 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
As you can see, making simple display modifications to this sample Web Application is
relatively easy. Other possible modifications to this sample include:

• Changing the web page layout, such as moving the controls around.

• Changing the web page styles such as colors and fonts.

State Management Considerations
Customizing a Web application sample not only involves changing elements of the
application, but also building it with state management best practices in mind. Because of
the intricacies of handling applications and user state in a web environment, you must
understand how MapXtreme handles them and how you can apply these concepts in your
own development. State Management for Web Applications is discussed in Chapter 6
Understanding State Management.

This sample, in terms of best practices, uses a pre-loaded workspace of maps and
settings, manages application and user state manually, and uses pooled session objects
so that the application can service multiple requests efficiently.

It is designed to detect if the user is making a first time request, in which case the
application is presented in its initial state, or if the user is revisiting the application, in
which case the user’s personal settings are maintained. Because this sample is sharing
session objects with multiple users (known as pooling), it detects if the session is in its
initial state (“clean”) or contains another user’s changes (“dirty”).

To maintain all users’ settings separately, this sample sets Session.State to manual. In a
Web application where the MapXtreme Session state is saved automatically, the
Session.State would be set to HttpSessionState. This means that the entire session is
saved to the HTTP Session. Although this option automatically saves state, performance
degrades because it does not determine what to save. The entire session is saved.
MapXtreme 9.5 Developer Guide 593 Developer Guide

Configuring for Release Mode

When you have completed the modifications, you are ready to do a release build.

An important concept to understand in ASP.NET 2.0 is that Visual Studio knows nothing
about compiling a Web Application project. Previously, ASP.NET 1.1 and Visual Studio
.NET would build the code-behind source code and web forms and place the compiled
code in an output directory. Visual Studio delegates all compilation responsibilities to the
ASP.NET platform. The Visual Studio build command only validates the Web Application
configuration.

To configure your Web Application project to be packaged without debugging turned on,
you can change a configuration setting in the Web Application project’s Web.config file. In
the Web.config, find the XML element "compilation" (line 27) and change the value of the
attribute "debug" to "false". The result should read as follows:

<compilation defaultLanguage="vb" debug="false">

This Web.config setting lets the ASP.NET compiler know to build all source code in
release mode.

To build the application, right-click on the ThematicsVB project in Solution Explorer and
choose Build Web Application.

Packaging Your Web Application
Creating a package for a Web application is similar to creating a package for a desktop
application.

Create a Web Setup Project

To start we are going to add a Web setup project to our solution. To create a Web setup
project:

1. In the Solution Explorer, right-click the Solution and choose Add > New Project. The
Add New Project dialog box displays on the screen.

2. In the Project types list, expand Other Project Types, and click on Setup and
Deployment.

3. From Setup and Deployment Projects, select Web Setup Project. Click OK. A Web
setup application project will be created.

If your project is not part of a Solution, you will not see the Add Project shortcut. You
can add the Setup project from File > Add Project and choose Setup. A solution will be
created along with the Setup project.
MapXtreme 9.5 Developer Guide 594 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
The next step is to indicate which parts of the solution to include.

4. In Solution Explorer, right-click on the newly-created Web Setup project and choose
Add > Project Output. The Add Project Output Group dialog box displays on the
screen.

5. Click on Contents Files and click OK.

You must include the content files because the web pages in the application are
generated as HTML files rather than executables as in the desktop application.
MapXtreme 9.5 Developer Guide 595 Developer Guide

6. If you create your own deployment for a Web Application, you will need to add the
MSMs manually. For more information, see Deploying a Web Application

7. Next, you must include your data on the production server. You have the option of
copying the data to the production server manually, or installing it in a separate
installer.

8. In the File System window in Visual Studio for the Web Setup project, right-click the
Web application folder and open the Properties window. Change the Virtual Directory
name to ThematicsWeb_8_0, which defines the virtual directory on the target
machine.
MapXtreme 9.5 Developer Guide 596 Developer Guide

 A – How to Create and Deploy a MapXtreme Application
Build Web Setup Project

Now you are ready to build your Web setup project.

1. Choose Build > Batch Build. The Batch Build dialog box displays on the screen.

2. Find the Release configuration of the Web Application project and select its
corresponding Build check box.

3. Click Build.

When the build is finished, using Windows Explorer go to the Release directory of the
Web Setup project. You will see either a Setup.exe file or a setup.msi file. Use this file for
deployment.

Deploying Your Web Application
In a Web deployment, the Setup.exe file must be run on a production server by the
organization that is hosting the Web Application. The Setup file must be transferred from
the development server to the production server and then installed on that server. In small
organizations the deployment may be done by the developer. In larger organizations, an
Administrator might perform the deployment. Your users then access the site by entering
its URL in their Internet browser. For specific information on different installers, accessing
data, proxy servers, and permissions, see Deploying Your Application.

For the purposes of this tutorial, let’s assume that you, as the developer, will do the
deployment. The production server must have the .NET Framework v. 2.0 or later, and
MapXtreme installed.
MapXtreme 9.5 Developer Guide 597 Developer Guide

Once you install your application on the production server, modify the Web.config file so
that the pre-loaded workspace is referenced on the local machine.

When your Web Application is deployed, the setup application creates the necessary
virtual directory in IIS and places all the other necessary components in the right places.

To see the Web Application run, open a browser, and enter the URL:
http://<ProductionServerMachine>/ThematicsWeb_8_0/. The URL should be the location
of the Web application on the production server, using the virtual directory that you
specified when you packaged the application.

After installation you should restart the IIS server on the machine by issuing an iisreset in
a command prompt. Another option is to recycle the app pool that the application is
assigned.
MapXtreme 9.5 Developer Guide 598 Developer Guide

B

B – Customizing MapXtreme
This appendix contains examples of classes, interfaces, and other
elements of MapXtreme which can be customized.

In this appendix:

 Customizable Classes . 600
 Workspace Manager Extensions . 608
 Location of Application Data Files . 613
 Find Abbreviation File . 615

Customizable Classes
The following classes have been designed to facilitate sub-classing to create custom
subclasses that more closely fit your development needs.

• MapInfo.Data.Provider Namespace

• ADO.NET

• Engine.CustomProperties

• Search

• FeatureStyleModifier or FeatureOverrideStyleModifier

• UserDrawLayer

• Windows.Controls

• Tools

• Styles

• GmlFeatureCollection

• WorkSpacePersistence and WorkSpaceLoader

MapInfo.Data.Provider Namespace
MapXtreme provides an extensible data provider model for accessing data in forms that
MapXtreme cannot natively understand. This model requires an extensive amount of
development and should be undertaken only when the other methods of data access
provided by MapXtreme is insufficient. The model is explained in Appendix D: Extensible
Data Providers.

ADO.NET
Before attempting to implement your own data provider using the Extensible Data
Provider model discussed above, consider the MapInfo.Data.TableInfoAdoNet class. This
class provides access to non-mappable data for which we have not provided a dedicated
data source. See the Developer Reference for more information.

Engine.CustomProperties
Use the CustomProperties class to add custom information to an object. The different
kinds of objects that CustomProperties can add to are: FeatureCollection,
FeatureStyleModifer, GmlFeatureCollection, GroupLayer, IFeatureCollection, IMapLayer,
ISession, LabelModifier, LabelSource, Legend, LegendFrame, Map, MapLayer, MapTool,
MapXtreme 9.5 Developer Guide 600 Developer Guide

 B – Customizing MapXtreme
MultiFeatureCollection, Session.PooledSession, and Table. Add information using the
Add method. Retrieve information using the Item method. CustomProperties can be of
any type.

 Do not add MapXtreme objects directly into a CustomProperties collection. Doing
so causes errors during serialization. Instead add an Alias. For example, do not add
a Map to a CustomProperties collection. Instead add Map.Alias.

Here is an example of how CustomProperties is used to add and retrieve properties:

Public Shared Sub MapInfo_Engine_CustomProperties()
 Dim bag As CustomProperties = New CustomProperties
 bag.Add("One", 1)
 bag.Add("DateNow", DateTime.Now)
 Dim i As Integer = CType(bag("One"), Integer)
 Dim ts As DateTime = CType(bag("DateNow"), DateTime)
End Sub

Search
To customize your search functions, there are a few classes that you can work with to
accomplish almost any kind of search that you desire. The QueryFilter class allows you to
create custom “where” clause to be used in SQL queries; the QueryDefinition class
allows you to define a custom SQL query to be executed; and a SearchResultProcessor
sets up the post processing of the results of your query.

For an example of how these classes are used, refer to the Search sample application
included in the Samples directory of your MapXtreme installation (the default installation
location is: C:\Program
Files\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features\Search).

QueryFilter

The IQueryFilter interface defines the interface that all query filters must support. A
QueryFilter is used to define all or part of the “where” clause of a QueryDefinition.

QueryDefinition

The QueryDefinition class defines a query to be executed by a search. The
QueryDefinition is made up of a filter (IQueryFilter), Columns, and OrderBy. If no
Columns are specified, then “*” is used.
MapXtreme 9.5 Developer Guide 601 Developer Guide

ISearchResultProcessor or SearchResultProcessor

The SearchResultProcessor implements the ISearchResultProcessor interface which is
used to do post processing on the results of a search to narrow down the rows selected.

FeatureStyleModifier or FeatureOverrideStyleModifier
Create your own FeatureStyleModifiers to change the appearance of a layer by deriving
from FeatureStyleModifier or FeatureOverrideStyleModifier. These classes are used to
specify a specific FeatureStyle modification for the objects in a specific layer.

The following example creates a modifier that sets regions in USA.TAB to red if the
population has decreased from 1990 to 2000.

using MapInfo.Mapping;
using MapInfo.Styles;
using System.Drawing;

internal class UsaPopulationDecreasedModifier :
MapInfo.Mapping.FeatureStyleModifier
{

public UsaPopulationDecreasedModifier() : base(null, null)
{

// use 2 columns for expressions
Expressions = new string[] { I18N.Wrap(

"Pop_1990",I18N.WrapType.Column),
I18N.Wrap("Pop_2000",I18N.WrapType.Column) };

}

// called during draw events
protected override System.Boolean

Modify(MapInfo.Styles.FeatureStyleStack styles,
object[] values)

{
// compares the values from each column
if (double.Parse(values[0].ToString()) >

double.Parse(values[1].ToString()))
{

// if population decreased, color the region red
CompositeStyle style = styles.Current;
if (style.AreaStyle.Interior is SimpleInterior)
{

((SimpleInterior)style.AreaStyle.Interior).ForeColor =
Color.Red;

// modifies the region
return true;

}
}

// does not modify the region
return false;
MapXtreme 9.5 Developer Guide 602 Developer Guide

 B – Customizing MapXtreme
}
}

UserDrawLayer
The UserDrawLayer class is used to draw a custom layer in your map. You can populate
this layer with anything you like, including a customized logo, a transparent overlay of
points, etc. To use this class derive a new class from it and overload the draw method.
The sample code below illustrates this:

C# example:

using System.Runtime.Serialization;
using System;
using System.Drawing;
using MapInfo.Mapping;

[Serializable]
 class MyUserDrawLayer : UserDrawLayer {
 // Call the base class constructor with name and alias.
 public MyUserDrawLayer(string Name, string Alias) : base(Name, Alias) {}

 // Override the abstract Draw method to draw a rectangle.
 public override void Draw(System.Drawing.Rectangle ClientRect,
System.Drawing.Rectangle
 UpdateRect, Graphics graphics) {
 // Create a pen.
 Pen blackPen = new Pen(Color.Black, 3);
 // Create location and size of rectangle.
 float x = 10.0F;
 float y = 10.0F;
 float width = 200.0F;
 float height = 200.0F;
 // Draw rectangle to screen.
 graphics.DrawRectangle(blackPen, x, y, width, height);
 }
}

A VB UserDrawLayer sample application is provided with MapXtreme in the
..\MapInfo\MapXtreme\9.x.x\Samples\Desktop\Features folder.

Windows.Controls
Many of the classes in the Windows.Controls namespace can be sub-classed to
implement custom behavior. Below are two examples of customizing the LayerControl
using this approach.
MapXtreme 9.5 Developer Guide 603 Developer Guide

MapInfo.Windows.Controls.PropertiesUserControl

If you want to add your own custom tabs to the LayerControl, create a class that
subclasses PropertiesUserControl. Then add your class to the collection of other tab
classes by calling the LayerControl's GetLayerTypeControls() and
SetLayerTypeControls() methods. For an example of how this works, refer to the sample
application included in your Samples\Features directory of your MapXtreme installation.
Look in the MapBackgroundControl.cs file in the LayerControl sample application for the
class MapBackgroundControl which subclasses PropertiesUserControl.

MapInfo.Windows.Controls.LayerNodeHelper and all of its subclasses

LayerNodeHelper classes control the appearance and behavior of nodes in the
LayerControl's layer tree. For example, these helper classes dictate which layers the user
is allowed to remove. If the properties of the ILayerNodeHelper interface do not give you
enough control over the appearance or behavior of layer nodes—for example, if you want
to apply per-table logic, where the user is allowed to remove some map layers, but not
others—you can subclass any of these helper classes, override the appropriate method,
and perform your per-layer logic in your overridden method. Then put your new helper
class to use by calling the LayerControl.SetLayerTypeHelper method.

By default, when the user removes a GroupLayer, a confirmation dialog appears, except
in cases when the GroupLayer is completely empty—in that case, the empty GroupLayer
is simply removed with no confirmation prompt (LabelLayers work similarly). To force the
Layer Control to always display a confirmation prompt, even when the GroupLayer is
empty, create a class that derives from GroupLayerNodeHelper and override the
IsRemovalConfirmed method. The code example below illustrates how this is done.

using System;
using MapInfo.Windows.Controls;

namespace MapInfo.Samples.LayerControl
{

public class CustomLayerNodeHelper : GroupLayerNodeHelper
{

public CustomLayerNodeHelper()
{
}
public override bool IsRemovalConfirmed(object obj)
{

return true;
}

}
}

MapXtreme 9.5 Developer Guide 604 Developer Guide

 B – Customizing MapXtreme
Then, to use this new helper class in your application, call the LayerControl's
SetLayerTypeHelper method, using syntax such as this:

 layerControlDlg.LayerControl.SetLayerTypeHelper(
typeof(GroupLayer), new CustomLayerNodeHelper());

The subclasses of LayerNodeHelper are:

• MapNodeHelper

• MapLayerNodeHelper

• GroupLayerNodeHelper

• LabelLayerNodeHelper

• LabelSourceNodeHelper

• LabelModifierNodeHelper

• FeatureStyleModifierNodeHelper

• RangedThemeNodeHelper

• DotDensityThemeNodeHelper

• IndividualValueThemeNodeHelper

• PieThemeNodeHelper

• BarThemeNodeHelper

• GradSymbolThemeNodeHelper

Tools
Tools can be customized in two ways: by sub classing an existing tool or by adding code
to a Custom base tool. See Chapter 7 Desktop Applications, Controls, Dialogs, and Tools
for more information desktop tools. See Chapter 5 Web Applications, Controls, and Tools
for information on web tools.

Styles
The following classes can be used to add customization to your collections of styles to
apply to objects.
MapXtreme 9.5 Developer Guide 605 Developer Guide

BitmapPointStyleRepository

The BitmapPointStyleRepository class is used to iterate through all current bitmap point
styles and allows you to add new bitmap images from a specified directory. Using the
Refresh() method places any new bitmap images into the repository that holds all images.
The following code sample demonstrates the reloading of the collection of images used
for BitmapPointStyles from a directory named “C:\MyData\MyBitmapImages.”

using MapInfo.Styles;

StyleRepository styleRepository = Session.Current.StyleRepository;
BitmapPointStyleRepository bmpPointStyleRepository =

styleRepository.BitmapPointStyleRepository;
bmpPointStyleRepository.Reload("C:\MyData\MyBitmapImages");

InteriorStyleRepository

The InteriorStyleRepository class is used to iterate through all current interior styles and
allows you to add new bitmap images for new interior styles from a specified directory. To
add onto the current set of interior patterns used to fill regions use the
AppendBitmapPattern() method. The following code sample demonstrates adding a new
BMP image to the InteriorStyleRepository.

using MapInfo.Styles;

StyleRepository styleRepository = Session.Current.StyleRepository;
InteriorStyleRepository interiorStyleRepository =

styleRepository.InteriorStyleRepository;
// AppendBitmapPattern returns the zero-based index of the pattern in
// the repository. The index returned may be used to
// retrieve a SimpleInterior style using the repository indexer.
int index = interiorStyleRepository.AppendBitmapPattern(

"C:\MyImages\trees.bmp"
);

if (index >= 0)
{

SimpleInterior style =
(SimpleInterior)interiorStyleRepository[index];

}

LineStyleRepository

The LineStyleRepository class is used to iterate through all current line styles and allows
you to add new line styles. You can use the Reload() method to put the new file into the
repository. The following sample code demonstrates reloading the collection of line style
patterns used for SimpleLineStyles from a PEN file in the “C:\MyData” directory.

using MapInfo.Styles;
MapXtreme 9.5 Developer Guide 606 Developer Guide

 B – Customizing MapXtreme
StyleRepository styleRepository = Session.Current.StyleRepository;
LineStyleRepository lineStyleRepository =

styleRepository.LineStyleRepository;
lineStyleRepository.Reload("C:\MyData\MyLineStyles.PEN");

VectorPointStyleRepository

The VectorPointStyleRepository class is used to iterate through all current vector symbols
and allows you to add new vector symbols from a specified file. In order to create your
own version of the symbol set, you need to use the Symbol Maker MapBasic application.
Once your vector symbol set is changed you use the Reload() method to read the symbol
set into the repository. The following sample code demonstrates reloading the collection
of SimpleVectorPointStyles from an FNT file in the “C:\MyData” directory.

using MapInfo.Styles;

StyleRepository styleRepository = Session.Current.StyleRepository;
VectorPointStyleRepository vecPointStyleRepository =

styleRepository.VectorPointStyleRepository;
vecPointStyleRepository.Reload("C:\MyData\MyVectorSymbols.FNT");

GmlFeatureCollection
The GmlFeatureCollection class is used to import features from an XML file. You can add
Features to a map by creating a FeatureCollection object and constructing
FeatureObjects to add to it. Then you can insert the FeatureCollection into a table.

WorkSpacePersistence and WorkSpaceLoader
The WorkSpaceLoader can be subclassed so that the persistence file being used can
hold extra information saved from the application. The developer can have the application
write any information that they would like saved into the persistence XML file by adding it
under the UserData node. When the WorkSpacePersistence class writes the persistence
file and there is some content in this node, the content is automatically written to the file.
The WorkSpaceLoader class or some derived version of the class reads in all the data
including what is a child of the UserData node. The following code shows an example of
this.

using MapInfo.Persistence;

class myWorkSpaceLoader : WorkSpaceLoader
{

public myWorkSpaceLoader(string fileName): base(fileName)
{

// empty
}

MapXtreme 9.5 Developer Guide 607 Developer Guide

override public void Load()
{

// called parent Load() method.
base.Load();

XmlNode userData = this.UserDataXmlNode;
foreach (XmlNode childNode in userData.ChildNodes)
{

string text = childNode.Name;
text = childNode.InnerText;
// user can do their own load stuff here

}
}

}

Workspace Manager Extensions
MapXtreme’s workspace-building tool Workspace Manager can be extended to add new
menu commands, tools and tab windows that make creating workspaces easier.

For details on the Workspace Manager capabilities and user interface, see Chapter 27
Workspace Manager.

Workspace Manager extensions are .NET assemblies that you write to extend the
functionality of Workspace Manager. Most likely you will build these from the MapXtreme
API to add capabilities from the object model that are not exposed in Workspace
Manager.

For example, you can add more menu items, tools, tab windows or react to change
events. Layer Control is also extensible, so you can add new capabilities to its menu in
the same way.

Once your extension is ready to use, simply load it via the new Extensions menu on
Workspace Manager’s updated menu strip. It can also be autoloaded to be available
when Workspace Manager starts.

Examples of Workspace Manager extensions you might want to build include a table
browser with sorting capabilities, custom theme templates, or new tools for object
creation and editing.

Creating a Workspace Extension
MapXtreme provides an assembly called MapInfo.WorkspaceManager.Extension.dll that
defines the interfaces to help you add your own functionality to Workspace Manager.

public interface IWorkspaceManagerExtension
MapXtreme 9.5 Developer Guide 608 Developer Guide

 B – Customizing MapXtreme
{
string Name

{
get;
}

string Version
{
get;
}

bool HasPropertiesDialog
{
get;
}

void ShowPropertiesDialog(IWin32Window owner);

IWorkspaceManagerNotifications Load(IWorkspaceManager callback);

void Unload();
}

To create an extension, create an assembly with at least one class that implements the
IWorkspaceManagerExtension interface. The class should have a constructor that takes
no arguments.

Load Method

The main method on IWorkspaceManagerExtension is:

IWorkspaceManagerNotifications Load(IWorkspaceManager callback);

This method is called after the extension class is constructed. It is passed an instance of
an object that implements IWorkspaceManager which allows the class to call back into
Workspace Manager to access elements of the user interface such as menus, toolstrips,
tabcontrol and to execute commands such as loading and saving workspaces.

public interface IWorkspaceManager
{

bool NewWorkspace();
bool LoadWorkspace(string filename);
void SaveWorkspace(string filename);
void MarkWorkspaceChanged();
bool HasWorkspaceChanged();

string LoadedWorkspaceFileName{get;}

int AddMapTab(MapInfo.Mapping.Map map);
int FindMapTab(MapInfo.Mapping.Map map);
int AddLegendTab(MapInfo.Mapping.Legends.Legend legend);
int FindLegendTab(MapInfo.Mapping.Legends.Legend legend);
void RemoveTab(int tab);
MapXtreme 9.5 Developer Guide 609 Developer Guide

Microsoft.Win32.RegistryKey GetRegistryKey();

MapInfo.Windows.Controls.MapControl MapControl{get;}

MapInfo.Windows.Controls.MapControl GetMapControlFromTab(int tab);
MapInfo.Windows.Controls.LegendControl GetLegendControlFromTab(int tab);

MapInfo.Windows.Controls.LayerControl LayerControl{get;}

System.Windows.Forms.Form MainForm{get;}

System.Windows.Forms.MenuStrip Menu{get;}
System.Windows.Forms.ToolStrip FileToolStrip{get;}
System.Windows.Forms.ToolStrip MapToolStrip{get;}
System.Windows.Forms.ToolStrip ToolsToolStrip{get;}
System.Windows.Forms.StatusStrip StatusStrip{get;}
System.Windows.Forms.TabControl MainTabControl{get;}

ContextMenuStrip MapContextMenu{get;}
ContextMenuStrip LegendContextMenu{get;}
ContextMenuStrip GenericTabContextMenu{get;}

}

Event Handling

If your extension needs to receive event notifications from Workspace Manager, add a
class that implements the IWorkspaceManagerNotifications interface and returns it from
the Load() method. Workspace Manager calls this class when a workspace is created,
loaded, or saved.

public interface IWorkspaceManagerNotifications
{

void OnNewWorkspace();
void OnWorkspaceLoaded(WorkSpaceLoader workspaceLoader, string filename);
void OnWorkspaceSaving(WorkSpacePersistence workspacePersistence, string

filename);
void OnWorkspaceSaved(string filename);
void OnLayerControlDialog(MapInfo.Windows.Dialogs.LayerControlDlg dlg);

}

Loading Your Extension
Your Workspace Manager extension can be loaded from the Extensions > Load
Extension menu command. The Open dialog displays where you can navigate to the
location of your assembly.

Use the provided Extension Manager dialog to show the loaded and unload extensions.
This is reachable from the Extensions > Manage Extensions command. It can invoke a
properties dialog if one is available.
MapXtreme 9.5 Developer Guide 610 Developer Guide

 B – Customizing MapXtreme
Loading an Extension from In-memory Assemblies

Extensions can also be autoloaded. On startup, Workspace Manager looks for extensions
to load in two places.

First, it scans all of the assemblies already loaded into the current AppDomain to see if
any types implement IWorkspaceManager. This is an advanced scenario and the only
likely case for using it is if an SessionEventHandler (see ISessionEventHandlers)
happens to also contain a Workspace Manager extension.

Second, Workspace Manager looks in a folder called Extensions in the sample location
as WorkspaceManager.exe. The assembly must be named
<my_extension>.WorkspaceManagerExtension.dll. All extension assemblies in this
location are loaded into the same AppDomain as Workspace Manager.

Command Line Arguments for Loading Extensions

You can also control from the command line where Workspace Manager should look for
extensions to load:

/LoadExtensions=[All|Folder|None]

Where:

All means to look in loaded assemblies and look in the Extensions folder

Folder means only look in the Extensions folder and skip the loaded assemblies

None means do not autoload any extensions

Unloading Your Extension

An extension can be unloaded by the user or when Workspace Manager is exiting. The
extension should be designed to remove any added menus, toolbars, or tab windows etc.
and free up as many resources as it can. The extension assembly will be unloaded from
the AppDomain once Workspace Manager is closed.

Sample Extension
Here is an example extension for Workspace Manager that loads the previously-used
workspace on startup:

using MapInfo.WorkspaceManager.Extension;
using System.Windows.Forms;
using System;

public class LoadLastWorkspaceExtension : IWorkspaceManagerExtension
MapXtreme 9.5 Developer Guide 611 Developer Guide

{
 private string _name;
 private IWorkspaceManager _callback;

 private LoadLastWorkspaceExtension()
 {
 _name = "Load Last Workspace Extension";
 }

 public string Name
 {
 get { return _name; }
 }

 public string Version
 {
 get { return "0.57"; }
 }

 // this get called when extension is first loaded
 // use it to hook up and UI like menu items, toolbars, etc
 public IWorkspaceManagerNotifications Load(IWorkspaceManager callback)
 {
 _callback = callback;

 Microsoft.Win32.RegistryKey key = _callback.GetRegistryKey();
 string s = (string)key.GetValue("RecentFiles");
 if (s != null && s.Length > 0)
 {
 try
 {
 string[] files = s.Split('|');
 callback.LoadWorkspace(files[0]);
 }
 catch { }
 }
 key.Close();

 return null; // returning because we don’t need the notifications
 }

 public void Unload()
 {
 // nothing to clean up
 }
 public bool HasPropertiesDialog
 {
 get { return false; }
 }

 public void ShowPropertiesDialog(IWin32Window owner)
 {
MapXtreme 9.5 Developer Guide 612 Developer Guide

 B – Customizing MapXtreme
 throw new NotImplementedException();
 }

}

Location of Application Data Files
Any MapXtreme application uses data stored in the following files.

By default, MapXtreme applications look in the following directories for data files:

• C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x—This is the directory the
MapXtreme installer places these files.

• The directory where your application is located. For a Windows application, this is the
directory where the .exe file is located. For web applications, this is the directory where
the Web.config file is located.

• MapInfo.CoreEngine assembly folder—This directory is the last place any application
looks.

The list of directories corresponding to the above locations is obtained via the
ISessions.AppDataPaths property which returns the list as an array of strings. While you
cannot add to this list programmatically, you can add to it by defining a custom section in
the application’s configuration file. This is illustrated in the sample code below. Note that
the order in which additional paths are defined determines the order in which they are
searched, and all custom locations are searched before the default locations listed above.

The following example shows the <SpecialPath> tag:

File Type Filename

Abbreviation file MAPINFOW.ABB

Pen file MAPINFOW.PEN

Projection file MapInfoCoordinateSystemSet.xml

Vector symbol file MapInfow.fnt

Custom symbol directory CustSymb

Nadcon files *.las, *.los

jgd2000 files jgd2000.*
MapXtreme 9.5 Developer Guide 613 Developer Guide

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="MapInfo.CoreEngine"
type="MapInfo.Engine.ConfigSectionHandler,
MapInfo.CoreEngine, Version=6.8.0.536, Culture=neutral,
PublicKeyToken=93e298a0f6b95eb1" />

</configSections>
<MapInfo.CoreEngine>

<ApplicationDataPaths>
<SpecialPath>

<LocalApplicationData>YourCorporation\Your
Application<\LocalApplicationData>

<\SpecialPath>
</ApplicationDataPaths>

</MapInfo.CoreEngine>
</configuration>

In this example MapXtreme will search for custom symbols in a folder like C:\Documents
and Settings\username\Application Data\Your Corporation\Your Application\CustSymb.
Note that the <SpecialPath> element should not include the CustSymb folder name. If it
does, the path would be interpreted as ...\Your Application\CustMapXrtreme
2004\CustSymb\CustSymb. The duplicated "CustSymb" would be incorrect.

Use the <SpecialPath> syntax if the application data is stored in a location relative to a
.NET Framework special system folder. For example, if your application data is stored in
a directory named MyAppData located under the “My Documents” directory, then the
entry in the configuration file could be:

<Personal>MyAppData</Personal>

where “Personal” is the value of the .NET Framework enumeration
Environment.SpecialFolder that represents the “My Documents” directory.

Each element in the configuration element above is defined as follows:

<configSections>

This is where handlers for custom sections are declared. In this case the ConfigSectionHandler class defined
in assembly MapInfo.CoreEngine is responsible for parsing the MapInfo.CoreEngine section of the
configuration file.

<MapInfo.CoreEngine>

This section contains settings for the MapInfo.CoreEngine assembly. Specifically, application data search
paths.

<ApplicationDataPaths>

This section defines additional paths used by MapXtreme when searching for application data files.

<Path>

An element to use if the full path to the application data is known.
MapXtreme 9.5 Developer Guide 614 Developer Guide

 B – Customizing MapXtreme
<SpecialPath>

Use this syntax if the application data is stored in a location relative to a well-known system folder. For
example, if your application data is stored in a directory named MyAppData, located under the “My
Documents” directory, then the entry in the configuration file looks like
<Personal>MyAppData</Personal>, where “Personal” is the value of the Environment.SpecialFolder
enumeration that represents the “My Documents” directory. Any of the enumeration values in the
Environment.SpecialFolder can be used to define an application data path in the configuration file.

Find Abbreviation File
The Abbreviation file can be customized to match your data to make your find operations
more efficient. See Fine Tuning the Find Process for more information.
MapXtreme 9.5 Developer Guide 615 Developer Guide

MapXtreme 9.5 Developer Guide 616 Developer Guide

C

C – Understanding the

MapInfo Workspace
MapXtreme provides a workspace format that is portable,
interoperable, and uses the MapInfo codespace definition. This
appendix covers its definition, capabilities and use. For more about the
MapInfo codespace definition, see Appendix G: Defining the MapInfo
Codespace.

In this appendix:

 What is the MapInfo Workspace?. 618
 Creating an .MWS Workspace Programmatically from a .GST . . . 623
 Structure of a Workspace . 619
 Partial Workspace Loading: . 624

What is the MapInfo Workspace?
Using MapXtreme, you can persist the maps you create as XML-based workspaces (with
an .MWS extension) that are portable and interoperable. You will then be able to share
these maps with anyone else using MapInfo products regardless of their working
environment.

If you are familiar with MapXtreme Java, MapX, or MapInfo Professional, you know that
currently users persist maps using different file formats:

• MapXtreme Java maps are saved as Map Definition Files (.MDF files)

• MapX maps are saved as geosets (.GST files)

• MapInfo Professional maps are saved as workspaces (.WOR and .MWS files)

These files have been the way for users of individual MapInfo products to share maps.
MapInfo Professional workspaces can also contain settings for browser and layout
windows, graphs, legends, and sometimes even printer settings.

The MapInfo Workspace format supports the creation of named resources for easier
access and portability to connections, map definitions, map layers, data source definitions
and styles. The main workspace schema is called MXP_Workspace_1_5.xsd. It is located
on the product media. Other supporting schemas include MXP_MapDefinition_1_5.xsd
for map definitions and MXP_NamedReources_1_5.xsd for named layers, connections,
data source definitions and styles.

Our XML documents use textual identifiers and, where possible, we have used identifiers
defined by XML standards organizations. However, XML, being eXtensible, allows for
identifiers to be added by any document author to clarify the meaning of the data used in
the document. To ensure that these identifiers are clearly labeled as defined by Precisely,
we specify them in what we call the MapInfo Codespace. To review the MapInfo
Codespace identifiers, see Appendix G: Defining the MapInfo Codespace.

For more information about creating workspaces and about using the Workspace
Manager, see Chapter 27 Workspace Manager.

 You cannot use .WOR workspaces created in MapInfo Professional with
MapXtreme. MapXtreme can read MapX geosets.
MapXtreme 9.5 Developer Guide 618 Developer Guide

 C – Understanding the MapInfo Workspace
Structure of a Workspace
To give you a sense of the structure of a workspace, let’s look at a workspace and the
XML code behind it. We will be looking at the World.MWS workspace, which is in the
Sample directory of your MapXtreme installation. Here, we describe four of the five types
of data in the workspace.

1. The Header contains the basic file information including the version type and the
creation date.

2. The Connection Section defines the database, file and WMS connections that are
contained in the workspace. This is where the named connection information is stored.

3. The DataSourceDefinition Section lists the definitions of the data and where it is
located. If you have named data source definitions, they would be included here.

4. The MapDefinition Section contains definitions of layer, theme, and label features
associated with the workspace, such as the label details, the zoom range, the colors
used, etc. Named definitions for the map, layers, themes, styles would be included
here.

An additional section in the schema is for user-defined data. This allows applications to
persist their own data. User data is a “wild card” element meaning you can enter any
content you want because it will not be validated against the schema.

For more information on named resource support in MapXtreme, see Opening and
Saving a Workspace Containing Named Resources.

Header Section
The file begins with the required XML file header information that describes the XML
version the file conforms to, the encoding description, and a field that indicates whether
the file is a standalone. The top level element in the file is the Workspace Element, which
contains attributes for the file version, date, and XML namespace definitions.

 The supported encoding for workspace persistence is UTF-8 for MapXtreme.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<WorkSpace name="" version="MXP_WorkSpace_1_5"
xmlns:gml="http://www.opengis.net/gml" xmlns="http://www.mapinfo.com/mxp">

Connection Section
MapXtreme 9.5 Developer Guide 619 Developer Guide

The ConnectionSet section defines the database connections and file connections that
are necessary to use the workspace. Currently supported database connections include
MS Windows ODBC connections, Oracle (OCI) connections, and JDBC driver
connections. File connections identify the path to the file. What follows are some
examples of these connections.

<ConnectionSet>
<DBConnection dbType="sqlserver">

<ConnectionName>JCD_SS2005_MIGS_BOUNDARY2</ConnectionName>
<ODBCConnectionString>driver={SQL Native Client};server=JODEMPSE-

W3\MIGS;database=MIUS06_BOUNDARY2;uid=MIGS;</ODBCConnectionString>
</DBConnection>

</ConnectionSet>

<ConnectionSet>
 <FileConnection dbType="file">
 <ConnectionName>MapStorage1_US</ConnectionName>
 <FilePath>c:\data\maps</FilePath>
 </FileConnection>
 </ConnectionSet>

DataSource Definition Section
The DataSource Definition section defines the data files (for example, TAB files) and
database tables that are retrieved at each connection location. Optional metadata may
also be included to describe the data that is retrieved. This example shows a named data
source definition, a database datasource definition, and a TAB data source definition.

<DataSourceDefinitionSet>
<NamedDataSourceDefinitionRef resourceID="MyDataSource"/>
<DBDataSourceDefinition id="id1" readOnly="false">

<DataSourceName>alias_Line_ontario_oracle_9i_rel
</DataSourceName>
<ConnectionMember>

<ConnectionName>ontario_oracle_9i_release_1</ConnectionName>
</ConnectionMember>
<DBQuery>

<Query>select * from us_hiway_extra</Query>
</DBQuery>
<DBDataSourceMetadata>

<FeatureGeometryAttribute srsName="mapinfo:coordsys 1,62">
OBJECT

</FeatureGeometryAttribute>
<KeyAttributes />
</DBDataSourceMetadata>

</DBDataSourceDefinition>
<TABFileDataSourceDefinition id="id2" readOnly="false">

<DataSourceName>alias_Line_us_hiway_extra</DataSourceName>
MapXtreme 9.5 Developer Guide 620 Developer Guide

 C – Understanding the MapInfo Workspace
<FileName>FeatureLayerBuilder\us_hiway_extra.tab</FileName>
</TABFileDataSourceDefinition>

</DataSourceDefinitionSet> ...

Map Definition Section
The Map Definition section defines one or more maps and their constituent layers. Each
map has display conditions that include the size of the image, the zoom and center
settings, the coordinate system of the rendered map. This example shows a named map
definition reference and a map definition. Under the LayerList, there are two named
layers, three defined layers and a named style reference for a label layer.

<MapDefinitionSet>
<NamedMapDefinitionRef resourceID="MyWorldMap"/>
<MapDefinition id="id7" name="Map1" alias="Map1" uniqueId="4adeb0e9-7c77-

4957-a3fb-a1a0677756ef">
<DisplayConditions>

<MapSize uom="mapinfo:imagesize pixel">
<ImageWidth>600</ImageWidth>
<ImageHeight>400</ImageHeight>

</MapSize>
<ZoomAndCenter>

<MapZoom uom="mapinfo:length mi">3000</MapZoom>
<gml:Point srsName="EPSG:4269">

<gml:coordinates>-79.771366,38.003251000000006
</gml:coordinates>

</gml:Point>
</ZoomAndCenter>
<DisplayCoordSys>

<SRSName>EPSG:4269</SRSName>
</DisplayCoordSys>

</DisplayConditions>
<LayerList>

<NamedLayerRef resourceID="NamedLayer_World 25 Major Cities"/>
<NamedLayerRef resourceID="NamedLayer_World Capitals"/>
<FeatureLayer id="id8" name="World25Cities"

alias="World25Cities"
volatile="unknown">
opacity="0.251">

<DataSourceRef ref="id4" />
</FeatureLayer>
<FeatureLayer id="id9" name="WorldCapitals"

alias="WorldCapitals"
volatile="unknown">
opacity="0.502">

<DataSourceRef ref="id2" />
</FeatureLayer>
<FeatureLayer id="id10" name="Regions"

alias="Regions"
volatile="unknown">
MapXtreme 9.5 Developer Guide 621 Developer Guide

opacity="0.753">
<DataSourceRef ref="id6" />

</FeatureLayer>
<LabelSource maxLabels="2147483647" name="World 25 Major Cities">
 <Visibility visible="true">
 <VisibleRange enabled="true">
 <ZoomRange uom="mapinfo:length mi" minInclusive="true"
maxInclusive="true">0 8000</ZoomRange>
 </VisibleRange>
 </Visibility>
 <DataSourceRef ref="id3" />
 <BaseLabelProperties>
 <LabelProperties>
 <LabelVisibility visible="true">
 <VisibleRange enabled="false">
 <ZoomRange uom="mapinfo:length mi" minInclusive="true"
maxInclusive="true">0 8000</ZoomRange>
 </VisibleRange>
 </LabelVisibility>
 <LabelText justification="right">
 <BaseLabelStyle>

<NamedStyleRef resourceID="Layer_id7" id="Layer_id7"/>
 </BaseLabelStyle>
 <StringTokenList>
 <StringToken>
 <StringValueExpression>
 <AttributeName>Place_Name</AttributeName>
 </StringValueExpression>
 </StringToken>
 </StringTokenList>
 <LabelCharacterLimit
spacing="1">2147483647</LabelCharacterLimit>
 </LabelText>
 <LabelCallout visible="true" end="none">
 <LineStyle stroke="black" width="1" width-
unit="mapinfo:imagesize pixel">
 <Pen>mapinfo:pen 2</Pen>
 </LineStyle>
 </LabelCallout>
 <LabelReferencePosition recalculate="outOfView">
<LineLabelPositionInterval>0</LineLabelPositionInterval>
 </LabelReferencePosition>
 <LabelLayout>
 <Alignment>
 <HorizontalAlignment>right</HorizontalAlignment>
 <VerticalAlignment>center</VerticalAlignment>
 </Alignment>
 <Offset uom="mapinfo:imagesize pixel">
 <XOffset>-2</XOffset>
 <YOffset>0</YOffset>
 </Offset>
<LabelRelativeOrientation>parallel</LabelRelativeOrientation>
MapXtreme 9.5 Developer Guide 622 Developer Guide

 C – Understanding the MapInfo Workspace
 </LabelLayout>
 <LabelBaseSize useScale="false">
 <MapScale>0</MapScale>
 </LabelBaseSize>
 </LabelProperties>
 </BaseLabelProperties>
 <LabelThemeList />
 </LabelSource>

</LayerList>
</MapDefinition>

</MapDefinitionSet>

The layer list displays with the label properties that are set for this map. These properties
include the layer the labels are on, the file source for the labels, the visibility rules for the
labels including the range at which the labels are visible, if applicable, the font and size
properties of the labels, the label character limits, callouts, if applicable, label position
settings, alignment, justification, and orientation of the label with regard to the point it is
labeling.

Creating an .MWS Workspace
Programmatically from a .GST
In MapX, you used the Map.SaveMapAsGeoset method to create a geoset from the
existing map. You give users the ability to save their workspaces programmatically as
well and view these workspaces in the Workspace Manager later on using the code
fragment shown below.

 Users need to have a map open with one or more layers to save it as a workspace.

// Reads a MapX geoset, writes a MapXtreme workspace.
using MapInfo.Persistence;
using MapInfo.Mapping;
.
.
.
MapLoader MapLoader = MapLoader.CreateFromFile("my.gst");
MapExport MapExport = new MapExport();
MapExport.Map.Load(MapLoader);
WorkSpacePersistence wsp = new WorkSpacePersistence();
wsp.Save("c:\\temp\\newwork.mws");
MapXtreme 9.5 Developer Guide 623 Developer Guide

Partial Workspace Loading:
Previously, if you opened a multi-layered .mws workspace file where one or more layers
were corrupted or damaged, MapXtreme would throw exception on the first corrupted
layer and stop loading of subsequent layers into the map.

To overcome this limitation, we have introduced a property PartialWSLoadingEnabled in
the MapXtreme application session.

When the property PartialWSLoadingEnabled is set to true, MapXtreme will try to load all
layers except the corrupted or damaged layers. If MapXtreme finds a corrupted or
damaged layer in a workspace then it skips those layers and proceeds to load the
subsequent layers. It then generates an event called WorkSpaceErrorEvent with
WorkSpaceErrorEventArgs as event arguments.

The WorkSpaceErrorEventArgs contains a list of corrupted or damaged layers and
the reason of failure for each layer.

MapXtreme remembers the partial layer loading settings while saving the workspace.
When the workspace is opened again the partial workspace loading settings take effect.

 When a workspace with corrupted or damaged layers is loaded and saved with the
same name, the workspace file will be overwritten and you may loose existing
layers from the workspace. It is advisable to save the workspace with a different
names using "Save as" command.

The following classes, WorkSpaceLoader, MapWorkSpaceLoader and MapLoader can
trigger this event. To handle this event, you must write event handler and extract error
details.
MapXtreme 9.5 Developer Guide 624 Developer Guide

 C – Understanding the MapInfo Workspace
Following code snippet gives a brief explanation about this:

Enable Partial Loading Programmatically
This partial loading feature can be achieved programmatically by setting the property
(PartialWSLoadingEnabled) in MapXtreme application session as following:

Session.Current.PartialWSLoadingEnabled = true;

Enable Partial Loading through User Interface
The Partial Layer Loading feature can also be achieved from the MapControl user
interface. We have added Enable Partial Workspace Loading checkbox in the layer
tree dialog.

When the checkbox (‘Enable Partial Workspace Loading’) is selected, MapXtreme
internally sets Session.Current.PartialWSLoadingEnabled to true.
MapXtreme 9.5 Developer Guide 625 Developer Guide

You can enable or disable partial layer loading using the Enable Partial Workspace
Loading checkbox in the layer tree dialog.

1. Open a map.

2. Click the map in the layer tree dialog.

3. Select Enable Partial Workspace Loading checkbox to enable it. Clear the checkbox
to disable the feature.
MapXtreme 9.5 Developer Guide 626 Developer Guide

D

D – Extensible Data Providers
This appendix presents MapXtreme’s Extensible Data Provider
architecture and information on how to construct one for spatial data
that MapXtreme does not otherwise provide access for.

In this appendix:
 Introduction. 628
 Extensible Data Provider Overview . 628
 Getting Started . 631
 Required Components . 633
 Optional Building Blocks: Base Classes, Helpers and Utilities 635
 Sample: COTW (Center of the World) Data Provider 637
 Optional Interfaces . 639
 Building and Testing Your Data Provider . 640
 Data Provider . 642
 Advanced Topics / Important Considerations 645

Introduction
MapXtreme provides an Extensible Data Provider model that can be implemented to
access data formats that are not supported in MapXtreme. This model is consists of a
collection of required and optional interfaces, building blocks of abstract base classes and
utilities.

Extending MapXtreme’s data provider model is a difficult undertaking that requires a
major commitment of development and testing resources. Most MapXtreme users find
the existing MapXtreme Data Providers for spatial data formats or Microsoft’s ADO.NET
for non-spatial data completely sufficient for their needs. See Chapter 8 Working with
Data for a complete discussion of MapXtreme’s data access options.

If you have data access requirements that cannot be satisfied through the MapXtreme
data model, consider extending it using the interfaces and guidance presented here.

MapXtreme’s Extensible Data Provider interface is organized under the
MapInfo.Data.Provider namespace in MapXtreme’s object model. Supporting these
interfaces are classes in MapInfo.Data and MapInfo.Data.Common namespaces.

The MapXtreme extensible data provider currently supports opening a table, reading the
table contents and associated metadata, searching the table contents using several
methods, and modifying table content through insert, update, and delete operations.

Extensible Data Provider Overview
The Catalog in MapXtreme is built with an internal data provider architecture. The
extensible data provider model is an adaptation that exposes this internal architecture
through a set of .NET interfaces as the following figure illustrates.
MapXtreme 9.5 Developer Guide 628 Developer Guide

 D – Extensible Data Providers
There are a few central concepts to understanding how a data provider works and how to
go about creating one. The figure below illustrates the relationship between a few of the
key interfaces and the existing components of the MapXtreme data access engine. The
components of an extensible data provider are shown in lavender with thick borders.

Data Provider

A data provider is a bridge between an application and a data source, which provides
mechanisms for accessing data for use in the application.
MapXtreme 9.5 Developer Guide 629 Developer Guide

The MapXtreme Extensible Data Provider is a collection of interfaces that allows you to
access data from any data source in any data format. It extends the MapXtreme Data
Provider which provides the connection between data and the capabilities of MapXtreme,
such as display, query, edit and analyze.

The term Data Provider is used to refer to a specific implementation of the extensibility
interfaces. For example, MapXtreme includes a Data Provider implementation for
accessing SpatiaLite (based on SQLite) databases and FDO extension. There is an
interface in the data provider collection of extensible interfaces called IDataProvider
which forms the basis for a data provider implementation.

Data Source

A data source is a database management system, web service, or other engine or
software API that exposes data and data access capabilities, such as describing,
querying, manipulating and relating data.

An example of a data source is a WFS server that returns map data as a collection of
features. The WFS server is the data source from which Feature types can be exposed
as tables. The URL for the service, and possibly other properties for authentication,
define how the data provider will access the data source. This information is called the
data source definition.

Most data provider implementations will contain a data source; however, this concept is
not required. Data providers for file based formats may contain only a table model.
MapInfo tables and ESRI Shapefiles are examples of data providers that do not require a
connection to a data source.

Table

A table is a set of features that have the same schema (or set of columns). Tables do not
have to have a geometry property; however, it is likely that if you are building a data
provider you probably have a geometry property on some of your tables. Geometry data
is treated by MapXtreme as a column on a table just like other columns with simpler data
types like strings or numbers.

The table exposes metadata to describe the data it contains and provides access to query
and edit that data. Every feature in a table must be uniquely identified by the data provider
using a key. Keys are used by MapXtreme for selections, result sets, and for editing
operations.
MapXtreme 9.5 Developer Guide 630 Developer Guide

 D – Extensible Data Providers
Cursor

A cursor is an object that enumerates through a set of features. MapXtreme will request
features from the data provider by calling one of the search methods on the table. The
table will return a cursor that will allow MapXtreme to enumerate through the features that
satisfy the criteria specified. Features that are returned through cursors are expected to
be transient. That means that the data that is obtained from the current feature is
assumed to be only valid while the cursor is open and positioned on that current record.
Once the position of the cursor is changed (by moving to the next feature or by closing
the cursor), then that feature is no longer assumed to be accessible. Robust and scalable
data provider implementations should be able to use the transient nature of the cursor
model to reuse memory, especially for returning FeatureGeometry objects.

A feature accessor is a special type of cursor that is used to access features by key. Any
time MapXtreme needs to access one or more features by key, it will request a feature
accessor and then request the features from it. The same transient expectations
described for a cursor hold for a feature accessor.

Getting Started
Now that you have decided to go ahead and extend MapXtreme’s data provider model,
your first question is likely "Where do I begin."

Where do I begin?

We recommend that you start by reviewing this entire appendix and the reference
implementation to familiarize yourself with the concepts and how they related to each
other. When you are ready to begin, start by building a very simple data provider in order
to get a good understanding of the requirements this undertaking involves. Even if your
ultimate data provider needs are extensive, building a basic data provider using only the
required elements will provide you with a good understanding of the data model.

The bare minimum elements are provided in the sections Required Components. Study
the Extensible Data Provider Overview to understand how the various interfaces relate to
each other and to MapXtreme’s data access model. Review the provided Sample: COTW
(Center of the World) Data Provider to see how we have implemented a basic data
provider and the SpatiaLite Sample Data Provider which is a full featured data provider
installed with source code with the MapXtreme samples.

We also recommend that you study the optional building blocks provided in the SDK to
learn what has already been implemented for you. See Optional Building Blocks: Base
Classes, Helpers and Utilities.
MapXtreme 9.5 Developer Guide 631 Developer Guide

One of the first steps to creating a data provider is to determine if your data provider has
a data source. Not all data providers have or require this type of model and may be only
table-based. A data source is any service or database that you communicate with to
access potentially multiple sets of features (or tables) through the same connection.
Database servers are always exposed as data sources while the tables at the database
are exposed as tables. A WFS server would be modeled as a data source while the
FeatureTypes that the WFS server exposes would be modeled as tables. An ADO.NET
DataSet could be exposed as a data source while the DataTables it contains would be
exposed as tables. An Excel spreadsheet might be exposed as a data source with
selection ranges exposed as various tables. If you have a more simple data model such
as an ASCII text file or some other file format that can only contain a single set of
features, then you probably don't need a datasource and can simply model your data
provider with only a table model. Your data may be very complex and still not require a
data source model. For example, some file-based data formats may store features split
across multiple files, may broken out by state or province or according to some other
rules. This would still be a table-based data provider and there would be no need for a
datasource.

Where do I find more detailed help?

The interfaces that comprise the Extensible Data Provider architecture are defined in the
MapInfo.Data.Provider and MapInfo.Data namespaces. We recommend that you
familiarize yourself with the MapInfo.Data.Provider namespace in the MapXtreme
Reference Guide.
MapXtreme 9.5 Developer Guide 632 Developer Guide

 D – Extensible Data Providers
Required Components
To build a basic data provider, the following components must be implemented. These
classes support basic data access operations including opening a table, reading the table
contents and associated metadata, and searching the table contents.

Refer to the SpatiaLite Sample Data Provider as a complete and robust provider
implementation for tips and guidance on how to implement these interfaces.

IDataProvider Interface

The IDataProvider interface provides the basis for a custom data provider implementation
by exposing the capabilities for opening the table formats serviced by this provider. This
also exposes capabilities related to data sources that manage those tables. Implementing
the IDataSource interface is an optional task as you can build a data provider without
going through a data source. This class is typically defined to be a singleton instance.

ITableDefinition Interface

The ITableDefinition interface provides the main link between your extensible data
provider and the MapXtreme public API Table model. It provides the properties necessary
to instantiate an ITable for a specific data provider. Classes that implement this interface
identify the information required to be supplied by the user of MapXtreme to open a table.
MapXtreme 9.5 Developer Guide 633 Developer Guide

The MapXtreme Catalog provides a few overloads to the OpenTable method that allow
you and other users of your data provider to instantiate a table from an ITable. After the
call to OpenTable, all other interfaces such as ITableMetadata, ICursor, IFeature, etc are
hidden to the user and used internally by MapXtreme.

This interface is also typically the information that you will want to have written out to the
workspace file. For more information, see Persistence Providers.

ITable Interface

The ITable interface defines the interface for a Table, the basic container of information
that MapXtreme can read. query and display in a map. Methods on ITable include
SearchAll, SearchByEnvelope (area of interest) and SearchByKey. A table represents a
single collection of features and all features must contain the same structure (or schema).

ITableMetaData Interface

The ITableMetaData interface is used to convey important information about the
properties and supported capabilities of an open table, such as the columns and their
data types, the types of geometries contained in the table, and whether it supports editing
operations.

The table metadata exposes the schema of the table as a collection of column definitions.
Columns are exposed through the IColumn and IGeometryColumn interfaces. Any
column that returns FeatureGeometry objects must be exposed as an IGeometryColumn.
The IGeometryColumn also enables the provider to indicate whether it supports Z and M
dimensions in the geometry values it returns and accepts during insert and update
operations. Most data provider implementations will have custom implementations for
IColumn and IGeometryColumn to assist with the communication of information between
the MapXtreme search requests and the underlying provider implementation.

ICursor Interface

The ICursor interface is an IEnumerator that returns IFeature objects. When a search
request is issued against an ITable, the result is an ICursor which provides the access to
the features. The features returned from the cursor may be transient meaning that they
are only expected to be valid while the state of the cursor is unchanged. Advancing the
cursor to the next record (feature) may return the same feature object which may have
been updated to the new values of the current record. Robust data provider
implementations should take advantage of this behavior to reuse memory.

Search requests may request a subset of the attributes (columns) that the table exposes.
The features returned from the cursor must match the structure of the columns requested
by the search.
MapXtreme 9.5 Developer Guide 634 Developer Guide

 D – Extensible Data Providers
IFeatureAccessor Interface

IFeatureAccessor is used to fetch features by key from a table. It has one primary method
that it exposes called FetchByKey which returns the feature identified by a given key.
Each feature returned by the data provider must contain a key. The definition and
contents of a key are determined by the data provider. When MapXtreme gives a key
back to the data provider for FetchByKey requests or editing operations, the data provider
will use the key value(s) to identify the correct record. The IFeatureAccessor interface
provides a way for MapXtreme to bracket a set of calls so that the data provider can, if
desired, prepare a command and then bind in just the key value(s) and execute the
command for each FetchByKey call.

Optional Building Blocks: Base Classes, Helpers
and Utilities
The MapXtreme Extensible Data Provider is a collection of interfaces that you can
implement to access data in formats that are currently not supported. MapXtreme
provides a collection of utilities, samples and guidance that can help you jump start your
implementation. These are common implementations that most people will want to use.
They cover the following areas:

 Abstract Base Classes
 Utility Classes
 Key implementations

It is well worth understanding what pieces are provided here before starting to build even
the simplest implementation, as some pieces may already be built.

Abstract Base Classes

Abstract base classes for the many interfaces are provided. Their purpose is to handle
the default implementations of the interface, allowing you to implement only what you
need.

For example, the IDataProvider provides an OpenDataSource method and two flavors of
OpenTable method (one that uses a data source, and one does not). If you are using a
data source, then you have to implement OpenDataSource and the OpenTable that is
based upon the data source. If you don’t have data source, you only need to implement
the OpenTable that doesn’t need a data source.
MapXtreme 9.5 Developer Guide 635 Developer Guide

The abstract base class for IDataProvider has a default implementation for each of those
methods, indicating they are not supported. These are tagged as "virtual" so that when
you pick which one(s) to implement you will provide an override implementation of only
what you need.

Utility Classes

SimpleFeature

The basic goal of a data provider is to access features. A feature is typically a row in a
table. Spatial features are described by their geometry, style, key, and attributes.

We provide a utility class called SimpleFeature, that implements the IFeature interface. It
implements a relationship of defining metadata (SimpleFeatureMetdata), and a list of
Attributes (AttributeValues) to a Feature, along with an identifying key (IKey)value. Most
data providers will want to use the SimpleFeature class.

SimpleFeature also implements FeatureChangedEventHandler event management.

SimpleFeature is documented under the MapInfo.Data.Common namespace.

OGC Conversion for Geometries and Coordinate Systems

The MapXtreme Extensible Data Provider includes utilities that help in the conversion
process from an OGC geometry (OpenGIS® Simple Features Interface Standard) into a
MapXtreme geometry and vice versa. This includes OGC-regulated well-known text and
well-known binaries that a number of spatial data systems take advantage of, such as
PostGIS, mySQL and SQL Server 2008. Well-known text refers to a standard textual
representation for spatial reference systems. Well-known binaries are a standard binary
representation for geometries.

The utilities are included in the MapInfo.OGC namespace. It implements data readers
and writers for well-known text and well-known binaries and supports both big endian and
little endian byte ordering.

Key implementations

A requirement of data that is to be accessed by a MapXtreme data provider is that every
feature has a key. We provide in this SDK two common key implementations: integer key
and string key.

If your data is integer or string-based, you can skip the implementation of a key from the
IKey interface, and use one of these.
MapXtreme 9.5 Developer Guide 636 Developer Guide

 D – Extensible Data Providers
Sample: COTW (Center of the World) Data
Provider
The "Center of the World" Data Provider is a very simple, contrived example used to
illustrate how to put a data provider implementation together. This data provider manages
a table with a single row containing a spatial point at longitude/latitude (0,0).

A logical place to start a new extensible data provider implementation is with the class
implementing IDataProvider. This class is required to be implemented as a singleton
instance so that all references to it (for example, from ITableDefinition and
IDataSourceDefinition) uniquely resolve to the same instance. Here's the beginning
portion from the sample implementation:

using System;
using MapInfo.Engine;
using MapInfo.Data.Provider;

namespace COTW
{
 public sealed class COTWDataProvider :
 {
 private static string PROVIDER_NAME = "Center of the World Sample
Extensible Data Provider for MapXtreme";
 private static COTWDataProvider m_singleton = null;

 private COTWDataProvider(string name)
 : base(name)
 {
 }

 public static COTWDataProvider GetInstance()
 {
 if (m_singleton == null)
 m_singleton = new COTWDataProvider(PROVIDER_NAME);
 return m_singleton;
 }

}
}

Note that this class is extended from AbstractDataProvider - not IDataProvider itself. As
discussed in the Optional Building Blocks: Base Classes, Helpers and Utilities, we
provide abstract base classes as building blocks to help provide suitable default
implementations wherever possible. In the case of IDataProvider, this abstract class
manages the name property and default the implementations of its OpenDataSource and
MapXtreme 9.5 Developer Guide 637 Developer Guide

OpenTable methods to throw a not implemented exception. This allows us to decide
which are relevant and provide implementations for only those thereby keeping our
implementation uncluttered.

Since the table we're defining has a fixed structure, we don't need much for the
ITableDefinition implementation. To make it non-trivial, we'll have the table definition
accept a string value that can be used as an externally specified label to be used for the
point. A complete implementation would look something like this:

using System;
using MapInfo.Data.Provider;

namespace COTW
{
 public sealed class COTWTableDefinition : AbstractTableDefinition
 {
 private string m_label;

 public COTWTableDefinition(string label)
 : base()
 {
 if (label == null)
 throw new ArgumentNullException("label");
 m_label = label;
 }

 public override IDataProvider DataProvider
 {
 get { return COTWDataProvider.GetInstance(); }
 }

 public string Label
 {
 get
 {
 return m_label;
 }
 }
 }
}

We've once again used the abstract base class instead of the interface directly. In this
case, it allows us to ignore anything related to accept the defaults for the
DataSourceDefinition and CustomMetadata properties on the interface. Note how the
DataProvider property references the singleton COTWDataProvider instance
implemented earlier. This example also introduces a new property of our own.
MapXtreme 9.5 Developer Guide 638 Developer Guide

 D – Extensible Data Providers
Optional Interfaces
The MapXtreme Extensible Data Provider model includes optional interfaces to provide
more capabilities when accessing data, including:

• IDataSource

• IDataSourceDefinition

• ITableModifyProcessor

IDataSource
The IDataSource interface is used in Catalog.OpenTable to associate a new table with a
specific data source. This is optional as you can build a data provider without going
through a data source.

A data source is instantiated when an ITableDefinition is being opened which contains an
associated IDataSourceDefinition or directly through
Catalog.DataSources.OpenDataSource method. The extracted IDataSourceDefinition is
supplied to IDataProvider.OpenDataSource to connect to the data source and return the
associated IDataSource instance.

IDataSourceDefinition
A DataSourceDefinition is only necessary when you are using a data source to access
data. It includes the information you expect the user to supply in order to be able to
instantiate a data source. If you are not using a data source, you only need to provide a
Tabledefinition in order to open a table.

In the process of the table being opened, the IDataSourceDefinition is extracted from the
DataSourceDefinition property and passed into OpenDataSource(IDataSourceDefinition,
CustomProperties) to try and establish a connection to the data source.

When implementing a DataSourceDefinition, you should provide a meaningful override
implementation of the System.Object.Equals(object) method.

ITableModifyProcessor
The table metadata indicates whether Insert, Update, or Delete operations are supported.
If any of these are true, then you must supply an implementation for the
ITableModifyProcessor. Implementations for the specific insert, update, and delete
methods must be provided according to the corresponding individual metadata
MapXtreme 9.5 Developer Guide 639 Developer Guide

properties. Some data providers may only support insert operations for example. The
ASCII data provider supplied with MapXtreme is an example of a data provider that only
supports insert operations and not update or delete operations.

Note that the ITable interface also includes a property named ReadOnly. This property is
an extra level of control through which you can indicate if the table is read only. Even if
your provider supplies a fully implemented modify processor, a specific table may be read
only for other reasons such as insufficient access permissions or the data files are on
read only media. Your data provider can check for these up front and flag the whole table
as ReadOnly or through the individual table metadata properties.

Building and Testing Your Data Provider
Building a data provider is a complex task and is difficult to debug because most of the
calls into your data provider code is made by MapXtreme. You will want to build up your
data provider in stages and test just the pieces that you have implemented as you go. To
better control this, you will probably want to start with a sample project that allows you to
write code that exercises only what you expect to be implemented and you can expand
this sample as you expand your data provider. You shouldn't include this directly into your
data provider project; however, Visual Studio allows you to create multiple projects within
a single solution.

If you have a data source as part of your data provider model, you will want to start there.
Create an implementation of IDataSourceDefinition and IDataSource and try using the
Catalog.DataSources.OpenDataSource method to see if MapXtreme calls into your data
provider and ends up with your data source object in the DataSources collection.

The first major milestone for the table model is to be able to open a table and display the
table's metadata. You can develop and test this without writing any searching or cursor
code which is far more complex. You will need to create an implementation of
ITableDefinition, ITable, and ITableMetadata. Initially you can implement the search and
modify interfaces to throw a NotImplementedException. In your test application you
should then be able to create and populate an instance of your table definition class,
instantiate a table by supplying this definition to a call to Catalog.OpenTable and then
examining the column definitions that are supplied by the table's TableInfo property. The
column definitions should accurately reflect the information your table metadata supplies
to MapXtreme including the appropriate coordinate system, data bounds, and default
view for your geometry column(s).

The next step to build out and test your provider is to add very simple search logic and a
provide a cursor implementation. In your test application, you can add a simple block of
code like this:
MapXtreme 9.5 Developer Guide 640 Developer Guide

 D – Extensible Data Providers
Table table = catalog.OpenTable(myTableDefinition, "MyTable");
foreach (Feature feature in table)
{

// inspect the feature, write out values to the console, etc...
}

For this code to work, you will need to implement the ITable.SearchAll method and
provide a cursor implementation. You will also need to provide a key implementation and
the features returned in the code example above should reflect the appropriate value for
your key (although values are serialized to strings).

Once you have this basic level of code working you can start to test your data provider in
a map so that you can see visual results to see if the geometries are being returned as
you expect, with the proper styles, etc. You will require some implementation of
SearchByEnvelope before you do. You can ignore the areaOfInterest argument and
return all records initially just to see how the data looks. Your performance will be poor
since every request will retrieve all of the features. You should turn off the InfoTip property
on your layer which will prevent MapXtreme from trying to display the InfoTip as you
move your mouse over the map. The InfoTip calls down into your data provider with a
small areaOfInterest around the point where the mouse is positioned and if you are
returning all of the table features your performance will be really bad. You will also not be
able to test selections or result set capabilities until you have a feature accessor
implemented.

Before moving on, you should add support for the SearchByEnvelope method. This will
help you get a feel for the performance of your data provider since you now have the
ability to send back to MapXtreme only the features that it needs to render the map. You
can also turn back on the InfoTip setting and set the InfoTip expression to various values
to see if you are getting the right data passed up to MapXtreme. If your performance is
unacceptable, this would be a good time to evaluate your design and tune it before
adding more complexity.

Implementing the feature accessor interface would be the next major hurdle. The easiest
way to test this interface is to create a resultset feature collection and then enumerate
through the features. Internally, the resultset feature collection caches the keys for the
records that satisfy the search criteria and then uses a feature accessor whenever the
resultset is accessed.

Once you have gotten all of these pieces working you have done the largest portion of the
hardest work for building your data provider. You will most likely want to then focus on
building a persistence provider so that you can persist your definitions into a MapXtreme
workspace file. This would be a good time to look into the new WorkspaceManager
extensibility capabilities and consider adding a WorkspaceManager extension that
MapXtreme 9.5 Developer Guide 641 Developer Guide

provides some user interface for defining a table and enables the hooks into the
persistence provider extensions so you can set up and create a workspace and also read
workspaces with your data provider persistence content.

To this point, you should focus on testing your data provider in a simple desktop
application environment. Once you have persistence implemented, it would be a good
time to start thinking about a web-based deployment. This will require serialization
support so that the table or the entire catalog or session can be serialized across user
requests.

Data Provider

SpatiaLite Sample Data Provider
Included in the Extensible Data Provider SDK is a sample implementation of a data
provider that highlights many of the capabilities of the Extensible Data Provider
architecture. MapInfo.SpatiaLite.sln is a Visual Studio solution that uses an SQLite3
Ado.Net data provider to establish a connection to an underlying SQLite3 database and
open tables in a MapXtreme application.

This sample implementation also highlights other extensible aspects of MapXtreme,
including autoloading custom code at session initialization, and extending the capabilities
of Workspace Manager. This sample is located in the \Samples\DataProviders folder
under your MapXtreme installation directory.

 Unlike MapXtreme’s other sample applications that compile and provide a runnable
application, this sample implementation yields .NET assemblies. The focus on the
development for this sample was to showcase extensibility options in MapXtreme
rather than a working application.

MapInfo.SpatiaLite.sln contains two projects:

• SpatiaLite Data Provider

• SpatiaLite Workspace Manager Extension

SpatiaLite Data Provider Extension

The code in this project shows how the MapXtreme Extensible Data Provider classes and
interfaces have been extended to create a SpatiaLite data provider that allows you to
open SpatiaLite tables, insert/update/delete records, search tables, changes the styles,
MapXtreme 9.5 Developer Guide 642 Developer Guide

 D – Extensible Data Providers
and import new tables into an SQLite3 database. Abstract base classes have been used
to make coding more efficient. See the Readme.rtf that accompanies the sample for
details on which classes and interfaces were extended.

At compile time, the SpatiaLite Data Provider project creates an assembly called
MapInfo.SpatiaLite.DataProvider.SessionEventHandler.dll that serves as the main data
provider implementation and also a session event handler that makes the data provider
available for autoloading at MapXtreme startup.

The SpatiaLite data provider assembly also encompasses an implementation of a
persistence provider, an optional component for a data provider, but a useful one. This
allows SpatiaLite table and data source definitions that MapXtreme does not natively
read/write to/from a MapInfo workspace (.MWS). See Persistence Providers.

The implementation of ISessionEventHandler in the SpatiaLite data provider is another
useful component, also optional. Containing this in the data provider assembly allows the
data provider to be autoloaded when MapXtreme starts up. This means that SpatiaLite
tables definitions can be loaded and available in your MapXtreme application as soon as
the MapXtreme session has initialized.

The SessionEventHandler is not specific to data provider extensibility. This can be used
to load any custom code that you need at session startup. We took advantage of this
capability to persist custom SpatiaLite table and data source definitions. In order to use
this for other custom code, the assembly must contain the suffix SessionEventHandler.dll
and put in the \Common Files\MapInfo\MapXtreme\9.x.x\SessionEventHandlers in order
for MapXtreme to be aware of it. For more on this topic see
ISessionEventHandlersSpatiaLite Workspace Manager Extension

Another major enhancement to MapXtreme is the ability to extend the functionality of
Workspace Manager. An example of this is the SpatiaLite Workspace Manager Extension
project contained in the SpatiaLite Data Provider sample. This project extends Workspace
Manager to provide SpatiaLite menus, dialogs and code connecting to a database and
opening a table.

When this project is compiled it generates an assembly with the suffix
WorkspaceManagerExtension DLL. This assembly is dependent on the SpatiaLite data
provider which provides the table definitions for the SpatiaLite database.

Workspace Manager extensions can contain any functionality you may need as you
create and save workspaces. They are discussed in Appendix B: Customizing
MapXtreme.
MapXtreme 9.5 Developer Guide 643 Developer Guide

GeoJSON Data Provider
Another sample data provider implementation demonstrating the capabilities of
Extensible Data Provider architecture is the GeoJSON Data Provider. As the name
indicates, it extends MapXtreme to consume data which is in GeoJSON format.

Like the sample SpatialLite Data Provider implementation, GeoJSON Data Provider also
highlights other extensible aspects of MapXtreme, including autoloading custom code at
session initialization, and extending the capabilities of Workspace Manager. This sample
is located in the \Samples\DataProviders folder under your MapXtreme installation
directory.

 This sample implementation also produces .NET assemblies. The focus on the
development for this sample was to showcase the extensibility options in
MapXtreme rather than a working application.

MapInfo.GeoJson.sln contains two projects:

• GeoJson Data Provider

• GeoJson Workspace Manager Extension

The GeoJson Data Provider project demonstrates how the MapXtreme Extensible Data
Provider classes and interfaces have been extended to create a GeoJSON data provider
that allows you to open GeoJSON data and insert/update/delete features. See the
Readme.rtf that accompanies the sample for details about the classes and interfaces that
were extended.

When successfully compiled, this project creates an assembly called
MapInfo.GeoJson.DataProvider.SessionEventHandler.dll that serves as the main data
provider implementation and also a session event handler that makes the data provider
available for autoloading at MapXtreme startup. This assembly also encompasses an
implementation of a persistence provider, which allows GeoJSON table definitions that
MapXtreme does not natively reads from or writes to a MapInfo workspace (.MWS).

The implementation of ISessionEventHandler in the GeoJSON data provider assembly
allows it to be autoloaded during start up of a MapXtreme application. This means that
GeoJSON table definitions can be loaded and made available in your MapXtreme
application as soon as the MapXtreme session is initialized. To make it happen, the
assembly must contain the suffix SessionEventHandler.dll and must be present in the
\Common Files\MapInfo\MapXtreme\9.x.x\SessionEventHandlers folder in order for
MapXtreme to be aware of it.
MapXtreme 9.5 Developer Guide 644 Developer Guide

 D – Extensible Data Providers
Similar to SpatiaLite Workspace Manager Extension, the GeoJSON Workspace Manager
Extension project present in this sample extends Workspace Manager to provide an open
GeoJSON table dialog. When successfully compiled, this project generates an assembly
with a suffix WorkspaceManagerExtension DLL, which is dependent on the GeoJSON
data provider for table definitions for the GeoJSON data.

Advanced Topics / Important Considerations
This section includes a variety of topics worth considering as you design and build your
extensible data provider:

 Creating Geometries
 Coordinate Systems
 Styles
 Exception Handling
 Persistence Providers
 Serialization
 Authentication
 Thread safety

Creating Geometries
Extensible data providers implementing support for 3rd party spatial formats must convert
spatial data between their format and the MapXtreme FeatureGeometry format.
FeatureGeometry objects are returned as values of the IFeature objects obtained from
cursors and feature accessors. The features and the geometry objects they contain are
transient. MapXtreme will only assume that these objects are valid while the cursor is
open and positioned on the current feature. As a result, the most robust and scalable data
provider implementations will try to re-use the same feature and feature geometry objects
for the life of the cursor or feature accessor.

A geometry that is created once and continually updated for the current feature is referred
to as a “transient” geometry. MapXtreme’s geometry model contains constructor and
method signatures that facilitate geometries being used in this way. Following the initial
construction of MultiPoint, MultiCurve, and MultiPolygon objects, geometry editor
interfaces can be used on these existing instances to make the changes for the new
feature. For MultiCurve and MultiPoygon objects, the Clear method can be used to empty
the geometry, and then AddCurve and AddPolygon can be used respectively to redefine
the geometries. For MultiPoint objects, the ReplaceAll method can be used for
MapXtreme 9.5 Developer Guide 645 Developer Guide

redefinition. Furthermore, the constructor signatures and Add/Replace methods that use
input arrays support an optional size designation enabling single array instances to be
efficiently re-used as well.

The OGC conversion code works in this manner. The internal byte arrays used for
parsing the well known binary and well known text are reused and grown as needed.
When data is supplied to the appropriate geometry methods (like AddPolygon) the forms
that accept an array size are used since the input arrays may be longer than the data
being supplied.

MultiPolygon objects composed of multiple polygons are generally checked by
MapXtreme to determine if any of the polygons have interior/exterior relationships to one
another; for example, a doughnut shaped MultiPolygon instance might be comprised of
an exterior polygon with a second interior polygon interpreted as a cutter such that the
two together logically represent a single geometry. The geometry code does not make
any assumptions by default, and when editing is complete it will analyze all of the
constituent polygons searching for the existence of these relationships. If the 3rd party
spatial format being converted already knows these relationships and can add the
polygons in the correct sequence (exteriors followed immediately by any of its associated
interiors), there’s no need for MapXtreme to incur the potentially expensive cost of re-
analyzing all of the polygons. This operation can be suppressed using the overloaded
EditingComplete method on the MultiPolygon class and passing “true” to the
withinSpecified argument.

This processing time can be expensive. It is necessary for interactive editing operations
where moving a single node may make an interior polygon suddenly become an exterior
polygon. Data providers typically already know that their data has been formatted and
stored in a way that does not require this expensive processing every time a geometry is
built.

For large numbers of geometries and/or complex geometries with large numbers of
nodes, understanding and exploiting these geometry options will be critical for
implementing a performant data provider.

Coordinate Systems
Geometry columns in MapXtreme must return FeatureGeometry objects in the same
coordinate system. Different column and different tables may use different coordinate
systems but all geometry values returned from a single column in a table must be in the
same coordinate system and must match the coordinate system that is supplied by the
table's metadata through the IGeometryColumn.CoordSys property.
MapXtreme 9.5 Developer Guide 646 Developer Guide

 D – Extensible Data Providers
Most data providers will determine the coordinate system through some metadata that is
stored and managed with the data. However, if that information is not available, the data
provider can request that the suer supply the coordinate system as part of the table's
definition.

Coordinate systems can be constructed through the CoordSysFactory instance which is
available fro the Session.CoordSysFactory property. There is no need to create new
coordinate system objects for every FeatureGeometry object returned by the data
provider. The coordinate system object returned by the IGeometryColumn interface can
be referenced directly by each FeatureGeometry object. FeatureGeometry objects
supplied to the data provider for insert and update operations will be transformed to the
column's coordinate system by MapXtreme before handing to the data provider.

Styles
MapXtreme's Extensible Data Provider model supports styles for feature geometries in
two ways:

• as a style property that is applied to all features in the table

• as a style attribute column, which contains style information on a per-feature basis

The MapInfo.Data.Table that is opened from an extensible data provider table will have a
style column, provided there is at least one geometry column (mappable table). The data
for that column comes from either a style column in the extensible data provider table, or
if there is not one, from the default style specified on the IGeometryColumn.DefaultStyle
property of the geometry column in the data provider table.

ITableMetadata.Columns

Style information is communicated via the column definitions provided in the
MapInfo.Data.Provider.ITableMetadata interface. A style attribute column is an IColumn
instance from ITableMetadata.Columns whose DataType property is assigned the value
MIDbType.Style. A style attribute column is only necessary when two or more features
within the table may contain distinct style values.

IGeometryColumn.DefaultStyle

A style attribute column is not required when you want to apply a single style uniformly
when rendering the objects within one of the table’s feature geometry columns. For this, a
style object instance can be directly managed as the DefaultStyle property of the feature
geometry column (IGeometryColumn.DefaultStyle).
MapXtreme 9.5 Developer Guide 647 Developer Guide

Providing a default style is always recommended, even when a style column exists. The
default style is used to fill in missing style attribute values if the style column contains null
or missing values. In the absence of an explicitly provided default style, MapXtreme does
have an internal default style it can apply as needed.

If using only a default style on the feature geometry column, a style column will still be
shown in the columns collection associated with the resulting Table instance opened
within the Catalog. This column will be nullable and read-only, and all values are
defaulted to the specified default style instance value.

While no explicit proscription is made against defining multiple geometry column and/or
multiple style column data configurations within your extensible data provider
implementation, the metadata model does not support the explicit association of a style
column to a geometry column. When rendering a map layer, there’s an implicit
assumption that the table servicing that layer contains a single geometry column with at
most one adjacent style column. Similarly, where the model also permits extensible data
providers to define tables containing style columns without an adjacent geometry column,
these tables cannot currently be cached, and may not be exportable to other formats.

Exception Handling
Exception handling in the data provider is very important. The data provider will usually be
handling system resources such as file handles or database connections. If these
resources are not carefully cleaned up in normal and exception code paths, they may be
leaked giving applications unusual behaviors or memory leaks that build up over time.
These problems are often accentuated in web applications that utilize pooled sessions in
which memory leaks may eventually cause the system to shut down or multiple
processes to hang waiting for leaked connections to be released.

Exceptions thrown should follow standard .NET practices as prescribed by Microsoft in
Best Practices for Handling Exceptions. When throwing a custom exception, use the
MapInfo.Data.Provider.DataProviderException class. This class may be subclassed to
provide additional behavior if necessary.

Exception handling is also a good time to think about externalizing the resources for your
data provider. By properly capturing resources such as strings, bitmaps, etc. in resource
files, your data provider can be localized for other cultures. The SpatiaLite Data Provider
sample provides a reference implementation for handling resource strings for exception
handling (refer to the Resources.cs file in the project).

Persistence Providers
MapXtreme 9.5 Developer Guide 648 Developer Guide

http://msdn.microsoft.com/en-us/library/seyhszts.aspx

 D – Extensible Data Providers
MapXtreme offers support for saving data access information, namely ITableDefinitions
and IDataSourceDefinitions, to a MapXtreme XML-based workspace (.MWS). This is an
optional component of the Extensible Data Provider that you may wish to take advantage
of if you need to share your workspace with others or to simply re-use the information at a
later time.

To add persistence support to your Extensible Data Provider, in its simplest form, you
would write a persistence provider class that implements the
MapInfo.Data.Provider.IMxpPersistenceProvider interface.

For a more sophisticated persistence provider, consider providing a schema to support
XML validation of the resulting workspace file. This would only be necessary if you have
an explicit requirement, as MapXtreme does not automatically validate workspace XML.

You may also consider writing your persistence provider as its own assembly. Providers
may be pre-loaded independent of the remaining extensible data provider components. A
provider assembly would defer the loading of the remaining components by controlling
just-in-time loading of the data provider when and if it is explicitly needed.

How Are Persistence Providers Used?

Persistence providers are managed in a PersistenceProviderCollection on the Catalog.
This collection may be automatically initialized during session startup when MapXtreme
searches the assemblies in a default location for persistence providers they might
contain. The default location is \Program Files\Common
Files\MapInfo\MapXtreme\9.x.x\SessionEventHandlers. Providers can also be
programmatically added into the PersistenceProviderCollection using its Add and
AddFromFolder methods.

When saving session context to a MapInfo workspace file (.MWS) via the
MapInfo.Persistence.WorkspacePersistence class, the PersistenceProviderCollection is
consulted for any tables in the catalog that were opened from an Extensible Data
Provider. If a persistence provider is identified for that data provider, it is used to persist
the extensible table information into the workspace. Similarly, when a workspace is being
loaded, the collection of available persistence providers is searched to identify a data
provider capable of understanding the custom tags in the workspace file associated with
an Extensible Data Provider table.
MapXtreme 9.5 Developer Guide 649 Developer Guide

Implementing Your Persistence Provider

In order for the PersistenceProviderCollection.AddFromFolder method to load your
persistence provider class, it must contain a public, zero-argument constructor signature.
This is the same method used internally during MapXtreme’s session initialization.
Additional constructor signatures can be supplied to support programmatic use with the
PersistenceProviderCollection.Add method.

MapXtreme provides an abstract base class named AbstractMxpPersistenceProvider you
may wish to use as a starting point for implementing your persistence provider class.

One of the things you must provide in your persistence provider are methods that check
whether there is a supported data provider for your persistence provider, a supported
entity name (for the XML tags) and a supported schema namespace. This is done by
implementing the three inquiry methods included in the IMxpPersistenceProvider
interface.

SupportsDataProvider() is used to identify providers responsible for ITableDefinition and
IDataSourceDefinition constructs for a given IDataProvider. Generally, persistence
providers are written to support a single data provider, so the implementation for this
method can often be as simple as determining if the provided IDataProvider is an
instance of your data provider class.

The SupportsSchemaNamespace and SupportsEntityName work in tandem during
workspace depersistence to identify the persistence provider supporting a namespace
and tag name identified for extensible data provider content. For example, when reading
through the workspace file, the following content is encountered for an extensible data
provider:

 <sample:SampleTableDefinition xmlns:sample="http://sample/sample">
 <sample:TableName>test</sample:TableName>
 </sample:SampleTableDefinition>

An XMLNode object reference is obtained for the outer tag. The NamespaceURI property
("sample") is provided to SupportsSchemaNamespace, and the LocalName property
("SampleTableDefinition") is provided to SupportsEntityName to identify a persistence
provider supporting both. The constructor signature available through the abstract class
also supports default implementations of these methods.

The AbstractMxpPersistenceProvider contains a constructor signature that works in
conjunction with the default implementation of IMxpPersistenceProvider.Schema to return
an XMLSchema reference to an .xsd schema file attached as an embedded resource
within your assembly. See the Developer Reference for details.
MapXtreme 9.5 Developer Guide 650 Developer Guide

 D – Extensible Data Providers
The remaining methods on IMxpPersistenceProvider are the read/write pairings for data
source and table definitions. For data providers that do not use data sources, only the
read/write methods for the table definitions require implementation. If data sources are
applicable, the data source definitions would need to be persisted. MapXtreme handles
that for you. You can focus exclusively on persisting only those table definition properties
that are unique to your table.

The read methods contain an XmlElement handle to the XML tag for the extensible
content. The components of the data source and table definitions are managed as child
nodes within that element. Following the SampleTableDefinition example above, the
implementation code might resemble the following:

ITableDefinition td = null;
if (node.LocalName.Equals("SampleTableDefinition") &&
node.NamespaceURI("http://sample/sample"))
{

string tableName = null;
foreach (XmlNode childNode in node.ChildNodes)
{

if (childNode.LocalName.Equals("TableName") &&
childNode.NamespaceURI.Equals("http://sample/sample"))

{
tableName = childNode.InnerText;

}
}
td = new SampleTableDefinition(tableName);

}

The write methods must create an XmlElement that is inserted into the workspace XML.
The elements are bound to an XML document instance, so the XmlDocument is provided
along with the extensible data provider definition interface to be persisted. Note, for the
DataSourceDefinition write method, the XmlDocument is provided directly as a method
argument, whereas, for the TableDefinition write method, the XmlDocument is provided
via the Document member of the IMxpPersistenceServices argument.

XmlElement outerTag = xmlDocument.CreateElement("sample",
"SampleTableDefinition", "http://sample/sample");
XmlElement innerTag = xmlDocument.CreateElement("sample", "TableName",
"http://sample/sample");
innerTag.InnerText = "test";
outerTag.AppendChild(elNode);

For additional information and examples, consult the Developer Reference Guide
documentation, the SpatiaLite Sample Data Provider, and other data provider examples
located on the MapXtreme Code Exchange.

Serialization
MapXtreme 9.5 Developer Guide 651 Developer Guide

http://www.mapinfo.com/for-developers/code-exchange

Serialization is the process of converting an object into a stream of data in order to
preserve it in a permanent form or in memory for the duration of its usefulness. This
process is an essential part of maintaining objects in MapXtreme web applications and
multi-threaded desktop applications.

Without serialization, objects would need to be recreated, for example, every time there
was a web request for that object during a session.

When a serialized object is requested, it is deserialized (or recreated from the stream of
data) and then modified. MapXtreme’s serialization algorithm does not make a copy of
the object (as other serialization algorithms do) such that the object being deserialized is
created only once.

For proper state management of web applications and multi-threaded desktop
applications, application developers often need to serialize MapXtreme Table instances
directly, or via serialization of the MapXtreme Catalog which contains the collection of all
tables. When a table type is not supported, it places a burden on the application
developer to figure out how to explicitly manage those tables and the overall state of their
Catalog to operate around this limitation. For that reason, Extensible Data Provider
developers are encouraged to support serialization of their provider to properly integrate
into MapXtreme's Table serialization workflow.

What components of my provider implementation do I have to serialize?

MapXtreme distinguishes tables as being either permanent or temporary. Permanent
tables only have to serialize their definition/structure in order to be properly re-
constructed upon deserialization. Temporary tables have the additional responsibility of
serializing their data. Extensible Data Provider tables are considered permanent tables
thereby simplifying the overall serialization responsibilities, although several provider
classes must still be serialized.

For those providers supporting the concept of data sources, the classes implementing the
IDataSourceDefinition and IDataSource interfaces must both be serializable. Whether or
not data sources are supported, every provider must also support serialization of the
classes implementing the ITableDefinition and ITable interfaces. The ITableDefinition and
IDataSourceDefinition interfaces must also provide meaningful overrides to the Equals
method in order for deserialization to work properly.

The classes implementing ITableMetadata are not required to be explicitly serializable,
although there are practical reasons to do so. If not serializable, the deserialization of
their respective table and data source instances may need to reconstruct them, and the
re-acquisition of that metadata could be potentially expensive in terms of performance.
MapXtreme 9.5 Developer Guide 652 Developer Guide

 D – Extensible Data Providers
To assist you, the Extensible Data Provider API provides serializable abstract base
classes provided for each of these interfaces. Serialization support is also provided for
the relevant properties being managed by their default implementations.

How do I serialize a class?

In .NET terms, a class is made serializable through some combination of implementing
the ISerializable interface from the System.Runtime.Serialization namespace and/or
applying the [Serializable] attribute to the class definition. Provider developers are free to
follow general guidance regarding .NET serialization in providing your implementation;
however, we strongly recommend applying both – particularly if deriving your classes
from the abstract base classes provided.

What if I decide not to support serialization?

We recommend that you provide serialization support in your extensible data provider so
you can provide better and broader support to application developers who will be
employing your provider as a component of their solution. However, there is no strict
requirement that a provider implementation must support serialization. In fact, in some
cases there are legitimate reasons why providing this support is fundamentally difficult or
unreliable.

Application developers may be able to use .NET reflection APIs to discover whether or
not your provider appears to support serialization; however, this still may not provide
them with everything they need to know regarding how to properly employ your provider
in an application with state management requirements. We strongly encourage you to
provide documentation that includes specific information regarding if/how your provider
implementation can be used as a component for such solutions.

Serialization and Dependent Relationships

MapXtreme’s Extensible Data Provider includes many dependent relationships that exist
amongst the required and recommended classes. An ITableDefinition contains an
IDataSourceDefinition property. An IDataSource also contains an IDataSourceDefinition
and an ITable contains IDataSource, ITableMetadata, and ITableDefinition properties.

As a rule, you may not need to serialize any property whose references may be shared.
For example, the IDataSourceDefinition property on ITableDefinition may represent a
data source definition that gets re-used to open multiple tables. You do not need to
include it in the serialization of the class implementing ITableDefinition. The same is true
for the IDataSource and ITableDefinition properties within ITable.

We do recommend including the definition properties when serializing – even if they are
later overwritten to use a shared reference.
MapXtreme 9.5 Developer Guide 653 Developer Guide

The IDataSource reference within the ITable should not be serialized as MapXtreme will
take care of automatically serializing the datasource for the table.

Shared object references are re-established via the serialization logic provided by
MapXtreme. The extensible data provider API contains the hooks necessary for the core
MapXtreme data access engine to accomplish this work. Specific examples include:

• The ReAssociate method on the IDataProvider interface

• The settable DataSourceDefinition property on the ITableDefinition interface

Implementing Serialization

Classes are serialized by being tagged with the [Serializable] attribute or by implementing
the System.Runtime.Serialization.ISerializable interface. We recommend you do both.
The ISerializable.GetObjectData method must be implemented and it must be public:

public void GetObjectData(SerializationInfo info, StreamingContext context)

For classes derived from the abstract base classes, this signature should also contain the
override keyword, and the first line of the implementation should delegate to the base
class for serialization of the components it is managing. For example:

base.GetObjectData(info, context);

The remaining serializable members within the instance are serialized into the
SerializationInfo argument named info by providing a string key and the member value to
its AddValue method. For example:

info.AddValue("TableName", _tableName);

Implementing Deserialization

To support deserialization, provide a protected deserialization constructor whose
arguments match those on GetObjectData above. For example:

protected COTWTableDefinition(SerializationInfo info, StreamingContext ctxt)

For classes derived from the abstract base classes, this constructor should delegate to
the base class for deserialization of the components it is managing. For example:

protected COTWTableDefinition(SerializationInfo info, StreamingContext ctxt) :
base(info, ctxt)

Within this constructor, the class instance assigns its member variables by retrieving
values using the “get” methods available on the SerializationInfo argument named info.
For example, to deserialize the TableName value serialized in the GetObjectData
example above, the code might resemble the following:

_tableName = info.GetString("TableName");
MapXtreme 9.5 Developer Guide 654 Developer Guide

 D – Extensible Data Providers
There are different recommendations regarding override support, method attributes, etc.,
for methods pertaining to serialization depending, at least in part, upon whether or not the
implementing classes are sealed. Using a code analysis tool like FxCop can provide
valuable assistance in providing proper recommendations.

For additional information and examples, consult the MapXtreme Developer Reference
(online Help), the SpatiaLite Sample Data Provider presented in this appendix, and other
data provider examples located on the MapXtreme Code Exchange.

Authentication
Many Data Providers require authentication when opening a Data Source or Table where
the details of the authentication are kept secure and unavailable from a publicly
accessible and shared workspace file.

To support run-time authentication of the OpenDataSource and OpenTable processing,
the MapXtreme Extensible Data Provider model provides a new interface called the
IDataProviderCallback with support for user-defined callback methods that the Extensible
Data Provider can use to resolve data source and table definitions that are insufficient in
some way that prevents the opening of a data source or table.

For the simplest implementation, the client code for a custom Data Provider would
contain a class that implements the IDataProviderCallback interface and provides
implementations of the IDataSourceDefinition and/or ITableDefinition callback methods
that are then used directly to open the data source or table.

For most users, however, it will be necessary to load a separate assembly containing the
IDataProviderCallback initialization and load the assembly as part of the MapXtreme
Session initialization. See ISessionEventHandlers. This would be required when you are
attempting to resolve data source or table definitions at the time a default workspace is
loading. Web-based applications, for example, will require the session initialization
support for callbacks.

How Are Data Provider Callbacks Used?

How the callback methods are invoked is handled by your Data Provider implementation;
MapXtreme manages support for the collection of callback methods and passes it to the
Data Provider via the defined interfaces,. It does not invoke any of the
IDataProviderCallbacks.

The IDataProviderCallback instances are managed by a
DataProviderCallbacksCollection on the MapXtreme Session Catalog. This collection of
callback collections associates callback objects to a System.Type, and supports multiple
callbacks per each Type association. The DataProviderCallbacksCollection may be
MapXtreme 9.5 Developer Guide 655 Developer Guide

http://www.mapinfo.com/for-developers/code-exchange

managed in several ways: during Session initialization (see
SessionEventHandler/DataProvider load section); during application initialization, and, for
very simple usage, immediately prior to an explicit OpenTable call from the client
application.

MapXtreme queries the Session Catalog for the callbacks associated with the
OpenDataSource or OpenTable method, and provides a reference to the collection to the
DataProvider. The IDataProvider interface supports a reference to an IEnumerator that
iterates over a collection of IDataProviderCallback[s] during the OpenDataSource and
OpenTable operations. The DataProvider class may use any callback referenced by the
IEnumerator to implement the appropriate logic required for resolving an
OpenDataSource or OpenTable failure, if the failure is addressable by modifying the input
DataSourceDefinition or TableDefinition. Or the DataProvider may implement a well-
known strategy for completing a definition object which is insufficient by design.

A typical example of a callback is one which, in a desktop application environment, the
OpenDataSource callback resolves a credential authentication error by presenting the
user with a dialog, requesting a valid username/password combination for the data
provider.

Implementing Your Data Provider Callback

The IDataProviderCallback interface specifies method signatures for modifying data both
of the IDataSourceDefinition and ITableDefinition data provider definition types. Classes
implementing IDataProviderCallback must provide appropriate implementations of the
methods to provide run-time updates of the definition objects in order to fulfill the
OpenDataSource/OpenTable requirements.

Additionally, an IDataProviderCallbackInfo interface can be specified on the callback
method in order to provide additional runtime state information to the callback in order to
determine an appropriate course of action. The IDataProviderCallbackInfo is a marker
interface only, and does not specify the nature of the information provided to the callback.
Typical implementations could include a run-time Exception or state enumeration
attribute.

The MapInfo.Data.Provider namespace contains a canonical implementation that may be
used by Data Provider implementors and/or client applications. The
DataProviderCallback class implements a delegate-based callback harness, allowing
client code to assign a callback method outside of the Extensible Data Provider assembly.
The DataProviderCallbackExceptionInfo class implements IDataProviderCallbackInfo as
a carrier for a System.Exception reference, while the DataProviderCallbackCollection
implements an ICollection of IDataProviderCallback[s].
MapXtreme 9.5 Developer Guide 656 Developer Guide

 D – Extensible Data Providers
The following is an example of how a credential resolution callback scenario can be
implemented.

// Create a method to handle the OpenDataSource InvalidCredentials state
// Implements IDataProviderCallback.Callback signature
public static IDataSourceDefinition InvalidCredentialsCb(
IDataSourceDefinition dsd, IDataProviderCallbackInfo info)
{
 // Implementation details are specific to the Data Provider, specifically, to
the appropriate IDataSourceDefinition implementation
 DataProviderCallbackExceptionInfo pcinfo
 = info as DataProviderCallbackExceptionInfo;
 if (pcinfo != null)
 {
 if (pcinfo.Exception == /* invalid credentials */)
 {

// Example: present user dialog
 string newpwd = GetPasswordFromUser();

// Example: create new EDP implementation specific DataSourceDefinition
 // with updated password credentials

return new EDPDataSourceDefinition(newpwd);
 }
 }
}

// MXT/EDP client code
{
 // Create a callback harness and assign the callback method
 DataProviderCallback cb = new DataProviderCallback();
 cb.DataSourceDefinitionCallback = InvalidCredentialsCb;

 // Associate the IDataProviderCallback with the EDP definition data type

Session.Current.Catalog.DataProviderCallbacksCollection.AddProviderCallback(
typeof(EDPDataSourceDefinition), cb);

 // Create an initially invalid Data Source Definition
 EDPDataSourceDefinition dsd = new EDPDataSourceDefinition("badpassword");

 // open table
 EDPTableDefinition tableDef = new EDPTableDefinition (dsd);
 Table t = Session.Current.Catalog.OpenTable(tableDef, "TESTTABLE");
}

Implementing IDataProviderCallback usage in the Data Provider

The OpenDataSource and OpenTable methods on IDataProvider include an enumerator
of IDataProviderCallback instances. This enumerator is supplied by the Catalog
automatically.
MapXtreme 9.5 Developer Guide 657 Developer Guide

The DataProvider implementation is responsible for iterating over and invoking the
callbacks if necessary to attempt to complete the OpenDataSource|OpenTable operation.

An example DataProvider implementation might proceed along the following lines, to
ensure that a valid open data source is constructed:

public override IDataSource OpenDataSource(
IDataSourceDefinition definition,
CustomProperties customProperties,
IEnumerator<IDataProviderCallback> callbacks)
{
 EDPDataSourceDefinition dsDef = definition as EDPDataSourceDefinition;
 if (dsDef == null)
 {
 // invalid definition
 // throw exception
 }

 EDPDataSourceDefinition tmpDsDef = dsDef;
 EDPDataSource ds = null;
 bool needDS = true;
 while (needDS)
 {
 needDS = false;
 DataProviderCallbackExceptionInfo cbinfo = null;
 try
 {
 // Data Source ctor will fail if data source definition is invalid, e.g.,
invalid credentials

ds = new EDPDataSource (tmpDsDef, customProperties);
 }
 catch (Exception e)
 {

cbinfo = new DataProviderCallbackExceptionInfo(e);
 }
 if (ds == null

 && callbacks != null)
 {

while (!needDS
&& callbacks.MoveNext())

 {
 // callback will return null if it is unable to modify the
 // the definition appropriate for a retry attempt
 // Example: User selected cancel from a credential input dialog
 tmpDsDef = callbacks.Current.Callback(dsDef, cbinfo) as
EDPDataSourceDefinition;

 if (tmpDsDef != null)
 {

needDS = true;
 }
} // while (!needDS and callbacks.MoveNext())
MapXtreme 9.5 Developer Guide 658 Developer Guide

 D – Extensible Data Providers
 } // if (ds == null && callbacks != null)

 if (!needDS
 && cbinfo != null)

 {
throw cbinfo.Exception;

 }

 } // while(needDS)

 return ds;
}

Thread safety
MapXtreme is thread safe meaning that different threads may concurrently be accessing
different sessions, catalogs, tables, maps, etc. without any unintended side-effects.
MapXtreme objects are not multi-threaded meaning that the same instance of a map,
table, catalog, etc. cannot be accessed from multiple threads at the same time. Data
provider implementations must at least follow this model if there is ever an expectation
that the data provider will be deployed in a web environment.

Generally your code should be thread safe as long as you do not rely on any global
variables, singleton objects, etc. You should also not rely on use of Thread Local Storage
since ASP.NET may actually cause the executing thread of your request to change. If
your data provider follows these guidelines, you should not require much, if any,
synchronization locks throughout your code which may choke the scalability of the
solution. The actual data that you are accessing, however, may have implied
synchronization that is either unavoidable or preferred. For example, if your data provider
exposes data from an Excel spreadsheet, the spreadsheet may be locked from editing
operations while it is open for read operations in a different thread (or different process
altogether). For these scenarios, it is important to consider how you architect your data
provider. Cursors, feature accessors, and modify processors are all intended to imply a
certain type of locking to the data where that may be required. However, if there are no
active cursors, accessors, or modify processors, the underlying data files (if applicable)
should not be held open.

The IDataProvider is the one exception where we actually recommend that you
implement this as a singleton. This interface is intended to be a factory interface and
should not contain any state at all (meaning no class member variables other than the
static INSTANCE property). The definition objects must reference their data provider for
MapXtreme to be able to call into it to open a data source or a table. For this mechanism,
an instantiable class is required although a singleton is perfectly suitable.
MapXtreme 9.5 Developer Guide 659 Developer Guide

You may be inclined to want to cache connections and possibly even cache your
datasource or table objects and reuse them when calls to OpenTable or
OpenDataSource. We strongly recommend that you do not do this. MapXtreme provides
collections for data sources and tables on the Catalog and will rely on the Equals logic
that you supply in your ITableDefinition and IDataSourceDefinition classes to find and
reuse the correct instances. This will prevent you from running into cross-thread, multi-
threaded situations. Your underlying data access technology, such as an ADO.NET data
provider, may cache and reuse data base connections. This is an acceptable architecture
since they assure the proper behavior in a multi-threaded environment.
MapXtreme 9.5 Developer Guide 660 Developer Guide

E

E – Printing From MapXtreme

Applications
This appendix will guide you in printing the best possible map images
from your MapXtreme development project. We begin by giving you an
overview of printing functionality and some helpful tips and tricks, then
we help you troubleshoot issues you may be experiencing printing with
your MapXtreme application.

In this appendix:

 Overview. 662
 Understanding the Print Options in MapXtreme 663
 Implementing Printing in Your Application 667
 General Printing Tips and Tricks. 669
 Resolutions to Known Printing Issues . 672

Overview
Printing from MapXtreme-developed applications can usually be straight forward.
However as the variety of printing devices continue to expand, device-specific problems
do occur. We provide a variety of features to you, the developer, to customize your user’s
printing experience. These options are designed to optimize printing depending on the
map being printed and the device being used. These different settings are designed to
meet the needs and nuances of a variety of printers and plotters.

MapXtreme supports:

• Printing maps – Use the MapPrintDocument class.

• Printing legends – Use the LegendPrintDocument class.

• Printing either directly to a device or by using an Enhanced Metafile (EMF).

• Printing maps in different sizes

• Printing maps that have translucent style colors and layers

See GDI+ Translucency and Anti-Aliasing for information.

• Printing translucent raster images

EnableTranslucency must be enabled to print translucent raster images.

MapXtreme does not support:

• The use of a printing options dialog box.

• Printing of layouts.

Layouts are important for the printing of legends in a map. See Printing a Legend in
Your Map for an example of how to get around this limitation.

• Printing multiple page maps.

If a map does span across multiple pages, only the first page is printed.

• Printing to a file programmatically.

You would need to use the Microsoft.NET 2.0 Framework
System.Printing.PrinterSettings class to implement this functionality.

The classes that handle printing in MapXtreme applications are derived from the
Microsoft.NET 2.0 Framework System.Drawing.PrintDocument class and inherit that
functionality. Device output control is managed by the Microsoft.NET 2.0 Framework
System.Printing.PrinterSettings and System.Printing.PageSettings classes. The
MapInfo.Printing.MapPrintDocument class is specifically for printing maps, while the
MapInfo.Printing.LegendPrintDocument is used specifically for printing legends.
MapXtreme 9.5 Developer Guide 662 Developer Guide

 E – Printing From MapXtreme Applications
Understanding the Print Options in MapXtreme
When printing a map or a legend from a MapXtreme application you can provide the
following options for printing to your user. In order to give your users control over these
settings, you need to build this functionality into the printing dialog boxes of your
application. If you do not specifically allow them to change these options the default
settings are used. You can also adjust these settings programmatically.

Printing Sizes
MapXtreme provides the options to print your map in different sizes. To alter the size in
which maps are printed set the MapPrintDocument.MapPrintSize property to one of the
values in the MapPrintSize enumeration. The values are as follows:

Fit to Page

This option is the default and the resulting map is printed with its aspect ratio maintained, but scaled to fit on
the page.

MapPrintDocument.MapPrintSize=MapPrintSize.FitPage

Fill Page

This option prints the map so that it fills the page. This method does not maintain the aspect ratio and the
resultant map may be skewed.

MapPrintDocument.MapPrintSize=MapPrintSize.FillPage

Current Map Size

This option prints the map in its original size. This may be fine, however if the map is larger than the page on
which it is printed, the overflow is lost.

MapPrintDocument.MapPrintSize=MapPrintSize.MapSize

 The following properties are common to both the
MapInfo.Printing.MapPrintDocument and MapInfo.Printing.LegendPrintDocument
classes.

Special Transparent Raster Handling
This sets your application to internally manage the transparent pixel display and printing
for raster images. On screen, the transparent image is rendered using a raster operation
(ROP) to handle the transparent pixels. This method may or may not work when printing
since MapXtreme uses a different method to decide the transparent method for printing.
You must determine if your particular print driver handles ROP correctly, and set it to true
or false accordingly. Under most printing conditions, this value should be set to true.
MapXtreme 9.5 Developer Guide 663 Developer Guide

When drawing to the screen, this value is normally set to false. Use
DrawingAttributes.SpecialTransparentRasterHandling to set this value. Setting this
value to true (the default) allows the application to internally manage the printing.

 This setting has no effect when printing vector layers.

Special Transparent Vector Handling
This sets your application to internally manage the transparent vector fill patterns when
you print. Use DrawingAttributes.SpecialTransparentVectorHandling to enable or
disable this functionality. Set this to true to allow MapXtreme to perform special handling
when printing transparent fill patterns or transparent bitmap symbols. This setting is
normally used for printing. Set this to false to let the printing device handle how it prints
transparent fill patterns and transparent bitmap symbols. See Need for Speed When
Using Fill Patterns? for details about which fill patterns are bitmaps and which are
vectors.

Display Raster in True Color When Possible
Some printers do not support 24-bit (true color) images. MapXtreme has an internal
functionality that accommodates this. Use DrawingAttributes.TrueColorRaster to enable
or disable this functionality.

Set this to true (default) to use the 24-bit (true color) to print raster and grid images. This
is possible when the image is 24-bit and the printer supports more than 256 colors (8 bit).
If your printer does not support 24-bit images, set this attribute as false to render the
raster image using only 256 colors with dither specified in DitherMethod. When printing a
24-bit image with this value set as false, the resulting printed image will be quite
deteriorated. when this attribute is set as false, you will need to set the dither method as
well (see below).

GDI+ Translucency and Anti-Aliasing
GDI+ rendering in MapXtreme allows you to create translucent lines, labels, and layers,
as well apply anti-aliasing that will smooth the jagged edges of lines, curves, and the
edges of filled areas when representing a high-definition rendition at a lower resolution.

When printing a map or a legend using MapPrintDocument or LegendPrintDocument, the
DrawingAttributes.EnableTranslucency and DrawingAttributes.SmoothingMode
properties are automatically set to the values from Map.DrawingAttributes or
MapXtreme 9.5 Developer Guide 664 Developer Guide

 E – Printing From MapXtreme Applications
Legend.DrawingAttributes respectively. After initialization, the user can override the
properties by setting them with their own value. This allows these two display options to
carry over from the map or legend without having to explicitly set them.

EnableTranslucency: Obtains or sets whether to honor translucent values in style
colors and/or layers when drawing the map onto the screen, printer or file export. When
this property is false, translucency values in styles (e.g., Color.A) and layers (e.g.,
MapLayer.Alpha) are ignored. A value of 255 is used instead. This property has no effect
on raster translucency (e.g., RasterStyle.Alpha; however, EnableTranslucency must be
enabled to print translucent raster images. This is not required for screen display or
exporting. If you set this property to false, the DrawingAttributes.SmoothingMode
property is automatically set to SmoothingMode.None. In other words, if translucency not
enabled, anti-aliasing cannot be used.

SmoothingMode: Obtains or sets the rendering quality of the map. This property
specifies a member of the MapInfo.Mapping.SmoothingMode enumeration. The default
value is SmoothingMode.None. The smoothing mode specifies whether lines, curves,
and the edges of filled areas use smoothing (also called anti-aliasing). If you set this
property to SmoothingMode.AntiAlias, the
MapInfo.Mapping.DrawingAttributes.EnableTranslucency property is automatically set to
true. In other words, translucency is always honored when anti-aliasing is used.

If you set EnableTranslucency to false, SmoothingMode will automatically be set to None
if it is not already. If you set SmoothingMode to AntiAlias, EnableTranslucency will
automatically be set to true if not already. While EnableTranslucency is true, you can
switch SmoothingMode between None and AntiAlias without losing translucency.

MapStyleControl Class

The MapStyleControl (MapInfo.Windows.Controls namespace) can be displayed on a tab
in the desktop LayerControl to allow the user to set map style and rendering options, such
as anti-aliasing and translucency.

Dither Method
Dithering is a technique that blends pixels electronically to maintain the look of an image
when decreasing the color depth. Select a dither method when you are converting a 24-
bit image to 256 colors.

• Halftone dithering calculates a series of half tone differences in color between high-
contrast elements in your image to create a smooth transition of color. This option is
selected by default for display, print, and export options.
MapXtreme 9.5 Developer Guide 665 Developer Guide

• Error diffusion dithering calculates an interim color between contrasting colors and
shades the surrounding pixels to blend evenly toward that interim color.

Set this value by using the DrawingAttributes.RasterDitherMethod property. You can set
this to a value from the DitherMethod enumeration.

Example:

mapPrintDocument.DrawingAttributes.RasterDitherMethod =
MapInfo.Mapping.DitherMethod.HalfTone;

Special Polygon Hole Handling
MapXtreme applications can draw complicated Polygon objects by using several
separate pieces and then merging them together. When a polygon is printed with holes or
islands, the pieces may not match well, and can overlap or leave gaps. There is some
internal programming that accommodates this errant behavior to make sure that the
polygons are displayed correctly and print properly. To take advantage of this functionality
set the value of DrawingAttributes.SpecialPolygonHoleHandling property to true. When
drawing to the screen, this value should be set to false.

Scale Patterns
This setting either prints non-transparent bitmap fill patterns that look like what you see on
your screen or allows the printer driver to have exclusive control over rendering the fill
patterns. Set this value with DrawingAttributes.ScaleBitmapPatterns. If this value is
true, the bitmap fill patterns are scaled up to compensate for the difference in printer and
screen resolutions. False does not scale the pattern and relies on the printer driver for
scaling the fill pattern. If the printer driver can scale fill patterns, you should set this value
to false. If the printer driver cannot scale fill patterns, you should set this value to true in
order to prevent the printed output from displaying too small and appearing like a solid fill.
See Need for Speed When Using Fill Patterns? for details about which fill patterns are
bitmaps and which are vectors.

If this property is set to true, the print preview and the resulting printed document may not
look the same, as the printer driver scales the pattern, but the display does not scale the
pattern. It will print correctly, even if the display doesn’t show it properly.

 If a fill pattern has a background color it is considered non-transparent, while one
without a background color is considered a transparent fill and is always scaled,
regardless of the value of this property.
MapXtreme 9.5 Developer Guide 666 Developer Guide

 E – Printing From MapXtreme Applications
Print Directly to Device
This option allows you to print your image directly to your printer. Set this value with
PrintMethod.Direct.

Print Using Enhanced Metafile (EMF)
Use this option to generate an enhanced metafile of your image before sending it to the
printer. This option takes advantage of current printer technology to shrink the spool size
and print your file quicker without sacrificing quality. Set this value with PrintMethod.Emf.

Implementing Printing in Your Application
The printing namespace in MapXtreme contains a set of classes to help you print maps.
Use these classes to handle basic printing of maps to any connected printing device.

Use the MapPrinting class to access the dialogs and printer control dialogs. It is important
to allocate a single MapPrinting object for your application and use this same instance for
print/print-preview/page setup.

Setup a MapPrinting and assign a map:
this.mapPrinting = new MapPrinting();
this.mapPrinting.Map = this.mapControl1.Map;

Following is sample code to print a map:

this.mapPrinting.ShowDialog = true;
this.mapPrinting.Print();

Following is sample code to display a print preview of a map:

this.mapPrinting.PrintPreview();

Following is sample code to show the Page Setup dialog:

this.mapPrinting.PageSettingsDialog();

You have access to the printer settings through the print document, which is part of the
main printing class. Because we add setting and options to our derived class that support
our mapping needs, you must get the class off the map printing object and re-cast it to our
derived class.

mapPrinting = new MapPrinting();
mapPrinting.Map = mapControl1.Map;
MapPrintDocument mapPrintDocument = mapPrinting.PrintDocument
MapXtreme 9.5 Developer Guide 667 Developer Guide

as MapPrintDocument;
if (mapPrintDocument != null) {

// here are some examples of how to set print options
// Set these based on your needs
mapPrintDocument.DrawingAttributes.SpecialTransparentRasterHandling =

true;
mapPrintDocument.PrintMethod = PrintMethod.Direct;
// and set other properties of mapPrintDocument

}

We do not provide any UI for changing our map print options. The dialogs allow the user
to change system printer settings only. If you want to provide the user with additional
options, you'll must provide your own UI to set the properties on MapPrintDocument
(such as DrawingAttributes and PrintMethod and PrintSize).

The print document is also where you gain access to the print process and where you add
callbacks when printing events occur. For example, you may want to add a logo or other
graphics to each printed page.

C# example

mapPrinting = new MapPrinting();
mapPrinting.Map = mapControl1.Map;
mapPrinting.PrintDocument.PrintPage += new
PrintPageEventHandler(mapPrintDocument1_PrintPage);

private void mapPrintDocument1_PrintPage(object sender, PrintPageEventArgs e)
{

// add customization for each page (ie; title, page #, etc.)
Graphics g = e.Graphics;

}

VB example

mapPrinting = New MapPrinting()
mapPrinting.Map = mapControl1.Map
AddHandler mapPrinting.PrintDocument.PrintPage, AddressOf
mapPrintDocument1_PrintPage

Private Sub mapPrintDocument1_PrintPage(ByVal sender As Object, ByVal e As
PrintPageEventArgs)
 ' add customization for each page (ie; title, page #, etc.)
 Dim g As Graphics = e.Graphics
End Sub

Using this method, you have access to the graphics object and can use any of the
available graphics routines to print extra graphics or text.
MapXtreme 9.5 Developer Guide 668 Developer Guide

 E – Printing From MapXtreme Applications
General Printing Tips and Tricks

 MapInfo cannot, and does not, recommend one printer/plotter over another, nor
verify that a particular printer works 100 percent of the time. There are too many
variables that affect the output to be able to make a recommendation.

The following tips and suggestions come from our knowledgebase of specific common
problems and solutions our users have found while printing.

Good first steps in troubleshooting a printing problem are to make sure you have
downloaded and installed the patch for your release of MapXtreme, if any, and are using
the latest printer driver for your printer/operating system. Exceptions are noted in this
document.

How to Overload a Print Page Event

Our .NET printing API provides a mechanism for overloading the print page event. This
allows you to add customizations to each printed page. For example, you could add a
title, page number, logo, etc.

To do this, you need to implement a PrintPageEventHandler. Here's an example:

this.mapPrinting = new MapPrinting();
this.mapPrinting.Map = this.mapControl1.Map;
this.mapPrinting.PrintDocument.PrintPage += new
System.Drawing.Printing.PrintPageEventHandler(this.mapPrintDocument1_PrintPage)
;

private void mapPrintDocument1_PrintPage(object sender,
System.Drawing.Printing.PrintPageEventArgs e)
{

// TODO - add your code here to alter the printed page
}

Printing a Legend in Your Map
As mentioned at the beginning of this section, MapXtreme does not support the printing of
layouts. If you want to print a legend in your map, you need to add the legend as an
adornment to your map. Here is some sample code to demonstrate how this works:

//create cartographic legend
MapInfo.Mapping.Legends.Legend legend = mapControl1.Map.Legends.CreateLegend(new
System.Drawing.Size(5, 5));
legend.Border = true;
MapInfo.Mapping.LayerType[] normalLyr = new MapInfo.Mapping.LayerType[1];
normalLyr[0] = MapInfo.Mapping.LayerType.Normal;
MapXtreme 9.5 Developer Guide 669 Developer Guide

MapInfo.Mapping.IMapLayerFilter filter =
MapInfo.Mapping.MapLayerFilterFactory.FilterByLayerType(normalLyr);
MapInfo.Mapping.Legends.LegendFrame frame;

foreach(MapInfo.Mapping.FeatureLayer ftrLayer in
mapControl2.Map.Layers.GetMapLayerEnumerator(filter))
{

frame =
MapInfo.Mapping.Legends.LegendFrameFactory.CreateCartographicLegendFrame(ftrLay
er);

legend.Frames.Append(frame);
}

//set legend location on the map
System.Drawing.Point pt = new System.Drawing.Point(220, 200);
pt.X = mapControl2.Size.Width - legend.Size.Width;
pt.Y = mapControl2.Size.Height - legend.Size.Height;
legend.Location = pt;

//append legend as map adornment
mapControl1.Map.Adornments.Append(legend);

mapPrinting.print ();

Old Driver Works, New Driver Doesn’t

When in doubt, if an older driver worked and the new one does not, go back to the older driver.

HP 755 Driver Suggestion

If you are having difficulties printing using this plotter model, try the plotter driver for the HP 650C (C2859B)
instead. In many cases, if you are having difficulty with a printer or plotter model and a similar model exists,
you can substitute the similar model's driver for the current one and get good results. For example, you can
use the printer driver for the HP 8500 DN Color LaserJet with the HP8550 color LaserJet driver.

Recommendations for Effective Pattern Scaling

When you are printing, find out what type of printer driver you are using. Many PCL6 and some HPGL drivers
handle fill pattern scaling and give you control over this feature. Turning off their scaling may be the difference
between what you see in print and what you see on your monitor. We recommend that you try turning off your
driver’s scaling options and try ours first, because we have enhanced our method to better meet your Map
and Legend printing requirements. To turn our pattern scaling options on, enable Scale Patterns in your

application (see Scale Patterns. Try disabling our scaling to see which you like better. Tests show that our

scaling produces color output that more closely matches a screen’s display.

If you are printing to PostScript drivers using LanguageLevel 2 or 3, we find that some of the Microsoft drivers
do not support pattern scaling. As a result, our scaling method may not help you. Microsoft recommended
that you reset the language level of the PostScript driver to LanguageLevel 1 to remove this restriction. We
did find some exceptions to this condition. On Windows 2000 and Windows NT, some HP Laser Jet and Color

Laser Jet PostScript drivers, using our scaling option, printed correctly.
MapXtreme 9.5 Developer Guide 670 Developer Guide

 E – Printing From MapXtreme Applications
Need for Speed When Using Fill Patterns?

Note that the first six fill patterns (after the solid fill) in of the AreaStyle dialog box are Windows standard and
tend to print faster. These fill patterns are vector-based. The rest of the patterns are bitmaps that ship with
MapXtreme. You might want to consider this when you are selecting fill patterns.

1 Use these fill patterns for fast printing results.

Speed Still an Issue?

If you want to improve printer speed, and your printer has Fast, Normal, Best print quality options, we suggest
you select Fast. This will also lower your output resolution.

Disk Space an Issue?

Make sure you have plenty of temporary disk space, particularly if you are using the Print using the Enhanced
Metafile option. The system is trying to create a layered bitmap locally on disk.

Print Globally? Spool Locally!

Try spooling1 print jobs locally rather than at the plotter. This allows the computer to rasterize your output

rather than the printer, which can be more efficient.

1. Spooling is the process of storing data constituting a document to be printed in memory or in a file until the printer
is ready to process it.

1

MapXtreme 9.5 Developer Guide 671 Developer Guide

1 Click Spool Print Documents and Start printing after last page is spooled button.

1. To set up local print job spooling, choose Start > Settings > Control Panel >
Printers.

2. Right-click the printer and choose Properties in the menu to display the printer’s
properties.

3. Click the Advanced tab to display the advanced property options.

 If you do not have administrative rights to your computer, you may not be able to
use the spooling option. Contact your IT department if you want to make this
change to get their support.

4. Click OK to save your changes.

Resolutions to Known Printing Issues
There are many variables that affect printing and plotting with any application, and
MapXtreme applications are no exception. MapXtreme does not provide printer drivers; it
uses the existing ones installed under the current Windows operating system. This
section addresses specific printer/plotter issues that have been uncovered by users and
partners. We are providing these in an effort to support you to support your users.

1

MapXtreme 9.5 Developer Guide 672 Developer Guide

 E – Printing From MapXtreme Applications
Platform Independent Issues
These issues occur regardless of operating system or hardware/software, except where
specifically noted. Look for the issue you are working with below and refer to the
resolution.

Hatch Patterns Printing as Black Polygons

Printers/Plotters: HP Designjet Series Plotters

Issue: When you print maps with hatch patterns, some regions display as solid black.

Resolution: According to Hewlett Packard support, the new HP printer driver (4.63)
handles non-Windows standard hatch patterns properly. We recommend that you
download and install the new HP 4.63 driver to resolve this problem.

Hatch Patterns are Compressed when I Print

Operating System: WindowsNT 4.0/2000

Printers/Plotters: HP LaserJet Series, tested on HP LaserJet 4050 Series PCL 6

Issue: When you use a MapInfo hatch pattern (a pattern that is not one of the first 6
patterns AreaStyle dialog box), you may notice that the pattern may become very
compressed. This is because the patterns are a bitmap that get drawn at a higher printer
resolution. The standard Windows patterns do not exhibit this problem. The printer
resolution affects the amount of compression.

Resolution: Some printer drivers have a new output setting called Scale Patterns
(WYSIWYG) that enables the patterns to scale correctly. In the HP printer we tested, this
option is available when you select the Printing Preferences > Print Quality > Details
options.

Users should turn off either the driver's, or our scaling, as doing both scales fill patterns
twice. Try both types of scaling to find the one you like better.

Platform-Specific Issues
These issues pertain to particular operating systems and/or hardware except where
specifically noted. These issues are grouped by operating system.

Print output repeats itself every 2 to 4 cm using the HP 500, 800, 5000 DesignJet
plotter when printing Rasters

We have two suggestions to working around this problem. First, try spooling the printer
locally either from the driver level or the printer level.
MapXtreme 9.5 Developer Guide 673 Developer Guide

 You must have read/write rights to your printer and printer driver to resolve this
issue.

To work around this problem, there is an advanced hidden setting that you can change
within the properties of the driver.

To prevent the printer from repeating itself every 2-4 cm. when printing rasters with vector
overlays:

1. Locate the printer driver’s properties in the Control Panel. To get to this setting, right-
click the printer icon and choose Properties.

2. Click the Advanced tab. Select the following options:

• Select the Avoid out of memory option.
• If you are using the Windows 2000 or XP operating system, select a scaling factor

of 100%.

3. From this dialog box, click the Printing Defaults button.

4. In this dialog box, select the About button. The About <Driver Name> dialog box
displays.

5. Holding down the F8 key on your keyboard, click the OK button. The Special Options
dialog box displays:

6. Clear the Enable SpoolSmart check box and click OK:
MapXtreme 9.5 Developer Guide 674 Developer Guide

 E – Printing From MapXtreme Applications
 When you modify settings in this driver option box, make sure to note the original
settings in case you need to change them back. These were designed for HP
Support Engineers and not for general public use.

You can save these settings as a Quick Set to ensure that they run every time you print
raster files.

1. Navigate to the HP printer driver and access the driver preferences. Use one of these
methods based on your operating system:

• Using Windows NT 4.0 — From the Windows desktop, select Start > Settings >
Printers. Then, right-click the appropriate plotter driver icon and choose Document
Defaults.

• Using Windows 2000/XP (Classic View) — From the Windows desktop, select
Start > Settings > Printers. Then, right-click the appropriate plotter driver icon and
choose Printing Preferences.

2. Set the preferences the way you want them in the hidden menu.

3. In the Quick Sets box, type a name for the selected settings (for example, "Raster Print
Settings") and click Save. All current driver settings (paper type, hidden menu settings,
etc.) are saved under the Quick Set name. The printer driver remembers these
settings and they can be used for future print jobs.

To print a raster map later with the same settings:

1. Choose the Print command to display the Print dialog box.

2. Choose the Properties button. The Properties dialog box displays.

3. Make sure the name you entered (as in “Raster Print Settings” in our example)
displays in the Quick Sets drop-down list and click OK. The Print dialog box redisplays.

4. Click OK to print.

 If you do not need this special setting in Quick Sets, remember to change this
setting back to the default machine setting.

Cannot Print with HP Designjet Printers (Driver 5.31 or 5.32)

When you attempt to use these drivers one of these things happens:

• If you select the Maximum Performance option, you get memory error messages and
the printer prints only part of the image

• If you select the Avoid out of memory option, the computer crashes and displays
both an Out of Hard Disk Space message and an Out of Virtual Memory message
MapXtreme 9.5 Developer Guide 675 Developer Guide

The resolution of this issue is similar to the preceding issue. The Special Options dialog
box is the same.

1. Programmatically set the following printing options:

MapPrintDocument mapPrintDocument = this.mapPrinting.PrintDocument as
MapPrintDocument;
mapPrintDocument.PrintMethod = PrintMethod.Direct;
mapPrintDocument.DrawingAttributes.SpecialTransparentVectorHandling = true;
mapPrintDocument.DrawingAttributes.SpecialTransparentRasterHandling = false;
mapPrintDocument.DrawingAttributes.TrueColorRaster = true;.

2. From the Control Panel, select Printers or Printers and Faxes and find the printer you
want to print to.

3. Right-click on the printer and select the Properties option. The Properties dialog box
displays.

4. Click the About button to display the About <Printer Driver> dialog box.

5. Holding down the F8 key on your keyboard, click the OK button. The Special Options
dialog box displays.

6. Clear the Enable SpoolSmart check box.
MapXtreme 9.5 Developer Guide 676 Developer Guide

F

F – Style Lookups
This appendix contains lookup tables for supported styles, including fill
patterns, line styles, vector symbols and custom bitmap symbols. For
more information on style descriptions and how to use them, see
Chapter 15 Stylizing Your Maps.

In this appendix:
 Fill Patterns. 678
 Line Styles . 693
 Vector Symbols. 693
 Custom Symbols . 698
 MapXtreme Icons . 701

Fill Patterns
The following table summarizes the MapXtreme fill patterns (also referred to as interior
styles within the MapXtreme programming API). Each fill pattern has an associated Index
Number, which is used for programmatic access into an InteriorStyleRepository object,
and a Pattern Number, which is an internal descriptive name of the fill pattern.

More specifically:

Fill Pattern

The graphical fill pattern itself.

Index Number

The 0-based index used to retrieve the interior style that represents the fill pattern from the
InteriorStyleRepository.

Pattern Number

The numeric identifier for the fill pattern, which may be used to construct an interior style object. This is an
internal number only and can not be used to access the InteriorStyleRepository programmatically. However,
these pattern numbers are used to indicate fill patterns within MapXtreme workspace files (.mws).

Understanding the Index Numbering Schemes
As seen in the Fill Patterns table, the fill pattern indexes (listed in the Index Number
column) range from 1 to 172. This 1-based indexing scheme is used throughout other
MapInfo products (for example, MapInfo Professional and MapBasic). However in the
MapXtreme API, fill patterns (also called interior style objects) are acquired through an
InteriorStyleRepository object that uses 0-based indexing.

Specifically, an InteriorStyleRepository object allows users to iterate through all of the
available interior style objects via a 0-based indexing scheme that ranges from 0 to 172.
So there are actually 173 interior style objects to choose from, however, the interior style
objects at indexes 0 and 1 are identical. The equivalence of the objects at elements 0 and
1 is necessary for the following reasons:

First, we must accommodate the inherent 0-based indexing functionality of the
InteriorStyleRepository class itself. That is, the InteriorStyleRepository class permits only
0-based index access for retrieving elements from its IList. (IList is a standard .NET
interface that the InteriorStyleRepository class implements.)

Second, the 0-based indexing scheme must remain synchronized with the 1-based
indexing scheme shown in the Pattern Number column. So there are only 172 distinct fill
patterns whose indexes range from 1 to 172. The programmatic fill pattern at index 0 was
added to give a definition for that index's element.
MapXtreme 9.5 Developer Guide 678 Developer Guide

 F – Style Lookups
 You will notice that the first eight fill patterns have the same Index Number and
Pattern Number. Subsequently, the Pattern Number is always three greater than
the corresponding Index Number (and hence the Pattern Numbering sequence
goes up to 175 while the Index Numbering stops at 172). This is not an error. There
are still 172 unique fill patterns. Nothing is missing from the table.

Fill Patterns and Associated Index and Patterns Numbers

Fill Pattern Index Number Pattern Number

 (None)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 12

10 13
MapXtreme 9.5 Developer Guide 679 Developer Guide

11 14

12 15

13 16

14 17

15 19

16 18

17 20

18 21

19 22

20 23

21 24

22 25

23 26

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 680 Developer Guide

 F – Style Lookups
24 27

25 28

26 29

27 30

28 31

29 32

30 33

31 34

32 35

33 36

34 37

35 38

36 39

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 681 Developer Guide

37 40

38 41

39 42

40 43

41 44

42 45

43 46

44 47

45 48

46 49

47 50

48 51

49 52

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 682 Developer Guide

 F – Style Lookups
50 53

51 54

52 55

53 56

54 57

55 58

56 59

57 60

58 61

59 62

60 63

61 64

62 65

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 683 Developer Guide

63 66

64 67

65 68

66 69

67 70

68 71

69 72

70 73

71 74

72 75

73 76

74 77

75 78

76 79

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 684 Developer Guide

 F – Style Lookups
77 80

78 81

79 82

80 83

81 84

82 85

83 86

84 87

85 88

86 89

87 90

88 91

89 92

90 93

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 685 Developer Guide

91 94

92 95

93 96

94 97

95 98

96 99

97 100

98 101

99 102

100 103

101 104

102 105

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 686 Developer Guide

 F – Style Lookups
103 106

104 107

105 108

106 109

107 110

108 111

109 112

110 113

111 114

112 115

113 116

114 117

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 687 Developer Guide

115 118

116 119

117 120

118 121

119 122

120 123

121 124

122 125

123 126

124 127

125 128

126 129

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 688 Developer Guide

 F – Style Lookups
127 130

128 131

129 132

130 133

131 134

132 135

133 136

134 137

135 138

136 139

137 140

138 141

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 689 Developer Guide

139 142

140 143

141 144

142 145

143 146

144 147

145 148

146 149

147 150

148 151

149 152

150 153

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 690 Developer Guide

 F – Style Lookups
151 154

152 155

153 156

154 157

155 158

156 159

157 160

158 161

159 162

160 163

161 164

162 165

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 691 Developer Guide

163 166

164 167

165 168

166 169

167 170

168 171

169 172

170 173

171 174

172 175

Fill Patterns and Associated Index and Patterns Numbers (continued)

Fill Pattern Index Number Pattern Number
MapXtreme 9.5 Developer Guide 692 Developer Guide

 F – Style Lookups
Line Styles

Vector Symbols
MapXtreme automatically installs 10 MapInfo-specific TrueType fonts during its
installation process. These fonts offer the user glyph symbol choices that range from
Weather, Real Estate, and Transportation, and others. The glyph numbers are Unicode
character values, which, since they fall within the first Unicode character code block
range, are also assignment-wise compatible with the ASCII character set.
MapXtreme 9.5 Developer Guide 693 Developer Guide

MapInfo Arrows

MapInfo Cartographic
MapXtreme 9.5 Developer Guide 694 Developer Guide

 F – Style Lookups
MapInfo Miscellaneous

MapInfo Oil &Gas

MapInfo Shields
MapXtreme 9.5 Developer Guide 695 Developer Guide

MapInfo Real Estate

Map Symbols

MapInfo Symbols
MapInfo 3.0 Compatible symbols
MapXtreme 9.5 Developer Guide 696 Developer Guide

 F – Style Lookups
MapInfo Transportation

MapInfo Weather
MapXtreme 9.5 Developer Guide 697 Developer Guide

Custom Symbols
The following symbols are located in programdata\Mapinfo\custsymb. The file extension
for each image is .BMP.

These symbols can be accessed programmatically via the BitmapPointStyleRepository
collection class in the MapInfo.Styles namespace.

You can create your own bitmap images and add them to the CustSymb directory. There
are virtually no size limitations on an image that you create; however, the ability of
MapXtremeto display it will depend on available memory. The image does not have to be
square and can also have up to 24-bit color depth. To ensure that your image is displayed
using its natural width and height, you must set the Boolean "NativeSize" property to true
within the image's respective BitmapPointStyle object.

AMBU1-32 AMBU-64 BADG1-32 BADG2-32 BANK1-32 BANK2-
32

BANK-64 BOOK1-32 BUILDINGS CAMP1-32 CAR1-32 CAUT1-
32

CHUR1-32 COMP1-32 FARM1-32 FAST1-32 FIRE1-32 FIRE-64

FOOD-64 GLOB1-32 GOLF1-32 HOSP1-32 HOUS1-32 HOUS2-
32
MapXtreme 9.5 Developer Guide 698 Developer Guide

 F – Style Lookups
HOUS3-32 HOUS-64 HYDR1-32 INTE1-32 LITE1-32 LITE2-
32

MAIL1-32 MBOX1-32 MBOX2-32 MOSQ1-32 ONEW1-32 ONEW2
-32

PENC1-32 PIN1-32

(CYAN)

PIN2-32

(RED)

PIN3-32

(YELLOW)

PIN4-32

(GREEN)

PIN5-32

(BLUE)

PIN6-32

(PURPLE)

PINB-64

(BLUE)

PING-64

(GREEN)

PINGY-64

(GRAY)

PINR-64

(RED)

POLI1-
32

RAIL1-32 RAIL2-32 RAIL3-32 RAIL-64 RED-CAR REST1-
32

STAT1-32 STOP1-32 SYNA1-32 TARG1-32 TAXI1-32 TEMP1-
32

TOWE1-32 TOWE2-32 TRAF1-32 TRUC1-32 TRUC2-32 TRUC-
64
MapXtreme 9.5 Developer Guide 699 Developer Guide

YIEL1-32 YIEL2-32
MapXtreme 9.5 Developer Guide 700 Developer Guide

 F – Style Lookups
MapXtreme Icons
This table of thumbnails represent a collection of toolbar icons available for your use in
your MapXtreme-based application. They are Installed into the \Samples\Icons folder
under the MapXtreme installation folder. There are two forms of each .PNG: small (16x16
pixels) and large (24x24 pixels).

ADD_NODE ADORNME
NT

ARC ARROW ASSIGN_TA
RGET

CLIP_MODE

CLIP_REGI
ON

CLOSE_ALL COPY CREATE_D
RIVE_REG

CROSSHAI
R

CUT

DRAG_HAN
DLE

ELLIPSE FIND_ADDR
ESS

GEOCODE_
USE_SRV

GRABBER GRAPH_SE
LECT

HELP HOT_LINK INFO INVERTSEL
ECT

LABEL LAYERS

LEGEND LINE LINE_STYL
E

MB_12 MB_6 MB_7
MapXtreme 9.5 Developer Guide 701 Developer Guide

MB_8 NEW_BRO
WSER

NEW_DOC NEW_GRAP
HER

NEW_LAYO
UT

NEW_MAPP
ER

NEW_REDI
STRICTER

ODBC_DIS
CONNECT

ODBC_MAP
PABLE

ODBC_OPE
N

ODBC_REF
RESH

ODBC_SYM
BOL

ODBC_UNLI
NK

OPENWFS OPENWMS OPEN_FILE OPEN_WO
R

PASTE

POLYGON POLYGON_
STYLE

POLYLINE PRINT PRINT_PDF RECT

RESHAPE ROUND_RE
CT

RULER RUN SAVE_FILE SAVE_WIN

SAVE_WOR SCALEBAR SEARCH_B
DY

SEARCH_P
OLYGON

SEARCH_R
ADIUS

SEARCH_R
ECT
MapXtreme 9.5 Developer Guide 702 Developer Guide

 F – Style Lookups
SET_TARG
ET_MAP

STATISTICS SYMBOL SYMBOL_S
TYLE

TEXT TEXT_STYL
E

UNDO UNSELECT
_ALL

WEB_SERVI
CE_PREF

WINDOW_F
RAME

WRENCH ZOOM_IN

ZOOM_OUT ZOOM_QUE
STION
MapXtreme 9.5 Developer Guide 703 Developer Guide

MapXtreme 9.5 Developer Guide 704 Developer Guide

G

G – Defining the MapInfo

Codespace
The MapInfo Codespace is a list of definitions and standards that are
commonly used in creating MapInfo maps and workspaces. You can
refer to these definitions to assist you in using MapXtreme. You may
want to compare our codespace definitions with another commonly
used codespace, the European Petroleum Survey Group (EPSG),
which is available on their website: www.epsg.org/.

In this appendix:
 Defining the MapInfo Codespace . 706

http://www.epsg.org/

Defining the MapInfo Codespace
In the following table, we show the current MapInfo Codespace. These definitions will
allow your XML-based map documents to use our codespace and refer to common
values, such as srsName. An example of a point geometry definition, for example, could
look like this:

<gml:Point srsName="mapinfo:coordsys 1,74"> ...</gml:Point> or
<gml:Point srsName="epsg:4269"> ...</gml:Point>

MapInfo Codespace Definition

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example

coordsys CoordSys file* A coordinate reference system.

Example: mapinfo:coordsys
1,74

pen [1-255] Simple Mapinfo pen pattern;
numbering [1-255] based on
default MapInfo MapInfow.pen
definitions. Follows all
established rules.

Example: mapinfo:pen 46

brush [1-8, 12-175] Simple Mapinfo brush pattern
number [1-8, 12-175]. (Note: 9-
11 are reserved.) Based on
default MapInfo bitmap
definitions.

Example: mapinfo:brush 17
MapXtreme 9.5 Developer Guide 706 Developer Guide

 G – Defining the MapInfo Codespace
length in | ft | yd | mi

mm | cm | m |
km |

sft | nmi | li |
ch | rd | pt |
twip | pica |
deg

pt= 1/72 in

pica = 12 pt

twip = 1/20 pt

1 deg =
(pi/180) *
6370997
meter =
69.09329 mi
(based on
great circle)

Unit of length.
Supports inch | foot | yard | mile
|
and
millimeter | centimeter | meter |
kilometer |
and
survey foot | nautical mile |
and
link | chain | rod | point | twip |
pica | degree.

Examples:

mapinfo:length m

mapinfo:length pt

mapinfo:length deg

imagesiz
e

pixel A non-linear unit of image
dimension.

Example: mapinfo:imagesize
pixel

type A data type.

boolean Example: mapinfo:type boolean

byte Example: mapinfo:type byte

date Example: mapinfo:type date

datetime Example: mapinfo:type
datetime

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 707 Developer Guide

type time Example: mapinfo:type time

decimal [| (n n) |] n.m
n is the
total
digits
and
m is the
number
of digits
reserve
d for the
right of
decimal
point,
m<=n

optional min

optional max

optional precision
Examples:
mapinfo:type decimal (100 -- all
d>100

mapinfo:type decimal 100) -- all
d<100

mapinfo:type decimal [200 300]
-- all 200<=d<=300

mapinfo:type decimal 10.7 -- all
decimals with no more than 10
digits with 7 digits reserved for
right of decimal point, thus max
of 3 digits to left of decimal
point.

mapinfo:type decimal [200 300]
10.7 --
combination of previous two
examples.

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 708 Developer Guide

 G – Defining the MapInfo Codespace
type
(continue
d)

double [| (n n) |] Example: mapinfo:type double
(0 150)

float [| (n n) |] Example: mapinfo:type float
30.25]

int [| (n n) |] Example: mapinfo:type int [0
180]

short [| (n n) |] Example: mapinfo:type short

string n Optional max length n.

Example: mapinfo:type string
256

char Example: mapinfo:type char

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 709 Developer Guide

operator
s

A scalar attribute comparison
operator or a geometry
operator or a boolean operator.

eq | neq | lt |
gt | lteq | gteq

Binary scalar value operator.

Example: mapinfo:op eq

in | not_in Scalar value in/not_in an
enumerated set of
scalar values, e.g., value in {2,
50, 88, 95}

value not_in {“NY”, “NJ”}.
Examples:

 mapinfo:op in

 mapinfo:op not_in

between |
not_between

Scalar value is between two
other scalar values based on
the order relation of that scalar
value type, e.g., value between
{5, 25}

value not_between {1may2000,
30may2000}

Examples:

 mapinfo:op between

 mapinfo:op not_between

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 710 Developer Guide

 G – Defining the MapInfo Codespace
operator
s
(continue
d)

like | not_like A string value matches the RHS
pattern. The format of the RHS
pattern may be specific to the
data source, e.g., lastname like
“Jo%”. (Uses the Oracle
wildcard character '%').

Examples:

 mapinfo:op like

 mapinfo:op not_like

intersects The feature geometry fg
intersects the given Polygon.

Example: mapinfo:op intersects

mbr_intersect
s

The the mbr (minimum bound
rectangle) of the feature
geometry (fg) intersects the
mbr of the given Polygon.

Example: mapinfo:op
mbr_intersects

contains The feature geometry (fg)
contains the given Point. The
given Polygon contains the
feature geometry fg.

Example: mapinfo:op contains

contains_cent
roid

The feature geometry (fg)
contains the centroid of the
given Polygon. The given
polygon contains the centroid of
the feature geometry (fg)

Example: mapinfo:op
contains_centroid

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 711 Developer Guide

operator
s
(continue
d)

and Boolean and.

Example: mapinfo:op and

or Boolean or.

Example: mapinfo:op or

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 712 Developer Guide

 G – Defining the MapInfo Codespace
area A unit of area.

sq in | ft |
yd | mi |
mm |
cm | m |
km | sft
| nmi | li
| ch | rd
| pt |
twip |
pica |
degree

Square linear units.

Example: mapinfo:area sq mi

acre | a | ha |
perch | rood

a = are (an
area of 10m
x10m)

ha = hectare
(an area of
100m x
100m)

perch =
272.25 sq ft
(one sq rod
16.5 ft)

rood = 40
perch (1/4
acre)

A predefined area unit.

Example: mapinfo:area acre

time msec | sec |
min | hr | day |
week | month
| year

A unit of time. Millisecond |
Second | Minute, Hour | Day |
Week | Month | Year

Example: mapinfo:time hr

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 713 Developer Guide

angle deg | rad A unit of angular measure.
degree | radian

Example: mapinfo:angle rad

temp K | F | C A unit of temperature. Kelvin |
Fahrenheit | Celcius

Example: mapinfo:temp C

* Coordinate System information for MapXtreme is located in the MapInfoCoordinateSystemSet.xml, located in
C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x.

MapInfo Codespace Definition (continued)

Category Position 1
Positio

n 2
Positio

n 3
Position

4 Explanation and Example
MapXtreme 9.5 Developer Guide 714 Developer Guide

H

H – Elements of a Coordinate

System
This appendix provides a detailed look at the elements of coordinate
systems, including supported datums, ellipses, and transformations.

In this appendix:

 Projections and Their Parameters . 716
 Projection Datums . 723
 Datum Conversion . 738
 Custom Datums . 739
 National Transformation v. 2 (NTv2) . 745
 Information on Coordinate Systems and Projections 749

Projections and Their Parameters
The following table indicates the parameters applicable to each projection, which are
listed in the order they appear in the relevant coordinate system lines in the
MapInfoCoordinateSystemSet.xml. The document is located in C:\Program
Files\Common Files\MapInfo\MapXtreme\9.x.x.

D
at

u
m

U
ni

ts

O
rig

in
, L

on
gi

tu
de

O
rig

in
, L

at
itu

de

S
ta

nd
ar

d
P

ar
al

le
l 1

S
ta

nd
ar

d
P

ar
al

le
l 2

A
zi

m
u

th

S
ca

le
 F

ac
to

r

F
al

se
 E

as
tin

g

F
al

se
 N

or
th

in
g

R
an

g
e

B
ea

ri
n

g

Albers Equal-Area Conic X X X X X X X X

Azimuthal Equidistant X X X X X

Cassini-Soldner X X X X X X

Cylindrical Equal Area X X X X

Double Stereographic X X X X X X X

Eckert IV X X X

Eckert VI X X X

Equidistant Conic X X X X X X X X

Gall X X X

Hotine Oblique Mercator X X X X X X X X

Lambert Azimuthal Equal-
Area

X X X X X

Lambert Conformal Conic X X X X X X X X

Longitude-Latitude X

Mercator X X X

Miller X X X
MapXtreme 9.5 Developer Guide 716 Developer Guide

 H – Elements of a Coordinate System
Projection
The projection is the equation or equations used by a coordinate system. The following
list names the projections MapInfo uses and gives the number used to identify the
projection in the MapInfoCoordinateSystemSet.xml file:

Mollweide X X X

New Zealand Map Grid X X X X X X

Polyconic X X X X X X

Regional Mercator X X X X

Robinson X X X

Sinusoidal X X X

Stereographic X X X X X X X

Swiss Oblique Mercator X X X X X X

Transverse Mercator X X X X X X X

S-JTSK

(Krovak)

X X X X X X X

Cylindrical X X X X X X X

Rectified Skewed

Orthomorphic (RSO)

X X X X X X X X

D
at

um

U
ni

ts

O
rig

in
, L

on
gi

tu
de

O
rig

in
, L

at
itu

de

S
ta

nd
ar

d
P

ar
al

le
l 1

S
ta

nd
ar

d
P

ar
al

le
l 2

A
zi

m
ut

h

S
ca

le
 F

ac
to

r

F
al

se
 E

as
tin

g

F
al

se
 N

or
th

in
g

R
an

ge

B
ea

rin
g

MapXtreme 9.5 Developer Guide 717 Developer Guide

Number Projection

9 Albers Equal-Area Conic

28 Azimuthal Equidistant (all origin latitudes)

5 Azimuthal Equidistant (polar aspect only)

30 Cassini-Soldner

2 Cylindrical Equal-Area

31 Double Stereographic

14 Eckert IV

15 Eckert VI

6 Equidistant Conic, also known as Simple Conic

17 Gall

7 Hotine Oblique Mercator

4 Lambert Azimuthal Equal-Area (polar aspect only)

29 Lambert Azimuthal Equal-Area

3 Lambert Conformal Conic

19 Lambert Conformal Conic (modified for Belgium 1972)

1 Longitude/Latitude

10 Mercator

11 Miller Cylindrical

13 Mollweide

18 New Zealand Map Grid

27 Polyconic

26 Regional Mercator

12 Robinson
MapXtreme 9.5 Developer Guide 718 Developer Guide

 H – Elements of a Coordinate System
For example, a Longitude/Latitude projection is listed in the
MapInfoCoordinateSystemSet.xml as:

<gml:GeographicCRS>
<gml:srsName>Longitude / Latitude (Porto Santo 1936) [EPSG

4615]</gml:srsName>
<gml:usesEllipsoidalCS />
<gml:usesGeodeticDatum />
<gml:metaDataProperty>

<gml:category>Longitude / Latitude (v 6.0 and later
projections)</gml:category>

</gml:metaDataProperty>
<gml:srsID>

<gml:name gml:codeSpace="mapinfo">coordsys 1,143</gml:name>
</gml:srsID>
<gml:srsID>

<gml:name gml:codeSpace="EPSG" axis1="north" axis2="east">4615</gml:name>
</gml:srsID>
<gml:srsID>

16 Sinusoidal

20 Stereographic

25 Swiss Oblique Mercator

8 Transverse Mercator, (also known as Gauss-Kruger)

21 Transverse Mercator, (modified for Danish System 34
Jylland-Fyn)

22 Transverse Mercator, (modified for Danish System 34
Sjaelland)

23 Transverse Mercator, (modified for Danish System 34/45
Bornholm)

24 Transverse Mercator, (modified for Finnish KKJ)

32 Krovak

33 Equidistant Cylindrical

34 Extended Transverse Mercator

35 Rectified Skewed Orthomorphic

Number Projection
MapXtreme 9.5 Developer Guide 719 Developer Guide

<gml:name
gml:codeSpace="WKT">GEOGCS[""MADEIRA"",DATUM[""MADEIRA"",SPHEROID[""Internation
al -
1924"",6378388,297.0000000000014]],PRIMEM[""Greenwich"",0],UNIT[""degree"",0.01
74532925199433]]"</gml:name>

</gml:srsID>
</gml:GeographicCRS>

Projection numbers in the MapInfoCoordinateSystemSet.xml may be modified by the
addition of a constant value to the base number listed in the Projection table, above. Valid
values and their meanings are tabulated below:

Example:

Assume you want to work with a simple system based on the Transverse Mercator
projection and using the NAD 1983 datum. You might have a line such as the following in
your MapInfoCoordinateSystemSet.xml file:

<gml:ProjectedCRS>
<gml:srsName>UTM Zone 1 (NAD 83) [EPSG 26901]</gml:srsName>
<gml:baseCRS />
<gml:definedByConversion />
<gml:usesCartesianCS />
<gml:metaDataProperty>

<gml:category>Universal Transverse Mercator (NAD 83)</gml:category>
</gml:metaDataProperty>
<gml:srsID>

<gml:name gml:codeSpace="mapinfo">coordsys 8,74,7,-
177,0,0.9996,500000,0</gml:name>

</gml:srsID>
<gml:srsID>

<gml:name gml:codeSpace="EPSG" axis1="east" axis2="north">26901</gml:name>
</gml:srsID>
<gml:srsID>

Constan
t Meaning Parameters

1000 System has affine
transformations

Affine units specifier and coefficients
appear after the regular parameters for
the system.

2000 System has explicit bounds Bounds appear after the regular
parameters for the system.

3000 System with both affine and
bounds

Affine parameters follow system’s
parameters; bounds follow affine
parameters.
MapXtreme 9.5 Developer Guide 720 Developer Guide

 H – Elements of a Coordinate System
<gml:name gml:codeSpace="WKT">PROJCS[""NAD83 UTM, Zone 1 North,
Meter"",GEOGCS[""NAD83"",DATUM[""North_American_Datum_1983"",SPHEROID[""Geodeti
c Reference System of
1980"",6378137,298.2572221008916,AUTHORITY[""EPSG"",""7019""]],AUTHORITY[""EPSG
"",""6269""]],PRIMEM[""Greenwich"",0],UNIT[""degree"",0.0174532925199433],AUTHO
RITY[""EPSG"",""4269""]],PROJECTION[""Transverse_Mercator""],PARAMETER[""latitu
de_of_origin"",0],PARAMETER[""central_meridian"",-
177],PARAMETER[""scale_factor"",0.9996],PARAMETER[""false_easting"",500000],PAR
AMETER[""false_northing"",0],UNIT[""METER"",1],AUTHORITY[""EPSG"",""26901""]]"<
/gml:name>

</gml:srsID>
</gml:ProjectedCRS>

Now let’s say that you want a system based on this, but with an affine transformation
specified by the following parameters:

 Units=meters; A=0.5; B=-0.866; C=0; D=0.866; E=0.5; and F=0.

The required line in the MapInfoCoordinateSystemSet.xml file is:

<gml:ProjectedCRS>
 <gml:srsName>UTM Zone 1 (NAD 83) [EPSG 26901] – rotated 60
degrees</gml:srsName>
 <gml:baseCRS />
 <gml:definedByConversion />
 <gml:usesCartesianCS />
 <gml:metaDataProperty>
 <gml:category>Universal Transverse Mercator (NAD 83)</gml:category>
 </gml:metaDataProperty>
 <gml:srsID>
 <gml:name gml:codeSpace="mapinfo">coordsys 8,74,7,-
177,0,0.9996,500000,0,7,0.5,-0.866,0,0.866,0.5,0</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="EPSG" axis1="east" axis2="north">26901</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="WKT">PROJCS[""NAD83 UTM, Zone 1 North,
Meter"",GEOGCS[""NAD83"",DATUM[""North_American_Datum_1983"",SPHEROID[""Geodeti
c Reference System of
1980"",6378137,298.2572221008916,AUTHORITY[""EPSG"",""7019""]],AUTHORITY[""EPSG
"",""6269""]],PRIMEM[""Greenwich"",0],UNIT[""degree"",0.0174532925199433],AUTHO
RITY[""EPSG"",""4269""]],PROJECTION[""Transverse_Mercator""],PARAMETER[""latitu
de_of_origin"",0],PARAMETER[""central_meridian"",-
177],PARAMETER[""scale_factor"",0.9996],PARAMETER[""false_easting"",500000],PAR
AMETER[""false_northing"",0],UNIT[""METER"",1],AUTHORITY[""EPSG"",""26901""]]"<
/gml:name>
 </gml:srsID>
</gml:ProjectedCRS>

Alternatively, if you want to bound the system to (x1, y1, x2, y2)=(-500000, 0, 500000,
1000000), the required line is:
MapXtreme 9.5 Developer Guide 721 Developer Guide

<gml:ProjectedCRS>
 <gml:srsName>UTM Zone 1 (NAD 83) [EPSG 26901] - bounded</gml:srsName>
 <gml:baseCRS />
 <gml:definedByConversion />
 <gml:usesCartesianCS />
 <gml:metaDataProperty>
 <gml:category>Universal Transverse Mercator (NAD 83)</gml:category>
 </gml:metaDataProperty>
 <gml:srsID>
 <gml:name gml:codeSpace="mapinfo">coordsys 8,74,7,-177,0,0.9996,500000,0,-
500000,0,500000,1000000</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="EPSG" axis1="east" axis2="north">26901</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="WKT">PROJCS[""NAD83 UTM, Zone 1 North,
Meter"",GEOGCS[""NAD83"",DATUM[""North_American_Datum_1983"",SPHEROID[""Geodeti
c Reference System of
1980"",6378137,298.2572221008916,AUTHORITY[""EPSG"",""7019""]],AUTHORITY[""EPSG
"",""6269""]],PRIMEM[""Greenwich"",0],UNIT[""degree"",0.0174532925199433],AUTHO
RITY[""EPSG"",""4269""]],PROJECTION[""Transverse_Mercator""],PARAMETER[""latitu
de_of_origin"",0],PARAMETER[""central_meridian"",-
177],PARAMETER[""scale_factor"",0.9996],PARAMETER[""false_easting"",500000],PAR
AMETER[""false_northing"",0],UNIT[""METER"",1],AUTHORITY[""EPSG"",""26901""]]"<
/gml:name>
 </gml:srsID>
</gml:ProjectedCRS>

To customize the system using both of these modifications, the xml should be changed to:

<gml:ProjectedCRS>
 <gml:srsName>UTM Zone 1 (NAD 83) [EPSG 26901]</gml:srsName>

 <gml:baseCRS />
 <gml:definedByConversion />
 <gml:usesCartesianCS />
 <gml:metaDataProperty>
 <gml:category>Universal Transverse Mercator (NAD 83)</gml:category>
 </gml:metaDataProperty>
 <gml:srsID>
 <gml:name gml:codeSpace="mapinfo">coordsys 8,74,7,-177,0,0.9996,500000,0,
7,0.5,-0.866,0,0.866,0.5,0,-500000,0,500000,1000000</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="EPSG" axis1="east" axis2="north">26901</gml:name>
 </gml:srsID>
 <gml:srsID>
 <gml:name gml:codeSpace="WKT">PROJCS[""NAD83 UTM, Zone 1 North,
Meter"",GEOGCS[""NAD83"",DATUM[""North_American_Datum_1983"",SPHEROID[""Geodeti
c Reference System of
1980"",6378137,298.2572221008916,AUTHORITY[""EPSG"",""7019""]],AUTHORITY[""EPSG
MapXtreme 9.5 Developer Guide 722 Developer Guide

 H – Elements of a Coordinate System
"",""6269""]],PRIMEM[""Greenwich"",0],UNIT[""degree"",0.0174532925199433],AUTHO
RITY[""EPSG"",""4269""]],PROJECTION[""Transverse_Mercator""],PARAMETER[""latitu
de_of_origin"",0],PARAMETER[""central_meridian"",-
177],PARAMETER[""scale_factor"",0.9996],PARAMETER[""false_easting"",500000],PAR
AMETER[""false_northing"",0],UNIT[""METER"",1],AUTHORITY[""EPSG"",""26901""]]"<
/gml:name>
 </gml:srsID>
</gml:ProjectedCRS>

 A new codespace WKT has been added in the above examples. It has been
introduced in MapXtreme 8.0 and above to identify coordinate reference systems
through their OGC well-known text (WKT) representations. For more details
regarding OGC WKT representation, visit
http://www.opengeospatial.org/standards/wkt-crs.

Projection Datums
The datum is established by tying a reference ellipsoid to a particular point on the earth.
The following table lists these details for each datum:

• The number used to identify the datum in the MapInfoCoordinateSystemSet.xml file.

• The datum’s name

• The maps for which the datum is typically used

• The datum’s reference ellipsoid

Number Datum Area Maps Ellipsoid

1 Adindan Ethiopia, Mali,
Senegal, Sudan

Clarke 1880

2 Afgooye Somalia Krassovsky

1007 AGD 66, 7 parameter Australia, A.C.T. Australian National

1008 AGD 66, 7 parameter Australia, Tasmania Australian National

1009 AGD 66, 7 parameter Australia, Victoria/NSW Australian National

1006 AGD 84, 7 parameter Australia Australian National

3 Ain el Abd 1970 Bahrain Island International
MapXtreme 9.5 Developer Guide 723 Developer Guide

118 American Samoa American Samoa
Islands

Clarke 1866

4 Anna 1 Astro 1965 Cocos Islands Australian National

119 Antigua Island Astro
1943

Antigua, Leeward
Islands

Clarke 1880

5 Arc 1950 Botswana, Lesotho,
Malawi,
Swaziland, Zaire,
Zambia,
Zimbabwe

Clarke 1880

6 Arc 1960 Kenya, Tanzania Clarke 1880

7 Ascension Island 1958 Ascension Island International

9 Astro B4 Sorol Atoll Tern Island International

8 Astro Beacon “E” Iwo Jima Island International

10 Astro DOS 71/4 St. Helena Island International

11 Astronomic Station
1952

Marcus Island International

151 ATS77 (Average
Terrestrial System
1977)

Canada ATS77

12 Australian Geodetic
1966 (AGD 66 - 3
param)

Australia and Tasmania
Island

Australian National

13 Australian Geodetic
1984 (AGD 84 - 3
param)

Australia and Tasmania
Island

Australian National

120 Ayabelle Lighthouse Djibouti Clarke 1880

110 Belgium Belgium International

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 724 Developer Guide

 H – Elements of a Coordinate System
14 Bellevue (IGN) Efate and Erromango
Islands

International

15 Bermuda 1957 Bermuda Islands Clarke 1866

16 Bogota Observatory Colombia International

121 Bukit Rimpah Bangka and Belitung
Islands
(Indonesia)

Bessel 1841

17 Campo Inchauspe Argentina International

18 Canton Astro 1966 Phoenix Islands International

19 Cape South Africa Clarke 1880

20 Cape Canaveral Florida and Bahama
Islands

Clarke 1866

1005 Cape, 7 parameter South Africa WGS 84

21 Carthage Tunisia Clarke 1880

22 Chatham 1971 Chatham Island (New
Zealand)

International

23 Chua Astro Paraguay International

122 Co-Ordinate System
1937 of Estonia

Estonia Bessel 1841

24 Corrego Alegre Brazil International

123 Dabola Guinea Clarke 1880

124 Deception Island Deception Island,
Antarctica

Clarke 1880

1000 Deutsches
Hauptdreicksnetz
(DHDN)

Germany Bessel

25 Djakarta (Batavia) Sumatra Island
(Indonesia)

Bessel 1841

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 725 Developer Guide

26 DOS 1968 Gizo Island (New
Georgia Islands)

International

27 Easter Island 1967 Easter Island International

115 EUREF 89 Europe GRS 80

28 European 1950 (ED 50) Austria, Belgium,
Denmark, Finland,
France, Germany,
Gibraltar, Greece, Italy,
Luxembourg,
Netherlands, Norway,
Portugal, Spain,
Sweden, Switzerland

International

29 European 1979 (ED 79) Austria, Finland,
Netherlands, Norway,
Spain, Sweden,
Switzerland

International

108 European 1987 (ED 87) Europe International

125 Fort Thomas 1955 Nevis, St. Kitts,
Leeward Islands

Clarke 1880

30 Gandajika Base Republic of Maldives International

116 GDA 94 Australia GRS 80

32 Geodetic Reference
System 1967 (GRS 67)

Worldwide GRS 67

33 Geodetic Reference
System 1980 (GRS 80)

Worldwide GRS 80

126 Graciosa Base SW
1948

Faial, Graciosa, Pico,
Sao Jorge, and
Terceira Islands
(Azores)

International 1924

34 Guam 1963 Guam Island Clarke 1866

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 726 Developer Guide

 H – Elements of a Coordinate System
35 GUX 1 Astro Guadalcanal Island International

150 Hartbeesthoek 94 South Africa WGS 84

127 Herat North Afghanistan International 1924

128 Hermannskogel Yugoslavia (Prior to
1990), Slovenia,
Croatia, Bosnia and
Herzegovina, Serbia

Bessel 1841

36 Hito XVIII 1963 South Chile (near
53×S)

International

37 Hjorsey 1955 Iceland International

38 Hong Kong 1963 Hong Kong International

1004 Hungarian Datum (HD
72)

Hungary GRS 67

39 Hu-Tzu-Shan Taiwan International

40 Indian Thailand and Vietnam Everest (India
1830)

41 Indian Bangladesh, India,
Nepal

Everest (India
1830)

129 Indian Pakistan Everest (Pakistan)

130 Indian 1954 Thailand Everest (India
1830)

131 Indian 1960 Vietnam Everest (India
1830)

132 Indian 1975 Thailand Everest (India
1830)

133 Indonesian 1974 Indonesia Indonesian 1974

42 Ireland 1965 Ireland Modified Airy

134 ISTS 061 Astro 1968 South Georgia Island International 1924

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 727 Developer Guide

43 ISTS 073 Astro 1969 Diego Garcia International

152 Japanese Geodetic
Datum 2000 (JGD2000)

Japan GRS80

44 Johnston Island 1961 Johnston Island International

45 Kandawala Sri Lanka Everest (India
1830)

46 Kerguelen Island Kerguelen Island International

47 Kertau 1948 West Malaysia and
Singapore

Everest (W.
Malaysia and
Singapore 1948)

135 Kusaie Astro 1951 Caroline Islands,
Federated States of
Micronesia

International 1924

48 L.C. 5 Astro Cayman Brac Island Clarke 1866

136 Leigon Ghana Clarke 1880

49 Liberia 1964 Liberia Clarke 1880

113 Lisboa (DLx) Portugal International

50 Luzon Philippines (excluding
Mindanao Island)

Clarke 1866

51 Luzon Mindanao Island Clarke 1866

52 Mahe 1971 Mahe Island Clarke 1880

53 Marco Astro Salvage Islands International

54 Massawa Eritrea (Ethiopia) Bessel 1841

114 Melrica 1973 (D73) Portugal International

55 Merchich Morocco Clarke 1880

56 Midway Astro 1961 Midway Island International

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 728 Developer Guide

 H – Elements of a Coordinate System
57 Minna Nigeria Clarke 1880

137 Montserrat Island Astro
1958

Montserrat, Leeward
Islands

Clarke 1880

138 M’Poraloko Gabon Clarke 1880

58 Nahrwan Masirah Island (Oman) Clarke 1880

59 Nahrwan United Arab Emirates Clarke 1880

60 Nahrwan Saudi Arabia Clarke 1880

61 Naparima, BWI Trinidad and Tobago International

109 Netherlands Netherlands Bessel

117 New Zealand Geodetic
Datum 2000
(NZGD2000)

New Zealand GRS 80

31 New Zealand Geodetic
Datum 1949 (NZGD 49)

New Zealand International

1010 (New Zealand (NZGD49
7-parameter)

New Zealand International

62 North American 1927
(NAD 27)

Continental US Clarke 1866

63 North American 1927
(NAD 27)

Alaska Clarke 1866

64 North American 1927
(NAD 27)

Bahamas (excluding
San Salvador Island)

Clarke 1866

65 North American 1927
(NAD 27)

San Salvador Island Clarke 1866

66 North American 1927
(NAD 27)

Canada (including
Newfoundland Island)

Clarke 1866

67 North American 1927
(NAD 27)

Canal Zone Clarke 1866

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 729 Developer Guide

68 North American 1927
(NAD 27)

Caribbean (Turks and
Caicos Islands)

Clarke 1866

69 North American 1927
(NAD 27)

Central America
(Belize, Costa Rica, El
Salvador, Guatemala,
Honduras, Nicaragua)

Clarke 1866

70 North American 1927
(NAD 27)

Cuba Clarke 1866

71 North American 1927
(NAD 27)

Greenland (Hayes
Peninsula)

Clarke 1866

72 North American 1927
(NAD 27)

Mexico Clarke 1866

73 North American 1927
(NAD 27)

Michigan (used only for
State Plane
Coordinate System
1927)

Modified Clarke
1866

74 North American 1983
(NAD 83)

Alaska, Canada,
Central America,
Continental US, Mexico

GRS 80

139 North Sahara 1959 Algeria Clarke 1880

107 Nouvelle Triangulation
Francaise (NTF)
Greenwich Prime
Meridian

France Modified Clarke
1880

1002 Nouvelle Triangulation
Francaise (NTF) Paris
Prime Meridian

France Modified Clarke
1880

111 NWGL 10 Worldwide WGS 72

75 Observatorio 1966 Corvo and Flores
Islands (Azores)

International

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 730 Developer Guide

 H – Elements of a Coordinate System
140 Observatorio
Meteorologico 1939

Corvo and Flores
Islands (Azores)

International 1924

76 Old Egyptian Egypt Helmert 1906

77 Old Hawaiian Hawaii Clarke 1866

97 OldTokyo Japan, Korea, Okinawa Bessel 1841

78 Oman Oman Clarke 1880

79 Ordnance Survey of
Great
Britain 1936

England, Isle of Man,
Scotland, Shetland
Islands, Wales

Airy

80 Pico de las Nieves Canary Islands International

81 Pitcairn Astro 1967 Pitcairn Island International

141 Point 58 Burkina Faso and Niger Clarke 1880

142 Pointe Noire 1948 Congo Clarke 1880

157 Popular Visualization Worldwide Popular
Visualization

143 Porto Santo 1936 Porto Santo and
Madeiras Islands

International 1924

1000 Potsdam Germany Bessel

82 Provisional South
American 1956

Bolivia, Chile,
Colombia, Ecuador,
Guyana, Peru,
Venezuela

International

36 Provisional South
Chilean 1963

South Chile (near
53×S)

International

83 Puerto Rico Puerto Rico and Virgin
Islands

Clarke 1866

1001 Pulkovo 1942 Germany Krassovsky

1012 PZ90 Russia PZ90

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 731 Developer Guide

84 Qatar National Qatar International

85 Qornoq South Greenland International

1000 Rauenberg Germany Bessel

86 Reunion Mascarene Island International

112 Rikets Triangulering
1990
(RT 90)

Sweden Bessel

1011 Rikets Triangulering
1990
(RT 90), 7 parameter

Sweden Bessel

87 Rome 1940 Sardinia Island International

88 Santo (DOS) Espirito Santo Island International

89 São Braz São Miguel, Santa
Maria Islands (Azores)

International

90 Sapper Hill 1943 East Falkland Island International

91 Schwarzeck Namibia Modified Bessel
1841

144 Selvagem Grande 1938 Salvage Islands International 1924

145 Sierra Leone 1960 Sierra Leone Clarke 1880

146 S-JTSK Czech Republic Bessel 1841

1013 SK42 Russia PZ90

1014 SK95 Russia PZ90

92 South American 1969 Argentina, Bolivia,
Brazil, Chile, Colombia,
Ecuador, Guyana,
Paraguay, Peru,
Venezuela,
Trinidad, and Tobago

South American
1969

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 732 Developer Guide

 H – Elements of a Coordinate System
93 South Asia Singapore Modified Fischer
1960

94 Southeast Base Porto Santo and
Madeira Islands

International

95 Southwest Base Faial, Graciosa, Pico,
Sao Jorge, Terceira
Islands (Azores)

International

1003 Switzerland (CH 1903) Switzerland Bessel

147 Tananarive Observatory
1925

Madagascar International 1924

96 Timbalai 1948 Brunei and East
Malaysia (Sarawak and
Sabah)

Everest (India
1830)

1015 Tokyo Japan Bessel 1841

98 Tristan Astro 1968 Tristan da Cunha International

99 Viti Levu 1916 Viti Levu Island (Fiji
Islands)

Clarke 1880

148 Voirol 1874 Tunisia/Algeria Clarke 1880

149 Voirol 1960 Algeria Clarke 1880

100 Wake-Eniwetok 1960 Marshall Islands Hough

101 World Geodetic System
1960 (WGS 60)

Worldwide WGS 60

102 World Geodetic System
1966 (WGS 66)

Worldwide WGS 66

103 World Geodetic System
1972 (WGS 72)

Worldwide WGS 72

104 World Geodetic System
1984 (WGS 84)

Worldwide WGS 84

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 733 Developer Guide

105 Yacare Uruguay International

106 Zanderij Surinam International

158 CH1903+ datum for
Switzerland

Switzerland Bessel 1841

159 Updated Schwarzeck Namibia Modified Bessel

160 SIRGAS 2000 Central and South
America

GRS 1980

161 NOAA Sphere GCS Sphere

162 Japanese Geodetic
Datum 2011 (JGD 2011)

Japan GRS 80

163 Timbalai 1948, Everest
1968

Asia - Brunei and East
Malaysia

Everest 1830 (1967
Definition)

164 Geodetic Datum of
Malaysia (GDM2000)

Malaysia GRS 1980

165 MAGNA-SIRGAS Colombia GRS 1980

166 Aratu Brazil International 1924

167 Barbados Barbados Clarke 1880

168 Beduaram Niger Modified Clarke
1880

169 Conakry 1905 Guinea Modified Clarke
1880

170 Dealul Piscului 1930 Romania International 1924

171 Douala Cameroon International 1924

172 Final Datum 1958 Iran Clarke 1880

173 Makassar Indonesia Bessel 1841

174 Manoca Cameroon Modified Clarke
1880

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 734 Developer Guide

 H – Elements of a Coordinate System
Units
The following table lists the available coordinate units and the number used to identify the
unit in the MapInfoCoordinateSystemSet.xml file:

1016 KKJ Finland International 1924

1017 Xian 1980 China IAG 1975

1018 Lithuanian Pulkovo
1942

Latvia Lithuania
Krassovsky

1019 Belgian 1972, 7
parameter

parameter Belgium
International 1924

1020 S-JSTK (Ferro
meridian)

Czech Republic Bessel 1841

1021 Serbia datum MGI 1901 Republic of Serbia Bessel 1841

1022 North Sahara 7-
parameter

Algeria Clarke 1880

1023 HD72 (Hungarian
Datum of 1972) -
UPDATED

Hungary GRS 67

1024 S - JSTK (Czech) Czech Republic Bessel 1841

1025 JTSK03 (Slovak
Republic)

Slovakia Bessel 1841

1026 NGO_1948 Norway onshore Modified Bessel

1027 Palestine_1923 Asia - Middle East -
Israel, Jordan and
Palestine onshore

Clarke 1880
(Benoit)

Number Datum Area Maps Ellipsoid
MapXtreme 9.5 Developer Guide 735 Developer Guide

Coordinate System Origin
The origin is the point specified in longitude and latitude from which all coordinates are
referenced. It is chosen to optimize the accuracy of a particular coordinate system. As we
move north from the origin, Y increases. X increases as we move east. These coordinate
values are generally called northings and eastings.

For the Transverse Mercator projection the origin’s longitude defines the central meridian.
In constructing the Transverse Mercator projection a cylinder is positioned tangent to the
earth. The central meridian is the line of tangency. The scale of the projected map is true
along the central meridian.

Number Units

6 Centimeters

31 Chains

3 Feet (also called International Feet)*

* One International Foot equals exactly 30.48 cm.

2 Inches

1 Kilometers

30 Links

7 Meters

0 Miles

5 Millimeters

9 Nautical Miles†

† One Nautical Mile equals exactly 1852 meters.

32 Rods

8 US Survey Feet (used for 1927 State Plane)‡

‡ One US Survey Foot equals exactly 12/39.37 meters, or approximately 30.48006 cm.

4 Yards

13 Degree
MapXtreme 9.5 Developer Guide 736 Developer Guide

 H – Elements of a Coordinate System
In creating a Hotine Oblique Mercator projection it is necessary to specify a great circle
that is not the equator nor a meridian. MapInfo does this by specifying one point on the
ellipsoid and an azimuth from that point. That point is the origin of the coordinate system.

Standard Parallels (Conic Projections)

In conic projections a cone is passed through the earth intersecting it along two parallels
of latitude. These are the standard parallels. One is to the north and one is to the south of
the projection zone. To use a single standard parallel specify that latitude twice. Both are
expressed in degrees of latitude.

Oblique Azimuth (Hotine Oblique Mercator)

When specifying a great circle (Hotine Oblique Mercator) using a point and an azimuth
(arc), the azimuth is called the Oblique Azimuth and is expressed in degrees.

Scale Factor (Transverse Mercator)

A scale factor is applied to cylindrical coordinates to average scale error over the central
area of the map while reducing the error along the east and west boundaries. The scale
factor has the effect of recessing the cylinder into the earth so that it has two lines of
intersection. Scale is true along these lines of intersection.

You may see the scale factor expressed as a ratio, such as 1:25000. In this case it is
generally called the scale reduction. The relationship between scale factor and scale
reduction is:

scale factor = 1-scale reduction

In this case the scale factor would be 1-(1/25000) or 0.99996.

False Northings and False Eastings

Calculating coordinates is easier if negative numbers aren’t involved. To eliminate this
problem in calculating State Plane and Universal Transverse Mercator coordinates, it is
common to add measurement offsets to the northings and eastings. These offsets are
called False Northings and False Eastings. They are expressed in coordinate units, not
degrees. (The coordinate units are specified by the Units parameter.)

Range (Azimuthal Projections)

The range specifies, in degrees, how much of the earth you are seeing. The range can be
between 1 and 180. When you specify 90, you see a hemisphere. When you specify 180
you see the whole earth, though much of it is very distorted.
MapXtreme 9.5 Developer Guide 737 Developer Guide

Polyconic Projection

The following description is copied from Map Projections – A Working Manual, USGS
Professional Paper 1395, by John P. Snyder.

The Polyconic projection, usually called the American Polyconic in Europe, achieved its
name because the curvature of the circular arc for each parallel on the map is the same
as it would be following the unrolling of a cone which had been wrapped around the globe
tangent to the particular parallel of latitude, with the parallel traced onto the cone. Thus,
there are many (“poly-”) cones involved, rather than the single cone of each regular conic
projection.

The Polyconic projection is neither equal-area nor conformal. Along the central meridian,
however, it is both distortion free and true to scale. Each parallel is true to scale, but the
meridians are lengthened by various amounts to cross each parallel at the correct
position along the parallel, so that no parallel is standard in the sense of having
conformality (or correct angles), except at the central meridian. Near the central meridian,
distortion is extremely small.

This projection is not intended for mapping large areas. The conversion algorithms used
break down when mapping wide longitude ranges. For example, the sample table
WORLD.TAB may exhibit anomalies if reprojected using Polyconic.

Datum Conversion
When converting coordinates from one datum to another, MapInfo has used the
Molodensky (3-parameter) and Bursa-Wolf (7-parameter) methods. These are general-
purpose methods that can convert coordinates from any datum to any other datum.

After the NAD 83 datum was introduced, NOAA developed a program called NADCON,
which stands for North American Datum CONversion. This is a very specialized program
that converts coordinates only from NAD 27 to NAD 83 and vice versa. For this
specialized task, it’s much more accurate than the Molodensky general-purpose method;
NADCON is accurate to about 0.1 meter, and Molodensky is accurate to only 10–30
meters. Most U.S. government agencies, including the Census Bureau, have
standardized on NADCON for converting between NAD 27 and NAD 83.

Beginning with MapInfo 4.1.2, the NADCON algorithm is used to convert coordinates
between NAD 27 and NAD 83 if those coordinates lie within the areas covered by
NADCON (United States, Puerto Rico, and the Virgin Islands). If the coordinates lie
outside those areas, or if they use datums other than NAD 27 or NAD 83, MapInfo uses
the Molodensky or Bursa-Wolfe conversion methods.
MapXtreme 9.5 Developer Guide 738 Developer Guide

 H – Elements of a Coordinate System
Due to the file access required, the NADCON conversion method can be slightly slower
than the Molodensky method. If you want to turn off the NADCON conversion, remove the
*.las and *.los files from the MapXtreme program or the MapXtreme Common directory.

Custom Datums
A datum is a mathematical description of the earth’s shape and orientation. Because the
earth’s shape is not uniform, there are many different local datums used in different parts
of the world. These local datums provide a close approximation to the earth’s surface in a
particular area.

Each Earth coordinate system uses a specific datum to approximate the earth’s surface.
If two coordinate systems use different datums, then Precisely’s mapping products must
perform a datum transformation when it converts coordinates from one coordinate system
to the other. Precisely uses the Bursa-Wolfe datum transformation method, which is
generally accurate to within 10 meters. (When the conversion is between two coordinate
systems that use the same datum, no datum transformation is performed, and the results
are generally accurate to within 0.1 meter.)

Defining Custom Datums
Most coordinate systems use one of Precisely’s predefined datums, listed in this
appendix. If you need to use a datum that isn’t in the list, and you know what the datum’s
mathematical parameters are, then you can define the coordinate system using a custom
datum. MapInfo uses the following information to define a datum:

• An ellipsoid, also called a spheroid. This is an ellipse rotated around its minor axis to
form a three-dimensional surface. The ellipsoid is described by two mathematical
parameters: the length, in meters, of its semi-major axis (denoted by the letter a) and
its degree of flattening (denoted by the letter f). MapInfo supports over 40 predefined
ellipsoids, which are listed in the next table.

• Three shift parameters specifying the distance, in meters, to shift the ellipsoid along
each of its axes. These parameters are usually denoted by dX, dY, and dZ. You may
also see them denoted by DX, DY, and DZ, or by u, v, and w.

• Three rotation parameters specifying the angle, in arc-seconds, to rotate the ellipsoid
around each of its axes. These parameters are usually denoted by EX, EY, and EZ.
You may also see them denoted by eX, eY, and eZ, or by e, y, and w.

• A scale correction factor specifying the amount, in parts per million, to adjust the size
of the ellipsoid. This parameter is denoted by the letter m, or sometimes k.
MapXtreme 9.5 Developer Guide 739 Developer Guide

• The longitude of the prime meridian, in degrees east of Greenwich. The prime
meridian specifies which location on earth is assigned longitude 0×. Most datums use
Greenwich as the prime meridian, so this parameter is usually zero. However, some
datums use a different location as the prime meridian. For example, the NTF datum
uses Paris as its prime meridian, which is 2.33722917 degrees east of Greenwich. If
you use the NTF datum in a coordinate system, all longitudes in that coordinate
system are relative to Paris instead of Greenwich.

You can define a custom datum in any coordinate system definition. Use datum number
9999 followed by the datum parameters, in this order:

9999, EllipsoidNumber, dX, dY, dZ, EX, EY, EZ, m, PrimeMeridian

Some datums specify only an ellipsoid and shift parameters (dX, dY, dZ), with no rotation
parameters, scale correction, or prime meridian. In those cases, you can use datum
number 999 instead of 9999, to simplify the definition:

999, EllipsoidNumber, dX, dY, dZ

The ellipsoid number must be chosen from the following list. Currently, there is no way to
define a custom ellipsoid. If you need to use an ellipsoid that does not appear on this list,
please notify MapInfo Technical Support so that we can add your ellipsoid to a future
MapInfo release.

Number Ellipsoid a 1/f

9 Airy 1930 6377563.396 299.3249646

13 Airy 1930 (modified for Ireland
1965)

6377340.189 299.3249646

51 ATS7 77 6378135.0 298.257

2 Australian 6378160.0 298.25

10 Bessel 1841 6377397.155 299.1528128

35 Bessel 1841 (modified for NGO
1948)

6377492.0176 299.15281

14 Bessel 1841 (modified for
Schwarzeck)

6377483.865 299.1528128

36 Clarke 1858 6378293.639 294.26068

7 Clarke 1866 6378206.4 294.9786982
MapXtreme 9.5 Developer Guide 740 Developer Guide

 H – Elements of a Coordinate System
8 Clarke 1866 (modified for
Michigan)

6378450.047484
481

294.9786982

6 Clarke 1880 6378249.145 293.465

15 Clarke 1880 (modified for Arc
1950)

6378249.145326 293.4663076

30 Clarke 1880 (modified for IGN) 6378249.2 293.4660213

37 Clarke 1880 (modified for Jamaica) 6378249.136 293.46631

16 Clarke 1880 (modified for
Merchich)

6378249.2 293.46598

38 Clarke 1880 (modified for
Palestine)

6378300.79 293.46623

39 Everest (Brunei and East Malaysia
(Sabah and Sarawak))

6377298.556 300.8017

11 Everest (India 1830) 6377276.345 300.8017

40 Everest (India 1956) 6377301.243 300.80174

50 Everest (Pakistan) 6377309.613 300.8017

17 Everest (W. Malaysia and
Singapore 1948)

6377304.063 300.8017

48 Everest (West Malaysia 1969) 6377295.664 300.8017

18 Fischer 1960 6378166.0 298.3

19 Fischer 1960 (modified for South
Asia)

6378155.0 298.3

20 Fischer 1968 6378150.0 298.3

21 GRS 67 6378160.0 298.2471674
27

0 GRS 80 6378137.0 298.2572221
01

Number Ellipsoid a 1/f
MapXtreme 9.5 Developer Guide 741 Developer Guide

5 Hayford 6378388.0 297.0

22 Helmert 1906 6378200.0 298.3

23 Hough 6378270.0 297.0

31 IAG 75 6378140.0 298.257222

41 Indonesian 6378160.0 298.247

4 International 1924 6378388.0 297.0

49 Irish (WOFO) 6377542.178 299.325

3 Krassovsky 6378245.0 298.3

32 MERIT 83 6378137.0 298.257

33 New International 1967 6378157.5 298.25

43 NWL 10D 6378135.0 298.26

42 NWL 9D 6378145.0 298.25

44 OSU86F 6378136.2 298.25722

45 OSU91A 6378136.3 298.25722

46 Plessis 1817 6376523.0 308.64

54 Popular Visualization 6378137.0 0.0

52 PZ90 6378136.0 298.2578393
03

24 South American 6378160.0 298.25

12 Sphere 6370997.0 0.0

47 Struve 1860 6378297.0 294.73

34 Walbeck 6376896.0 302.78

25 War Office 6378300.583 296.0

26 WGS 60 6378165.0 298.3

Number Ellipsoid a 1/f
MapXtreme 9.5 Developer Guide 742 Developer Guide

 H – Elements of a Coordinate System
The shift and rotation parameters describe the ellipsoid’s orientation in space, as
compared to the WGS 84 datum. It’s important to make sure that these parameters have
the correct signs (positive or negative). Usually, a document describing a local datum will
list the parameters required to convert coordinates from the local datum to WGS 84. (This
is the same as saying that the parameters were derived by subtracting the local datum
from WGS 84.) In that case, you can use the parameters exactly as they appear in the
document. However, if you have a document that lists parameters for converting
coordinates in the opposite direction — from WGS 84 to the local datum — then you must
reverse the signs of the shift, rotation, and scale correction parameters.

It’s also very important to list the parameters in the correct order. Some documents list the
rotation parameters with EZ first, like this: EZ, EY, EX. In those cases, you must reverse
the order of the rotation parameters when defining the custom datum. This is especially
easy to overlook when your document uses Greek letters to denote the parameters. If the
document lists the parameters in order as w, y, e, then you must reverse their order in the
custom datum definition.

Here’s an example of a local datum description (we’ll call it LD-2) as it might appear in a
technical article:

LD-2 ellipsoid: Krassovsky

Converting from LD-2 to WGS 84

27 WGS 66 6378145.0 298.25

1 WGS 72 6378135.0 298.26

28 WGS 84 6378137.0 298.2572235
63

Number Ellipsoid a 1/f

a 6378245.0 m

f 1 / 298.3

u +24 m

v –123 m

w –94 m
MapXtreme 9.5 Developer Guide 743 Developer Guide

This datum uses the Krassovsky ellipsoid, which is number 3 in the ellipsoid table above.
We do not need to reverse the signs of the parameters, since they describe a conversion
from the local datum to WGS 84. However, the rotation parameters are listed with w first,
so we must reverse their order in the custom datum definition:

9999, 3, 24, -123, -94, -0.02, 0.25, 0.13, 1.1, 0

Here’s a final example, LD-3, that provides only the ellipsoid and shift parameters:

LD-3 ellipsoid: Clarke 1880

WGS 84 minus local datum LD-3

This datum uses the Clarke 1880 ellipsoid, which is number 6 in the ellipsoid table above.
We do not need to reverse the signs of the parameters or worry about the order of the
rotation parameters (since they aren’t present). In this case, you can use datum number
999 instead of 9999 in the custom datum definition. These two definitions are equivalent,
and you can use either one:

999, 6, -7, 36, 225
9999, 6, -7, 36, 225, 0, 0, 0, 0, 0

As with the other custom datum definitions, you would insert one of these definitions in
place of the datum number in a MapInfoCoordinateSystemSet.xml line, as follows:

"Longitude / Latitude (LD-3)", 1, 999, 6, -7, 36, 225

<gml:srsName> UTM Zone 30 (LD-3)</gml:srsName>

w +0.13

y +0.25

e -0.02

m +1.1 Þ 10-6

a 6378249.145 m

f 1 / 293.465

dX -7 m

dY 36 m

dZ 225 m
MapXtreme 9.5 Developer Guide 744 Developer Guide

 H – Elements of a Coordinate System
 <gml:metaDataProperty>
 <gml:category> Universal Transverse Mercator (LD-3)</gml:category>
 </gml:metaDataProperty>
 <gml:srsID>
 <gml:name gml:codeSpace="mapinfo">coordsys 8,999,6,-7,36,225,7,-
3,0,0.9996,500000,0</gml:name>
 </gml:srsID>

National Transformation v. 2 (NTv2)
The National Transformation v. 2 (NTv2) algorithm and grid shift file format, developed by
the Geodetic Survey Division of Geomatics Canada, enables you to convert data from the
NAD 27 reference system to the NAD 84 reference system. Grid shift files used with the
algorithm contain one or more rectangular grids that indicate the coordinate differences
between NAD 27 and NAD 83.

The National Transformation was originally designed to convert Canadian data from NAD
27 to NAD 84. This format has been adopted for datum conversion in several other
countries, such as Australia, Brazil, Canada, France, Germany, New Zealand, Portugal,
South Africa, Spain, Switzerland, United Kingdom and Venezuela.

Binary grid shift files for the following countries have been added in the MapXtreme
Common Files folder, i.e., C:\Program Files\Common Files\MapInfo\MapXtreme\9.x.x.

• Canada

• Australia

• New Zealand

• Germany

• UK

• Spain

• Brazil

• Netherlands

In addition to the algorithm and grid shift files, an XML configuration file, NTv2.xml, has
been installed to enable you to extend the NTv2 algorithm to support additional datum
transformations. You can add new grid shift files to the configuration file, or you can turn
the NTv2 algorithm on or off for particular grid shift files. The NTv2.xml file is located in
the MapXtreme Common Files folder.

The NTv2 algorithm and grid shift files for Canada are protected under the following
copyright:
MapXtreme 9.5 Developer Guide 745 Developer Guide

© 1995 Her Majesty the Queen in Right of Canada, represented by the Minister of Natural
Resources.

The next sections describe the supported transformations for each country and how to
use the configuration file.

Canada

The following grid shift files are included for Canada:

NTV2_0.GSB–used for converting NAD 1927 to NAD 1983

MAY76V20.GSB–used for converting NAD 1927 (Definition 1976) to NAD 1983 for
Ontario

These files convert between the NAD 1927 or NAD 1927 (Definition 1976) datums and
the NAD 1983 datum. The NAD 1927 datum (Definition 1976) coordinate system is a
readjustment of NAD 1927 for Ontario.

Detailed information about the algorithm, software, and grid shift files can be downloaded
from the Geodetic Survey Division of Geomatics Canada web site:

www.geod.nrcan.gc.ca/index_e.php

Australia

The following grid shift files are included for Australia:

A66_National.gsb–used for converting AGD 1966 to GDA94.

National_84.gsb–used for converting AGD 1984 to GDA94

The Australian grid shift files convert between either the AGD 1966 or AGD 1984 datums
and the GDA 1994 datum.

Detailed information about conversion and grid shift files can be downloaded from the
Intergovernmental Committee on Surveying and Mapping (ICSM) web site:

www.icsm.gov.au/icsm/gda/gdatm/

New Zealand

The following grid shift file is included for New Zealand:

nzgd2kgrid0005.gsb–used for converting the NZGD49 datum to the NZGD2000
datum.

The New Zealand grid shift file converts from the NZGD49 datum to the NZGD2000
datum.
MapXtreme 9.5 Developer Guide 746 Developer Guide

http://www.icsm.gov.au/icsm/gda/gdatm/
http://www.geod.nrcan.gc.ca/index_e.php

 H – Elements of a Coordinate System
Detailed information and an online converter can be found at the Land Information New
Zealand (LINZ) web site:

www.linz.govt.nz/geodetic/conversion-coordinates/online-conversion-service

Germany

The following grid shift file is included for Germany:

BETA2007.gsb–used for conversion from DHDN datum to ETRS89

For more information and to download the official grid shift file, see the Information and
Service System for European Coordinate Reference Systems (CRS EU) web site:

www.crs-geo.eu/

United Kingdom

The following grid shift file is included for United Kingdom:

OSTN02_NTv2.gsb – used for conversion from OSGB36 (Ordnance Survey Great
Britain 1936) datum to World Geodetic System 1984 (WSG84) and ETRS89 datums.

Spain

The following grid shift file is included for Spain:

BALEARES.gsb and PENINSULA.gsb – used for converting European 1950 (ED 50)
to WGS84 and ETRS89 datums.

Brazil

The following grid shift file is included for Brazil:

CA61_003.gsb – used for converting Corrego Alegra to WGS84 and SIRGAS 2000
datums. SAD69_002.gsb – used for converting South American 1969 to WGS84 and
SIRGAS 2000 datums.

Netherlands

The following grid shift file is included for Netherlands:

rdtrans2008.gsb – used for conversion from Netherlands datum to WGS84 and
ETRS89 datums.
MapXtreme 9.5 Developer Guide 747 Developer Guide

http://www.linz.govt.nz/geodetic/conversion-coordinates/online-conversion-service
www.crs-geo.eu/

Configuration File

The NTv2 configuration file (NTv2.xml) is an XML file that you can edit to add new grid
shift files for other datum conversions and turn NTv2 on or off for particular grid shift files.

To add new grid shift files, you must specify three parameters:

• grid shift file name

• source datum

• destination datum

You can define a datum in various ways. For example, when both the source and
destination datums are defined in MapXtreme, the datums are defined in the
configuration file by the numbers assigned to them in the
MapXtremeCoordinateSystemSet.xml file. In this example for New Zealand, the XML in
the configuration file will look like this (application of bold text is for emphasis only):

- <NTv2Conversion>
<Description>NTv2 Conversion for New Zealand</Description>
<GridFile>NZGD2KGRID0005.GSB</GridFile>
<Enabled>true</Enabled>

- <SourceDatum>
<DatumID>1010</DatumID>
</SourceDatum>

- <DestinationDatum>
<DatumID>117</DatumID>
</DestinationDatum>
</NTv2Conversion>

- <NTv2Conversion>

Sometimes, however, datums are not that easily defined. You may need to supply datum
shift values (and sometimes even ranges for them) in order to define a datum. For
example, the sample XML below shows the definition of the NAD 27 datum for Canada.
Here, the ellipsoid, shift values for x,y,z, and their ranges have been used to define the
datum (bold text is for emphasis only):

- <NTv2Conversion>
<Description>NAD 1927 to NAD 1983 conversion for Canada</Description>
<GridFile>NTV2_0.GSB</GridFile>
<Enabled>true</Enabled>

- <SourceDatum>
<EllipsoidID>7</EllipsoidID>
<ShiftX>-8</ShiftX>
<ShiftY>150.5</ShiftY>
<ShiftZ>186</ShiftZ>
<dShiftX>17</dShiftX>
<dShiftY>19.5</dShiftY>
<dShiftZ>8</dShiftZ>
</SourceDatum>
MapXtreme 9.5 Developer Guide 748 Developer Guide

 H – Elements of a Coordinate System
- <DestinationDatum>
<DatumID>74</DatumID>
</DestinationDatum>
</NTv2Conversion>

Information on Coordinate Systems and
Projections
The first three publications listed are relatively short pamphlets. The last two are
substantial books. We’ve also given addresses and phone numbers for the American
Congress of Surveying and Mapping (the pamphlets) and the U.S. Geological Survey (the
books).

• American Cartographic Association. Choosing a World Map—Attributes, Distortions,
Classes, Aspects. Falls Church, VA: American Congress on Surveying and Mapping.
Special Publication No. 2. 1988.

• American Cartographic Association. Matching the Map Projection the Need. Falls
Church, VA: American Congress on Surveying and Mapping. Special Publication No.
3. 1991.

• American Cartographic Association. Which Map is Best? Projections for World Maps.
Falls Church, VA: American Congress on Surveying and Mapping. Special Publication
No. 1. 1986.

• John P. Snyder. Map Projections—A Working Manual. Washington: U.S. Geological
Survey Professional Paper 1395. 1987

• John P. Snyder and Philip M. Voxland. An Album of Map Projections. Washington: U.S.
Geological Survey Professional Paper 1453. 1989.

• Contact Information

• American Congress on Surveying and Mapping, 5410 Grosvenor Lane, Suite 100,
Bethesda, MD 20814 2212; (301) 493-0200

• Earth Science Information Center, U.S. Geological Survey, 507 National Center,
Reston, VA 22092; (703) 860-6045 or (800) USA-MAPS

• Peter H. Dana of the Department of Geography, University of Texas at Austin has also
put up a website for explanations of Map projections, Geodetic Datums, and
Coordinate systems. It is a valuable as many of these explanations were also
presented using MapInfo Professional. The materials may be used for study, research,
and education, but please credit the author:

• Peter H. Dana, The Geographer’s Craft Project, Department of Geography, The
University of Texas at Austin.

For Geodetic Datum information and explanations, go to:
MapXtreme 9.5 Developer Guide 749 Developer Guide

www.colorado.edu/geography/gcraft/notes/datum/datum.html

For Information on Coordinate systems and other principles, go to:

www.colorado.edu/geography/gcraft/notes/coordsys/coordsys.html

For Information on Map Projections go to:

www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html
MapXtreme 9.5 Developer Guide 750 Developer Guide

http://www.colorado.edu/geography/gcraft/notes/datum/datum.html
http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys.html
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj.html

I

I – User-Defined Metadata
This appendix contains information on user-defined metadata support
for TableInfoServer queries.

In this appendix

 Metadata and the MapCatalog . 752
 User-Defined Metadata Support for TableInfoServer Queries 752

Metadata and the MapCatalog
When working with spatial database queries, the MapCatalog has long been used as the
sole source of metadata when trying to infer accurate definitions for FeatureGeometry
and Style columns in the query result set. In some cases, however, the MapCatalog may
not be a convenient, appropriate, or reliable source. For example:

• Views–When defining view tables in the remote database server, the onus is upon the
database administrator to add a corresponding entry into the MapCatalog. This may
be inconvenient, and there is a risk of inaccuracy in the content.

• Stored Procedures–As a potentially dynamic generator of spatial result sets, it may not
be feasible to place a single, static entry into the MapCatalog that accurately
represents all of the result sets capable of being generated as output to invocations of
the stored procedure.

 Stored Procedure queries are currently supported for SQL Server only.

• Tables containing multiple spatial columns–Although spatial databases may allow for
tables to contain more than one spatial column, the MapCatalog schema currently only
permits the metadata to be defined for a single spatial column of a table.

• Complex queries–Even when the MapCatalog contains accurate information for base
tables referenced in complex queries, the inferencing logic may be unreliable for
several reasons:

• It may be difficult for the metadata inferencing logic to properly locate the correct
metadata (e.g., complex join queries).

• The MapCatalog metadata may be inaccurate due to functions applied on the
geometries (e.g., coordinate system transformations, buffering points, convex hull
aggregations, etc.)

• The inferencing logic may not know how to properly reconcile metadata identified
for two or more base tables (e.g., UNION queries).

User-Defined Metadata Support for
TableInfoServer Queries
The MapInfo.Data.TableInfoServer class contains properties that enable you to define
metadata for FeatureGeometry and Style columns in a table. This user-defined metadata,
or column hints, identify these columns in the absence of a MapCatalog.

ColumnHints Property
MapXtreme 9.5 Developer Guide 752 Developer Guide

 I – User-Defined Metadata
The ColumnHints property added to TableInfoServer gives users an explicit means of
providing user-defined metadata to influence the proper identification of
FeatureGeometry and Style columns in a query result set. These "hints" are principally
intended for providing complete metadata in cases where MapCatalog metadata could
not be located; however, these hints may also be used as potentially sparse definitions to
selectively override components of the MapCatalog metadata. In either case, user-
defined metadata is considered definitive, so users are cautioned to use column hints
only when necessary, and when the details of the query results are well understood.

The ColumnHints property is defined as a Columns collection. After creating an instance
of the collection, and inserting Column instances for each hint within it, this collection is
assigned to the ColumnHints property; for example, for a TableInfoServer variable named
tblInfoSrv…

[C#]
Columns hints = new Columns();
// insert Column instances into the collection to serve as hints (see below)
tblInfoSrv.ColumnHints = hints;

Column instances for types other than FeatureGeometry and Style may be added into the
Columns collection for the hints, but these other column definitions will currently be
ignored.

Applying a FeatureGeometry Column Hint

A FeatureGeometry column hint may be used to indicate that a named column within the
query result contains spatial values to be interpreted as feature geometries. For example,
if a query returns a column named geo that contains spatial objects (e.g., a SpatialWare
ST_Spatial binary, or an Oracle Spatial MDSYS.SDO_GEOMETRY structure), we can
identify this column as such by constructing a hint and adding it into the Columns
collection (from above) as follows:

[C#]
GeometryColumn geoCol = new GeometryColumn("geo");
...
hints.Add(geoCol);

The ellipsis in the code fragment above indicates that additional properties of the
GeometryColumn instance will also need to be set before completing the hint and adding
it into the Columns collection. FeatureGeometry hints are principally intended to be used
for explicitly providing the same information that the MapCatalog provides, specifically:

• Coordinate System

• FeatureGeometry Type

• Default View
MapXtreme 9.5 Developer Guide 753 Developer Guide

• Default Style

Taking all of these properties into account, a more complete example of a
FeatureGeometry hint might look something like this:

[C#]
CoordSysFactory cfs = new CoordSysFactory();
CoordSys cs = cfs.CreateFromMapBasicString("Earth Projection 1, 0");
GeometryColumn geo = new GeometryColumn("geo", cs);
geo.PredominantGeometryType = GeometryType.Polygon;
geo.DefaultView = new DRect(-74, 40, -70, 44);
geo.DefaultStyle = new MapInfo.Styles.AreaStyle(
new MapInfo.Styles.SimpleLineStyle(new LineWidth(2.0,
MapInfo.Styles.LineWidthUnit.Pixel)),
new MapInfo.Styles.SimpleInterior(10));
hints.Add(geo);

If a MapCatalog entry is known to exist which provides default metadata for the spatial
column, a "sparse" hint can be used as a means of overriding specific properties. Usually
these would be preference variety properties such as default view and default style,
although any set of the properties can be overridden depending upon the unique
requirements of the complex query.

ColumnHints are not intended to be used for (x,y) data tables. For these,
SpatialSchemaXY should continue to be used. When a SpatialSchemaXY is applied to a
table, any associated ColumnHints are disregarded.

Since a MapXtreme table currently supports only a single FeatureGeometry column, the
Columns collection is expected to contain no more than a single FeatureGeometry
column definition; however, there's nothing in the Columns collection that precludes users
from adding in as many as they'd like. In this case, the last non-sparse value encountered
for each property is the one that will be honored in compiling the final metadata definition.

Applying a Style Column Hint

A Style column hint may be applied as a way of indicating that a column within the query
result contains values (notably, MapBasic style strings) used to create Style instances for
each feature, which correspond to the associated FeatureGeometry within the feature.
For example, if a query returns a column named mb_style that contains MapBasic style
strings, we could construct the hint and add it into the hints collection (from above) as
follows:

[C#]
Column styleCol = new Column("mb_style", MIDbType.Style);
hints.Add(styleCol);
MapXtreme 9.5 Developer Guide 754 Developer Guide

 I – User-Defined Metadata
Since a table currently supports only a single Style column, the hints collection is
expected to contain no more than a single Style column definition; however, there's
nothing in the Columns collection that precludes users from adding in as many as they'd
like. In this case, the last one inserted is the one that will be honored.

Style column hints are not required within the hints collection. If the query does not
contain a column containing style information, this hint can be excluded.

KeyType and KeyColumns Properties

Each table must have a "key" that provides a unique value for each feature (row) within
the table. While not supplied by the MapCatalog, this is another important piece of
metadata that is inferred for remote database tables by looking at things like primary key
definitions.

Many of the content sources listed above, as well as tables containing only composite
primary keys, also present challenges for inferring a unique key to use. In these
situations, the KeyType and KeyColumns properties provided through the base TableInfo
class can be used to provide explicit instructions. For example, consider a database view
of customer information that contains a column named CUSTID that is known to contain
unique and non-null values. We can direct this column to be used as the key for the
resulting MapXtreme table as follows:

[C#]
tblInfoSrv.KeyType = KeyType.Explicit;
StringCollection keyColumns = new StringCollection();
keyColumns.Add("CUSTID");
tblInfoSrv.KeyColumns = keyColumns;

In this example, the StringCollection class resides in the System.Collections.Specialized
namespace.

Composite keys are allowable and would be defined by adding two or more column
names into the string collection.

Explicit key definitions may also be used as overriding definitions in cases where the
database table contains two or more candidates, and the developer has a specific
preference for which gets used.

Workspace Persistence

User-defined metadata constructs for column hints and key definitions are persisted as
part of the data source definition tag within a workspace file (.mws).
MapXtreme 9.5 Developer Guide 755 Developer Guide

MapXtreme 9.5 Developer Guide 756 Developer Guide

J

J – Migrating to MapXtreme
This appendix is for existing users of MapX to become familiar with the
.NET-based object model in MapXtreme and how it differs from the
architecture of MapX.

In this appendix:
 Comparing MapXtreme’s Object Model to MapX 758

Comparing MapXtreme’s Object Model to
MapX
If you have used MapX and MapXtreme for Windows, you will find similarities and
differences in the way they work from MapXtreme. This section describes some of the
major differences between MapXtreme and previous versions of our APIs.

Specific Object Model Implementation Differences
The Map object from MapX is now represented by 3 or 4 classes. The Map contains the
layers, area of interest (view), Adornments, Legends, regardless of how it is being
viewed. The MapControl holds the Map object and acts as a control for the Map and tools
which interact with the Map. There is a MapControl for both Windows Forms (desktop)
applications and ASP.NET (web) applications. The MapExport class can be used to
export a Map to a file or stream. The Session holds the collection of Maps, Selections,
and Tables. Cartographic scale is now fully supported. Label layers can be used to better
control the position of labels. Group Layers allow for treating many layers as one in the
layer hierarchy.

The MapX Datasets concept has been replaced by a more flexible set of options in the
MapInfo.Data namespace. MapXtreme uses ADO.NET for data access. ADO.NET allows
a wide variety of data formats to be accessed with very similar code, facilitating easy
transition between data sources. We have added a wider variety of cursors for forward
and backward access through a database table.

MapXtreme uses a table-centric data model. In previous versions of our API, maps were
made up of layers, but there was no specific table class. In the MapXtreme object model,
a table is the central object used for accessing data. The Session.Catalog is used to open
and enumerate tables. Layers can reference tables, but all table specific methods were
moved from Layer to table. Also, Searching is done on tables in MapXtreme and not
layers.

Thematics that modify styles, such as ranged themes and individual value themes, no
longer use their own layer. In the previous models such a theme occupied a separate
layer and worked independently of other layers of a map. Object themes still retain their
own layer and can now be displayed in any way you choose, independent of the original
map objects on which the theme was based.

Geometry has been changed to be a hierarchical model with much deeper access to
properties of the objects. Styles are also represented in a hierarchy.
MapXtreme 9.5 Developer Guide 758 Developer Guide

 J – Migrating to MapXtreme
A larger quantity of map tools have been added for you to use. Their extensibility and
functionality has been enhanced to make it much easier to develop customized tools.
There are also tools for use in web applications that are also extensible.

For web applications, the MapXBroker and MapXServer are no longer needed. Instead
MapXtreme uses standard COM+ to pool the Session object.

Application state is managed via serialization and the ASP.NET state server. See
Chapter 6 Understanding State Management for more details about state management
and serialization.

 The following table lists the objects in the MapX 5.0 object model and the equivalent in
the current object model for MapXtreme. Note that with the re-architecture of such an
extensive product as MapXtreme, the equivalent may approximate.

MapX 5.0 MapXtreme

AffineTransform AffineTransform

It is non-mutable (no set). Use
CoordSysFactory.CreateAffineTransform to create one.

AllFeaturesConstraint

Annotation Obsolete. New Adornments class. The MapControl contains
adornments derived from Control

Annotations Obsolete.

BindLayer Obsolete. Replacement is in Table.AddColumns() arguments.

BitmapSymbol BitmapPointStyle

BitmapSymbols

BoundsConstraint

CoordSys CoordSys.

It is non-mutable (no set). Use CoordSysFactory to create one.
MapXtreme 9.5 Developer Guide 759 Developer Guide

Dataset Obsolete.

Replacements:

• Expression columns: Table.AddColumns() allows you to
create expression columns.

• Manual Data binding (both dynamic or static):
Table.AddColumns() using a Table opened w/ an
TableInfoClient which points to a ADO.NET DataTable.

• Auto Data Binding: Handled by Geodictionary functionality.

• Non ADO.NET External Data

• XY Binding: SpatialSchemaXY applied to the
TableInfo.SpatialSchema property.

• PointRef Binding: SpatialSchemaPointRef applied to the
TableInfo.SpatialSchema property.

RowValues: MIDataReader, MIScrollableReader, see
MICommand.

Refresh: Table.RefreshColumns()

Datasets Obsolete. See Dataset.

Datum Datum

It is non-mutable (no set). Use CoordSysFactory.CreateDatum()
to create one.

Feature Geometry, style and key information is a Feature.

Features See Feature.

FeaturesConstraint

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 760 Developer Guide

 J – Migrating to MapXtreme
FeatureFactory Table-level object processing

• Buffer: For one feature, it is at the Geometry level
(FeatureGeometry.Buffer). For multiple features, use
FeatureProcessor.Buffer.

• Combine: For one feature, it is at the Geometry level
(FeatureGeometry.Combine). For multiple features, use
FeatureProcessor.Buffer.

Intersect: For one feature, it is at the Geometry level
(FeatureGeometry.Intersect). For multiple features, use
FeatureProcessor.Intersect.

Field

Fields

Find Find

FindFeature FindResult

FindMatch FindCloseMatch, FindAddressRange

FindMatches FindCloseMatchEnumerator, FindAddressRangeEnumerator

FindResult FindResult

Geoset Obsolete. Similar functionality: MapLoader

Geosets Obsolete. MapXtreme opens geosets.

Graphic Obsolete.

IndividualValueCateg
ory

IndividualValueThemeBin

IndividualValueCateg
ories

ModifierThemeBins

Label LabelLayer, LabelSource

Labels LabelLayer, LabelSource

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 761 Developer Guide

LabelProperties LabelProperties

Layer UserDrawLayer, LabelLayer, FeatureLayer, ObjectThemeLayer,
GroupLayer...

• AddFeature: The current equivalent is to bind a Geometry to
the geometry column during an insert operation using
MICommand.

• AllFeatures

• AutoLabel: This no longer exists. The equivalent is to have
the LabelSource.DefaultLabelProperties.Enabled property
set to true.

• Begin/EndAccess: Not addressed

• Bounds: FeatureLayer.Bounds

• ClearCustomLabels: Not addressed

• ClippedBounds: Obsolete. Use Map.SetView()

• CoordSys

• Datasets: Obsolete. A layer has a Table
(FeatureLayer.Table.)

• DeleteFeature: The equivalent is to delete row through
MICommand.

• DrawLabelsAfter: This concept is deprecated. Similar
functionality is to use a LabelLayer instance after each Layer.
The only drawback is that each LabelLayer works off its own
label cache so the labels will not interact between layers.

• Editable: FeatureLayer.Editable

• FeatureIDFromFeatureName: Equivalent would be an SQL
command through MICommand.

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 762 Developer Guide

 J – Migrating to MapXtreme
Layer (continued) • Find: Find

• GetDrillDownFeaturesByID: Not addressed

• GetFeatureByID: Equivalent functionality is a key cursor
using MICommand.

• Invalidate: IMapLayer.Invalidate

• KeyField: Obsolete. Equivalent functionality is MICommand.

• LabelAtPoint

• LabelProperties: LabelSource.DefaultLabelProperties.

• Labels

• Name: FeatureLayer.Name or Alias.

• NoFeatures

• OverrideStyle: Equivalent is the FeatureLayer.Modifiers
collection.

• Pack: Equivalent is FeatureLayer.Table.Pack

• PredominantFeatureType:MISpatialColumnInfo.PredominantO
bjectType. You can get the column from the
Table.TableInfo.ColumnInfos property.

• Refresh: Flushes the cache. Equivalent: Table.Refresh()

• Search: Equivalent is MICommand. the result, however, can
contain more than just feature keys.

• SearchAtPoint: No “easy” equivalent.

• SearchWithinDistance: No “easy” equivalent.

• SearchWithinRectangle: No “easy” equivalent.

• SearchWithinFeature: No “easy” equivalent.

• Selectable: FeatureLayer.Selectable.

• Selection: Selection class in Session.Sessions collection.

• ShowCentroids: FeatureLayer.ShowCentroids

• ShowLineDirection: FeatureLayer.ShowLineDirection

• ShowNodes: FeatureLayer.ShowNodes

• Style: Equivalent is now the FeatureLayer.Modifiers
collection.

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 763 Developer Guide

Layers (continued) • SupportsPack: Table.SupportsPack

• Type: IMapLayer.Type

• UpdateFeature: Equivalent through MICommand

• Visible: IMapLayer.Enabled. IMapLayer.Visible takes into
account:

• ZoomLayer: IMapLayer.ZoomRangeEnabled

• ZoomMax: IMapLayer.ZoomRange.End

• ZoomMin: IMapLayer.ZoomRange.Start

Layers Layers

• AnimationLayer equivalent: GroupLayer and
BackingStoreState.Off

• InsertionLayer equivalent: AddMapTool.InsertionLayer

• Selections: Live in the Session object.

LayerInfo Obsolete. Equivalent is TableInfo

Legend Legend

LegendText LegendRow

LegendTexts LegendRows

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 764 Developer Guide

 J – Migrating to MapXtreme
Map Map has now been separated into two entities: Map and
MapControl.

MapControl contains functionality applicable to the
System.Windows.Forms.Control; an object that can be
embedded in a WinForm.

Map contains the actual mapping functionality, regardless of
how it is being viewed (whether it is a WinForm or an export.)

The following is a list of properties/methods in the former Map
class and how they are being handled in the MapXtreme model:

• Annotations: Obsolete.

CenterX/Y: Map.Center

ConvertCoord: DisplayTransform.ToDisplay(),
DisplayTransform.FromDisplay()

• CreateCustomTool: Inherit from MapTool or any of the
Custom* tools available that provide marquee-line drawing
capabilities using the mouse.

• CurrentTool: MapTools.LeftButtonTool,
MapTools.MiddleButtonTool, MapTools.RightButtonTool. You
can access MapTools through the MapControl.MapTools
property.

• Datasets: Obsolete. Tables are accessible through the
MICatalog.

• Dataset: Obsolete.

• DatasetGeoField: Obsolete. See Map.Dataset.

• DatasetTheme: Obsolete. See Map.Dataset.

DefaultStyle

• DisplayCoordSys: Map.GetDisplayCoordSys().

• Distance: CoordSys.Distance().

• DynamicSelectionSupport:
MapTools.DynamicSelectionModeSelectMapTool.DynamicS
electionEnabled

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 765 Developer Guide

Map (continued) • EditableLabels

• ExportMap: MapExport class that allows exporting a map
with a wide-range of options.

• ExportSelection: MapExport.ExportSelection

• FeatureEditMode enums:

• miEditModeFeature -> MapTools.NodeMode = false

• miEditModeNode -> MapTools.NodeMode = true

• miMoveDuplicateNodes -> MapTools.MoveDuplicateNodes

• miDeleteDuplicateNodes -> MapTools.DeleteDuplicateNodes

• miEditModeAddNode -> MapTools.AddNodeMode

• FeatureFactory: FeatureProcessor

• GeoDictionary: Geodictionary

• Geoset: Obsolete.

• Geosets: Obsolete.

• GeosetWidth

• hWnd

• InfotipPopupDelay

• InfotipSupport: Not addressed.

• IsPointVisible

• Layers: Layers

• MapPaperHeight/Width: PaperSize (through
MapExport.ExportSize)

• MapScreenHeight/Width: MapControl.Size, Map.Size

• MapUnit: CoordSys.Units of the display coordsys

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 766 Developer Guide

 J – Migrating to MapXtreme
Map (continued) • MapUnit: CoordSys.Units of the display coordsys

• MatchNumericFields: GeoDictionary functionality.

• MatchThreshold: GeoDictionary functionality.

• MaxSearchTime: GeoDictionary functionality.

• MilitaryGridReferenceToPoint:
CoordSys.MilitaryGridToPoint()

• MilitaryGridReferenceFromPoint:
CoordSys.PointToMilitaryGrid()

• Mouseicon: MapControl.Cursor

• MousePointer: MapControl.Cursor

• MouseWheelSupport:
MapControl.MouseWheelSupport.MouseWheelBehavior

• NumericCoordSys: Obsolete. Geometries have their own
CoordSys now. Everything that has a coordinate has a
coordsys.

• Pan

• PanAnimationLayer

• PreferCompactLegends

• PrintMap: Map.Draw()

• PropertyPage

• RedrawInterval: Map.IncrementalDraw.Interval.

• Refresh

• ReuseEquivalentOnRestore

• Rotation: Map.Rotation.

• SaveMapAsGeoset

• SearchPath.

• SelectionStyle: Selection.Style

• SetSizeSnapToNodeSupport

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 767 Developer Guide

Map (continued) • SnapToNodeSupport

• SnapToNodeSupport

• SnapTolerance: MapTools.SnapTolerance

• Title: Adornments

• TitleText

• Version

• WaitCursorEnabled

• Zoom

• ZoomTo

MultivarCategory MultiVariableThemeCategory

MultivarCategories MultiVariableThemeCategories

NotesQueryInfo Obsolete.

NotesViewInfo Obsolete.

OCIQueryInfo Obsolete.

ODBCQueryInfo Obsolete.

Parts Equivalent

Point DPoint

Points Obsolete

RangeCategory RangedThemeBin

RangeCategories ModifierThemeBins

Rectangle DRect

ResolveObject MatchResolver

ResolveObjects MatchResolver Collection.

RowValue MICommand

RowValues MICommand

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 768 Developer Guide

 J – Migrating to MapXtreme
Selection Selection

SourceRow SourceRow

SourceRows SourceRows collection

State

Style

Theme ObjectTheme, FeatureStyleModifier

Themes Obsolete. Themes are now contained by either an
ObjectThemeLayer (for ObjectThemes) or in the Layer's
Modifiers collection (for FeatureStyleModifier themes.)

ThemeProperties Obsolete. Properties are within the theme classes themselves.

Title Adornments

Variable MIParameter. For binding in expressions, the
MICommand.Parameters property allows you to define
variables used within the command.

Variable MIParameterCollection.

MapX 5.0 MapXtreme
MapXtreme 9.5 Developer Guide 769 Developer Guide

MapXtreme 9.5 Developer Guide 770 Developer Guide

K

K – Localization Kit
The Localization Kit is a Visual Studio solution for translating software
text elements (error messages, dialog/control text) into a language
other than English, Japanese, and Simplified Chinese.

In this appendix:
 Localization Kit . 772
 How to Use the Localization Kit . 775
 Private Key Signing for Satellite Assemblies 778

Localization Kit
MapXtreme provides a Visual Studio solution for developers who wish to translate error
messages and dialog/control text elements for use in their own MapXtreme-based
applications.

This “localization kit” contains resource projects for all runtime components of
MapXtreme. It is organized as a Visual Studio solution to make it convenient to edit the
resource strings and build the assemblies while much of the behind-the-scenes resource
management is taken care of. The solution can be used in Visual Studio, Visual C#
Express Edition, and by the MSBuild command line build utility.

Included in each project are the English resource strings for translating and a strong
named key (.snk) file. that will compile into an assembly that can be incorporated into
your MapXtreme application. By following the information in the table below, you can
easily identify which project(s) you need to translate for your application. You can also drill
down inside each project to find only the resource files or individual strings you need to
translate.

The LocalizationKit.sln includes the following projects:

Project Description

GeoDictionaryManager.resourc
es

Provides the error strings and dialog text elements
for the GeoDictionaryManager.exe

MapInfo.CoreEngine.resources
*

Provides the strings related to the core
components of MapXtreme (mapping, data
access, features, styles, themes, spatial
processing, etc.)

MapInfo.LinearReferencing.res
ources

Provides the strings related to Z and M value
support and linear referencing operations

MapInfo.Ogc.resources Provides the strings related to converting
FeatureGeometries to/from OGC well-known text
and binaries.

MapInfo.Services.resources Provides the strings for geocoding and routing
services

MapInfo.Web.resources Provides the strings related to web applications
MapXtreme 9.5 Developer Guide 772 Developer Guide

 K – Localization Kit
MapInfo.WebControls.resource
s

Provides the strings related to web controls and
tools

MapInfo.Wfs.Server.resources Provides the strings related to WFS server error
messages

MapInfo.Windows.Dialogs.reso
urces

Provides the strings related to Windows dialog
controls

MapInfo.Windows.resources Provides the strings related to Windows controls

MapInfo.Wms.Client.resources Provides the strings related to WMS error
messages

WorkspaceManager.resources Provides the error strings and dialog text elements
for the WorkspaceManager.exe

* See the following table for resource information related to this namespace.

Resource File Product Area

EllisAllTypeResources.en-US.resx Error strings for reading from
datasources

EllisCommandProcessorResources.en-
US.resx

Error strings for reading from
datasources

EllisCoordSysExceptions.en-US.resx Error strings for bad coordinate system
values

EllisCoordSysResources.en-US.resx Error strings for bad coordinate system
values

EllisDAEngineResources.en-US.resx Error strings for datasource query Errors

EllisDBInfoResources.en-US.resx Error strings for database Errors

EllisDBLayerResources.en-US.resx Error strings for map Errors

EllisExceptions.en-US.resx Error strings for general system Errors

EllisExprPacketCreatorResources.en-
US.resx

Error strings for SQL queries

Project Description
MapXtreme 9.5 Developer Guide 773 Developer Guide

EllisExprPacketResources.en-US.resx Error strings for SQL queries

EllisFcnInfoServerResources.en-US.resx Error strings for SQL queries

EllisFindResources.en-US.resx Strings for Find operations

EllisGeoObjectProcessResources.en-
US.resx

Error strings for GeoObject manipulation
(Lines, polygons, etc.)

EllisGeoObjectResources.en-US.resx Error strings for GeoObject manipulation
(Lines, polygons, etc.)

EllisGeoResources.en-US.resx Error strings for GeoDictionary and file
loading

EllisGeosetResources.en-US.resx Error strings for Geoset files

EllisGmlXlatResources.en-US.resx Error strings for GML files

EllisLegendResources.en-US.resx Strings for use in Legends

EllisMapBasicInternalFcnResources.en-
US.resx

Error strings for MapBasic functions

EllisMapBasicTranslatorResources.en-
US.resx

Error strings for MapBasic functions

EllisMapperResources.en-US.resx Error strings for Map
manipulation/search functions

EllisMILexerResources.en-US.resx Error strings for string parsing (SQL,
MapBasic, etc.) functions

EllisMILicensingResources.en-US.resx Error strings for copy
protection/licensing components

EllisMIRDBResources.en-US.resx Error strings for database connections

EllisMIRDBSpatialResources.en-US.resx Error strings for database connections

EllisMIWindowResources.en-US.resx Strings for use in GUIs

EllisProgramResources.en-US.resx Error strings for file operations

Resource File Product Area
MapXtreme 9.5 Developer Guide 774 Developer Guide

 K – Localization Kit
System Requirement
Visual Studio 2015 or Visual Studio 2017.

How to Use the Localization Kit
The Localization Kit is provided as a Visual Studio solution containing resource strings
that you can translate into any language. The Visual Studio solution can be used in Visual
Studio 2015 with Update 4 or Visual Studio 2017, and by the MSBuild command line build
utility. This can be done simply by opening the appropriate .resx file in Visual Studio’s
Resource Editor and editing the name/value pairs. You can translate as little as one line in
a single .resx file or go all the way translating every line in every .resx file for all the
assemblies. It just depends on your application requirements.

The files to be translated are named with the language/locale identifier that follows
Microsoft’s conventions. For example, the English-U.S. exception strings for the
LinearReferencing.resources project are in a file called

EllisRasterResources.en-US.resx Error strings for WMS connections and
raster/grid images

EllisTextFileReaderResources.en-
US.resx

Error strings for file operations

EllisThematicsResources.en-US.resx Error strings for theme operations

EllisUtilityResources.en-US.resx Error strings for file operations, and
generic Error strings

EllisXMLUtilResources.en-US.resx Error strings for XML/GML operations

strings.en-US.resxGeneric Error strings, units, coordinate system,
datum, and ellipsoid names, assorted
GUI strings, WFS strings, serialization
and raster Errors.

MapInfo.TileServer Error strings for Tile Server operations,
and generic Error strings.

Resource File Product Area
MapXtreme 9.5 Developer Guide 775 Developer Guide

LinearReferencingExceptionStrings.en-US.resx. For more information on language
identifiers, see the System.Globalization.CultureInfo class in the Microsoft .NET
Framework library.

Most of the .resx files are contained in Resources folders under each project. The
Windows and Windows.Dialog resources are located in Controls or Dialogs folders.

Building the Satellite Assemblies
Satellite assemblies are optional, standalone assemblies that contain just the compiled
resources. Once you have your .resx strings translated, you are ready to build your
satellite assemblies. Right-click on the project in Visual Studio and choose Build. Each
project will generate a bin folder with a language/locale-specific folder containing the
assembly. The file naming convention for the assembly is patterned after the English
assembly name with the extension of .resources.dll. For example, the WebControls
assembly would be called MapInfo.WebControls.resources.dll.

At runtime, MapXtreme will use the appropriate language/locale resource dll when one is
provided and the .NET Resource Manager is set to look for that satellite assembly. If no
localized assembly is found, the English assembly is used instead.

Signing Assemblies

The satellite assemblies you build with the Localization Kit are signed with one of the
following strong named public keys (included in the kit):

• MapInfo.CoreEngine.Public.snk

• MapInfo.Ogc.Public.snk

• MapInfo.WebControls.Public.snk.

MapInfo.CoreEngine.Public.Snk is the public key for all assemblies except for
MapInfo.Ogc.resources and MapInfo.WebControls.resources, which have their own
public keys. Signing your satellite assemblies with these public keys will allow you to use
the assemblies for testing and debugging. In order to run MapXtreme using these
assemblies, they must be put in the global assembly cache (GAC). Only signed
assemblies can be placed in the GAC.

Registering the Satellite Assemblies

The output satellite assemblies from the Visual Studio solution are not quite ready to be
installed into the GAC and tested. After the satellite assemblies are built and signed with
the public keys, they must be registered so that the .NET runtime will allow them to be
loaded into the GAC. The Strong Name Utility (sn.exe) must be run on each of the
MapXtreme 9.5 Developer Guide 776 Developer Guide

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(VS.80).aspx

 K – Localization Kit
satellite assemblies to register the assemblies for verification skipping. This command is
sn.exe -Vr <assembly_name>. Once the satellite assembly is registered to skip
verification, the satellite assembly is ready to be tested.

Building from the Command Line
As a part of the MapXtreme Localization Kit, two MSBuild project files have been
provided to simplify the process of preparing the satellite assemblies for testing. The
MSBuild project files will build, sign, register the assemblies to skip verification, and install
them in the Global Assembly Cache. For more information on MSBuild and its usage, visit
MSDN MSBuild Reference page. (http://msdn.microsoft.com/en-
us/library/0k6kkbsd.aspx.)

The two MSBuild project files are LocalizationKit.proj and LocalizationKit.Utilities.proj.

LocalizationKit.proj

The LocalizationKit.proj targets are:

build - builds the LocalizationKit solution and calls the LocalizationKit.Utilities project's
"RegisterSkipVerifiection" target (default target)

rebuild - rebuilds the LocalizationKit solution and calls the LocalizationKit.Utilities
project's "RegisterSkipVerification" target

clean - deletes all the output satellite assemblies and any intermediate files as a part of
the build process

LocalizationKit.Utilities.proj

The LocalizationKit.Utilities.proj targets are:

RegisterSkipVerification - Registers all the satellite assemblies to skip verification by
running the sn.exe -Vr <assembly_name> command (default target)

UnregisterSkipVerification - Unregisters all the satellite assemblies to skip verification by
running the sn.exe -Vu <assembly_name> command

InstallGac - Installs the satellite assemblies into the Global Assembly Cache by running
the gacutil.exe /I <assembly_name> /f command

UninstallGac -Uninstalls the satellite assemblies from the Global Assembly Cache by
running the gacutil.exe /uf <assembly_name> command

Acceptable values for the project’s configuration property are debug (default) and
release. See below for usage.
MapXtreme 9.5 Developer Guide 777 Developer Guide

http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx

The LocalizationKit project file depends upon and uses the targets in the
LocalizationKit.Utilities project file.

 For developers using Visual C# Express Edition, you will have to add MSBuild and
the directory containing the Strong Name Utility and Global Assembly Cache Utility
to your system path.

Given these path locations,

MSBuild (msbuild.exe) - C:\WINDOWS\Microsoft.NET\Framework\v3.5

Strong Name Utility (sn.exe) and Global Assembly Cache Utility (gacutil.exe) -
C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin

,the line in the command prompt would be,

LocalizationKit> set
path=%path%;C:\WINDOWS\Microsoft.NET\Framework\v3.5;C:\Program Files\Microsoft
SDKs\Windows\v6.0A\bin

The directory paths on your machine may be very different, so be sure to use the correct
paths in your environment.

To build the Localization Kit, run this command from the kit's root directory:

LocalizationKit> msbuild LocalizationKit.proj /target:build
/property:configuration=release

This command will build the release versions (no debug information) of the satellite
assemblies, signing each with the appropriate public strong name key file, and registering
the satellite assemblies for skipping verification, then installing the satellite assemblies
into the Global Assembly Cache.

The satellite assemblies are ready to be tested.

Private Key Signing for Satellite Assemblies
When you are ready to include your localized assemblies in your application, they must
be signed with a private key by Precisely. Contact your Technical Support representative
for information on this process.
MapXtreme 9.5 Developer Guide 778 Developer Guide

L

L – Log Files in MapXtreme
This appendix contains information about the application Logging
feature in MapXtreme. Logging helps you to trace the valuable
information during the execution of application flow.

In this appendix:
 Logging in MapXtreme . 780

Logging in MapXtreme
We have provided Logging support in MapXtreme to help you trace the valuable
information during the flow of execution. Currently, MapXtreme supports logging for
ODBC and OCI levels only.

The application logs provide useful information for tracing and debugging. The Log file
path field determines the location of the trace file. MapXtreme writes the log information in
a text file, however, users have the flexibility to configure the logging.

Logging Configuration Options
The configuration options allow users to describe how and where logging information
should be written.

• You can enable/disable logging by setting the ApplicationLogEnabled property
as true/false. For example, Session.Current.ApplicationLogEnabled =
true.

• You can change the name and location of the log file by using the
Session.Current.ApplicationLogPath =
“C:\Test\MapXtreme\mylog.log property.

By default, a file path is provided as:

• File name: mxtlog.log

• File path C:\Windows\Temp or ..\AppData\Local\Temp

The log file reports the following information.

1. Time Stamp: Time of statement execution

2. Log level e.g., INFO, WORRNING and ERROR etc.

3. Thread ID

4. Logging information
MapXtreme 9.5 Developer Guide 780 Developer Guide

 L – Log Files in MapXtreme
Here is an example of what a MapXtreme log file looks like:

Log File Directory and Structure

Max Log Size

The maximum limit of a log file (maxlog.log) is 5MB. MapXtream supports a maximum of
50 log files in each session on a machine. After reaching the maximum file count,
MapXtream automatically overwrites the first file in the sequence.

The parameter maxlog.log specifies the size of each log file in Megabytes.
MapXtreme 9.5 Developer Guide 781 Developer Guide

MapXtreme 9.5 Developer Guide 782 Developer Guide

M

Glossary
This glossary defines terms used in this guide and in MapInfo products
that are necessarily understandable or are used in a way specific to
MapInfo products and technology.

Terms
Adornment

A MapXtreme map element that consists of either a legend, title, or scalebar.

Affine Transformation

A linear transformation, such as a rotation, scaling or shearing, of a geometric object along with a shift from
that transformation. Used in GIS for transforming maps from one coordinate system to another.

Anti-aliasing

Smooths the jagged edges of lines, curves, and the edges of filled areas when representing a high-definition
rendition at a lower resolution.

Cartesian

A coordinate system using an x,y scale not tied to any real-world system. Most CAD drawing uses this
method of registering objects (for example, a drawing of a ball-bearing assembly or a floor plan). If a drawing
uses Cartesian coordinates, one corner of the drawing probably has coordinates 0, 0.

Cartesian Coordinates

The conventional representation of geometric objects by x and y values on a plane.

Centroid

Usually the center of a map object. For most map objects, the centroid is located at the middle of the object
(the location halfway between the northern and southern extents and halfway between the eastern and
western extents of the object). In some cases, the centroid is not at the middle point because there is a
restriction that the centroid must be located on the object itself. Thus, in the case of a crescent-shaped region
object, the middle point of the object may actually lie outside the limits of the region; however, the centroid is
always within the limits of the region.

Character Encoding

A method of converting a sequence of bytes into a sequence of characters. See also Universal Character
Set (UCS) and Unicode Transformation Format-8 (UTF-8).

Class

In an object-oriented language, a class is an object or a set of objects that contain(s) methods for performing
some type of function, similar in meaning to a derived type in procedural languages.

Codespace

See MapInfo Codespace.

Convex Hull Buffer

A type of buffer that creates a region object that represents a polygon based on the nodes from the input
object. You can think of the convex hull polygon as an operator that places a rubber band around all of the
points. It consists of the minimum number of points so that all points lie on or inside the polygon. With convex
hull buffers, no interior angle can be greater than 180 degrees.

COM+ Pooling

A Microsoft component service in which objects are pre-loaded and pooled to save resources.
MapXtreme 9.5 Developer Guide 784 Developer Guide

 M –
Coordinate

An x,y location in a Cartesian coordinate system, or a Latitude, Longitude location in an earth coordinate
system. Coordinates represent locations on a map relative to other locations. Earth coordinate systems may
use the equator and the Greenwich prime meridian as fixed reference points. Plane coordinate systems
describe a two-dimensional x,y location in terms of distance from a fixed reference and are usually in the first
quadrant so that all coordinates are positive numbers.

Coordinate System

A coordinate system is used to create a numerical representation of geometric objects. Each point in a
geometric object is represented by a pair of numbers. Those numbers are the coordinates for that point. In
cartography, coordinate systems are closely related to projections. You create a coordinate system by
supplying specific values for the parameters of a projection.

Data Provider

A bridge between an application and a data source, which provides mechanisms for accessing data for use in
the application.

Data Binding

The association of a data source with a server control. The MapXtreme DataBinding class contains
information about a single data-binding expression in an ASP.NET server control, which allows rapid-
application development (RAD) designers in Visual Studio to create data-binding expressions at design time.

Decimal Degree

The decimal representation of fractions of degrees. Many paper maps express coordinates in degrees,
minutes, seconds (for example, 40_30i10I), where minutes and seconds are fractions of degrees. Thirty
minutes equal half a degree, and 30 seconds equal half a minute. MapXtreme expresses coordinates in
decimal degrees (e.g., 72.558 degrees). Thus, the longitude: 40 degrees, 30 minutes, would be expressed in
MapXtreme as 40.5 degrees.

Degrees Longitude, Degrees Latitude, Decimal Degrees

Degrees longitude and degrees latitude are coordinates used to represent locations on the surface of the
earth. Longitude, or X-coordinate, represents a location's east-west position, where any location west of the
prime meridian has a negative X value. Latitude, or Y-coordinate, represents a location's north-south position,
where any location south of the equator has a negative Y value.

Derived Class

A class that contains all of the features of its base class but contains either additional functionality or
enhanced functionality with respect to its base.

Enumerate

A type that contains all of the variables and their possible values.

Event Handler

An attribute for an object on a page that can be written in either JavaScript or VBScript. For example, an
event handler describes what to do when a user clicks a button or selects text in a list box. Both VBScript and
JavaScript support explicitly defined event handlers, for example, on Click and on Select. In addition, you can
define functions that replace the explicit event handlers. Such functions are called implicit event handlers.

Feature

A row in a table that has geometry, style, and attributes. A Feature usually has a Table and Key to identify
which row it represents.
MapXtreme 9.5 Developer Guide 785 Developer Guide

FeatureLayer

A MapXtreme layer that displays Features from a Table. For example, a layer of region objects representing
world countries is a FeatureLayer. A FeatureLayer must be added to a Map via the Map's Layer collection.
FeatureLayers can be native .TAB data, remote RDB, seamless or raster data.

Geocode

The process of assigning X and Y coordinates to records in a table or database so that the records can be
displayed as objects on a map.

GeoDictionary

A MapXtreme file that contains information about tables (TAB files only). The GeoDictionary is used to
automatically determine the table to which application data should be bound.

GeoDictionaryManager

A MapXtreme tool for maintaining the Geodictionary.

Geographic Information System (GIS)

An organized collection of computer hardware and software designed to efficiently create, manipulate,
analyze, and display all types of geographically or spatially referenced data.

Geometric Centroid

A centroid point (see Centroid) that does not need to be contained within the object (usually a

FeatureGeometry).

Geography Markup Language (GML)

A markup language specific to mapping. The GML is being developed by the Open GIS Consortium (OGC),
an international organization that develops and promotes geographic standards.

Graticule

A grid of horizontal (latitude) and vertical (longitude) lines displayed on an earth map, spaced at a regular
distance (for example, every five degrees, every fifteen degrees). Used to establish a frame of reference.

Grid

An interpolation of data values across an area. A grid is created from a data file in which data is measured at
evenly-spaced points. The entire map area is converted to a grid in which each grid cell represents a value.

See Chapter 17 Grid Images.

Hillshading

Relief shading of a grid map according to a virtual light source. The brightness of each grid cell corresponds
to the light striking the surface and is adjusted based on its orientation to the light source.

Hypertext Markup Language (HTML)

A plain text (Ascii) language that enables developers to create Web pages that can be displayed by different
Web browsers on different computing platforms. Html uses tags to specify the structure of the various parts of
a document. Html supports links (using URLs) that point to other web documents and files.

Hypertext Transfer Protocol (HTTP)

The message-based network interface between a Web client and a Web server. HTTP runs on top of TCP/IP.

Inflection

The point in a grid map at which the color changes due to a change in the grid value or percentage. See

Chapter 17 Grid Images and Inflections.
MapXtreme 9.5 Developer Guide 786 Developer Guide

 M –
Internet Information Services (IIS)

The software services provided by Microsoft that support the creation, configuration, and management of web
sites. Specifically some commen Internet Information Services include: FTP (File Transfer Protocol) and
SMTP (Simple Mail Transfer Protocol). In MapXtreme, the WMS Server we provide must be configured to
work with IIS to run the Server.

ISession Interface

The MapXtreme MapInfo.Engine namespace interface that provides the starting point for all MapXtreme
applications. ISession manages the initialization of resources needed for a MapXtreme application, and
defines all data and functionality applicable to an instance of an application.

Latitude

The horizontal lines on a map that increase from 0 degrees at the Equator to 90 degrees at both the North
(+90.0 degrees) and South (-90.0 degrees) poles. Used to describe the north-south position of a point as
measured usually in degrees or decimal degrees above or below the equator.

Layer

A basic component of map display in MapInfo products, typically consisting of several superimposed layers
(e.g., a layer of street data superimposed over a layer of county or postal code boundaries). When a table
appears in a Map window, it occupies a layer in that Map window. Typically, each map layer corresponds to
one open table.

Linear Referencing

An alternative reference system to the traditional coordinate reference systems that tie locations of linear
features to points on the earth. Any physical asset that you can map as part of a linear network can hold data
that describes the asset or a condition or event related to that asset. In MapXtreme the data is stored as an
M, or measure value, on the MultiCurve object along with the X and Y coordinates for the location. The M

values can then be further mapped and analyzed for better resource management. See Chapter 22
Linear Referencing.

Longitude

The vertical lines on a map, running from the North to South poles, used to describe the east-west position of
a point. The position is reported as the number of degrees east (to -180.0 degrees) or west (to +180.0
degrees) of the prime meridian (0 degrees). Lines of longitude are farthest apart at the Equator and intersect
at both poles, and therefore, are not parallel.

Longitude/Latitude

The default coordinate system for representing geographic objects in a map in MapInfo products.

MapControl

A MapXtreme object that enables you to view a map on a form. The MapControl owns the window that the
map draws to. It also controls the size of the map and interacts with the map tools. MapXtreme provides
desktop and web versions of MapControl.

MapInfo Codespace

A list of definitions and standards that are commonly used in creating MapInfo maps and workspaces. The
MapInfo Codespace includes coordinate system settings; pen, brush, and distance settings and
abbreviations; image size settings; frequently used types and their abbreviations; a list of available operators;

time, date, and temperature unit settings, and abbreviations. For details, see Appendix G: Defining the
MapInfo Codespace.
MapXtreme 9.5 Developer Guide 787 Developer Guide

MapInfo MapCatalog

A server table containing column information about spatial tables. See The MapInfo_MapCatalog.

MapInfo SQL Language

A reference of SQL syntax used in MapInfo mapping products. The language is based on SQL3 and has
special MapInfo operators defined for spatial analysis.

Meridian

A line or a portion of a line running from the North to the South pole. A longitudinal line.

Namespace

A hierarchal naming system that provides a way to group classes together independently of inheritance. For
example, two unrelated classes with the same name can exist in different namespaces:
System.Utilities.FileFinder and MyCompany.Utilties.FileFinder could have the same name, but different
functionality. Namespaces also help to prevent the compiler from referencing the wrong class (a 'collision').

Non-Earth Map

A map whose objects are not explicitly referenced to locations on the earth's surface. Floor plans are typical
examples.

Persistence

Persistence refers to the way MapXtreme (and other MapInfo products) manages data and ensures that
maps created using this API can be used by other MapXtreme users. Persistence is concerned with loading
and saving XML-based workspaces and for parsing and publishing MapInfo Geometry objects from/to GML,
and vice versa.

PointRef Schema

A spatial schema that can be applied to a non-mappable table to make it mappable. The schema references
a Geometry object in another table by matching the values in a column (MatchColumn) of the non-mappable
table with a column (RefColumn) in a mappable table. When the table is opened, it contains a read-only
Geometry column. The table can then be added to a Map as a layer.

Pooling

To shared resources for better performance and scalability. In a MapXtreme web application, MapXtreme
Session instances are available for use in a COM+ pool and ready to service requests from clients.

Projection

A mathematical model that transforms the locations of features on the earth's surface to locations on a two-
dimensional surface, such as a paper map. Since a map is an attempt to represent a spherical object (the
earth) on a flat surface, all projections have some degree of distortion. A map projection can preserve area,
distance, shape or direction but only a globe can preserve all of these attributes. Some projections (for
example, Mercator) produce maps well suited for navigation. Other projections (for example, equal-area
projections, such as Lambert) produce maps well suited for visual analysis.

Region

A region is a MultiPolygon with one exterior Ring and zero or more interior Rings (holes).

Serialization

Serialization is the process of converting an object into a stream of data in order to preserve it on the server.
This process is an essential part of maintaining objects in MapXtreme web applications. If the objects are not
maintained the server would need to recreate the object (such as a map) for each web request.
MapXtreme 9.5 Developer Guide 788 Developer Guide

 M –
Spatial Schema

A service that can be applied to a table to enhance its spatial capabilities. There are two types of spatial
schemas in MapXtreme: PointRef and XY. Non-mappable tables that contain either a column that can be
referenced to a column in a mappable table, or columns that represent XY values, can use these schemas to
create a Geometry column. These tables can then be added to a Map as a layer. See the PointRef Schema
and XY Schema glossary definitions for information about each type of schema.

State Management

A general term in web application development that deals with saving and restoring information from a
browser session.

Table

A collection of data organized in row and column format. In MapXtreme, tables contains the data you wish to
display on the map. Tables hold information that describe the features, including their geometry, style, and
attributes. MapXtreme supports tables from a wide variety of sources including, native tables (MapInfo .TAB),
relational database management systems (RDBMS), dBase, MS Access, ASCII files, and ESRI ShapeFiles.
Speciality tables include raster, grid, seamless, views, WMS, and ADO.NET. The type of table is available
through the TableInfo class. Tables are opened and closed via the Catalog in the Data namespace. See

Chapter 8 Working with Data.

Tile Handler

An HTTP handler that processes requests for map tiles from web applications. See MapXtreme Tile
Handler.

Uniform Resource Locator (URL)

The underlying implementation of a hypertext link or image map that contains the address of a Web page or
file somewhere on the World Wide Web. A URL contains information about the network protocol to use
(usually HTTP) and the path to the page or file. An URL example is “http://www.mycompany.com/index.html,”
which points to the index page for the “my company” web site.

Universal Character Set (UCS)

The international standard ISO 10646 defines the Universal Character Set (UCS). UCS is a superset of all
other character set standards. UCS also defines several methods for encoding a string of characters as a
sequence of bytes, such as UTF-8 and UTF-16.

Unicode Transformation Format-8 (UTF-8)

An octet (8-bit) lossless encoding of Unicode characters. MapXtreme supports UTF-8 only as indicated in the
workspace persistence schema.

Web Controls

An element on a web page that users interact with to send requests to the web server.

Web Map Service (WMS)

WMS is an OGC-compliant Web service that provides map images for use as layers in a mapping application.
MapXtreme provides a server implementation of WMS if you wish to host a WMS server and a client for
accessing any OGC-compliant (1.0.0, 1.1.0, 1.1.1, or 1.3.0) WMS.

Web Feature Service (WFS)

An OGC-compliant Web service that offers geo-referenced map features for use in mapping applications.
MapXtreme provides an implementation of WMS Basic, a read-only service and a client for accessing WMS
servers.
MapXtreme 9.5 Developer Guide 789 Developer Guide

Web server

A computer system that runs the Hypertext Transfer Protocol and Web Server software. A Web server
accepts URL-based HTTP requests from a Web user's browser and sends HTML pages back to the browser.
A Web server can manage one or many Web sites. A commercial server, for example, would typically have
many Web sites.

Workspace

An XML-based persistence file format that allows users of MapXtreme to share maps they have created in a
wide variety of environments. This is the file format that all future MapInfo products will conform to. For more

about creating workspaces, see Chapter 27 Workspace Manager. For more about the structure of

workspaces, see Appendix C: Understanding the MapInfo Workspace.

XY Schema

A spatial schema that can be applied to a non-mappable to make it mappable. The table must contain X and
Y coordinate values, which the schema accesses to create a Geometry column for the table.
MapXtreme 9.5 Developer Guide 790 Developer Guide

	1 – Introduction to MapXtreme
	Overview of MapXtreme
	Key Features

	Migrating to MapXtreme
	Learning to Use MapXtreme
	Support Resources

	2 – Getting Started
	Installation Requirements
	Minimum System Requirements

	Types of Installations
	Development (SDK) Installations
	Deployment (Runtime) Installations
	Side-By-Side Installations and Use

	Before You Install
	Administrator Privileges
	Install .NET Framework and Visual Studio First
	IIS 7/8.5/10 Support
	Default Install Directories for MapXtreme
	Additional Installation Features

	Installing MapXtreme in Your Environment
	Upgrading MapXtreme
	Migrating Web Sites to 64-bit Web Applications
	Updating Existing Web Sites
	Updating Existing Desktop Applications

	Creating Applications in Visual Studio
	Map Applications
	ASP.NET Web Applications
	MapXtreme Controls

	Building ASP.NET Web Applications Without a Template
	Deploying Your Application
	Deploying With the Runtime Installer
	Deploying With Your Own Installer
	Deploying a Web Application
	Deploying Applications that Access Data
	MapXtreme Web Applications Behind Proxy Servers
	Permissions to Temp Directory for Deployed Web Applications
	Application Data Files
	Deployment Installation Troubleshooting

	3 – Mapping Concepts
	Mapping and MapXtreme
	Maps
	Tables
	Layers
	Features
	Labels and Legends
	Themes
	Tools
	Workspaces
	Coordinate Systems and Projections

	Geocoding with MapXtreme
	Routing with MapXtreme

	4 – Understanding the MapXtreme Architecture
	MapXtreme Architecture
	Object Model Overview
	MapInfo.Data Namespace
	MapInfo.Data.Find Namespace
	MapInfo.Engine Namespace
	MapInfo.Geometry Namespace
	MapInfo.Mapping Namespace
	MapInfo.Mapping.Legends Namespace
	MapInfo.Mapping.Thematics Namespace
	MapInfo.Persistence Namespace
	MapInfo.Raster Namespace
	MapInfo.Styles Namespace
	MapInfo.WebControls Namespace
	MapInfo.Windows Namespace
	MapInfo.Tools Namespace
	MapInfo.Geocoding Namespace
	MapInfo.Routing Namespace

	Application Architectures
	Web Application Architecture
	Desktop Application Architecture

	5 – Web Applications, Controls, and Tools
	Web Application Request/Response Lifecycle
	Components of a MapXtreme Web Application
	MapXtreme Session
	Background Map
	MapControl
	Map Tools
	State Management and Pooling Capabilities

	MapXtreme Web Controls and Tools
	Description of Web Controls and Tools

	Web Control Architecture
	Map Tools Architecture
	How a Map Tool Works

	Using the MapXtreme Web Controls
	Managing Your Web Controls
	Event Handling
	Error Management
	State Management

	Creating a Custom Tool
	Using and Distributing Custom Web Controls
	Creating a Web Assembly

	Adding an InfoTool to a Web Application
	ASP.NET AJAX and MapXtreme Web Applications
	Adding ASP.NET AJAX Controls to a MapXtreme Web Application

	MapXtreme Tile Handler
	Using the MapXtreme Tile Handler
	Caching

	HTML/XHTML Validation Issues
	Migrating Post-back Web Controls to JavaScript Web Controls
	Loading Data
	Replacing Controls
	State and Event Management

	Specialized Topics for Web Controls
	Using Web Controls in Frames
	Using the MapControl in Table Cells
	Web Control Localization

	6 – Understanding State Management
	Overview
	Terminology
	What is State Management?
	What State Management Options are Available?
	Questions to Ask Before Writing Your Application

	InProc Development Model
	Pros and Cons of the InProc Development Model
	InProc Management: A Walk-Through
	Configuring an Application to Use the InProc Development Model
	Using the MapXtreme Template with the InProc Development Model

	State Management For Pooled Objects
	What is Pooling?
	Pros and Cons of Pooling
	Saving State for Pooled Applications
	Manual State Management: A Walk-Through
	Configuring a Pooled Application to Use Manual State Management

	A Detailed Look at Manual State Management
	Overview of the Thematics Sample
	Application Settings
	Implementing a StateManager
	Serializing MapXtreme Objects in the Proper Order
	Automatically Deserializing MapXtreme Objects
	Handling Initial Requests
	Handling Subsequent Requests

	A Closer Look at the MapXtreme Session
	Configuring Microsoft COM+ Object Pooling

	7 – Desktop Applications, Controls, Dialogs, and Tools
	Planning a Desktop Application
	Best Practices for Desktop Applications
	MapXtreme and COM
	Sample Applications and Project Templates

	MapInfo.Windows.Controls Namespace
	Key Controls to Use in Desktop Applications
	MapControl
	MapToolStripButtons
	The MapToolBar
	Layer Control

	MapInfo.Windows.Dialogs Namespace
	CreateThemeWizard

	Customizing Controls and Dialog Boxes
	Overview of the MapInfo.Tools Namespace
	MapXtreme Desktop Tools API
	View Tools
	Select Tools
	Add Tools
	Custom Tools
	Shape Tools
	Distance Map Tool
	Using InfoTips

	Customizing Tools
	Tool Events
	Editing a FeatureGeometry with the Select Tool
	Reshaping a Feature
	Adding Nodes
	Reshaping and Adding Nodes Programmatically

	8 – Working with Data
	Overview of MapInfo.Data Namespace
	Catalog and Tables
	Tables
	Catalog

	Supported Table Types
	Working with Catalog and Tables
	Locating Open Tables
	Closing a Table
	Packing a Table
	Listening to Table and Catalog Events

	Table Metadata (TableInfo)
	Examining TAB File Metadata
	Creating a New Table
	Adding Expression Columns to a Table
	Data Sources
	Choosing the Correct Data Source
	Methods for Accessing Data
	Data Readers, MemTables and Result Sets
	Using an ADO.NET Data Provider
	Data Binding
	Making Tables Mappable

	MapInfo ADO.NET Data Provider
	MIConnection
	MICommand
	MIDataReader
	MapInfo SQL

	Features and Feature Collections
	Feature
	Feature Collections
	Searching for Features
	Catalog Search Methods
	SearchInfo and SearchInfoFactory
	Saving Opened Table as GeoJson File

	Analyzing Data
	Improving Data Access Performance

	9 – Working with Core MapXtreme Classes
	Session Interface
	Session Management
	Using Session.Dispose Method
	ISessionEventHandlers

	Serialization and Persistence
	Serialization
	Persistence

	Opening and Saving a Workspace Containing Named Resources
	Opening an MWS: ResolveResource()
	Saving an MWS: GetResourceName()
	Registering Your Implementation with MapXtreme
	Setting Preferences

	Selection Class
	Using Selection Properties
	Selection Highlighting and Exporting
	SelectionChangedEvent
	ISerializable Interface on Selection and Selections Classes

	Selection Code Examples
	Selecting Features Within Another Feature
	Checking a Table for Selections
	Returning All Columns From a Table
	Changing the Map View Following a Selection

	Event Arguments
	Exceptions

	10 – Creating Expressions
	Expressions Overview
	Creating Expressions
	Where Clause – Boolean Expressions
	Functions In Expressions
	DateTIme and Time Expressions

	Expression Examples

	11 – Accessing Data from a DBMS
	Accessing Remote Spatial Data
	Accessing Remote Tables Through a .TAB File
	Accessing Remote Tables Without a .TAB File
	Mapping DBMS Data with X/Y Columns
	Accessing Data from Oracle
	Geometry Conversion
	Oracle Support for Z and M Values
	SDO_GEOMETRY Arc and Circle Translation
	Visualization of Non-translatable Oracle Objects
	Centroid Support
	Oracle Spatial Reference Support (SRID)
	OCI Connection Dialog

	Accessing Data from MS SQL Server
	SQL Server 2008 Support

	DBMS Connection String Format
	ODBC Connection String Format
	ODBC Layers and Pooling in Web Applications
	Oracle Spatial Connection String Format
	Sample Connection Strings

	Defining Mappable Tables in Server Table Queries
	The Geometry Column
	The Key Column(s)

	Accessing Attribute Data
	Performance Issues
	Working with the Cache
	What Is the Cache?
	How the Cache Works
	The TableInfoServer Object and the CacheSettings Property

	Cache Storage Type:
	The MapInfo_MapCatalog
	Loading Spatial Data to DBMS
	Manually Creating a MapInfo MapCatalog

	Adding Rows to the MapInfo_MapCatalog
	Per-Record Styles
	Symbol, Pen, Brush Clause Syntax
	Text Objects Limitation

	Troubleshooting

	12 – Adding Mapping Capability to Your Applications
	Introduction to the MapInfo.Mapping Namespace
	Base Mapping Classes
	MapExport
	Map
	MapFactory
	MapLoader
	MapViewList, MapView
	MapControl

	Layers
	FeatureLayer
	Layers
	MapLayer
	UserDrawLayer
	ObjectThemeLayer
	GroupLayer
	LabelLayer
	GraticuleLayer
	Layer Filters
	IVisibilityConstraint
	Code Example: Animation Layer

	Labels
	LabelLayer
	LabelSource
	LabelModifier
	ILabelSourceFilter
	LabelProperties
	Generating Labels
	Label Priorities
	Label Layer Selectability
	Code Example: Creating a LabelLayer
	Curved Labels

	Adornments
	Legends
	ScaleBar Adornment
	Title Adornment

	Feature Style Modifiers
	FeatureStyleModifier
	FeatureStyleModifiers
	FeatureOverrideStyleModifier

	Printing Your Map

	13 – Finding Locations
	Functional Overview of Find
	The Find Process
	Matching Address Numbers
	Matching with a Refining Boundary Table
	Find Results

	Overview of the Data.Find Namespace
	Find
	.FindAddressRange
	FindCloseMatch
	FindResult

	Fine Tuning the Find Process
	Editing the Mapinfow.abb File

	14 – Using Themes and Legends
	Thematics Overview
	Mapping.Thematics Namespace
	Modifier Themes
	Object Themes

	GraduatedSymbolTheme
	When To Use a Graduated Symbol Theme

	PieTheme
	When To Use a Pie Theme
	Printing a Map Containing Pie/Bar Themes

	BarTheme
	When To Use a Bar Theme
	Controlling Display Size for Pie and Bar Themes

	RangedTheme
	When To Use a Ranged Theme
	Types of Ranged Values

	RangedLabelTheme
	When To Use a RangedLabelTheme Class

	Ranged Themes and Serialization
	IndividualValueTheme
	When To Use an IndividualValueTheme Class

	Creating an IndividualValueTheme with Custom Bitmap Symbols
	IndividualValueLabelTheme
	When To Use an IndividualValueLabelTheme Class

	IndividualValue Themes and Serialization
	DotDensityTheme
	When To Use a DotDensityTheme Class
	Bivariate Thematic Maps

	Legends Overview
	Theme Legends
	Cartographic Legends
	Formatting a Legend

	Export/Import Theme and Style

	15 – Stylizing Your Maps
	Overview of the MapInfo.Styles Namespace
	StyleFactory

	Style Descriptions
	AreaStyle
	BitmapPointStyle
	CompositeStyle
	SimpleInterior
	Font
	FontPointStyle
	GridStyle
	RasterStyle
	Hillshade
	Inflection
	SimpleLineStyle
	BasePointStyle
	BaseLineStyle
	BaseInterior
	StockStyles
	TextStyle
	SimpleVectorPointStyle

	Pre-defined Styles and the StyleRepository Class
	StyleRepository Class

	Using Styles
	Styles and Layer Control
	Creating a Custom Bitmap Style

	Overriding Styles
	FeatureOverrideStyleModifiers

	16 – Spatial Objects and Coordinate Systems
	Introduction to MapInfo.Geometry Namespace
	Geometries
	Geometry Objects
	FeatureGeometry Objects
	Geometry Objects

	Including Your FeatureGeometry in a Map
	Checking for Points in Polygons
	Coordinate Systems
	Creating a CoordSys Object
	Changing the Coordinate System of a Geometry Object
	Determining the Coordinate System of a Map in MapControl
	Adding Coordinate Systems to MapXtreme

	17 – Working with Rasters and Grids
	Overview of the MapInfo.Raster Namespace
	Raster Images
	Raster Classes
	Raster Images and Coordinate Systems
	Raster Reprojection
	Raster Image Limitations
	Code Sample: Adding a Raster Image to a Map

	Raster Handlers
	Raster Handler Properties
	MRR - Multi Resolution Raster Format
	Benefits of MRR Technology
	Data Storage in MRR

	MRR support in MapXtreme
	Configuring Custom Raster Handlers
	Grid Images
	Grid Classes
	Code Sample: Adding a Grid Image to a Map
	Code Sample: Retrieving Data from a Grid Map

	Grid Creation
	Grid Interpolators
	Inverse Distance Weighted (IDW) Interpolator
	Triangulated Irregular Network (TIN) Interpolator
	IInterpolator Interface

	Grid Style
	Grid Images and Inflections
	Inflection Methods
	Calculating Inflection Values and Colors for a Grid Layer
	Relief Shading
	Grid Style Dialog
	GridInfoForm Sample Application

	18 – Working with Maps from Tile Servers
	Tile Server Images
	Tile Caching
	Map Behavior with a Tile Server Layer
	Using Tile Server Images
	QuadKey
	LevelRowColumn
	WMTS (Web Map Tile Service)
	Custom Resolution Tile Service

	Consuming Tile Layers via APIs (without .tab/.xml file)
	TileServerType Enumeration

	Sample Code Snippets
	Opening Tile Server via APIs
	Opening WMTS via APIs
	Opening Custom Tile Server via APIs

	Authentication to Tile Server
	Tile Server Settings
	License Key for Bing Maps
	Via the Web or Desktop Configuration File
	Via MapInfo.Engine.TileServerSettings Class
	Sample Code for TileServerSettings class

	Using TableInfoTileServer Class
	Tile Server Sample Application

	19 – Working with GeoPackage
	Overview
	Opening a GeoPackage file
	Opening a GeoPackage Tab file
	Enable GeoPackage as cache for RDB (SQL/Oracle) tables
	Create and Save GeoPackage file programmatically

	20 – Geocoding
	Overview of the MapInfo.Geocoding Namespace
	Main Geocoding Classes
	GeocodeRequest
	GeocodeResponse
	GeocodeClientFactory
	GeocodingConstraints
	AddressCandidates
	BaseGeocodeMatchCode and GeocodeMatchCode
	CandidateAddress

	Understanding the Geocoding Model
	Geocoding Trade-offs
	A Few Words About Addresses
	What are Custom User Dictionaries?
	What is World Geocoding?

	Geocoding a Location
	Street Address Geocoding
	Street Intersection Geocoding
	Postal Code Geocoding
	Gazetteer Type Geocoding
	Batch Geocoding

	Using Constraints for Accurate Geocoding
	What are the Match Constraints?
	Impact of Relaxing Match Constraints

	Understanding Accuracy for Close Matches
	Single Close Match (S Category)
	Best Match from Multiple Candidates (M Category)
	Postal Code Centroid Matches (Z Category)
	Geographic Centroid Matches (G category)
	Non-Match Codes

	21 – Routing
	Overview of MapInfo.Routing Namespace
	Main Routing Classes

	Calculating Routes
	Point-to-Point Routing
	Multi-Point Routing
	Matrix Routing

	Advanced Route Options
	Routing Preferences
	Driving Directions
	Route Geometry
	Avoiding Points, Features, and Segments
	Time-Based Routing

	Iso Routing (Drive-Time and Drive-Distance)
	Creating an IsoChrone (Drive-Time)
	Creating an IsoDistance (Drive-Distance)

	Updating a Request Using Routing Data
	Returning Segment Information
	Transient Updates

	22 – Linear Referencing
	What is Linear Referencing
	Using M values for Linear Referencing
	Measure Value Determination Methods
	Linear Referencing Operations
	Dynamic Segmentation Operation (PerpendicularOffset)

	Curve Order
	Linear Referencing Sample Application

	23 – Web Feature Service
	Web Feature Service
	Understanding WFS 1.0.0 Server Operations
	Configuring a WFS 1.0.0 Server
	Step 1: Create a Web.config File
	Step 2: Create a Valid WFS Configuration File for Hosted Features
	Step 3: Configuring and Testing the WFS Server

	Understanding WFS 2.0.0 Server Operations
	Configuring a WFS 2.0.0 Server
	Step 1: Create a Web.config File
	Step 2: Create a Valid WFS Configuration File for Hosted Features
	Step 3: Configuring and Testing the WFS 2.0.0 Server

	Using the MapXtreme WFS Client Programmatically
	Using Filters in WFS Queries

	Creating a Map Layer from a WFS Response

	24 – Web Map Service
	Introduction to MapXtreme’s Web Map Service
	Understanding WMS Operations
	Using MapXtreme as a WMS Client

	Code Example: Requesting a WMS Layer
	WMS and Coordinate Systems
	Map and Image Bounds

	MapXtreme WMS and Authentication
	Basic Authentication

	Setting up a MapXtreme WMS Server
	Step 1: Create a Web.config File
	Step 2: Create a Valid WMS Configuration File for Hosted Data
	Step 3a: Configure and Test the WMS Server using IIS 7/8.5/10
	Step 3b: Configure and Test the WMS Server with IIS7/8.5/10

	Configuring Layer Information for a WMS Server

	25 – Vector Tile Service
	Introduction to Vector Tiles
	MapXtreme Vector Tile Service
	Setting up a MapXtreme Vector Tile Server
	Configure a Vector Tile Server
	Step 1: Create a Web.config File
	Step 2: Create a Valid Vector Tile Service Configuration File for Hosted Data
	Step 3: Configure a Vector Tile Server using IIS 7/8.5/10
	Step 4: Testing the Vector Tile Server

	Configuring Server Metadata Parameters

	26 – Web Map Tile Service
	WMTS support in MapXtreme
	WmtsClient Class

	27 – Workspace Manager
	Features of the Workspace Manager
	Workspace Format and Contents
	Workspace Manager Menu Commands
	File Menu Commands
	View Menu Commands
	Map Menu Commands
	Tools Menu Commands
	Extensions Menu Commands

	Layer Control
	Layer Control Tools
	Layer Tree
	Layer Control Tabs
	Map Settings
	Layer Settings
	Theme Layer Settings
	Label Layer Settings
	Group Layer Settings
	Style Override Settings
	Graticule Layer Settings

	Export/Import Theme and Style
	Using Workspace Manager Features
	Enhanced Rendering with GDI+ Translucency and Anti-Aliasing
	Creating Translucent Effects
	Curved Labels
	Graticule Layers

	28 – Using the GeoDictionary Manager
	Using the GeoDictionary Manager
	Changes in the GeoDictionary Manager
	The GeoDictionary Manager’s User Interface
	Run GeoDictionary Manager

	The GeoDictionary File
	Sample .dct file

	29 – Location Intelligence API Integration in MapXtreme
	Overview
	MapXtreme LIAPI Integration
	Token Management
	Geometry Conversion
	Sample Application

	A – How to Create and Deploy a MapXtreme Application
	Customizing MapXtreme Samples
	Building a Desktop Application
	Modifying Your Application
	Building Under Release Mode
	Packaging Your Desktop Application
	Deploying Your Desktop Application

	Building a Web Application
	Running a Sample Web Application
	Modifying Your Application
	State Management Considerations
	Configuring for Release Mode
	Packaging Your Web Application
	Deploying Your Web Application

	B – Customizing MapXtreme
	Customizable Classes
	MapInfo.Data.Provider Namespace
	ADO.NET
	Engine.CustomProperties
	Search
	FeatureStyleModifier or FeatureOverrideStyleModifier
	UserDrawLayer
	Windows.Controls
	Tools
	Styles
	GmlFeatureCollection
	WorkSpacePersistence and WorkSpaceLoader

	Workspace Manager Extensions
	Creating a Workspace Extension
	Loading Your Extension
	Unloading Your Extension
	Sample Extension

	Location of Application Data Files
	Find Abbreviation File

	C – Understanding the MapInfo Workspace
	What is the MapInfo Workspace?
	Structure of a Workspace
	Header Section
	Connection Section
	DataSource Definition Section
	Map Definition Section

	Creating an .MWS Workspace Programmatically from a .GST
	Partial Workspace Loading:
	Enable Partial Loading Programmatically
	Enable Partial Loading through User Interface

	D – Extensible Data Providers
	Introduction
	Extensible Data Provider Overview
	Getting Started
	Required Components
	Optional Building Blocks: Base Classes, Helpers and Utilities
	Sample: COTW (Center of the World) Data Provider
	Optional Interfaces
	IDataSource
	IDataSourceDefinition
	ITableModifyProcessor

	Building and Testing Your Data Provider
	Data Provider
	SpatiaLite Sample Data Provider
	GeoJSON Data Provider

	Advanced Topics / Important Considerations
	Creating Geometries
	Coordinate Systems
	Styles
	Exception Handling
	Persistence Providers
	Serialization
	Authentication
	Thread safety

	E – Printing From MapXtreme Applications
	Overview
	Understanding the Print Options in MapXtreme
	Printing Sizes
	Special Transparent Raster Handling
	Special Transparent Vector Handling
	Display Raster in True Color When Possible
	GDI+ Translucency and Anti-Aliasing
	Dither Method
	Special Polygon Hole Handling
	Scale Patterns
	Print Directly to Device
	Print Using Enhanced Metafile (EMF)

	Implementing Printing in Your Application
	General Printing Tips and Tricks
	Printing a Legend in Your Map

	Resolutions to Known Printing Issues
	Platform Independent Issues
	Platform-Specific Issues

	F – Style Lookups
	Fill Patterns
	Understanding the Index Numbering Schemes

	Line Styles
	Vector Symbols
	MapInfo Arrows
	MapInfo Cartographic
	MapInfo Miscellaneous
	MapInfo Oil &Gas
	MapInfo Shields
	MapInfo Real Estate
	Map Symbols
	MapInfo Symbols
	MapInfo Transportation
	MapInfo Weather

	Custom Symbols
	MapXtreme Icons

	G – Defining the MapInfo Codespace
	Defining the MapInfo Codespace

	H – Elements of a Coordinate System
	Projections and Their Parameters
	Projection

	Projection Datums
	Units
	Coordinate System Origin

	Datum Conversion
	Custom Datums
	Defining Custom Datums

	National Transformation v. 2 (NTv2)
	Information on Coordinate Systems and Projections

	I – User-Defined Metadata
	Metadata and the MapCatalog
	User-Defined Metadata Support for TableInfoServer Queries
	ColumnHints Property

	J – Migrating to MapXtreme
	Comparing MapXtreme’s Object Model to MapX
	Specific Object Model Implementation Differences

	K – Localization Kit
	Localization Kit
	System Requirement

	How to Use the Localization Kit
	Building the Satellite Assemblies
	Building from the Command Line

	Private Key Signing for Satellite Assemblies

	L – Log Files in MapXtreme
	Logging in MapXtreme
	Logging Configuration Options
	Log File Directory and Structure

	Glossary
	Terms

