pitney bowes

Spectrum Technology Platform
Version 12.0 5P2

AP| Guide

Table of Contents

Service 127
. Message 128
DataRow 139
General Steps for Using the API 5
How Data is Passed to a Service 6
Micro-Batch Processing 8 5-The .NET AP
Supported Compilers 10
Third-Party Libraries 10 Introduction 147
Network Protocols and Ports 11 Server 151
Using the Sample Applications 11 Service 153
Using HTTPS 12 Message 154
Increasing the Timeout Value 12 EnhancedDataTable 161
2 - The CAPI 6 - ManagementAPI Methods
(Deprecated)
Introduction to the C API 14
Server 29 .
) Introduction 165
Service 33)
Messaqe 34 GetLicenselnfo 165
¢ GetVersionlnfo 166
DataTable 48
DataRow 56
7/ - Module Services
3 -The C++ API
Enterprise Geocoding Module 169
Ent ise Tax Modul 367
Introduction to the C++ API 70 n erpnsTe ax Woctlle
GeoConfidence Module 511
Server 83 . .
) Universal Addressing Module 514
Service 87 .
Universal Name Module 701
Message 88
DataTable 98
DataRow 105 8 - About Spectrum

Technology Platform

4 - The Java API

What Is Spectrum™ Technology Platform? 713
Introduction 117 Enterprise Data Management Architecture 714
Server 121 Spectrum™ Technology Platform Architecture 718

Modules and Components 723

Chapter : Appendix

Appendix A:
ISO Country Codes and Module Support 728

Spectrum™ Technology Platform 12.0 SP2 API Guide

1 - Getting Started

In this section

General Steps for Using the API
How Data is Passed to a Service
Micro-Batch Processing
Supported Compilers
Third-Party Libraries

Network Protocols and Ports
Using the Sample Applications
Using HTTPS

Increasing the Timeout Value

10
10
11
11
12
12

Getting Started

General Steps for Using the API

The basic steps for using the Spectrum™ Technology Platform API are:

Create a Server instance.

Set connection properties (connection type, host, port, etc.).
Connect to the Server.

Create a DataTable.

Add records to the DataTable.

Create a request message.

Set DataTable on the request message.

Get a service.

© 0N R WN =

Send the request message to the Server.

—_
o

. Process the response message.

—_—
—

. Disconnect from the Server.

Spectrum™ Technology Platform 12.0 SP2 API Guide 5

Client Application

Steps for Using the Client API

1. Create a Server
2. Set connection properties.,

3. Connect to the Server

Getting Started

4. Create a DataTable.

5. Add DataRows to the
DataTable.

6. Create request message.

7. Set DataTable on the request
message.

8. Get a service,

9. Send the request message to
the server.

10. Process the response
message.

11 Disconnect from the server.]

How Data is Passed to a Service

Server

The following diagram illustrates how data is passed to a service through the API:

Spectrum™ Technology Platform 12.0 SP2

API Guide

Getting Started

—Message

Option 1
Option 2
Option 3

DataTable————— Reqguest
DataRow 1 ™
DataRow 2
DataRow 3
DataRow 4

rServer

ervice

—Message

rDataTable

DataRow 1
Record-Level Qualifier Response
Field-Level Data -
Field-Level Qualifier

DataRow 2
Record-Level Qualifier
Field-Level Data
Field-Level Qualifier

|dV Jual|D

Message

Use the Message component to send your input data to the Spectrum™ Technology Platform service
and receive output data from the service.

You can also use the Message component to override a service's default processing options. The
default options for a service are set in Management Console. For example, the service
ValidateAddress is capable of producing output in either mixed case or upper case. Let's say that
in most instances, you need upper case output. However, one of your applications requires output
in mixed case. In this situation, you would set the default for casing in the ValidateAddress service
to upper case and override the default casing setting for that single application using the API. For
those requests that should be handled according to the defaults you have specified, it is not necessary
to provide any input options in your request.

The properties for Message include context properties, such as account ID, account password,
service name, and service method; option properties, which are the service-specific runtime options;
and error properties, which are the error class, error message, and error stacktrace.

Spectrum™ Technology Platform 12.0 SP2 API Guide 7

Getting Started

DataTable

The DataTable component contains the records for your input and output data. Using the methods
associated with this class, you define the column names for your output and add records to the data
set. The Reset and Next methods are used to iterate over the results that are returned in a response
from the server.

DataRow

The DataRow contains schema information and a list of data rows. Individual records reside in rows
of data. For each output data row there are record-level qualifiers, field-level data, and field-level
qualifiers.

Record-level qualifiers describe the processing of the record. Record-level qualifiers include status
of the request (Success, Failure, or Error) and confidence in the accuracy of the output record.

Field-level data contains the validated, standardized, or enhanced record.

Field-level qualifiers include additional data about a given field. For example, the type of a Private
Mailbox according to USPS categorization is a field-level qualifier.

Server

The Server component represents the Spectrum™ Technology Platform server. Using a Server
component, you connect, disconnect, or access a specific service from the server.

Service

The Service component is used to process the message you're sending (i.e., send the input message
and get back the response). The Service component has just one method: Process message.

Micro-Batch Processing

Micro-batch processing is a technique where you include more than one record in a single service
request. By including multiple records in a request instead of issuing separate requests for each
record, you can significantly improve performance when processing a large collection of records
through a service. Spectrum™ Technology Platform supports micro-batch processing for REST and
SOAP web services as well for the Client SDK.

Micro-Batch Size

There is no limit to the number of records you can include in a request, but in general you will see
the best performance when sending between 50 and 100 records in a micro-batch. We recommend
that you test micro-batches of various sizes to determine the optimal micro-batch size for your
environment. Keep in mind that in some cases you may get multiple records in the response for
each input record. For example, if you are performing address validation and include 10 addresses

Spectrum™ Technology Platform 12.0 SP2 API Guide 8

Getting Started

in the micro-batch, and each address matches to two possible validated addresses, you would get
20 records in the response, not just 10.

Use caution when using both micro-batches and multiple threads for requests to Spectrum™
Technology Platform. Multiple threads can overwhelm the system if each thread's micro-batch size
is too large.

Using a Record ID

You may find it helpful to assign an ID to each record in a micro-batch so that you can correlate the
records in the request with the records returned in the response. Use user fields to do this.

Micro-Batch Processing in the Client API

To perform micro-batch processing in an API request to a service, send multiple data rows in the
request. For example, this .NET class sends two rows in the request:

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Ling;

using System.Net;

using System.Text;

using ConsoleApplicationl.ValidateAddress Reference;

namespace Test

{
class Program
{
static void Main(string[] args)
{
var validateClient = new ValidateAddress {Credentials = new
NetworkCredential ("admin", "admin") };

var addressl = new input portAddress

{
AddressLinel = "1825B Kramer Lane",
AddressLine2 = "Suite 100",
PostalCode = "78758",
City = "Austin",
StateProvince = "Texas"

}i

var address2 = new input portAddress

{
AddressLinel = "100 Congress",
PostalCode = "78701",
City = "Austin",
StateProvince = "Texas"

i

var addresses = new input portAddress([2];

Spectrum™ Technology Platform 12.0 SP2 API Guide 9

addresses[0]
addresses[1l] =

var options =

for (int 1 = 0;

{

System.Console

System.Console.

results[i] .AddressLinel) ;
System.Console
System.Console

new options {OutputCasing =

output portAddress|]
validateClient.CallValidateAddress (options,
i < results.Length;

.WritelLine ("Record " +

Getting Started

= addressl;
address2;

OutputCasing.M};
results =
addresses) ;

i++)

(i+1) + "

WritelLine ("AddressLinel=" +

2T

.WriteLine ("City=" + results[i].City);
.WritelLine ("StateProvince=" +

results[i].StateProvince);
System.Console
results[i] .PostalCode + "\n");

}

.WritelLine ("PostalCode=" +

System.Console.Write ("Press any key to continue...");
System.Console.ReadKey () ;

}

Tip: Do not disconnect between requests. Disconnecting and connecting can reduce performance.

Supported Compilers

The Spectrum™ Technology Platform Client SDK is supported with the following compiler and
runtime minimum versions.

Java
Client SDK Package Directory: clientSDK/platforms/java
Client SDK requires the Java JDK, version 1.4 or higher. This is not installed with the Client SDK.

Third-Party Libraries

The Spectrum™ Technology Platform API uses the following third-party libraries.

» Apache Commons Pool 1.6

Spectrum™ Technology Platform 12.0 SP2 API Guide 10

Getting Started

* ICU 3.2.0

+ Jakarta Commons HttpClient 3.1
* OpenSSL 1.0.2n

* OpenTop 1.5.3

+ POCO 1.3

Network Protocols and Ports

The API communicates with the Spectrum™ Technology Platform server using HTTP, HTTPS, or
SOCKET. Spectrum™ Technology Platform typically uses port 8080 to listen for HTTP requests and
port 443 for HTTPS requests. HTTP and HTTPS features are also supported in the C, C++, COM,
Java, and .NET APIs. .NET, Java, and COM APIs support Unicode; C and C++ APIs support both
ASCII and Unicode.

In addition to HTTP, Spectrum™ Technology Platform supports a persistent SOCKET connection.
The high-speed SOCKET connection provides much faster performance than traditional HTTP.
Spectrum™ Technology Platform typically uses port 10119 to listen for SOCKET requests.

Using the Sample Applications

The Client SDK includes sample applications for all supported languages. The sample applications
call a sample service on the Spectrum™ Technology Platform server which changes the casing of
the input data to either upper case or lower case.

1. Copy the casing-<version>.car file from ClientAPI\common\1ib to the
server\app\deploy folder on the Spectrum™ Technology Platform server.

The casing service used by the sample applications is now deployed on your Spectrum™
Technology Platform server.

2. IntheClientAPI\platforms folder, find the samples subfolder for your platform and open
the readme. txt file for further instructions on using the sample applications.

Note: You can modify the sample application to use one of the services you have licensed,
and recompile the sample to run.

Spectrum™ Technology Platform 12.0 SP2 API Guide 1

Getting Started

Using HTTPS

This procedure describes how to use HTTPS communication between your application and the
Spectrum™ Technology Platform server.

1. Specify the root CA that will be used for communication between your application and the
Spectrum™ Technology Platform server by doing one of the following:

* If you do not know which root CA will be used:

Copy the file ca-bundle.pem to your working directory. For C/C++ and COM, and ASP, the
.pem file is located in the following folder in the location where you installed the Client SDK:

Spectrum Client
SDK\ClientAPTI\platforms\windows\c-c++\<64>\<version>\1lib\openssl

For ASP, some examples of a working folder are:

* If you use Internet Information Services to run ASP, copy ca-bundle.pem to the Windows
system directory (for example, C:\Windows\system64).

* If you use Internet Explorer to run ASP, copy ca-bundle.pem to the Internet Explorer
default working directory (for example, C: \Documents and Settings\<user>\Desktop).

* If you know which root CA will be used: Specify the root CA certificate in your CA bundle file.

2. In your application, when you connect to the server set the connection type to HTTPS.

Increasing the Timeout Value

If you experience timeouts between the client and server, you can increase the timeout value for
the client.

* Use the setConnectionProperty method to set the timeout value.

Spectrum™ Technology Platform 12.0 SP2 API Guide

12

2 - The C AP]

In this section

Introduction to the C API
Server

Service

Message

DataTable

DataRow

14
29
33
34
48
56

The C API

Introduction to the C API

The C API consists of the following structures:

» Server
 Service

» Message
DataTable
» DataRow

Note: The C APl is a C wrapper around the C++ code. On Unix you can use a C++ compiler
to build your C application, which is the preferred approach. However, a C compiler can also
be used directly on Linux, and Solaris. On HP-UX and AlX, you need to link all the C++
required libs when you use the C compiler. To do this, run 1dd . /batch under
..../samples/batch/bin/ to get the list of all dependent libs and put them in the link
section of your makefile.

Supported Libraries

Spectrum™ Technology Platform provides an ASCII and Unicode version C API, while the Unicode
version remains as compatible as possible with the original ASCll-version API design. Spectrum™
Technology Platform applies International Components for Unicode (ICU) in the API to support the
Unicode feature. ICU is a mature, widely used set of C/C++ libraries for Unicode support and is
developed by IBM.

The Unicode standard defines a default encoding based on 16-bit code units. This is supported in
ICU by the definition of the UChar to be an unsigned 16-bit integer type (unsigned short *). This is
the base type for character arrays for strings in ICU. Spectrum™ Technology Platform uses UChar
as the Unicode string representation in our C API.

Note: Not all services support the full Unicode character set. For example, the ValidateAddress
service supports the ISO 8859-1 character set for US input and international input and output,
and the CP 850 character set for Canadian input and output. However, the Unicode libraries
should be used whenever your input data may contain any non-ASCII character, even if the
underlying service does not support the full Unicode character set.

For detailed information about UChar, please refer to the following two sites:

* icu.sourceforge.net/userguide
+ www.ibm.com/software/globalization/icu

Spectrum™ Technology Platform 12.0 SP2 API Guide

14

http://icu.sourceforge.net/userguide
http://www.ibm.com/software/globalization/icu

The C API

C Libraries Supported on Windows

Each API configuration produces library files with a common base name (g1client) but with a unique
suffix and possibly prefix ("lib" in the case of static libraries). The library suffixes work like this:

<lib>glclient<S><U><D>.<1lib|dl1l>

* lib—indicates a static library.

* dll—indicates a dynamic (shared) library.

+ S—indicates a single-threaded build. If this is absent it indicates a multi-threaded build.
» U—indicates a UNICODE version build. If this is absent it indicates an ASCII build.

+ D—indicates a debug build. If this suffix is absent it indicates an optimized release build.

To enable the UNICODE version, the LIB_UNICODE macro definition must be in your project.

To use the static C/C++ API library UNICODE version, you need to define
U_STATIC _IMPLEMENTATION in your project.

To use the dynamic version, you need to define G1CLIENT_DLL in your project.

We also provide a file called "auto_link.h" in the header file directory and it automatically links to all
the corresponding libraries according to the project settings.

To call 64-bit libraries in Windows, you need to define VER_64 in your project.

Static Library

Table 1: Single Threaded/Release

ASCII Unicode
g1 libg1client_S.lib libg1client_SU.lib
openssl otlibeay64.lib otlibssl64.lib otlibeay64.lib otlibssl64.lib
opentop opentop.lib opentopw.lib
icu libicuuc.lib libicudt.lib libicuin.lib
libicuio.lib
Poco PocoXML64.lib PocoXML64w.lib

Spectrum™ Technology Platform 12.0 SP2 API Guide

15

Table 2: Single Threaded/Debug

The C API

ASCII Unicode
g1 libg1client_SD.lib libg1client_SUD.lib
openssl otlibeay64d.lib otlibssl64d.lib otlibeay64d.lib otlibssl64d.lib
opentop opentopd.lib opentopwd.lib
icu libicuucd.lib libicudtd.lib libicuind.lib
libicuiod.lib
Poco PocoXML64d.lib PocoXML64wd.lib

Table 3: Multi/Release (using Multi-Threaded CRT)

ASCII Unicode
g1 libg1client.lib libg1client_U.lib
openssl otlibeay64mt.lib otlibssl64mt.lib otlibeay64mt.lib otlibssl64mt.lib
opentop opentopmt.lib opentopmtw.lib
icu libicuucmt.lib libicudtmt.lib libicuinmt.lib
libicuiomt.lib
Poco PocoXMLmt64.lib PocoXML64mtw.lib

Spectrum™ Technology Platform 12.0 SP2 API Guide

16

Table 4: Multi/Debug (using Multi-Threaded CRT)

The C API

ASCII Unicode
g1 libg1client_D.lib libg1client_UD.lib
openssl| otlibeay64mtd.lib otlibssl64mtd.lib otlibeay64mtd.lib otlibssl64mtd.lib
opentop opentopmtd.lib opentopmtwd.lib
icu libicuucmtd.lib libicudtmtd.lib
libicuinmtd.lib libicuiomtd.lib
Poco PocoXMLmt64d.lib PocoXML64mtwd.lib

Dynamic Library

Table 5: Multi/Release (using Multi-Threaded CRT)

ASCII Unicode
g1 giclient.dll giclient_U.dll
openssl otlibeay64mts.dll otlibssl64mts.dll otlibeay64mts.dll otlibssl64mts.dll
opentop opentopmts.dli opentopmtws.dll
icu icuuc64.dll icuio64.dll icuin64.dll

icudt64.dll
Poco PocoXML64mts.dll PocoXML64mtws.dll
Spectrum™ Technology Platform 12.0 SP2 API Guide 17

Table 6: Multi/Debug (using Multi-Threaded CRT)

The C API

ASCII Unicode
g1 giclient_D.dll g1client_UD.dll
openssl otlibeay64mtds.dll otlibssl64mtds.dll otlibeay64mtds.dll otlibssl64mtds.dll
opentop opentopmtds.dll opentopmtwds.dll
icu icuuc64d.dll icuio64d.dll icuin64d.dll
icudt64d.dll
Poco PocoXML64mtds.dll PocoXML64mtwds.dll

C Libraries Supported on Unix

Each ClientSDK configuration produces library files with a common base name (libg1client) but
with a unique suffix. Spectrum™ Technology Platform provides a multithread and release build for

ASCI| version and UNICODE version.

The library suffixes work like this:-

libglclient<U>.<so]|sl|a>

Where U indicates a UNICODE version build. If this is absent it indicates an ASCII build.
To use the UNICODE version, you need to define LIB_UNICODE in your project.

In UNICODE Version C++ API, the namespace for all classes is g1iclient.

Table 7: AIX
ASCII Unicode
g1 libg1client.so libg1client_U.so
openssl libcrypto.so libssl.so libcrypto.so libssl.so

Spectrum™ Technology Platform 12.0 SP2

API Guide

18

The C API

ASCII Unicode
opentop libopentop-xICmt.so libopentop-xICmtw.so
libotxml-xICmtw.so
icu libicudata34.a libicui18n34.a
libicuio34.a libicuuc34.a
Poco libPocoXML.so
Table 8: HP-UX RISC
ASCII Unicode
g1 libg1client.sl libg1client_U.sl
openssl libcrypto.sl libssl.sl libcrypto.sl.0.9.7 libcrypto.sl libssl.sl libcrypto.sl.0.9.7
libssl.sl.0.9.7 libssl.sl.0.9.7
opentop libopentop-accmt.sl libopentop-accmtw.sl libotxml-accmtw.sl
icu libicudata.sl libicudata.sl.34 libicui18n.sl
libicui18n.sl.34 libicuio.sl libicuio.sl.34
libicuuc.sl libicuuc.sl.34
Poco libPocoXML.sl
Table 9: HP-UX Itanium
ASCII Unicode
g1 libg1client.sl libg1client_U.sl
Spectrum™ Technology Platform 12.0 SP2 API Guide 19

The C API

ASCII Unicode
openssl libcrypto.a libssl.a libcrypto.a
libssl.a
opentop libopentop-accmt.sl libopentop-accmtw.sl libotxml-accmtw.sl
icu libicudata.sl libicudata.sl.34
libicudata.sl.34.0 libicui18n.sl
libicui18n.sl.34 libicui18n.sl.34.0
libicuio.sl libicuio.sl.34 libicuio.sl.34.0
libicuuc.sl libicuuc.sl.34 libicuuc.sl.34.0
Poco libPocoXML.sl
Table 10: Linux
ASCII Unicode
g1 libg1client.so libgiclient_U.so
openssl libcrypto.so libcrypto.so.0.9.7 libssl.so libcrypto.so libcrypto.so0.0.9.7 libssl.so
libssl.s0.0.9.7 libssl.s0.0.9.7
opentop libopentop-gcecmt.so libopentop-gccmtw.so
libotxml-gccmtw.so
icu libicudata.so libicudata.so.34
libicui18n.so libicui18n.s0.34 libicuio.so
libicuio.s0.34 libicuuc.so libicuuc.s0.34
Poco libPocoXML.so
Spectrum™ Technology Platform 12.0 SP2 API Guide 20

The C API

Table 11: Solaris SPARC

ASCII Unicode

g1 libg1client.so libg1client_U.so

openssl libcrypto.so libcrypto.so.0.9.7 libssl.so libcrypto.so libcrypto.s0.0.9.7 libssl.so
libssl.s0.0.9.7 libssl.s0.0.9.7

opentop libopentop-fortemt.so libopentop-fortemtw.so

libotxml-fortemtw.so

icu libicudata.so libicudata.so.34
libicui18n.so libicui18n.s0.34 libicuio.so
libicuio.s0.34 libicuuc.so libicuuc.s0.34

Poco libPocoXML.so

Constants

The C API uses two sets of constants. The first set is for the Server component, described in the
table below.

Table 12: Constants for the Server Component

Constant Name Description/Default Example
SERVER_HOST String for server host name. Default is 65.89.200.89
"localhost".
SERVER_PORT String for server port. Default is "8080". 10119
SERVER_ACCOUNT_ID String for server account ID. No default user1
value.

Spectrum™ Technology Platform 12.0 SP2 API Guide 21

Constant Name

Description/Default Example

The C API

SERVER_ACCOUNT_PASSWORD

String for server account password. No user1

default value.

SERVER_CONNECTION_TIMEQOUT

String for server connection timeout, in 50000
milliseconds. Default is "5000".

SERVER_CONNECTION_TYPE

String for server connection type. HTTP(S)
Currently only supports HTTP, HTTPS,
or SOCKET. Default is "HTTP".

SERVER_PROXY_HOST

String for proxy server host name. No

default value.

192.168.1.77

SERVER_PROXY_PORT

String for proxy server port. No default 8080

value.

SERVER_PROXY_USER

String for proxy server account ID. No user1

default value.

SERVER_PROXY_PASSWORD

String for proxy server account user1
password. No default value.

The second set of constants is for the Message component.

Table 13: Constants for the Message Component

Constant Name Description Example

MESSAGE_CONTEXT_ACCOUNT_ID String for message context user1
account ID.

MESSAGE_CONTEXT_ACCOUNT_PASSWORD String for message context user1

account password.

Spectrum™ Technology Platform 12.0 SP2

API Guide

22

The C API

Constant Name Description Example

MESSAGE_CONTEXT_SERVICE_NAME String for message context echoservice
service name.

Error Messages

Some functions return a SUCCESSFUL_RETURN or 0 (zero) value if they are successful. If it is
not successful, the function returns an error code. In order to retrieve error messages, call
getErrorMessage(int errorCode). For example:

Server *server = NULL;

int nRet;

//Create Server

server = createServer();

//set the property to the server

//Connect to server

printf ("Making connection to the server...\n");
nRet = serverConnect (server) ;
if (nRet != SUCCESSFUL_RETURN)

{

// ASCII Version-use the following code

printf (getErrorMessage (nRet)) ;

//Unicode Version -use the following code

UChar * error = getErrorMessage (nRet)) ;

// more code to print out the error messageA...
return ;

}

The C API uses the following error messages.
» Error messages for passing a null structure:

* "Input null DataRow"
* "Input null DataTable"
* "Input null Message"
* "Input null Server"

» Error messages for connections:

» "Connection type not supported"

* "Client timeout"

 "Blank connection property name"
» "Blank property name"

Spectrum™ Technology Platform 12.0 SP2 API Guide 23

» Error messages for creating DataTable:

* "Blank column name"
* "Duplicated column name"

The C API

 Error messages for MessagePackaging Exception:

* "Input Message is null"

* "Failed to connect to Server"

+ "Failed to disconnect from Server"
» "Failed to open Http Connection"
 "Failed to get Service"

+ "Failed to package the message using Serializer and Encoding"

Example Application

The sample code shown below illustrates how to use the ASCII version C API.

// Declarations

Server *server = NULL;
Message *request = NULL;
DataTable *dataTable = NULL;
Message *reply = NULL;
Service *service = NULL;

int nRet;

DataRow *rowl = NULL;
DataRow *row2 = NULL;
DataTable *returnDataTable= NULL;
char** columnNames;
DataRow** rows;
DataRow*dataRow;

int 1i;

int j;

char* value;

//Create Server
server = createServer();

//Set server connection properties

nRet = setConnectionProperty (server,
nRet = setConnectionProperty (server,
nRet = setConnectionProperty (server,
nRet = setConnectionProperty(server,
nRet = setConnectionProperty (server,

//Connect to server
nRet = serverConnect (server) ;

SERVER HOST, "localhost");
SERVER_PORT, "10119 ") ;
SERVER CONNECTION TYPE, "SOCKET") ;

SERVER ACCOUNT ID, "guest");
SERVER ACCOUNT PASSWORD,"") ;

Spectrum™ Technology Platform 12.0 SP2 API Guide

24

The C API

if (nRet != SUCCESSFUL RETURN)

{

printf (getErrorMessage (nRet)) ;
// free memory

if (server)

nRet = deleteServer (server) ;
return ;

}

//Get Service From Server
service = getServiceFromServer (server, "ValidateAddress");

//Create Input Message
request = createMessage () ;

//Fill DataTable in the input message

dataTable = getDataTable (request) ;

nRet= addColumn (dataTable, "AddressLinel", &nRet);
nRet= addColumn (dataTable, "City", &nRet);

nRet= addColumn (dataTable, "StateProvince", &nRet);

rowl = newRow(dataTable);

setByIndex (rowl, 0 , "4200 Parliament Place");
setByIndex (rowl, 1 ,"Lanham");

setByIndex (rowl, 2 , "Maryland");

addRow (dataTable, rowl);

row2 = newRow(dataTable);

setByIndex (row2, O , "10535 Boyer Blvd");
setByIndex (row2, 1 ,"Austin");

setByIndex (row2, 2 , "Texas");

addRow (dataTable, row2);

//Set"option" Properties to the Input Message
nRet = putOption (request, "OutputCasing™,"M");
nRet = putOption (request, "OutputRecordType","A");

//Process Input Message, return output Message
nRet = processMessage (service, request, &reply);
if (nRet != SUCCESSFUL RETURN)

{

printf ("Error Occurred, ");

printf (getErrorMessage (nRet)) ;

// free memory

if (request)

nRet = deleteMessage (request) ;
if (reply)

nRet = deleteMessage (reply)
if (server)

nRet = deleteServer (server);

Spectrum™ Technology Platform 12.0 SP2 API Guide 25

The C API

return ;

}

//Disconnect from server
nRet = serverDisconnect (server) ;

//Get the result from the response message
returnDataTable = getDataTable (reply);
columnNames = getColumnNames (returnDataTable) ;

rows = getDataRows (returnDataTable) ;

for(i=0; i < getRowCount (returnDataTable); i++)

{

dataRow = rows[i];

for(j=0; j < getColumnCount (returnDataTable); j++)
{

value = (char*)getByIndex(dataRow, 7J);

printf (value) ;

printf ("\n");

}

}

//Free Memory

if (request)

nRet = deleteMessage (request) ;
if (reply)

nRet = deleteMessage (reply)
if (server)

nRet = deleteServer (server);

}

The sample code shown below illustrates how to use the Unicode version C API. The string here
is represented by UChar*(or unsigned short*), which is 16-bit type to represent the Unicode string
.ICU provides a function called u_charsToUChars, which converts 8-bit string to 16-bit string. The
example here shows how to call Unicode version C API. The input string are all ASCII, so that we
use u_charsToUChars to convert to 16-bit string. You could also construct Unicode string to directly
pass in C API.

UChar* convertcharToUChar (char* name, UChar* wvalue)
{
int lenName= strlen (name) ;
u charsToUChars (name, value, lenName);
value[lenName]=0;
return value;

}

// Declarations

Spectrum™ Technology Platform 12.0 SP2 API Guide 26

The C API

Server *server = NULL;
Message *request = NULL;
DataTable *dataTable = NULL;
DataTable *returnDataTable= NULL;
Message *reply = NULL;
Service *service = NULL;

int nRet;

DataRow* newDataRow;

UChar name[128];

UChar value[128];

UChar** columnNames;
DataRow** rows;

DataRow* dataRow;

int i, Jj;

UChar* columnValue;

UChar* errorMsg;

//Create Server
server = createServer():;

//Set server connection properties
setConnectionProperty (server, convertcharToUChar (SERVER HOST, name)

, convertcharToUChar("localhost", wvalue));
setConnectionProperty (server, convertcharToUChar (SERVER PORT, name)
, convertcharToUChar("10119", wvalue)):;

setConnectionProperty (server, convertcharToUChar (
SERVER CONNECTION TYPE, name) , convertcharToUChar ("SOCKET", value));

setConnectionProperty (server, convertcharToUChar (SERVER ACCOUNT ID,
name) , convertcharToUChar ("guest", value)):; B B
setConnectionProperty (server, convertcharToUChar (
SERVER ACCOUNT PASSWORD, name) , convertcharToUChar("", value));

//Connect to server

nRet = serverConnect (server) ;

if (nRet != SUCCESSFUL RETURN)

{

// error handling

errorMsg = getErrorMessage (nRet) ;
// free memory

if (server)

nRet = deleteServer (server);
return ;

}

//Get Service From Server
service = getServiceFromServer (server,convertcharToUChar (
"ValidateAddress", name)) ;

//Create Input Message
request = createMessage () ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 27

The C API

//F111l DataTable in the input message

dataTable = getDataTable (request);

addColumn (dataTable, convertcharToUChar ("AddressLinel", name),
&nRet) ;

addColumn (dataTable, convertcharToUChar ("City", name), &nRet) ;

addColumn (dataTable, convertcharToUChar ("PostalCode", name), &nRet);

addColumn (dataTable, convertcharToUChar ("StateProvince", name),
&nRet) ;

newDataRow = newRow(dataTable);

setByIndex (newDataRow, 0 , convertcharToUChar("74, Rue Octave
Bénard", name));

setByIndex (newDataRow, 1 , convertcharToUChar("Etang-Salé-les-
Bains", name));

setByIndex (newDataRow, convertcharToUChar ("97427", name));

setByIndex (newDataRow, 3 , convertcharToUChar("Reunion Island",
name));

N
~

addRow (dataTable, newDataRow) ;

//Set"option"™ Properties to the Input Message
nRet = putOption (request, convertcharToUChar ("OutputCasing", name),
convertcharToUChar ("M", wvalue));
nRet = putOption (request, convertcharToUChar ("OutputRecordType",
name), convertcharToUChar ("A", wvalue));

//Process Input Message, return output Message

nRet = processMessage (service, request, &reply);
if (nRet != SUCCESSFUL RETURN)

{

// error handling

errorMsg = getErrorMessage (nRet) ;

// free memory

if (request)

nRet = deleteMessage (request) ;

if (reply)

nRet = deleteMessage (reply) ;

if (server)

nRet = deleteServer (server);

return ;

}

//Disconnect from server
nRet = serverDisconnect (server) ;

//Get the result from the response message
returnDataTable = getDataTable (reply);
columnNames = getColumnNames (returnDataTable) ;
rows = getDataRows (dataTable) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide

28

for(1=0; 1 < getRowCount (dataTable);
{

dataRow = rows[i];

for (j=0; j < getColumnCount (dataTable) ;
{

columnValue = (UChar*)getByIndex(dataRow,

}
}

//Free Memory

if (request)

nRet = deleteMessage (request) ;
if (reply)

nRet = deleteMessage (reply) ;
if (server)

nRet = deleteServer (server);

Server

The server structure is used to connect to the server, disconnect from the server, and get the

service from the server.

CreateServer

Creates the server.

Syntax

Server* createServer ()

Parameters

None.

Result

The server is created.

Example

Server *server = NULL;
//Create Server
server = createServer();

The C API

Spectrum™ Technology Platform 12.0 SP2 API Guide

29

The C API

DeleteServer

Deletes the server.

Syntax

int deleteServer (Server* server)

Parameters

» Server— the server to be deleted.

Result
Returns 0 (if successful) or error code.
Example

int nRet;
nRet = deleteServer (server);

SetConnectionProperty

Establishes the server connection configuration properties, such as host name and length of timeout.

Syntax
ASCII Version

int setConnectionProperty (Server* server, const char* name, const char*
value)

Unicode Version

int setConnectionProperty (Server* server, const UChar* name, const UChar*
value)

Parameters

» Server — the server to which the client connects
* Name — the name of the connection property, such as HOST
» Value — the value for the name of the connection property, such as "www.myhost.com"

Spectrum™ Technology Platform 12.0 SP2 API Guide 30

The C API

Result

Returns 0 (if successful) or error code.

Example
ASCII Version

int nRet;

Server *server = NULL;

nRet = createServer (&server) ;

nRet = setConnectionProperty (server, SERVER HOST,
"localhost");

Unicode Version

int nRet;

// construct 16-bit string

UChar serverHost[32];

char* SERVER HOST= SERVER HOST;

u_charsToUChars (SERVER HOST, serverHost, strlen(SERVER HOST)) ;
serverHost [strlen (SERVER HOST)]=0;

// construct 16-bit string

UChar hostValue [32];

char* value= "localhost";

u_charsToUChars (value, hostValue, strlen(value));

hostValue|[strlen(value)]=0;

nRet = setConnectionProperty(server, serverHost , hostValue);
ServerConnect

Reads the properties to determine the configuration settings and makes a connection to the server.

Note: C usesthe HTTP, HTTPS, or SOCKET server connection protocol. HTTP and HTTPS
logically establish a client connection but do not actually connect to the server until a
GetService or Process method is invoked. The SOCKET protocol establishes a connection
to the server when Connect is invoked.

Syntax

int serverConnect (Server* server)

Parameters

« Server—the server to which the client connects

Spectrum™ Technology Platform 12.0 SP2 API Guide

31

The C API

Results

Returns 0 (if successful) or error code.

Example

int nRet;
nRet = serverConnect (server) ;

ServerDisconnect

Disconnects from the server.

Syntax

int serverDisconnect (Server* server)

Parameters

» Server—the server from which the client disconnects.

Results

Returns 0 (if successful) or error code.

Example

int nRet;
nRet = serverDisconnect (server) ;

GetServiceFromServer

Gets the service from the server.

Syntax
ASCIl Version

Service* getServiceFromServer (Server* server,const char* serviceName)

Spectrum™ Technology Platform 12.0 SP2 API Guide 32

The C API

Unicode Version

Service* getServiceFromServer (Server* server,const UChar* serviceName

)

Parameters

» Server - server from which the client connects
» ServiceName - the name of service the client requests

Results

Service returned.

Example
ASCII Version

Server *server= NULL;
Service *service = NULL;
//Create Server

server = createServer();

// get Service From Server
service = getServiceFromServer (server,"ValidateAddress");

Unicode Version

// construct 16-bit string

UChar serviceName[32];

char* sName="ValidateAddress";

u charsToUChars (sName, serviceName, strlen (sName));

serviceName [strlen (sName)]=0;
service = getServiceFromServer (server , serviceName) ;
Service

The service structure is used to process the message (in other words, it sends the message to
the server and receives a response from the server).

ProcessMessage

Processes the input message and retrieves the response message from the server.

Spectrum™ Technology Platform 12.0 SP2 API Guide 33

The C API

Note: You will need to call DeleteMessage () to free memory when this returned message
is no longer used.

Syntax

int processMessage (Service* service, Message* request, Message*
returnVal)

Parameters

» Service—the service the client requests.
* Request—the input message which contains the "option" setting and the dataset.
* returnVal—returns the response message from the server.

Results

Returns 0 (if successful) or error code.

Example

Message *request = NULL;
Message *reply = NULL;
int nRet;

// Assume that service is given here

// Create Input Message

request = createMessage () ;

more code to fill dataTable information in request message

//Process Input Message, return output Message
nRet = processMessage (service, request, &reply):;
if (nRet != SUCCESSFUL_ RETURN)

{

printf ("Error Occurred, ");

printf (getErrorMessage (nRet)) ;

return ;

}

if (request)

nRet = deleteMessage (request) ;

if (reply)

nRet = deleteMessage (reply) ;

Message

The Message structure sends your input data and receives your output data from the service. The
properties for Message include context properties, such as account ID, account password, service

Spectrum™ Technology Platform 12.0 SP2 API Guide 34

The C API

name, and service method; option properties, which are the service-specific runtime options; and
error properties, which are the error class, error message and error stacktrace.

CreateMessage

Creates a message.

Syntax

Message* createMessage ()

Parameters

None.

Results

The message created.

Example

Message* request = NULL;
request = createMessage () ;

DeleteMessage

Deletes the message.

Syntax

int deleteMessage (Message* message)

Parameters

» Message— the message to be deleted

Results

Returns 0 if successful or error code.

Example

int nRet = deleteMessage (message) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 35

The C API

GetContext

Gets the value of the context entity identified by the name in the context session of the message.
"Context" entities include the following constants: account ID, account password, service name,
and service method.

Syntax
ASCII Version

const char* getContext (Message* message,const char* name)
Unicode Version

const UChar * getContext (Message* message,const UChar* name)

Parameters

» Message - the message to which this function applies
* Name - the name whose associated value is to be returned

Result

Returns the value for the name in the context entity. If the name does not exist, the method returns
empty string.

Example

ASCII Version

const char* value = getContext (message, "account.id");
Unicode Version

UChar* wvalue;

// construct 16-bit string

UChar accountID[32];

char* account="account.id";

u_charsToUChars (account, accountID, strlen(account));

accountID[strlen (account)]=0;
value = getContext (message, accountID);
GetContextMap

Gets the Map that contains all of the context entries.

Spectrum™ Technology Platform 12.0 SP2 API Guide 36

The C API

Syntax
ASCII Version

MAP STRING**getContextMap (Message* message)
Where the MAP STRING is defined by

typedef struct map string{

char* key;

char* value;

}MAP STRING;

Unicode Version

MAP STRING**getContextMap (Message* message)
Where the MAP STRING is defined by

typedef struct map string{

UChar* key;

UChar* value;

}MAP STRING;

Parameters

* Message - the message to which this function applies

Results

Returns the array of MAP_STRING that contains all of the context entries.

Example
ASCII Version

int i;

char* name;

char* value;

MAP STRING** mapping;

mapping = getContextMap (message) ;

i=0;

while (mapping[i] != NULL)
{

name= mapping[i]->key;
value = mapping[i]->value;
kg

}
Unicode Version

int i;

UChar* name;

UChar* value;

MAP STRING** mapping;

mapping = getContextMap (message) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 37

The C API

i=0;

while (mapping[i] != NULL)
{

name= mapping[i]->key;
value = mapping[i]->value;
SIS

}

PutContext

Sets the value for the given name in the "context" properties. If there is an existing value present
for the entity identified by the name, it is replaced. Context properties include the following constants:
account ID, account password, service name, service key, and request ID.

Syntax

ASCII Version

int putContext (Message* message,const char* name,
const char* wvalue)

Unicode Version

int putContext (Message* message,const UChar* name,
const UChar* wvalue)

Parameters

* Message—message to which this function applies
* Name—name with which the specified value is to be associated
* Value—value to be associated with the specified name

Results

Returns 0 (if successful) or error code.

Example
ASCII Version
int nRet;

Message* message = createMessage () ;
nRet = putContext (message, "account.id", "userl") ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 38

Unicode Version

int nRet;

Message* message;

// construct 16-bit string

UChar accountID[32];

char* account="account.id";

UChar accountIDValue[32];

char* accountValue="userl";

u_charsToUChars (account, accountID, strlen(account));

accountID [strlen (account)]=0;

u_charsToUChars (accountValue, accountIDValue, strlen(accountValue));
accountIDValue [strlen (accountValue)]=0;

message = createMessage () ;

nRet = putContext (message, accountID, accountIDValue) ;

PutContextMap

Adds the new context properties to the current context properties.

Syntax

int putContextMap (Message* message, MAP STRING** context)

Parameters

» Message - the message to which this function applies
* The new context map to be added to the current context map.

Results

Returns 0 (if successful) or error code.

Example
ASCII Version

MAP STRING** mapping;
Message* message;

message = createMessage () ;

int nRet;

mapping = (MAP STRING **)malloc(3 * sizeof (MAP STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = "keyl"

mapping[0]->value = "valuel"

mapping[1l] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[1l]->key = "key2"

mapping[l]->value = "value2" ;

The C API

Spectrum™ Technology Platform 12.0 SP2 API Guide

39

The C API

mapping[2] = NULL;
nRet = putContextMap (message, mapping) ;

Unicode Version

MAP STRING** mapping;
Message* message;

int nRet;

UChar keyl([32];

char* keylString="keyl";
UChar valuel[32];

char* valuelString="valuel";

u charsToUChars (keylString, keyl, strlen(keylString)):;
keyl[strlen(keylString)]=0;
u charsToUChars (valuelString, valuel, strlen(valuelString));

valuel|[strlen(valuelString)]1=0;

message = createMessage () ;

mapping = (MAP_STRING **)malloc(2 * sizeof (MAP_STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = keyl;

mapping[0]->value = valuel ;

mapping[l] = NULL;

nRet = putContextMap (message, mapping) ;

SetContextMap

Overwrites the current context properties with the new context properties.

Syntax

int setContextMap (Message* message, MAP STRING** context)

Parameters

* Message - the message to which this function applies
* The new context map to be used to replace the current context map.

Results

Returns 0 (if successful) or error code.

Spectrum™ Technology Platform 12.0 SP2 API Guide 40

The C API

Example
ASCII Version

MAP STRING** mapping;
Message* message;

int nRet;

message = createMessage () ;

mapping = (MAP_STRING **)malloc(2 * sizeof (MAP_STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = "keyl"

mapping[0] ->value = "valuel"

mapping[1l] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[l]->key = "key2"

mapping[l]->value = "value2" ;

mapping[2] = NULL;

nRet=setContextMap (message, mapping) ;
Unicode Version

MAP STRING** mapping;

Message* message;

int nRet;

UChar keyl[32];

char* keylString="keyl";

UChar valuel[32];

char* valuelString="valuel";

u_charsToUChars (keylString, keyl, strlen(keylString)):;

keyl[strlen(keylString)]=0;

u charsToUChars (valuelString, valuel, strlen(valuelString)):;

valuel|[strlen(valuelString)]1=0;

message = createMessage () ;

mapping = (MAP_ STRING **)malloc (2 * sizeof (MAP_STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = keyl ;

mapping[0]->value = valuel ;

mapping[1l] = NULL;

nRet=setContextMap (message, mapping) ;

GetOption

Gets the value of the option entity identified by the name in the option session of the message.
"Options" entities include the service-specific runtime options, such as output casing, output data
format, and so on.

Spectrum™ Technology Platform 12.0 SP2 API Guide 41

The C API

Syntax
ASCII Version

const char* getOption (Message* message,const char* name)
Unicode Version

const Uchar* getOption (Message* message,const UChar* name)

Parameters

* Message - the message to which this function applies
* Name- the name whose associated value is to be returned

Results

Returns the value for the name in the "option" property in the message or an empty string if the
name does not exist.

Example
ASCII Version

const char* value = getOption (message, " OutputCasing");
Unicode Version

UChar* wvalue;

// construct 16-bit string

UChar option[32];

char* optionValue="OutputCasing";

u_charsToUChars (optionValue, option, strlen(optionValue));

option [strlen (optionValue)]=0;
value = getOption (message, option);
GetOptions

Gets the map that contains all of the option entries.

Syntax

MAP STRING** getOptions (Message* message)

Parameters

» Message—the message to which this function applies

Spectrum™ Technology Platform 12.0 SP2 API Guide 42

Results

Returns the array of MAP_STRING that contains all of the context entries.

Example

ASCII Version
int 1i;
char* name;
char* wvalue;

MAP STRING** mapping;
mapping = getOptions(message) ;

i=0;

while (mapping[i] != NULL)

{

name= mapping[i]->key;

value = mapping[i]->value;

SRS

}
Unicode Version
int 1i;

UChar* name;
UChar* wvalue;

MAP STRING** mapping;
mapping = getOptions (message) ;

i=0;

while (mapping[i] != NULL)

{

name= mapping[i]->key;

value = mapping[i]->value;

SRS

}

PutOption

Sets the value for the given name in the "option" properties. If there is an existing value present for
the entity identified by the name, it is replaced. Option properties are the service-specific run-time

options.

Syntax
ASCII Version

int putOption (Message* message,const char* name,

const char* wvalue)

The C API

Spectrum™ Technology Platform 12.0 SP2

API Guide

43

The C API

Unicode Version

int putOption (Message* message,const UChar* name,
const UChar* value)

Parameters

» Message - the message to which this function applies
» Name - with which the specified value is to be associated.
* Value - to be associated with the specified name.

Results

Returns 0 (if successful) or error code.

Example
ASCII Version

int nRet;
Message* message = createMessage()
nRet = putOption(message, "OutputCasing", "M");

Unicode Version

int nRet;

Message* message;

// construct 16-bit string

UChar option[32];

char* optionString="OutputCasing";

UChar optionValue[32];
char* optionValueString="M";

u_charsToUChars (optionString, option, strlen(optionString));
option[strlen (optionString)]=0;

u_charsToUChars (optionValueString, optionValue,
strlen (optionValueString)) ;
optionValue [strlen(optionValueString)]=0;

message = createMessage () ;
nRet = putOption(message, option, optionValue);

PutOptions

Adds the new option properties to the current option properties.

Spectrum™ Technology Platform 12.0 SP2 API Guide 44

The C API

Syntax

int putOptions (Message* message, MAP STRING** context)

Parameters

* Message - the message to which this function applies
» The new option map to be added to the current option properties

Results

Returns 0 if successful or error code.

Example
ASCII Version

MAP STRING** mapping;
Message* message;

message = createMessage () ;

int nRet;

mapping = (MAP STRING **)malloc(3 * sizeof (MAP_STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = "keyl"

mapping[0]->value = "valuel"

mapping[l] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[l]->key = "key2"

mapping[l]->value = "value2" ;

mapping[2] = NULL;

nRet = putOptions (message, mapping) ;

Unicode Version

MAP STRING** mapping;
Message* message;

int nRet;

UChar keyl[32];

char* keylString="keyl";

UChar valuel[32];

char* valuelString="valuel";

u charsToUChars (keylString, keyl, strlen(keylString));
keyl[strlen(keylString)]=0;

u charsToUChars (valuelString, valuel,

valuel|[strlen(valuelString)]1=0;
message = createMessage () ;
mapping (MAP_STRING **)malloc (2 * sizeof (MAP STRING *));

mapping[0] = (MAP STRING *)malloc(sizeof(MAP_gTRING));
mapping[0] ->key = keyl;

mapping[0]->value = valuel ;

mapping[l] = NULL;

nRet = putOptions (message, mapping) ;

strlen(valuelString));

Spectrum™ Technology Platform 12.0 SP2 API Guide

45

The C API

SetOptions

Overwrites the current option properties with the new option properties.

Syntax

int setOptions (Message* message, MAP STRING** context)

Parameters

» Message - the message to which this function applies
* The new option map to be used to replace the current option map

Results

Returns 0 if successful or error code.

Example
ASCII Version

MAP STRING** mapping;
Message* message;

int nRet;

message = createMessage () ;

mapping = (MAP STRING **)malloc(3 * sizeof (MAP STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = "keyl"

mapping[0]->value = "valuel"

mapping[1l] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[l]->key = "key2" ;

mapping[l]->value = "value2"

mapping[2] = NULL;

nRet=setOptions (message, mapping) ;
Unicode Version

MAP STRING** mapping;

Message* message;

int nRet;

UChar keyl([32];

char* keylString="keyl";

UChar valuel[32];

char* valuelString="valuel";

u_charsToUChars (keylString, keyl, strlen(keylString));
keyl[strlen(keylString)]=0;

u_charsToUChars (valuelString, valuel, strlen(valuelString));
valuel[strlen(valuelString)]1=0;

message = createMessage () ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 46

The C API

mapping = (MAP STRING **)malloc(2 * sizeof (MAP STRING *));
mapping[0] = (MAP STRING *)malloc(sizeof (MAP STRING)) ;
mapping[0]->key = keyl ;

mapping[0] ->value = valuel ;

mapping[l] = NULL;

nRet= setOptions (message, mapping) ;

GetError

Gets the error message from the message.

Syntax
ASCII Version

const char* getError (Message* message)
Unicode Version

const UChar* getError (Message* message)
Parameters
» Message - the message to which this function applies

Result

Returns the error message in message.

Example
ASCII Version

const char* error = getError (message)
Unicode Version

const UChar* error = getError (message);

GetDataTable

Gets the DataTable in the message.

Spectrum™ Technology Platform 12.0 SP2 API Guide 47

The C API

Syntax

DataTable* getDataTable (Message* message)

Parameters

* Message - the message to which this function applies

Example

// Assume that message is given here
DataTable *dataTable g
dataTable = getDataTable(message) ;

DataTable

DataTable contains the records for the input and output data.
CreateDataTable

Create the DataTable.
Syntax

DataTable* createDataTable ()

Results

Returns the DataTable created.

Example

DataTable* dataTable;
dataTable = createDataTable() ;

DeleteDataTable

Deletes the DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 48

The C API

Syntax

int deleteDataTable (DataTable* dataTable)

Parameters

» Datatable - the DataTable to be deleted

Example

DataTable* dataTable;
dataTable = createDataTable() ;

if (dataTable) deleteDataTable (dataTable) ;

AddColumn

Adds the new column.

Syntax
ASCII Version

int addColumn (DataTable* dataTable, const char* columnName,
int* indexReturn)

Unicode Version

int addColumn (DataTable* dataTable, const UChar* columnName,
int* indexReturn)

Parameters

 Datatable - the DataTable to which this function applies
* Column name to be added to the DataTable
* Returns the corresponding index

Results

Returns 0 if successful or error code.

Exceptions

» Blank column name
* Duplicate column name

Spectrum™ Technology Platform 12.0 SP2 API Guide 49

The C API

Example
ASCII Version

int nIndex;

int nRet;

nRet= addColumn (dataTable, "AddressLinel", &nIndex);
nRet= addColumn (dataTable, "City", &nlIndex);

nRet= addColumn (dataTable, "State", &nlIndex);

if (nRet != SUCCESSFUL RETURN)

{

printf (getErrorMessage (nRet)) ;

return ;

}
Unicode Version

int nRet;

int nIndex;

UChar* error;

UChar cityl[64];

char* cityString= "City"

u charsToUChars (cityString, city, strlen(cityString));
city[strlen(cityString)]=0;

nRet= addColumn (dataTable, city, &nlIndex) ;

if (nRet != SUCCESSFUL_RETURN)
{

error = getErrorMessage (nRet) ;
//more code

}

GetColumnNames

Gets all the column names.

Syntax
ASCII Version

char** getColumnNames (dataTable)
Unicode Version

UChar** getColumnNames (dataTable)

Parameters

» Datatable - the DataTable to which this function applies

Spectrum™ Technology Platform 12.0 SP2 API Guide 50

The C API

Results

Returns the array of column names.

Example
ASCII Version

char* value;

char** columnNames;

int 1i;

columnNames =getColumnNames (dataTable) ;
for(i=0; i < getColumncount (dataTable); i++)
{

value = columnNames[i];

}
Unicode Version

UChar* wvalue;

UChar** columnNames;

int 1i;

columnNames =getColumnNames (dataTable) ;
for(i=0; i < getColumncount (dataTable); i++)
{

value = columnNames[i];

}

GetColumnindex

Gets the corresponding column index.

Syntax
ASCII Version

int getColumnIndex (DataTable* dataTable ,const char* columnName)

Unicode Version
int getColumnIndex (DataTable* dataTable ,const UChar* columnName)

Parameters

 Datatable - the DataTable to which this function applies
* Column name

Spectrum™ Technology Platform 12.0 SP2 API Guide 51

The C API

Results

Returns the corresponding column index.

Example
ASCII Version

int nIndex ;
nIndex = getColumnIndex (dataTable ,"AddressLinel")

Unicode Version

int nIndex ;

UChar columnName[64];

char* columnNameStr= "AddressLinel" u charsToUChars (columnNameStr,
columnName, strlen (columnNameStr)):;

columnName [strlen (columnNameStr)]=0;
nIndex = getColumnIndex (dataTable , columnName) ;

GetColumnCount

Gets the number of columns.
Syntax

int getColumnCount (DataTable* dataTable)

Parameters

» Datatable - the DataTable to which this function applies

Results

Returns the number of columns.

Example

// Assume that dataTable is given here int nColumnCount ;
nColumnCount = getColumnCount (dataTable) ;

Clear

Clears the data in DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 52

The C API

Syntax

int clear (DataTable* dataTable)

Parameters

 Datatable - the DataTable to which this function applies

Results

Returns 0 if successful or error code.

Example

// Assume that dataTable is given here
clear (dataTable) ;

GetDataRows

Gets an array of all DataRows in the DataTable.

Syntax

DataRow** getDataRows (DataTable* dataTable)

Parameters

» Datatable - the DataTable to which this function applies

Results

Returns an array of DataRows.

Example

// Assume that dataTable is given here
DataRows** rows;

DataRow* dataRow;

int i;

int j;

rows = getDataRows (dataTable) ;

for(i=0; i < getRowCount (dataTable); i++)
{

dataRow = rows[i];

for (j=0; j < getColumnCount (dataTable); j++)
{

Spectrum™ Technology Platform 12.0 SP2 API Guide 53

The C API

value = (char*)getByIndex(dataRow, 7j);
}
}

AddRow

Adds a DataRow to the DataTable.

Syntax

int addRow (DataTable* dataTable, DataRow* dataRow)

Parameter

» Datatable - the DataTable to which this function applies
» Datarow to be added to the DataTable

Results

Returns 0 if successful or error code.

Example

// Assume that dataTable is given here DataRow* newDataRow;
int nRet;

newDataRow = newRow(dataTable);

setByIndex (newDataRow, 0 , "10535 Boyer Blvd"):;

setByIndex (newDataRow, 1 , "Austin");

setByIndex (newDataRow, 2 , "Texas");
nRet = addRow (dataTable, newDataRow) ;

NewRow

Creates a new DataRow in the DataTable.

Syntax

DataRow* newRow (DataTable* dataTable)

Parameter

» Datatable - the DataTable to which this function applies

Spectrum™ Technology Platform 12.0 SP2 API Guide 54

The C API

Results

Returns the new created DataRow.

Example

// Assume that dataTable is given here

DataRow* newDataRow;

int nRet;

newDataRow = newRow (dataTable);

setByIndex (newDataRow, 0 , "10535 Boyer Blvd");
setByIndex (newDataRow, 1 , "Austin");

setByIndex (newDataRow, 2 , "Texas");
nRet = addRow (dataTable, newDataRow) ;

GetRowCount

Gets the number of the DataRows in this DataTable.
Syntax

int getRowCount (DataTable* dataTable)

Parameter

» Datatable - the DataTable to which this function applies

Results

Returns the number of the DataRows in this DataTable.

Example

// Assume that dataTable is given here int nRowCount ;
nRowCount = getRowCount (dataTable) ;

MergeDataTable

Merges the given DataTable and the current DataTable.

Syntax

int mergeDataTable (DataTable* dataTable ,DataTable* other)

Spectrum™ Technology Platform 12.0 SP2 API Guide 55

The C API

Parameter

» Datatable - the DataTable to which this function applies
 Other DataTable to be merged with the current DataTable

Results

Returns 0 if successful or error code.

Example

// Assume that dataTable and otherDataTable are given here
mergeDataTable (dataTable ,otherDataTableDataRow)

DataRow

DataRow contains the record for the input and output data.
CreateDataRow

Creates the DataRow.

Syntax

DataRow* createDataRow ()

Results

Returns the DataRow created.

Example

DataRow* dataRow;
dataRow = createDataRow () ;

DeleteDataRow

Deletes the DataRow.

Spectrum™ Technology Platform 12.0 SP2 API Guide 56

The C API

Syntax
int deleteDataRow (DataRow* dataRow)
Parameter

* The DataRow to be deleted

Example

DataRow* dataRow;
dataRow = createDataRow() ;

if (dataRow)
deleteDataRow (dataRow) ;

GetColumnNamesFromRow

Gets all the column names.

Syntax
ASCII Version

char** getColumnNamesFromRow (DataRow* dataRow)
Unicode Version

UChar** getColumnNamesFromRow (DataRow* dataRow)

Parameter

» Datarow - the DataRow to which this function applies

Results

Returns the array of column names.

Example
ASCII Version

char* value;

char** columnNames;

int 1i;

columnNames = getColumnNamesFromRow (dataRow) ;
for(i=0; i < getColumnCountFromRow (dataRow); i++)

{

Spectrum™ Technology Platform 12.0 SP2 API Guide 57

The C API

value = columnNames[i];

}
Unicode Version

UChar* wvalue;

UChar** columnNames;

int 1i;

columnNames = getColumnNamesFromRow (dataRow) ;
for(i=0; i < getColumnCountFromRow (dataRow); i++)

{

value = columnNames[i];

}

GetColumnindexFromRow

Gets the corresponding column index.

Syntax
ASCII Version

int getColumnIndexFromRow (DataRow* dataRow, const char* name)
Unicode Version

int getColumnIndexFromRow (DataRow* dataRow, const UChar* name)

Parameter

» Datarow - the DataRow to which this function applies
* Column name

Results

Returns the corresponding column index.

Example
ASCII Version

int nIndex
nIndex = getColumnIndexFromRow ("AddressLinel");

Unicode Version

int nIndex
UChar columnName[64];

Spectrum™ Technology Platform 12.0 SP2 API Guide 58

The C API

char* columnNameStr= "AddressLinel"

u_charsToUChars (columnNameStr, columnName, strlen(columnNameStr)) ;
columnName [strlen (columnNameStr)]=0;

nIndex = getColumnIndexFromRow (columnName) ;

GetColumnCountFromRow

Gets the number of columns.

Syntax

int getColumnCountFromRow (DataRow* dataRow)

Parameter

» Datarow - the DataRow to which this function applies

Results

Returns the number of columns.

Example

//Assume that the dataRow is given here
int nColumnCount ;
nColumnCount = getColumnCountFromRow (dataRow) ;

GetBylndex

Gets the value from the fields array by the column index in this DataRow.

Syntax
ASCII Version

const char* getByIndex (DataRow* dataRow, int index)
Unicode Version

const UChar* getByIndex (DataRow* dataRow, int index)

Parameter

» Datarow - the DataRow to which this function applies

Spectrum™ Technology Platform 12.0 SP2 API Guide 59

The C API

* Index with which the specified value is to be associated.

Results

Returns the value for the column index in the DataRow, returns empty string if the index in invalid.

Example
ASCII Version

char* value = getByIndex(dataRow, 0);
Unicode Version

UChar* value = getByIndex(dataRow, O0);

GetByName

Gets the value from the fields array by the column name in this DataRow.

Syntax
ASCII Version

const char* getByName (DataRow* dataRow, const char* name)
Unicode Version

const UChar* getByName (DataRow* dataRow, const UChar* name)

Parameter

» Datarow - the DataRow to which this function applies
» Name with which the specified value is to be associated

Results

Returns the value for the column name in the DataRow, returns empty string if the column name
does not exist.

Example
ASCII Version

char* value = getByName (dataRow, "City")

Spectrum™ Technology Platform 12.0 SP2 API Guide 60

The C API

Unicode Version

UChar* wvalue;

UChar columnName[64];

char* columnNameStr= "City"

u_charsToUChars (columnNameStr, columnName, strlen(columnNameStr)) ;

columnName [strlen (columnNameStr)]=0;
value = getByName (dataRow, columnName) ;
MergeDataRow

Merges the given DataRow and the current DataRow.

Syntax

int mergeDataRow (DataRow* dataRow, DataRow* other)

Parameter

» Datarow - the DataRow to which this function applies
» Other DataRow to be merged with the current DataRow

Results

Returns 0 if successful or error code.

Example

//Assume that the dataRow and otherDataRow are given here
int nRet;
nRet= mergeDataRow (dataRow, otherDataRow) ;

SetByName
Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax
ASCII Version

int setByName (DataRow* dataRow, const char* name, const char* value)

Spectrum™ Technology Platform 12.0 SP2 API Guide 61

The C API

Unicode Version

int setByName (DataRow* dataRow, const UChar* name, const
UChar* value)

Parameters

» Datarow - the DataRow to which this function applies
» Name with which the specified value is to be associated
* Value to be associated with the specified name

Exceptions

If input Blank column name or Duplicate column name, return error

Results

Returns 0 if successful or error code.

Example
ASCII Version

int nRet;

nRet= setByName (dataRow, "City", "Austin");
if (nRet != SUCCESSFUL RETURN)

{ printf (getErrorMessage (nRet)) ;

//more code

}
Unicode Version

int nRet;

UChar* error;

UChar columnName[64];

char* columnNameStr= "City"

UChar columnValue[64];

char* columnValueStr= "Austin";

u charsToUChars (columnNameStr, columnName, strlen(columnNameStr));
columnName [strlen (columnNameStr)]=0;

u_charsToUChars (columnValueStr, columnValue, strlen(columnValueStr));
columnValue [strlen(columnValueStr)]=0;

nRet= setByName (dataRow, columnName, columnValue) ;

if (nRet != SUCCESSFUL_RETURN)

{ error = getErrorMessage (nRet) ;

//more code

}

Spectrum™ Technology Platform 12.0 SP2 API Guide 62

The C API

SetBylndex

Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax
ASCII Version

int setByIndex (DataRow* dataRow, int index, const char* value)
Unicode Version

int setByIndex (DataRow* dataRow, int index, const UChar* wvalue)

Parameters

» Datarow - the DataRow to which this function applies
» Column index with which the specified value is to be associated
* Value to be associated with the specified name

Exceptions

* The column index is invalid

Results

Returns 0 if successful or error code.

Example
ASCII Version

int nRet;
nRet= setByIndex (dataRow, 1, "Austin");
if (nRet != SUCCESSFUL_RETURN)
{
printf (getErrorMessage (nRet)) ;
//more code

}
Unicode Version

int nRet;

UChar* error;

UChar columnValuel[64];

char* columnValueStr= "Austin";

u_charsToUChars (columnValueStr, columnValue, strlen(columnValueStr));

Spectrum™ Technology Platform 12.0 SP2 API Guide

63

The C API

columnValue [strlen (columnValueStr)]=0;
nRet= setByIndex (dataRow, 1, columnValue);
if (nRet != SUCCESSFUL_RETURN)

{
error = getErrorMessage (nRet) ;
//more code

}

AddChild

Adds a new DataRow to the named parent/child relationship. If the named relationship exists, the
supplied DataRow will be appended to the existing DataRow collection. Otherwise, a new collection
will be created with the supplied DataRow as its only element.

Syntax
ASCII Version

void addChild (DataRow* dataRow, const char* childName, DataRow*
childDataRow)

Unicode Version

void addChild (DataRow* dataRow, const UChar* childName, DataRow¥*
childDataRow)

Parameters

» The name of the parent/child relationship (e.g., "Flood Plain Data," "References," "Used By," and
so forth)

» The DataRow to be added to the relationship

Example
ASCII Version

DataRow* dataRow = createDataRow () ;
DataRow* childlDataRowl = createDataRow () ;

setByName (childlDataRowl, "City", "Austin");
setByName (childlDataRowl, "State", "Texas"):;

addChild(dataRow, "childl", childlDataRowl) ;
Unicode Version

UChar* convertcharToUChar (char* name, UChar* wvalue)

{

Spectrum™ Technology Platform 12.0 SP2 API Guide 64

The C API

int lenName= strlen (name);
u charsToUChars (name, value, lenName);

value[lenName]=0;
return value;
b >
DataRow* dataRow = createDataRow() ;
DataRow* childlDataRowl = createDataRow () ;
UChar name[128];
UChar columnValue[128];
setByName (childlDataRowl, convertcharToUChar ("City", name),
convertcharToUChar ("Austin", columnValue)) ;
setByName (childlDataRowl, convertcharToUChar ("State", name),
convertcharToUChar ("Texas", columnValue)) ;
addChild(dataRow, "childl", childlDataRowl) ;

GetChildren

Retrieves the child rows from a named relationship.
Syntax
ASCII Version
DataRow** getChildren (DataRow* dataRow,const char* childName)
Unicode Version

DataRow** getChildren (DataRow* dataRow,const UChar* childName)

Parameters

* The name of the parent/child relationship, for example "Flood Plain Data", "References”, "Used
By", and so forth.

Results

Returns the child rows from the named relationship.

Example
ASCII Version

DataRow** childlRows;
childlRows = getChildren (dataRow, "childl");

Spectrum™ Technology Platform 12.0 SP2 API Guide 65

The C API

Unicode Version

DataRow** childlRows;

UChar childName[128];

/* see convertcharToUChar in the Example section of "addChild" */

childlRows = getChildren (dataRow, convertcharToUChar ("childl",
childName)) ;

ListChildNames

Retrieves all of the names of the named parent/child relationships.

Syntax
ASCII Version

char** listChildNames (DataRow* dataRow)
Unicode Version

UChar** listChildNames (DataRow* dataRow)

Results

Returns the set of the names of the named parent/child relationships.

Example
ASCII Version

char** childsNames;
childsNames =listChildNames (dataRow) ;

Unicode Version

UChar** childsNames;
childsNames=1listChildNames (dataRow) ;

SetChildren

Sets the rows of a supplied, named parent/child relationship. If rows previously existed under this
name, they will be returned to the caller.

Spectrum™ Technology Platform 12.0 SP2 API Guide 66

The C API

Syntax
ASCII Version

DataRow** setChildren (DataRow* dataRow, const char* childName, DataRow**
dataRows)

Unicode Version

DataRow** setChildren (DataRow* dataRow, const UChar* childName, DataRow**
dataRows)

Results

Returns the set of the names of the named parent/child relationships.

Example
ASCII Version

DataRow* dataRow = createDataRow () ;
DataRow* childlDataRowl = createDataRow () ;
DataRow* childlDataRow2 = createDataRow () ;
DataRow* child2DataRow = createDataRow () ;
DataRow** child2Rows;

DataRow** returnRows;

setByName (childlDataRowl, "Address", "200 Congress");
setByName (childlDataRowl, "City", "Austin");

setByName (childlDataRow2, "Address", "100 Congress");
setByName (childlDataRow2, "City", "Dallas"):;

setByName (child2DataRow, "Address", "100 Congress");
setByName (child2DataRow, "City", "Austin");

addChild(dataRow, "childl", childlDataRowl) ;
addChild (dataRow, "childl", childlDataRow?2) ;
addChild(dataRow, "child2", child2DataRow) ;

child2Rows=getChildren (dataRow, "child2");

returnRows=setChildren(dataRow, "childl", child2Rows) ;
Unicode Version

DataRow* dataRow = createDataRow () ;
DataRow* childlDataRowl = createDataRow () ;
DataRow* childlDataRow2 = createDataRow ()
DataRow* child2DataRow = createDataRow () ;
DataRow** child2Rows;

DataRow** returnRows;

UChar name[128];

’

Spectrum™ Technology Platform 12.0 SP2 API Guide 67

The C API

UChar columnValue[128];
UChar childName[128];

setByName (childlDataRowl, convertcharToUChar ("Address", name),
convertcharToUChar ("200 Congress", columnValue)) ;

setByName (childlDataRowl, convertcharToUChar ("City", name),
convertcharToUChar ("Austin", columnValue))

setByName (childlDataRow2, convertcharToUChar ("Address", name),
convertcharToUChar ("100 Congress", columnValue))

setByName (childlDataRow2, convertcharToUChar ("City", name)
convertcharToUChar ("Dallas", columnValue));

setByName (child2DataRow, convertcharToUChar ("Address", name),
convertcharToUChar ("100 Congress", columnValue));

setByName (child2DataRow, convertcharToUChar ("City", name),
convertcharToUChar ("Austin", columnValue));

addChild(dataRow, convertcharToUChar ("childl", childName),

childlDataRowl) ;

addChild(dataRow, convertcharToUChar ("childl",

childName) ,childlDataRow?2) ;

addChild (dataRow, convertcharToUChar ("child2", childName), child2DataRow
);

child2Rows=getChildren (dataRow, convertcharToUChar ("child2",childName)) ;

returnRows=setChildren (dataRow, convertcharToUChar ("childl",childName),
child2Rows) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 68

3 -The C++ API

In this section

Introduction to the C++ API 70
Server 83
Service 87
Message 88
DataTable 98

DataRow 105

The C++ API

Introduction to the C++ AP|

The C++ API consists of the following classes:

» Server
 Service

» Message
DataTable
» DataRow

UnicodeString in ICU is a string class that stores Unicode characters directly and provides similar
functionality as the Java String and StringBuffer classes. The Spectrum™ Technology Platform
Unicode C++ API uses this class to store Unicode strings.

Supported Libraries

Spectrum™ Technology Platform provides an ASCII and Unicode version C API, while the Unicode
version remains as compatible as possible with the original ASCIl-version API design. Spectrum™
Technology Platform applies International Components for Unicode (ICU) in the API to support the
Unicode feature. ICU is a mature, widely used set of C/C++ libraries for Unicode support and is
developed by IBM.

The Unicode standard defines a default encoding based on 16-bit code units. This is supported in
ICU by the definition of the UChar to be an unsigned 16-bit integer type(unsigned short *). This is

the base type for character arrays for strings in ICU. Spectrum™ Technology Platform uses UChar
as the Unicode string representation in our C API.

Note: Not all services support the full Unicode character set. For example, the ValidateAddress
service supports the ISO 8859-1 character set for US inputs and International inputs and
outputs and the CP 850 character set for Canadian inputs and outputs. However, the Unicode
libraries should be used whenever your input data may contain any non-ASCII character,
even if the underlying service does not support the full Unicode character set.

For detailed information about UChar, please refer to the following two sites:
* icu.sourceforge.net/userguide/
» www-306.ibm.com/software/globalization/icu/index.jsp

Windows

Each API configuration produces library files with a common base name (g1client) but with a unique
suffix and possibly prefix ("lib" in the case of static libraries). The library suffixes work like this:

Spectrum™ Technology Platform 12.0 SP2 API Guide 70

The C++ API

<lib>glclient<S><U><D>.<1lib|dl1l>

* lib—indicates a static library.

+ dll—indicates a dynamic (shared) library.

+ S—indicates a single-threaded build. If this is absent it indicates a multi-threaded build.
+ U—indicates a UNICODE version build. If this is absent it indicates an ASCII build.

+ D—indicates a debug build. If this suffix is absent it indicates an optimized release build.

To enable the UNICODE version, the LIB_UNICODE macro definition must be in your project.

To use the static C/C++ API library UNICODE version, you need to define
U_STATIC_IMPLEMENTATION in your project.

To use the dynamic version, you need to define G1CLIENT_DLL in your project.

We also provide a file called "auto_link.h" in the header file directory and it automatically links to all
the corresponding libraries according to the project settings.

To call 64-bit libraries in Windows, you need to define VER_64 in your project.

Static Library

Single Threaded/Release
ASCII Unicode
g1 libg1client_S.lib libg1client_SU.lib
openssl otlibeay64.lib otlibssl64.lib otlibeay64.lib otlibssl64.lib
opentop opentop.lib opentopw.lib
icu libicuuc.lib libicudt.lib libicuin.lib
libicuio.lib
Poco PocoXML64.lib PocoXML64w.lib
Single Threaded/Debug
ASCII Unicode

Spectrum™ Technology Platform 12.0 SP2 API Guide 71

The C++ API

g1 libg1client_SD.lib libg1client_SUD.lib

openssl otlibeay64d.lib otlibssl64d.lib otlibeay64d.lib otlibssl64d.lib

opentop opentopd.lib opentopwd.lib

icu libicuucd.lib libicudtd.lib libicuind.lib
libicuiod.lib

Poco PocoXML64d.lib PocoXML64wd.lib

Multi/Release (using Multi-Threaded CRT)

ASCII Unicode
g1 libg1client.lib libg1client_U.lib
openssl otlibeay64mt.lib otlibssl64mt.lib otlibeay64mt.lib otlibssl64mt.lib
opentop opentopmt.lib opentopmtw.lib
icu libicuucmt.lib libicudtmt.lib libicuinmt.lib
libicuiomt.lib
Poco PocoXMLmt64.lib PocoXML64mtw.lib

Multi/Debug (using Multi-Threaded CRT)

ASCII Unicode

g1 libg1client_D.lib libg1client_UD.lib

Spectrum™ Technology Platform 12.0 SP2 API Guide 72

The C++ API

openssl otlibeay64mtd.lib otlibssl64mtd.lib otlibeay64mtd.lib otlibssl64mtd.lib

opentop opentopmtd.lib opentopmtwd.lib

icu libicuucmtd.lib libicudtmtd.lib
libicuinmtd.lib libicuiomtd.lib

Poco PocoXMLmt64d.lib PocoXML64mtwd.lib

Dynamic Library

Multi/Release (using Multi-Threaded CRT)

ASCII Unicode
g1 g1client.dll g1client_U.dll
openssl otlibeay64mts.dll otlibssl64mts.dll otlibeay64mts.dll otlibssl64mts.dll
opentop opentopmts.dll opentopmtws.dll
icu icuuc64.dll icuio64.dll icuin64.dll
icudt64.dll
Poco PocoXML64mts.dll PocoXML64mtws.dll
Multi/Debug (using Multi-Threaded CRT)
ASCII Unicode
g1 giclient_D.dll giclient_UD.dII
Spectrum™ Technology Platform 12.0 SP2 API Guide 73

The C++ API

openssl otlibeay64mtds.dll otlibssl64mtds.dll otlibeay64mtds.dll otlibssl64mtds.dll

opentop opentopmtds.dll opentopmtwds.dll

icu icuuc64d.dll icuio64d.dll icuin64d.dll
icudt64d.dll

Poco PocoXML64mtds.dll PocoXML64mtwds.dll

Unix

Each ClientSDK configuration produces library files with a common base name (libg1client) but
with a unique suffix. Spectrum™ Technology Platform provides a multithread and release build for
ASCII version and UNICODE version.

The library suffixes work like this:-

libglclient<U>.<sol|sl|a>

» U—indicates a UNICODE version build. If this is absent it indicates an ASCI|I build.
To use the UNICODE version, you need to define LIB_UNICODE in your project.

In UNICODE Version C++ API, the namespace for all classes is g1client.

AIX
ASCII Unicode
g1 libg1client.so libg1client_U.so
openssl libcrypto.so libssl.so libcrypto.so libssl.so
opentop libopentop-xICmt.so libopentop-xICmtw.so
libotxml-xICmtw.so
icu libicudata34.a libicui18n34.a

libicuio34.a libicuuc34.a

Spectrum™ Technology Platform 12.0 SP2 API Guide 74

The C++ API

Poco libPocoXML.so
HP-UX
ASCII Unicode
g1 libg1client.sl libg1client_U.sl
openssl libcrypto.sl libssl.sl libcrypto.sl.0.9.7 libcrypto.sl libssl.sl libcrypto.sl.0.9.7
libssl.sl.0.9.7 libssl.sl.0.9.7
opentop libopentop-accmt.sl libopentop-accmtw.sl libotxml-accmtw.sl
icu libicudata.sl libicudata.sl.34 libicui18n.sl
libicui18n.sl.34 libicuio.sl libicuio.sl.34
libicuuc.sl libicuuc.sl.34
Poco libPocoXML.sl
Itanium
ASCII Unicode
g1 libg1client.sl libg1client_U.sl
openssl libcrypto.a libssl.a libcrypto.a
libssl.a
opentop libopentop-accmt.sl libopentop-accmtw.sl libotxml-accmtw.sl

Spectrum™ Technology Platform 12.0 SP2

API Guide

75

The C++ API

icu libicudata.sl libicudata.sl.34
libicudata.sl.34.0 libicui18n.sl
libicui18n.sl.34 libicui18n.s1.34.0
libicuio.sl libicuio.sl.34 libicuio.sl.34.0
libicuuc.sl libicuuc.sl.34 libicuuc.sl.34.0
Poco libPocoXML.sl
Linux
ASCII Unicode
g1 libg1client.so libg1client_U.so
openssl libcrypto.so libcrypto.so.0.9.7 libssl.so libcrypto.so libcrypto.s0.0.9.7 libssl.so
libssl.s0.0.9.7 libssl.s0.0.9.7
opentop libopentop-gccmt.so libopentop-gccmtw.so
libotxml-gccmtw.so
icu libicudata.so libicudata.so.34
libicui18n.so libicui18n.s0.34 libicuio.so
libicuio.s0.34 libicuuc.so libicuuc.s0.34
Poco libPocoXML.so
Solaris
ASCII Unicode
g1 libg1client.so libg1client_U.so
openssl libcrypto.so libcrypto.so.0.9.7 libssl.so libcrypto.so libcrypto.so0.0.9.7 libssl.so

libssl.s0.0.9.7

libssl.s0.0.9.7

Spectrum™ Technology Platform 12.0 SP2

API Guide

76

The C++ API

opentop libopentop-fortemt.so libopentop-fortemtw.so
libotxml-fortemtw.so

icu libicudata.so libicudata.so.34
libicui18n.so libicui18n.s0.34 libicuio.so
libicuio.s0.34 libicuuc.so libicuuc.s0.34

Poco libPocoXML.so

Constants

The C++ API uses two sets of constants. The first set is for the Server class described in the table
below.

Table 14: Constants for the Server Component

Constant Name Description/Default Example
Server::HOST String for server host name. Default is 65.89.200.89
"localhost".
Server::PORT String for server port. Default is "8080". 10119
Server::ACCOUNT_ID String for server account ID. No default user1
value.
Server::ACCOUNT_PASSWORD String for server account password. No user1

default value.

Server::CONNECTION_TIMEOUT String for server connection timeout, in 50000
milliseconds. Default is "5000".

Spectrum™ Technology Platform 12.0 SP2 API Guide 77

The C++ API

Constant Name Description/Default Example

Server::CONNECTION_TYPE String for server connection type. HTTP(S)
Currently only supports HTTP, HTTPS,
or SOCKET. Default is "HTTP".

Server::PROXY_HOST String for proxy server host name. No 192.168.1.77
default value.

Server::PROXY_PORT String for proxy server port. No default 8080
value.
Server::PROXY_USER String for proxy server account ID. No user1

default value.

Server::PROXY_PASSWORD String for proxy server account user1
password. No default value.

The second set of constants is for the Message class:

Table 15: Constants for the Message Component

Constant Name Description Example

Message::CONTEXT_ACCOUNT_ID String for message context account ID. user1

Message:CONTEXT_ACCOUNT_PASSWORD String for message context account user1
password.

Message::CONTEXT_SERVICE_NAME String for message context service echoservice
name.

Spectrum™ Technology Platform 12.0 SP2 API Guide 78

The C++ API

Error Messages

In order to get error messages, use the Exception class. Use the try/catch constructs to capture the
error message. For example:

try{
Server *server=new Server();

//Connect to server
server—->connect () ;

}catch (Exception e)
{
// ASCII Version-use the following code
cout << "Error Occurs," << e.getErrorMessage () ;
//Unicode Version -use the following code

UnicodeString error = e.getErrorMessage() ;

wcout << error.getTerminatedBuffer () ;

}

The C++ API uses the following error messages:
» Error Messages for Connection:

 "Connection type not supported”

+ "Client timeout"

» "Blank connection property name"
» "Blank property name"

» Error Messages for creating DataTable:

» "Blank column name"
* "Duplicated column name"
* "The column index is invalid"

» Error Messages for MessagePackaging Exception:

* "Input Message is null"

 "Failed to connect to Server"

* "Failed to disconnect from Server"

 "Failed to open Http Connection"

* "Failed to get Service"

» "Failed to package the message using Serializer and Encoding"

Spectrum™ Technology Platform 12.0 SP2 API Guide 79

The C++ API

SmartPointer

Spectrum™ Technology Platform provides a class called SmartPointer that uses a simple form of
reference counting to help track allocation of dynamic memory and perform memory management
task.

For example:

SmartPointer<Server> server =new Server (),
server.connect () ;

server.disconnect () ;

You do not need to delete the memory for pointer server. SmartPointer handles all memory
management for you.

Example Application

The sample code shown below illustrates how to use the C++ ASCII version API.

tryf{

//Create Server
SmartPointer<Server> server =new Server();

//Set server connection properties
server->setConnectionProperty (Server: :HOST, "localhost");
server->setConnectionProperty (Server: :PORT, "10119");
server->setConnectionProperty (Server: :CONNECTION TYPE , "SOCKET");
server—->setConnectionProperty (Server: :ACCOUNT ID, "guest");
server->setConnectionProperty (Server: :ACCOUNT PASSWORD, "");

—_— o~~~

//Connect to server
server->connect () ;

//Get Service From Server
SmartPointer<Service> service = server-—
>getService ("ValidateAddress") ;

//Create Input Message
SmartPointer<Message> request = new Message() ;

//F111 DataTable in the input message
SmartPointer<DataTable> dataTable = request->getDataTable() ;
SmartPointer<DataRow> rowl = dataTable->newRow () ;

rowl->set ("AddressLinel", "4200 Parliament Place") ;

Spectrum™ Technology Platform 12.0 SP2 API Guide

80

The C++ API

rowl->set ("City", "Lanham");
rowl->set ("StateProvince", "Maryland");
dataTable->addRow (rowl) ;

SmartPointer<DataRow> row2 = dataTable->newRow () ;
row2->set ("AddressLinel", "100 Congress");
row2->set ("City", "Austin");

row2->set ("StateProvince", "Texas");
dataTable->addRow (row?2) ;

//Set"option"™ Properties to the Input Message
request->putOption ("OutputCasing", "M");
request->putOption ("OutputRecordType", "A");

//Process Input Message, return output Message
SmartPointer<Message> reply = service->process (request);

//Disconnect from server
server->disconnect () ;

//Get the result from the resonse message
SmartPointer<DataTable> returnDataTable = reply->getDataTable () ;

vector<string> columnName = returnDataTable- >getColumnNames () ;
vector< SmartPointer<DataRow> >::iterator iter =
returnDataTable->iterator () ;

for (int i=0; i< returnDataTable->getRowCount (); i++, iter++)

{

SmartPointer<DataRow> dataRow = *iter;

for (int col = 0; col < returnDataTable->getColumnCount (); col++)
{

const char* value = dataRow->get (columnName[col].c str());

cout << wvalue << "\n";
}

}

}catch (Exception e)

{

cout << "Error Occurred, " << e.getErrorMessage()

}

The sample code shown below illustrates how to use the C++ Unicode version API.

try{
//Create Server
SmartPointer<Server> server =new Server () ;

//Set server connection properties
server->setConnectionProperty (Server: :HOST, "localhost") ;
server->setConnectionProperty (Server: :PORT, "10119");

Spectrum™ Technology Platform 12.0 SP2 API Guide 81

The C++ API

server->setConnectionProperty (Server: :CONNECTION TYPE , "SOCKET");
server—->setConnectionProperty (Server: :ACCOUNT ID, "guest");
server->setConnectionProperty (Server: :ACCOUNT PASSWORD, "");

//Connect to server
server->connect () ;

//Get Service From Server
//NOTE: ValidateAddress does not support unicode, but supports
//characters in Canadian address and International address data files.

SmartPointer<Service> service = server- >getService ("ValidateAddress");

//Create Input Message
SmartPointer<Message> request = new Message () ;

//Fill DataTable in the input message
SmartPointer<DataTable> dataTable = request->getDataTable() ;
dataTable->addColumn ("AddressLinel") ;
dataTable->addColumn ("City") ;

dataTable->addColumn ("PostalCode") ;

dataTable->addColumn ("Country") ;

SmartPointer<DataRow> rowl = dataTable->newRow () ;
UnicodeString addressl = "74, Rue Octave Bénard";
rowl->set (0O , addressl);

UnicodeString cityl = "Etang-Salé-les-Bains";
rowl->set(1 , cityl);

UnicodeString postalCodel = "97427";

rowl->set(2 , postalCodel);

UnicodeString countryl = "Reunion Island";

rowl->set(3 , countryl);

dataTable->addRow (rowl) ;

SmartPointer<DataRow> row2 = dataTable->newRow () ;
UnicodeString address2 = "Final Av. Pantedén Foro Libertador";
row2->set (0 , address?);

UnicodeString city2 = "Caracas";

row2->set (1 , city2);

UnicodeString postalCode2 = "1010";

row2->set(2 , postalCode?);

UnicodeString country2 = "Venezuela';

row2->set (3 , country?2);
dataTable->addRow (row?2) ;
//Set"option" Properties to the Input Message

request->putOption ("OutputCasing”", "M");
request->putOption ("OutputRecordType", "A");

Spectrum™ Technology Platform 12.0 SP2 API Guide

82

The C++ API

//Process Input Message, return output Message
SmartPointer<Message> reply = service->process (request);

//Disconnect from server
server->disconnect () ;

//Get the result from the resonse message
SmartPointer<DataTable> returnDataTable = reply->getDataTable() ;

vector<UnicodeString> columnName = returnDataTable- >getColumnNames () ;

vector< SmartPointer<DataRow> >::iterator iter = returnDataTable-
>iterator () ;

for (int i=0; i< returnDataTable->getRowCount (); i++, iter++)

{

SmartPointer<DataRow> dataRow = *iter;

for (int col = 0; col < returnDataTable->getColumnCount (); col++)
{

UnicodeString value = dataRow->get (columnName[col]) ;

wcout <<value.getTerminatedBuffer () <<"\n"; }

}

}catch (Exception e)
{

UnicodeString error = e.getErrorMessage() ;

wcout << error.getTerminatedBuffer();

}

Server

The Server class is used to connect to the server, disconnect from the server, and get the service
from the server.

Constructors

Constructors for the Server class are as follows:

* Server()

Spectrum™ Technology Platform 12.0 SP2 API Guide 83

Destructor

The Destructor for the Server class is:

» ~Server()

Connect

The C++ API

Reads the properties to determine the configuration settings and makes a connection to the server.

You can connect via HTTP, HTTPS, or SOCKET.

Note: C++ uses the HTTP, HTTPS, or SOCKET server connection protocol. HTTP and
HTTPS logically establish a client connection but do not actually connect to the server until
a GetService or Process method is invoked. The SOCKET protocol establishes a connection

to the server when Connect is invoked.

Syntax

void connect ()

Parameters

None.

Results

Establishes client connection to the server.

Example

//Create Server

SmartPointer<Server> server =new Server ();

//Set server connection properties

server->setConnectionProperty (Server:
server->setConnectionProperty (Server:
server->setConnectionProperty (Server:
server->setConnectionProperty (Server:
server->setConnectionProperty (Server:

//Connect to server
server->connect () ;

:HOST, "localhost") ;
:PORT, "10119");
:CONNECTION_TYPE o
:ACCOUNT_ ID, "guest");
:ACCOUNT PASSWORD,

"SOCKET") ;

"");

Spectrum™ Technology Platform 12.0 SP2 API Guide

84

The C++ API

Disconnect

Disconnects from the server.

Syntax

volid disconnect ()

Parameters

None.

Results
Client is disconnected from the server.
Example

SmartPointer<Server> server =new Server ()
server->connect () ;

server->disconnect () ;

SetConnectionProperty

Establishes the server connection configuration properties, such as host name and length of timeout.

Syntax
ASCII version:

void setConnectionProperty(const char* name, const char* value)
Unicode version:

void setConnectionProperty (const UnicodeString name, const UnicodeString
value)

Parameters

* Name — the name of the connection property, such as HOST
* Value — the value for the name of the connection property, such as "www.myhost.com"

Spectrum™ Technology Platform 12.0 SP2 API Guide 85

The C++ API

Results

The configuration properties for connection to the server are set.

Example
ASCII Version

SmartPointer<Server> server =new Server ()
server->setConnectionProperty (Server: :HOST, "localhost") ;

server->setConnectionProperty (Server: :PORT, "8080");

Unicode Version
Same as ASCII, or:
SmartPolinter<Server> server =new Server ()

UnicodeString host="localhost";// Or input unicode string
server->setConnectionProperty (Server::HOST, host);

GetService

Gets the service from the server.

Note: See the Component Reference section of this guide for a list of servies that may be
available to you.

Syntax
ASCII Version:

SmartPointer<Service> getService (const char* serviceName)
Unicode Version:

SmartPointer<Service> getService (const UnicodeString serviceName)

Parameters

* Name of service

Results

Returns the specific service.

Spectrum™ Technology Platform 12.0 SP2 API Guide

86

The C++ API

Example
ASCII Version

// Get Service From Server
SmartPointer<Service> service = server- >getService ("ValidateAddress");

Unicode Version
Same as ASCII, or:

// Get Service From Server
UnicodeString serviceName="ValidateAddress";// Or input unicode string
SmartPointer<Service> service = server->getService (serviceName) ;

Service

The service class is used to process the message (i.e., send the message to the server and
receive a response from the server).

Process

Processes the input message and returns the response message.

Syntax

SmartPointer<Message> process (Message* message)

Parameters

* Input message

Results

Returns the response message.

Example

SmartPointer<Message> reply = service->process (request);

Spectrum™ Technology Platform 12.0 SP2 API Guide

87

The C++ API

Message

The Message class sends your input data and receives your output data from the service. The
properties for Message include context entities, such as account ID, account password, service
name, and service method; option entities, which are the Service-specific runtime options; and error
entities, which are the error class, error message and error stacktrace.

Constructors

Constructors for the Message class are as follows:
* Message ()

For example:
Message *request = new Message() :

* Message (const Messageé&)

For example:

Message* request = new Message();
Message anotherMessage = request;
Message message (anotherMessage) ;

Destructor

The Destructor for the Message class is:

* ~Message () ;

The following table summarizes the functions each method performs in the Message class.

Spectrum™ Technology Platform 12.0 SP2 API Guide 88

Table 16: Message Methods Summary

The C++ API

Method Function

getContext Gets the value of the context entity identified by the name
in the context session of the message.

getContext Gets the Map that contains all of the context entries.

putContext Sets the value of the context entity identified by the name
in the context session of the message. If there is an existing
value present for the entity identified by the name, it is
replaced.

putContext Adds the new context properties to the current context
properties.

setContext Overwrites the current context properties with the new
context properties.

getOption Gets the value of the option entity identified by the name in
the option session of the message.

getOptions Gets the Map that contains all of the option entries.

putOption Sets the value of the option entity identified by the name in
the option session of the message. If there is an existing
value present for the entity identified by the name, it is
replaced.

putOptions Adds the new option properties to the current option
properties.

setOptions Overwrites the current option properties with the new option

properties.

Spectrum™ Technology Platform 12.0 SP2 API Guide

89

The C++ API

Method Function

getError Gets the error message.

getDataTable Gets the DataTable from the message.
GetContext

Gets the value of the context entity identified by the name in the context session of the message.

Syntax
ASCII Version

const char* getContext (const char* name)
Unicode Version

const UnicodeString getContext (const UnicodeString name)

Parameters

* The name whose associated value is to be returned

Results

Returns the value for the name in the context entity. If the name does not exist, the method returns
empty string.

Example
ASCII Version
const char* value= msg->getContext (Server::ACCOUNT 1ID);

Unicode Version
Same as ASCII or:

UnicodeString name= Server::ACCOUNT ID;// Or input unicode string
UnicodeString value= msg->getContext (name) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 90

The C++ API

GetContext

Gets the Map that contains all of the context entries.

Syntax
ASCII Version

map<string , string> getContext ()
Unicode Version

map< UnicodeString, UnicodeString > getContext ()

Parameters

None.

Results

Returns the map that contains all of the context entries.

Example
ASCII Version

map<string , string> context = message->getContext () ;
Unicode Version

map< UnicodeString, UnicodeString > context = message- >getContext () ;

PutContext

Sets the value for the given name in the context properties. If there is an existing value present for
the entity identified by the name, it is replaced. Context properties include the following constants:
account ID, account password, service name, service key, and request ID.

Syntax
ASCII Version

void putContext (const char* name, const char* value)

Spectrum™ Technology Platform 12.0 SP2 API Guide 91

The C++ API

Unicode Version

void putContext (const UnicodeString name, const UnicodeString wvalue)

Parameters

» Name with which the specified value is to be associated.
* Value to be associated with the specified name

Example
ASCII Version

message->putContext (Message.CONTEXT ACCOUNT ID, "userl");

Unicode Version
Same as ASCII or:

UnicodeString account="userl" ;// Or input unicode string
message->putContext (Message.CONTEXT ACCOUNT ID, account);

PutContext

Adds the new context properties to the current context properties.

Syntax
ASCII Version

void putContext (map<string , string> context)
Unicode Version

void putContext (map< UnicodeString, UnicodeString > context)

Parameters

* The new context map to be added to the current context map

Example
ASCII Version
map<string , string> context ;

//more code
message->putContext (context) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 92

The C++ API

Unicode Version

map< UnicodeString, UnicodeString > context ;
//more code
message->putContext (context) ;

SetContext

Overwrites the current context properties with the new context properties.

Syntax
ASCII Version

void setContext (map<string , string> context)
Unicode Version

void setContext (map< UnicodeString, UnicodeString > context)

Parameters

* The new context map to be used to replace the current context map

Example
ASCII Version
map<string , string> context ;

//more code
message->setContext (context) ;

Unicode Version
map< UnicodeString, UnicodeString > context ;

//more code
message—->setContext (context) ;

GetOption

Gets the value of the option entity identified by name in the option section of the message. Option
entities include the service-specific runtime options, such as output casing, output data format, and
so on.

Spectrum™ Technology Platform 12.0 SP2 API Guide

93

The C++ API

Syntax
ASCII Version

const char* getOption (const char* name)
Unicode Version

const UnicodeString getOption (const UnicodeString name)

Parameters

* The name whose associated value is to be returned

Results

Returns the value for the name in the context entity. If the name does not exist, the method returns
empty string.

Example
ASCII Version

const char* value = message->getOption ("OutputCasing") ;

Unicode Version
Same as ASCII or:

UnicodeString option="OutputCasing"; // Or input unicode string
UnicodeString value= message->getOption (option) ;

GetOptions

Gets the map that contains all of the option entries.

Syntax
ASCIl Version

map<string , string> getOptions ()
Unicode Version

map< UnicodeString, UnicodeString > getOptions ()

Parameters

None.

Spectrum™ Technology Platform 12.0 SP2 API Guide 94

The C++ API

Results

Returns the map that contains all of the option entries.

Example
ASCII Version

const char* value = message->getOption ("OutputCasing") ;
Unicode Version

UnicodeString option="OutputCasing"; //or input Unicode string
UnicodeString value= message->getOption (option) ;

PutOption

Sets the value for the given name in the option properties. If there is an existing value present for
the entity identified by the name, it is replaced. Option properties are the service-specific run-time
options.

Syntax
ASCII Version

void putOption (const char* name, const char* value)
Unicode Version

void putOption (const UnicodeString name, const UnicodeString value)

Parameters

* Name with which the specified value is to be associated
* Value to be associated with the specified name

Example
ASCII Version

message->putOption ("OutputCasing", "M");

Unicode Version
Same as ASCII or:

UnicodeString option="M"; // Or input unicode string
message->putOption ("OutputCasing", option);

Spectrum™ Technology Platform 12.0 SP2 API Guide 95

The C++ API

PutOptions

Adds the new option properties to the current option properties.

Syntax
ASCII Version

void putOptions (map<string , string> options)
Unicode Version

void putOptions (map< UnicodeString, UnicodeString > options)

Parameters

» The new option map to be added to the current option properties

Example
ASCII Version

map<string , string> options ;

//more code

message->putOptions (options) ;
Unicode Version

map< UnicodeString, UnicodeString > options ;

//more code
message->putOptions (options) ;

SetOptions

Overwrites the current option properties with the new option properties.

Syntax
ASCII Version

void setOptions (map<string , string> options)
Unicode Version

void setOptions (map< UnicodeString, UnicodeString > options)

Spectrum™ Technology Platform 12.0 SP2 API Guide 96

Parameters

» The new option map to be used to replace the current option map

Example
ASCII Version

map<string , string> options ;

//more code

message->setOptions (options) ;

Unicode Version

map< UnicodeString, UnicodeString > options ;

//more code
message->setOptions (options) ;

GetError

Gets the error message from the message.

Syntax
ASCII Version

string getError ()
Unicode Version

UnicodeString getError ()

Parameters

None.

Results

Returns the error message in message

Example
ASCII Version

String error = message->getError () ;
Unicode Version

UnicodeString error = message->getError();

The C++ API

Spectrum™ Technology Platform 12.0 SP2 API Guide

97

The C++ API

GetDataTable

Gets the DataTable in the message.
Syntax

SmartPointer<DataTable> getDataTable ()

Parameters

None.

Example

SmartPointer<DataTable> dataTable
= message—->getDataTable() ;

DataTable

DataTable contains the records for the input and output data.
Constructors

Constructors for the DataTable class are as follows:
* DataTable ()

For example:

DataTable* dataTable = new DataTable ()

Destructor

The Destructor for the DataTable class is:
* ~DataTable () ;

The following table summarizes the functions each method performs in the DataTable class.

Spectrum™ Technology Platform 12.0 SP2 API Guide 98

Table 17: DataTable Methods Summary

Method

The C++ API

Function

addColumn

Adds the new column.

getColumnNames

Gets all the column names.

getColumnindex

Gets the corresponding column index.

getColumnCount

Gets the number of columns.

clear Clears the data in DataTable.

iterator An iterator that contains all DataRows in the DataTable.
addRow Adds a DataRow to the DataTable.

newRow Creates a new DataRow in the DataTable.
getRowCount Gets the number of the DataRows in this DataTable.
merge Merges the given DataTable and the current DataTable.

AddColumn

Adds the new column.

Syntax
ASCII Version

int addColumn (const char* columnName)

Spectrum™ Technology Platform 12.0 SP2 API Guide

99

The C++ API

Unicode Version

int addColumn (const UnicodeString columnName)

Parameters

e Column name

Results

* Returns the index of column

Exceptions

» Blank column name
* Duplicate column name

Example

ASCII Version
SmartPointer<DataTable> dataTable = message.getDataTable () ;
dataTable->addColumn ("Address") ;
dataTable->addColumn ("City") ;

Unicode Version
Same as ASCII or:

SmartPointer<DataTable> dataTable = message.getDataTable () ;
UnicodeString columnName="Address"; // Or input unicode string
dataTable->addColumn (columnName) ;

GetColumnNames

Gets all the column names.

Syntax
ASCII Version

vector<string> getColumnNames () ;
Unicode Version

vector<UnicodeString> getColumnNames () ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 100

The C++ API

Parameters

None.

Results

Returns the vector of column names

Example
ASCII Version

vector<string> columnNames = dataTable->getColumnNames () ;
Unicode Version

vector<UnicodeString> columnNames = dataTable->getColumnNames () ;

GetColumnindex

Gets the corresponding column index.

Syntax
ASCII Version

int getColumnIndex (const char* columnName)
Unicode Version

int getColumnIndex (const UnicodeString columnName)

Parameter

e Column name

Results

Returns the corresponding column index.

Example
ASCII Version

int columnIndex = dataTable->getColumnIndex ("City"):;

Unicode Version

Spectrum™ Technology Platform 12.0 SP2 API Guide 101

The C++ API

Same as ASCII or:

UnicodeString columnName="City"; // Or input unicode string
int columnIndex = dataTable->getColumnIndex (columnName) ;

GetColumnCount

Gets the number of columns.

Syntax

int getColumnCount ()

Parameter

None.

Results

Returns the number of columns.

Example

int columnCount = dataTable->getColumnCount () ;

Clear

Clears the data in DataTable.
Syntax

void clear ()

Parameters

None.

Example

dataTable->clear () ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 102

The C++ API

Iterator

An iterator that contains all DataRows in the DataTable.

Syntax

vector< SmartPointer<DataRow> >::iterator iterator ()

Parameters

None.

Results

Returns an iterator that contains all DataRows in the DataTable.

Example

vector<string> columnName
= returnDataTable->getColumnNames () ;

vector< SmartPointer<DataRow> >::iterator thelterator
= returnDataTable->iterator () ;

for (int i=0; i< returnDataTable->getRowCount () ;
i++, thelterator++)

{

SmartPointer<DataRow> dataRow = *thelterator;
for (int col = 0;
col < returnDataTable->getColumnCount (); col++)

{

const char* value = dataRow->get (columnName[col].c str());

}
}

AddRow

Adds a DataRow to the DataTable.

Syntax

voilid addRow (SmartPointer<DataRow> dataRow)

Spectrum™ Technology Platform 12.0 SP2 API Guide 103

The C++ API

Parameters

» DataRow to be added to the DataTable

Example

SmartPointer<DataRow> newRow = dataTable->newRow () ;
newRow->set (0 , "10535 Boyer");
newRow->set (1 , "Austin");

newRow->set (2 , "Texas"):;
dataTable->addRow (newRow) ;

NewRow

Creates a new DataRow in the DataTable.

Syntax

SmartPointer<DataRow> newRow ()

Results

Returns the new created DataRow

Example

SmartPointer<DataRow> newRow = dataTable->newRow () ;
newRow->set (0 , "10535 Boyer");
newRow->set (1 , "Austin");

newRow->set (2 , "Texas");
dataTable->addRow (newRow) ;

GetRowCount

Gets the number of the DataRows in this DataTable.
Syntax

int getRowCount ()

Results

Returns the number of the DataRows in this DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 104

Example

int rowCount = dataTable->getRowCount () ;

Merge

Merges the given DataTable and the current DataTable.

Syntax

void merge (DataTable* other)
Parameters
» Other DataTable to be merged with the current DataTable

Example

DataTable* otherDataTable = new DataTable();
dataTable->merge (otherDataTable) ;

DataRow

DataRow contains the record for the input and output data.

Constructor

Constructors for the DataRow class are as follows:
* DataRow ()

For example:
DataRow * dataRow = new DataRow () ;

* DataRow (const DataRowé&)

The C++ API

Spectrum™ Technology Platform 12.0 SP2 API Guide

105

For example:
DataRow* dataRow = new DataRow/() ;

DataRow anotheDataRow = dataRow;
DataRow newDataRow (anotheDataRow) ;

Destructor

The Destructor for the DataRow class is:

o ~

DataRow () ;

The C++ API

The following table summarizes the functions each method performs in the DataRow class.

Table 18: DataRow Methods Summary

Method

Function

getColumnNames

Gets all the column names.

getColumnindex

Gets the corresponding column index.

getColumnCount

Gets the number of columns.

get Gets the value from the fields array by the column index in
this DataRow.

get Gets the value from the fields array by the column name in
this DataRow.

merge Merges the given DataTable and the current DataTable.

set Sets the value for the corresponding column name for the

DataRow. If the value for the name exists, the old value is
replaced.

Spectrum™ Technology Platform 12.0 SP2 API Guide

106

The C++ API

Method Function

set Sets the value for the corresponding column index for the
DataRow. If the value for the name exists, the old value is
replaced.

addChild Adds a new DataRow to the named parent/child relationship.

If the named relationship exists, the supplied DataRow will
be appended to the existing DataRow Collection, otherwise
a new Collection will be created with the supplied DataRow
as its only element.

getChildren Retrieves the child rows from a named relationship.

listChildNames Retrieves all of the names of the named parent/child
relationships.

setChildren Sets the rows of a supplied, named parent/child relationship.
If rows previously existed under this name, they will be
returned to the caller.

GetColumnNames

Gets all the column names.

Syntax
ASCII Version

vector<string> getColumnNames ()
Unicode Version

vector<UnicodeString> getColumnNames ()

Parameters

None.

Spectrum™ Technology Platform 12.0 SP2 API Guide 107

The C++ API

Results

Returns the vector of column names

Example
ASCII Version

vector<string> columnNames = dataRow->getColumnNames () ;
Unicode Version

vector<UnicodeString> columnNames = dataRow->getColumnNames () ;

GetColumnindex

Gets the corresponding column index.

Syntax
ASCII Version

int getColumnIndex (const char* columnName)
Unicode Version

int getColumnIndex (const UnicodeString columnName)

Parameter

¢ Column name

Results

Returns the corresponding column index.

Example
ASCII Version

int columnIndex = dataRow->getColumnIndex ("City"):;

Unicode Version
Same as ASCI| or:

UnicodeString columnName="City"; // Or input unicode string
int columnIndex = dataRow->getColumnIndex (columnName) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 108

The C++ API

GetColumnCount

Gets the number of columns.

Syntax

int getColumnCount ()

Parameter

None.

Results

Returns the number of columns.

Example

int columnCount = dataRow->getColumnCount () ;

Get

Gets the value from the fields array by the column index in this DataRow.

Syntax
ASCII Version

const char* get (int index)
Unicode Version

const UnicodeString get (int index)

Parameters

* Index with which the specified value is to be associated

Results

Returns the value for the column index in the DataRow, returns empty string if the index in invalid.

Spectrum™ Technology Platform 12.0 SP2 API Guide 109

The C++ API

Example
ASCII Version

const char* value = dataRow->get (1)
Unicode Version

const UnicodeString value = dataRow->get (1) ;

Get

Gets the value from the fields array by the column name in this DataRow

Syntax
ASCII Version

const char* get (const char* columnName)
Unicode Version

const UnicodeString get (const UnicodeString columnName)

Parameters

« Name with which the specified value is to be associated

Results

Returns the value for the column name in the DataRow, returns empty string if the column name
does not exist.

Example
ASCII Version

const char* value = dataRow->get ("City");

Unicode Version
Same as ASCII, or:

UnicodeString columnName="City"; // Or input unicode string
const UnicodeString value = dataRow->get (columnName) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 110

The C++ API

Merge

Merges the given DataRow and the current DataRow.

Syntax

void merge (DataRow* other)

Parameters
» Other DataRow to be merged with the current DataRow
Example

DataRow* otherDataRow = new DataRow() ;
DataRow->merge (otherDataRow) ;

Set

Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax
ASCII Version
void set (const char* columnName, const char* value)

Unicode Version

void set (const UnicodeString columnName, const UnicodeString value)

Parameters

» Name with which the specified value is to be associated
* Value to be associated with the specified name

Exceptions

» Blank column name
* Duplicate column name

Spectrum™ Technology Platform 12.0 SP2 API Guide 111

The C++ API

Example
ASCII Version

SmartPointer<DataRow> newRow = dataTable->newRow () ;
newRow->set ("AddressLinel" , "10535 Boyer");
newRow->set ("City" , "Austin");

newRow—->set ("State" , "Texas");

Unicode Version
Same as ASCI| or:

SmartPointer<DataRow> newRow = dataTable->newRow () ;
UnicodeString address="10535 Boyer"; // Or input unicode string
newRow->set ("AddressLinel" , address);

Set

Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax
ASCII Version

void set (int index, const char* value)
Unicode Version

void set (int index, const UnicodeString value)

Parameters

» Column index with which the specified value is to be associated
* Value to be associated with the specified name

Exceptions

e The column index is invalid.

Example
ASCII Version

SmartPointer<DataRow> newRow = dataTable->newRow () ;
newRow->set (0 , "10535 Boyer");

newRow->set (1 , "Austin");

newRow->set (2 , "Texas");

Spectrum™ Technology Platform 12.0 SP2 API Guide 112

The C++ API

Unicode Version
Same as ASCI| or:

SmartPointer<DataRow> newRow = dataTable->newRow () ;
UnicodeString address="10535 Boyer"; // Or input unicode string
newRow->set (0 , address);

AddChild

Adds a new DataRow to the named parent/child relationship. If the named relationship exists, the
supplied DataRow will be appended to the existing DataRow collection. Otherwise, a new collection
will be created with the supplied DataRow as its only element.

Syntax
ASCII Version

void addChild (const char* childName, SmartPointer<DataRow> childDataRow)

Unicode Version

void addChild(const UnicodeString childName, SmartPointer<DataRow>
childDataRow)

Parameters

» The name of the parent/child relationship (for example, "Flood Plain Data," "References, " "Used
Byll)
* The DataRow to be added to the relationship.

Example

SmartPointer<DataRow> childDataRow =new DataRow () ;
childDataRow ->set ("Address", "100 Congress");
childDataRow ->set ("City", "Austin");
SmartPointer<DataRow> dataRow =new DataRow () ;
dataRow->addChild ("childl", childDataRow) ;

GetChildren

Retrieves the child rows from a named relationship.

Spectrum™ Technology Platform 12.0 SP2 API Guide 113

The C++ API

Syntax
ASCII Version

list< SmartPointer<DataRow> > getChildren (const char* childName)
Unicode Version

list< SmartPointer<DataRow> > getChildren (const UnicodeString childName)

Parameters

» The name of the parent/child relationship, e.g. "Flood Plain Data", "References", "Used By", etc.

Results

Returns the child rows from the named relationship.

Example

list< SmartPointer<DataRow> > rowsChild2= dataRow-
>getChildren ("child2") ;

ListChildNames

Retrieves all of the names of the named parent/child relationships.

Syntax
ASCII Version

list<string> listChildNames ()
Unicode Version

list<UnicodeString> listChildNames ()

Results

Returns the set of the names of the named parent/child relationships.

Example

1ist<G1CLIENT STRING> names = dataRow->listChildNames () ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 114

The C++ API

SetChildren

Sets the rows of a supplied, named parent/child relationship. If rows previously existed under this
name, they will be returned to the caller.

Syntax
ASCII Version

list< SmartPointer<DataRow> > setChildren (const char* childName, list<
SmartPointer<DataRow> > dataRows)

Unicode Version

list< SmartPointer<DataRow> > setChildren (const UnicodeString childName,
list< SmartPointer<DataRow> > dataRows)

Results

Returns the set of the names of the named parent/child relationships.

Example

SmartPointer<DataRow> dataRowl=new DataRow () ;
dataRowl->set ("Address", "100 Congress") ;
dataRowl->set ("City", "Austin");
SmartPointer<DataRow> dataRow2=new DataRow () ;
dataRow2->set ("Address", "200 Congress");
dataRow2->set ("City", "Austin");

list< SmartPointer<DataRow> > rows ;
rows.push back (dataRowl) ;
rows.push back (dataRow2) ;

list< SmartPointer<DataRow> > rowsNewChildren = dataRowSpt-
>setChildren ("childl", rows);

Spectrum™ Technology Platform 12.0 SP2 API Guide

115

4 - The Java API

In this section

Introduction
Server
Service
Message
DataTable
DataRow

117
121
127
128
134
139

The Java API

Introduction

A Java class is a blueprint or prototype that defines the variables and methods common to all objects
of a certain type. A Java class also defines the implementation of a particular kind of object. It is
with these classes that you can create Java applications. In general, Java objects are created from
Java classes.

A Java object is a collection of related variables and methods written in the Java language utilizing
the Java Virtual Machine (JVM). The data associated with a class or object is stored in variables.
The behavior associated with a class or object is implemented with methods. Methods are similar
to the functions or procedures in procedural languages such as C.

Java software objects interact and communicate with each other using messages. Additional
information that the receiving object may need to perform its task is passed by parameters.

For more information on Java technology, go to www.oracle.com/java.

Constants

The Java API uses two sets of constants. The first set is for the Server component, described in
the table below.

Table 19: Constants for the Server Component

Constant Name Description Example
Server.HOST String for server host name. Default is "localhost". 65.89.200.89
Server.PORT String for server port. Default is "8080". 10119
Server. ACCOUNT_ID String for server account ID. Default is null. user1
Server. ACCOUNT_PASSWORD String for server account password. Default is null. user1
Server. CONNECTION_TIMEOUT String for server connection timeout, in millisecond. 50000

Default is "10000".

Spectrum™ Technology Platform 12.0 SP2 API Guide 117

http://www.oracle.com/java

The Java API

Constant Name Description Example
Server. CONNECTION_TYPE String for server connection type. Currently only HTTP
supports HTTP, HTTPS, or SOCKET. Default is
"HTTP".
Server.PROXY_HOST String for proxy server host name. Default is null. 192.168.1.77
Server.PROXY_PORT String for proxy server port. Default is null. 8080
Server.PROXY_USER String for proxy server account ID. Default is null. user1
Server.PROXY_PASSWORD String for proxy server account password. Defaultis user1
null.
Server.INPUT_CLEANUP Boolean value to indicate if the special characters in true

the input data must be stripped. Default is false.

Note: If this attribute is set to false and the
input data includes special characters, an
exception occurs.

Important: Set this to true only if you are sure about

the presence of special characters in the input data.

Else, enabling this attribute impacts the performance

negatively.

The second set of constants is for the Message component.

Table 20: Constants for the Message Component

Constant Name

Description/Default Example

Message.CONTEXT_ACCOUNT_ID

String for message context account user1

ID.

Message.CONTEXT_ACCOUNT_PASSWORD

password.

String for message context account user1

Spectrum™ Technology Platform 12.0 SP2

API Guide

118

The Java API

Constant Name Description/Default Example

Message.CONTEXT_SERVICE_NAME String for message context service echoservice
name.

Message.CONTEXT_SPECTRUM_DISPLAY_VERSION String for message context 121

Spectrum display version

Message.CONTEXT_SPECTRUM_SERVER_VERSION String for message context 121

Spectrum server version

Error Messages

The Java API uses the following error messages:

» Error Messages for Connection

"Connection type not supported.”
"Client timeout"

 Error Messages for creating DataTable:

"Blank column name"
"Duplicated column name"
"Index is out of bounds"

» Error Messages for Message Packaging Exception

"Cannot pack null Message"

"Input Message is null"

"Unable to connect to Server:"

"Failed to get Service"

"Unknown serialization type:"

"Unknown encoding type:"

"Gateway is not connected" (for SOCKET)

Spectrum”

" Technology Platform 12.0 SP2 API Guide

119

The Java API

Example Application

The sample code shown below illustrates how to use the Java API.

try
{

// Create Server
Server server = new Server ()

// Set server connection properties
server.setConnectionProperty (Server.HOST, "localhost");
server.setConnectionProperty (Server.PORT, "10119");
server.setConnectionProperty(Server.CONNECTION_TYPE, "SOCKET") ;
server.setConnectionProperty (Server .ACCOUNT ID, "guest");
server.setConnectionProperty(Server.ACCOUNT_PASSWORD, W 2

// Connect to server
server.connect () ;

// Get Service From Server
Service service = server.getService ("ValidateAddress");

// Create Input Message
Message request = new Message () ;

// Fill DataTable in the input message
DataTable dataTable = request.getDataTable() ;
DataRow rowl = dataTable.newRow () ;

rowl.set ("AddressLinel"™, "4200 Parliament Place");
rowl.set ("City", "Lanham");

rowl.set ("StateProvince", "Maryland");
dataTable.addRow (rowl) ;

DataRow row2 = dataTable.newRow () ;

row2.set ("AddressLinel", "100 Congress");
row2.set ("City", "Austin");

row2.set ("StateProvince", "Texas"):;
dataTable.addRow (row2) ;

// Set"option" Properties to the Input
Message request.putOption ("OutputCasing", "M");
request.putOption ("OutputRecordType", "A");

// Process Input Message, return output Message
Message reply = service.process (request);

// Disconnect from server
server.disconnect () ;

// Get the result from the response message

Spectrum™ Technology Platform 12.0 SP2 API Guide 120

The Java API

DataTable returnDataTable = reply.getDataTable() ;
String[] columnNames = returnDataTable.getColumnNames () ;
Iterator iter = returnDataTable.iterator();

while (iter.hasNext ())

{

DataRow row = (DataRow) iter.next():;
for (int col = 0; col & 1t; returnDataTable.getColumnCount () ;
col++)
{
String value = row.get (columnNames[col]) ;

System.out.println (value) ;

}
}
catch (Exception e)
{
System.out.println ("Error Occurred, " + e.getMessage());

}

Server

The server class is used to connect to the server, disconnect from the server, and get the service
from the server.

Connect

Reads the properties to determine which gateway connection to be used and makes a connection
to the server. You can connect via HTTP, HTTPS, or SOCKET. However, HTTP and HTTPS do not
actually connect to the server until a GetService or Process method is invoked. With a SOCKET
connection type, the Connect method is fully functional.

Syntax

public void connect ()

Parameters

None.

Results

Throws:

Spectrum™ Technology Platform 12.0 SP2 API Guide 121

The Java API

» ConfigurationException: When invalid configuration causes the inability to connect to the server.
For example, an unknown protocol would cause a ConfigurationException. There is no value in
attempting to retry connect() when this error occurs.

» ConnectionException: When unable to connect to the server. It might be possible to reconnect,
depending on the underlying cause of the exception.

» MessageProcessingException: When an error occurs on the server that is not due to Configuration
or Connection issues.

Example
Server server = new Server ()

server.setConnectionProperty (Server.HOST, "localhost");
server.setConnectionProperty (Server.PORT, "10119");
server.setConnectionProperty(Server.CONNECTION_TYPE, "SOCKET") ;
server.setConnectionProperty (Server .ACCOUNT ID, "guest");
server.setConnectionProperty (Server .ACCOUNT PASSWORD, "");

try

{

//Connect to server
server.connect () ;

}
catch (ConfgurationException e)
{
// indicate an error with configuration
}

catch (ConnectionkException e)

{

// handle connection issue (retry, report error, etc.)

}

catch (MessageProcessingException e)

{

// report error

}

Connection Pooling

Connection pooling for the SOCKET connection type is available to the Java client. This section
describes how to enable and disable connection pooling. By default connection pooling is disabled.

To enable connection pooling:

Server server = new Server();
Server.setConnectionProperty (Connection.SOCKET POOL, "true");

To disable connection pooling:

Server server = new Server ()
Server.setConnectionProperty (Connection.SOCKET POOL, "false");

Spectrum™ Technology Platform 12.0 SP2 API Guide

122

The Java API

When connection pooling is enabled, the connect() method borrows a connection from the pool,
and the disconnect() method returns the connection back to the pool. When pooling, the client must
call disconnect() each time to return the connection to the pool.

Each thread should contain its own server, as shown in the following example:

{

Server

server. (

server. (

.setConnectionProperty (Server.CONNECTION TYPE, "SOCKET") ;
(
(
(

server

server.
.setConnectionProperty (Server.ACCOUNT PASSWORD, "pwd");
server.
.setConnectionProperty (Connection.SOCKET POOL MAX ACTIVE, "20");

server

server

server.
.setConnectionProperty (Connection.SOCKET POOL MAX TOTAL, "25");

server

server

service

reply

server.

server = new Server ()

setConnectionProperty (Server.HOST, "localhost");
setConnectionProperty(Server.PORT, "10119");
setConnectionProperty (Server .ACCOUNT ID, "yourID");

setConnectionProperty (Connection.SOCKET POOL, "true");

setConnectionProperty (Connection.SOCKET POOL MIN IDLE, "10");

.connect () ;

= server.getService (serviceName) ;
service.process (requestMessage) ;
disconnect () ;

The following table lists the constants you can use for connection pooling.

Table 21: Constants for Connection Pooling

Constant Name Description

SOCKET_POOL Whether or not to use connection pooling if

using the SOCKET connection type. Values are
true or false. Default is false.

SOCKET_POOL_MAX_ACTIVE* Maximum number of active socket connections

that may be borrowed from the pool. Default is
-1, which indicates no maximum.

SOCKET_POOL_MAX_IDLE* Maximum number of idle socket connections

remaining in the pool. Default is -1, which
indicates no maximum.

Spectrum™ Technology Platform 12.0 SP2 API Guide 123

Constant Name

The Java API

Description

SOCKET_POOL_MAX_TOTAL*

Maximum total number of pooled socket
connections (both active and idle). Default is
-1, which indicates no maximum.

SOCKET_POOL_MAX_WAIT*

Maximum amount of time (in milliseconds) to
wait before throwing an exception when the pool
is exhausted and the "when exhausted" action
is WHEN_EXHAUSTED_ BLOCK. Defaultis -1,
which indicates no maximum.

SOCKET_POOL_MIN_EVICTABLE_IDLE_TIME_MILLIS*

Minimum amount of time a connection may sit
idle in the pool before it is eligible for eviction.
Default is 1800000 (30 minutes).

SOCKET_POOL_MIN_IDLE*

Minimum number of connections allowed in the
pool before the evictor thread (if active) creates
new connections. The default is 0.

SOCKET_POOL_NUM_TESTS_PER_EVICTION_RUN*

Sets the number of idle connections to examine
during each run of the evictor thread (if active).
Default is -1, which indicates all idle connections
are examined.

SOCKET_POOL_TEST_ON_BORROW*

Whether connections will be validated before
being borrowed from the pool. Default is true.

SOCKET_POOL_TEST_ON_RETURN*

Whether connections will be validated before
being returned to the pool. Default is false.

SOCKET_POOL_TEST_WHILE_IDLE*

Whether connections will be validated by the
idle connection eviction thread. Default is false.

SOCKET_POOL_TIME_BETWEEN_EVICTION_RUNS_MILLIS*

Sets the number of milliseconds to sleep
between runs of the idle connection evictor
thread. When set to zero or a negative number,
no idle connection evictor thread will be run.
Default is 300000 (5 minutes).

Spectrum™ Technology Platform 12.0 SP2

API Guide

124

Constant Name

The Java API

Description

SOCKET_POOL_WHEN_EXHAUSTED_ACTION*

Sets the "when exhausted action" to take when
attempting to borrow a connection and none
are available. Default is
SOCKET_POOL_WHEN_EXHA
USTED_BLOCK.

SOCKET_POOL_WHEN_EXHAUSTED_BLOCK*

A "when exhausted action" type indicating that
when attempting to borrow a connection and
none are available, the caller should block until
a new object is available, or the maximum wait
time has elapsed.

SOCKET_POOL_WHEN_EXHAUSTED_FAIL*

A "when exhausted action" type indicating that
when attempting to borrow a connection and
none are available, the caller should fail,
throwing a ConnectionException.

SOCKET_POOL_WHEN_EXHAUSTED_GROW*

A "when exhausted action" type indicating that
when attempting to borrow a connection and
none are available, a new connection will be
made anyway.

* Applicable only if using the SOCKET connection type and connection pooling is enabled.

Disconnect

Disconnects from the server.
Syntax

public void disconnect ()

Parameters

None.

Results

Client is disconnected from the server.

Spectrum™ Technology Platform 12.0 SP2 API Guide

125

The Java API

Example

//Disconnect from server
server.disconnect () ;

SetConnectionProperty

Establishes the server connection configuration properties, such as host name and length of timeout.

Syntax

public void setConnectionProperty(String name, String value)

Parameters

* Name — the name of the connection property, such as HOST
* Value — the value for the name of the connection property, such as "www.myhost.com'

Results

None.

Exceptions

* ERROR-INVALID-COLUMN_NAME — an empty or null column name.
* ERROR_INVALID_VALUE — A null value.

Example
Server server = new Server () ;

server.setConnectionProperty (Server.HOST, "localhost");
server.setConnectionProperty (Server.PORT, "8080");

//Connect to server
server.connect () ;

GetService

Gets the service from the server.

Spectrum™ Technology Platform 12.0 SP2 API Guide 126

The Java API

Syntax

public Service getService (String serviceName)

Parameters

* Name - the name of the service

Results

Returns the specific service.

Exceptions

throws ServiceNotFoundException, ServiceCreationException

Example

Service service = server.getService ("ValidateAddress") ;

Service

The service class is used to process the message (i.e., send the message to the server and
receive a response from the server).

Process

Processes the input message and returns the response message.

Syntax

public Message process (Message message)

Parameters

* Input message

Results

Returns the response message.

Spectrum™ Technology Platform 12.0 SP2 API Guide 127

The Java API

Exceptions

» TimeoutException: When invalid configuration causes the inability to connect to the server. For
example, an unknown protocol would cause a ConfigurationException. There is no value in
attempting to retry connect() when this error occurs.

» ConnectionException: When unable to connect to the server. It might be possible to reconnect,
depending on the underlying cause of the exception.

» MessageProcessingException: When an error occurs on the server that is not due to Configuration
or Connection issues.

Example

try
{
//Process Input Message, return output Message
Message response = service.process (message) ;
}
catch (ConnectionkException e)
{
// handle connection issue (retry, report error, etc.)
}
catch (TimeoutException e)
{
// handle timeout issue (retry, report error, etc.)
}
catch (MessageProcessingException e)
{
// report error

}

Message

The Message class sends your input data and receives your output data from the service. The
properties for Message include context properties, such as account ID, account password, service
name, and service method; and option properties, which are the service-specific runtime options.

GetContext

Gets the value by the name in the "context" properties. Context properties include the following
constants: account ID, account password, service name, service key, and request ID.

Spectrum™ Technology Platform 12.0 SP2 API Guide 128

The Java API

Syntax

public String getContext (String name)

Parameters

 Name - the name whose associated value is to be returned

Results

Returns the value associated with the name in the context properties. If the name does not exist,
the method returns NULL.

Example

String value = message.getContext (Message.CONTEXT ACCOUNT 1ID);

GetContext

Gets the map that contains all of the context entries.

Syntax

public Map getContext ()

Parameters

* None

Results

Returns the map that contains all of the context entries.

Example

Map context = message.getContext () :;

PutContext

Sets the value for the given name in the context properties. If there is an existing value present for
the entity identified by the name, it is replaced. Context properties include the following constants:
account ID, account password, service name, service key, and request ID.

Spectrum™ Technology Platform 12.0 SP2 API Guide 129

The Java API

Syntax

public void putContext (String name, String value)

Parameters

* Name - the name with which the specified value is to be associated
* Value - the value to be associated with the specified name

Results

None.

Example

message.putContext (Message.CONTEXT ACCOUNT ID, "userl");

PutContext

Adds the new context properties to the current context properties.

Syntax

public void putContext (Map map)

Parameters

* The new context hashtable to be added to the current context hashtable

Results

None.

Example
Map context = new HashMap () ;

message.putContext (context) ;

SetContext

Overwrites the current context properties with the new context properties.

Spectrum™ Technology Platform 12.0 SP2 API Guide 130

The Java API

Syntax

public void setContext (Map map)

Parameters

» The new context map that will replace the current context map.

Results

None.

Example
Map context = new Map ()

message.setContext (context) ;

GetOption
Gets the value by the name in the option properties. Option properties are the service-specific
run-time options.
Syntax

public String getOption (String name)

Parameters

» Name - the name whose associated value is to be returned.

Results

Returns the value for the name in the option properties in the message OR NULL if the name does
not exist.

Example

String value = message.getOption ("OutputCasing") ;

GetOptions

Gets the map that contains all of the option entries.

Spectrum™ Technology Platform 12.0 SP2 API Guide 131

The Java API

Syntax

public Map getOptions();

Parameters

* None

Results

Returns the map that contains all of the option entries.

Example

Map options = message.getOptions();

PutOption

Sets the value for the given name in the option properties. If there is an existing value present for
the entity identified by the name, it is replaced. Option properties are the service specific run-time
options.

Syntax

public void setOption(String name, String value)

Parameters

* Name—name with which the specified value is to be associated
* Value—value to be associated with the specified name

Results

None.

Example

message.setOption ("OutputCasing”, "M");

PutOptions

Adds the new option properties to the current option properties.

Spectrum™ Technology Platform 12.0 SP2 API Guide 132

The Java API

Syntax
public void putOptions (Map map)
Parameters
» The new option map to be added to the current option properties

Example
Map options = new HashMap () ;

message.putOptions (options) ;

SetOptions

Overwrites the current option properties with the new option properties.
Syntax

public void setOptions (Map map)

Parameters

» The new option map to replace the current option map

Results

None.

Example
Map options = new HashMap() ;

message.setOptions (options) ;

GetError

Gets the error message from the message.

Syntax

public String getError ()

Spectrum™ Technology Platform 12.0 SP2 API Guide 133

The Java API

Parameters

* None

Results

Returns the error message in the message.

Example

String error = message.getError();

GetDataTable

Gets the data table in this message.
Syntax

public DataTable getDataTable ()

Parameters

None.

Results

None.

Example

DataTable dataTable = message.getDataTable() ;

DataTable

DataTable contains the records for your input and output data. Using the methods associated with
this class, you define the column names for your output and add records to the DataTable.

AddColumn

Adds the new column to the DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 134

The Java API

Syntax

public int addColumn (String columnName)

Parameters

e columnName

Results

Returns the index of the column

Example

DataTable dataTable = message.getDataTable() ;
int columnIndex = dataTable.addColumn ("AddressLinel") ;
columnIndex = dataTable.addColumn ("City")

GetColumnNames

Gets all the column names.
Syntax

public String[] getColumnNames ()

Parameters

* None

Results

Returns the string array of column names.

Example

String[] columnNames = dataTable.getColumnNames () ;

GetColumnlndex

Gets the corresponding column index.

Spectrum™ Technology Platform 12.0 SP2 API Guide 135

The Java API

Syntax

public int getColumnIndex (String columnName)

Parameters

e Column name

Results

Returns the corresponding column index.

Example

int columnIndex = dataTable.getColumnIndex ("City");

GetColumnCount

Gets the number of columns in the DataTable.

Syntax

public int getColumnCount ()

Parameters

* None

Results

Returns the number of columns.

Example

int columnCount = dataTable.getColumnCount () ;

Clear

Clears the data in the DataTable.

Syntax

public void clear ()

Spectrum™ Technology Platform 12.0 SP2 API Guide 136

The Java API

Parameters

* None

Results

None.

Example

dataTable.clear () ;

Iterator

An iterator that contains all DataRows in the DataTable.

Syntax

public Iterator iterator()

Parameters

* None

Results

Returns an iterator that contains all DataRows in the DataTable.

Example

Iterator iter = dataTable.iterator();
while (iter.hasNext ())

{

DataRow row = (DataRow)iter.next () ;

}

AddRow

Adds a row to the DataTable.

Syntax

public void addRow (DataRow row)

Spectrum™ Technology Platform 12.0 SP2 API Guide 137

The Java API

Parameters

* Row - DataRow to be added to the DataTable

Results

None.

Example
DataTable dataTable = message.getDataTable() ;

DataRow row = dataTable.newRow/() ;
row.set ("AddressLinel","4203 Greenridge");

dataTable.addRow (row) ;

NewRow

Creates a new DataRow to the DataTable.

Syntax

public DataRow newRow ()

Parameters

* None

Results

Returns the newly created DataRow

Example

DataRow row = dataTable.newRow/() ;
row.set ("AddressLinel", "4203 Greenridge");

dataTable.addRow (row) ;

GetRowCount

Gets the number of DataRows in the DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 138

The Java API

Syntax

public int getRowCount ()

Parameters

* None

Results

Returns the number of DataRows in the DataTable.

Example

int rowCount = dataTable.getRowCount () ;

Merge

Merges the given DataTable and the current DataTable.

Syntax

public void merge (DataTable other)

Parameters

» The other DataTable to be merged with the current DataTable

Results

None.

Example

DataTable otherDataTable = new DataTable() ;
dataTable.merge (otherDataTable) ;

DataRow

DataRow contains the individual records for your input and output data. Using the methods associated
with this class, you define the column names for your output and add records to the DataTable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 139

The Java API

GetColumnNames

Gets all the column names.

Syntax

public String[] getColumnNames ()

Parameters

* None

Results

Returns the string array of column names.

Example

String[] columnNames = dataRow.getColumnNames () ;

GetColumnindex

Gets the corresponding column index.

Syntax

public int getColumnIndex (String columnName)

Parameters

* Name - column name

Results

Returns the corresponding column index.

Example

int columnIndex = dataRow.getColumnIndex ("City") ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 140

The Java API

Get

Gets the value from the field array by the column index in this DataRow.

Syntax

public String get (int index)

Parameters

* Index with which the specified value is to be associated

Results

Returns the value for the column index in this DataRow.

Example

String value = dataRow.get (1l);

Get

Gets the value from the field array by the column name in this DataRow.

Syntax

public String get (String columnName)
Parameters
* Name—name with which the specified value is to be associated

Results

Returns the value for the column name in this DataRow; returns empty string if the column name
does not exist.

Example

String value = dataRow.get ("City");

Spectrum™ Technology Platform 12.0 SP2 API Guide 141

The Java API

Merge

Merges the given DataRow and the current DataRow.

Syntax

public void merge (DataRow other)
Parameters
» The other DataRow to be merged with the current DataRow

Results

None.

Example

DataRow otherDataRow = new DataRow() ;
dataRow.merge (otherDataRow) ;

Set

Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax

public void set (int Index, String wvalue)

Parameters

» The column index with which the specified value is to be associated
* Value to be associated with the specified name

Results

None.

Exceptions

* IndexOutOfBounds — the column index is invalid

Spectrum™ Technology Platform 12.0 SP2 API Guide 142

The Java API

Example

DataRow row = dataTable.newRow () ;
row.set (0,"4203 Greenridge");
row.set (1, "Austin") ;

row.set (2, "Texas")
dataTable.addRow (row) ;

AddChild

Adds a new DataRow to the named parent/child relationship. If the named relationship exists, the
supplied DataRow will be appended to the existing DataRow collection. Otherwise, a new collection
will be created with the supplied DataRow as its only element.

Syntax

public void addChild(String childName, DataRow childDataRow)

Parameters

* Name - the name of the parent/child relationship (e.g., "Flood Plain Data," "References, " "Used
By," etc.)

* Value - the DataRow to be added to the relationship.

Results

None.

Example

DataRow childDataRow = new DataRow () ;
childDataRow.set ("Address", "100 Congress");

DataRow dataRow = new DataRow() ;

dataRow.addChild("childl", childDataRow) ;

GetChildren

Retrieves the child rows from a named relationship.

Spectrum™ Technology Platform 12.0 SP2 API Guide 143

The Java API

Syntax

public List getChildren (String childName)

Parameters

» The name of the parent/child relationship, e.g. "Flood Plain Data", "References", "Used By", etc.

Results

Returns the child rows from the named relationship.

Example

List childRows = row.getChildren ("childl");

ListChildNames

Retrieves all of the names of the named parent/child relationships.

Syntax

public Set listChildNames ()

Parameters

None.

Results

Returns the set of the names of the named parent/child relationships.

Example

Set childNames = row.listChildNames () ;

SetChildren

Sets the rows of a supplied, named parent/child relationship. If rows previously existed under this
name, they will be returned to the caller.

Spectrum™ Technology Platform 12.0 SP2 API Guide 144

The Java API

Syntax

public List setChildren(String childName, List DataRows)

Parameters

None.

Results
Returns the set of the names of the named parent/child relationships.
Example

List rows = dataRow.getChildren ("childl") ;
parentRow.setChildren ("child2", rows):;

Set

Sets the value for the corresponding column for the DataRow. If the value for the name exists, the
old value is replaced.

Syntax

public void set (int Index, String value)

Parameters

» The column index with which the specified value is to be associated
* Value to be associated with the specified name

Results

None.

Exceptions

* IndexOutOfBounds — the column index is invalid

Example

DataRow row = dataTable.newRow () ;
row.set (0,"4203 Greenridge") ;
row.set (1, "Austin") ;

row.set (2, "Texas")
dataTable.addRow (row) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 145

5-The NET API

In this section

Introduction

Server

Service

Message
EnhancedDataTable

147
151
153
154
161

The .NET API

Introduction

NET is a Microsoft® operating system platform that incorporates applications and a suite of tools
and services which enhance Web service and application development.

The .NET framework uses components called Common Language Runtime (CLR), Framework
Class Library (FCL), and ASP.NET. The CLR is equivalent to the Java Virtual Machine, in that it
manages code and executes it in the native language of the machine on which it runs. The Framework
Class Library is a massive library of re-usable object types that cover a myriad of program functions.
ASP.NET is a server-side technology that allows web pages and services to load much faster than
traditional ASP pages. Together, these three components of the .NET framework make application
and Web development easier, more streamlined, and provides easier integration into existing
environments. Clients and servers on different platforms running services written in various
programming languages can communicate with each other swiftly and easily.

For more information on .NET technology, go to msdn.microsoft.com/netframework.
Constants

The .NET API uses two sets of constants. The first set is for the Server component, described in
the table below.

Table 22: Constants for the Server Component

Constant Name Description Example

Server.HOST String for server host name. Default is 65.89.200.89
"localhost".

Server.PORT String for server port. Default is "8080". 10119

Server. ACCOUNT_ID String for server account ID. Default is null. user1

Server. ACCOUNT_PASSWORD String for server account password. Defaultis user1

null.

Spectrum™ Technology Platform 12.0 SP2 API Guide 147

http://msdn.microsoft.com/netframework

The .NET API

Constant Name Description Example
Server. CONNECTION_TIMEOUT String for server connection timeout, in 50000
millisecond. Default is "10000".
Server. CONNECTION_TYPE String for server connection type. Currently only HTTP(S)
supports HTTP, HTTPS, or SOCKET. Defaults
is "HTTP".
Server.PROXY_HOST String for proxy server host name. Defaultis 192.168.1.77
null.
Server.PROXY_PORT String for proxy server port. Default is null. 8080
Server.PROXY_USER String for proxy server account ID. Defaultis user1
null.
Server.PROXY_PASSWORD String for proxy server account password. user1
Default is null.
The second set of constants is for the Message component.
Table 23: Constants for the Message Component
Constant Name Description Example
Message.CONTEXT_ACCOUNT_ID String for message context account user1
ID.
Message.CONTEXT_ACCOUNT_PASSWORD String for message context account user1
password.
Message.CONTEXT_SERVICE_NAME String for message context service echoservice

name.

Spectrum™ Technology Platform 12.0 SP2

API Guide

148

The .NET API

Error Messages

The .NET API uses the following error messages:
» Error Messages for Connection

* "Connection type not supported.”
* "Client timeout"

» Error Messages for Message Packaging Exception

* "Input Message is null."

The other error messages will come from the .NET Framework Class Library if they do not get used
properly.

Example Application

The sample code shown below illustrates how to use the .NET API.

using System;

using System.IO;

using System.Collections;
using System.Text;

using System.Data;

using glclient;

try

{

//Create Server

Server server = new Server ()

//Set connect property to the server
server.SetConnectionProperty (Server.HOST, "localhost");
server.SetConnectionProperty (Server.PORT, "10119");
server.SetConnectionProperty(Server.CONNECTION_TYPE, "SOCKET") ;
server.SetConnectionProperty (Server .ACCOUNT ID, "guest");
server.SetConnectionProperty(Server.ACCOUNT_PASSWORD, WY e

//Connect to server
server.Connect () ;

//Get Service From Server
Service service = server.GetService ("ValidateAddress") ;

//Create Input Message
Message request = new Message ()

Spectrum™ Technology Platform 12.0 SP2 API Guide 149

//Fi1ill dataTable in the input message
//Datatable is the .net Framework class
DataTable dataTable = request.GetDataTable() ;

DataColumn columnl = new DataColumn () ;
columnl.DataType = System.Type.GetType ("System.String");
columnl.ColumnName = "AddressLinel";

dataTable.Columns.Add (columnl) ;

DataColumn column? = new DataColumn () ;
column2.DataType = System.Type.GetType ("System.String");
column?.ColumnName = "City";

dataTable.Columns.Add (column?2) ;

DataColumn column3 = new DataColumn () ;
column3.DataType = System.Type.GetType ("System.String");
column3.ColumnName = "StateProvince";

dataTable.Columns.Add (column3) ;

DataRow newRow = dataTable.NewRow () ;

newRow[0]="4200 Parliament Place";
newRow [1l]="Lanham";
newRow[2]="Maryland";

dataTable.Rows.Add (newRow) ;

//Set "option" Properties to the Input Message
request.PutOption ("OutputCasing", "M");
request.PutOption ("OutputRecordType", "A");

//Process Input Message, return output Message
Message reply = service.Process (request);

//Disconnect from server
server.Disconnect () ;

//Get the result from the response message
DataTable returnDataTable = reply.GetDataTable () ;

foreach (DataColumn dc in returnDataTable.Columns)
{

// more code to be added

string columnName = dc.ColumnName;

}

foreach (DataRow dr in returnDataTable.Rows)

{

for (int col = 0; col < returnDataTable.Columns.Count; col++)
{

// more code to be added

string value = (String)dr[col] ;
Console.WritelLine (value) ;

}

The .NET API

Spectrum™ Technology Platform 12.0 SP2 API Guide

150

The .NET API

}
}

catch (Exception e)

{

//Error handling
Console.WriteLine ("Error Ocurred, " + e.ToString()):;

}

Server

The server class is used to connect to the server, disconnect from the server, and get the service
from the server.

Connect

Reads the properties to determine which gateway connection to be used and makes a connection
to the server.

Note: .NET uses the HTTP, HTTPS, or SOCKET server connection protocol. HTTP and
HTTPS logically establish a client connection but do not actually connect to the server until
a GetService or Process method is invoked. The SOCKET protocol establishes a connection

to the server when Connect is invoked.

Syntax

public void Connect ()

Parameters

None.

Results

None.

Exceptions

+ "Connection type not supported.”

Spectrum™ Technology Platform 12.0 SP2 API Guide 151

The .NET API

Example

Server server = new Server();

// set connect property to the server
server.SetConnectionProperty (Server.HOST, "localhost");
server.SetConnectionProperty (Server.PORT, "8080");

// more connection properties to be set

// Connect to server
server.Connect () ;

Disconnect

Disconnects from the server.
Syntax

public void Disconnect ()

Parameters

None.

Results

Client is disconnected from the server.

Example

//Disconnect from server
server.Disconnect () ;

SetConnectionProperty

Establishes the server connection configuration properties, such as host name and length of timeout.

Syntax

public void SetConnectionProperty (String name, String value)

Parameters

* Name — the name of the connection property, such as HOST
» Value — the value for the name of the connection property, such as "www.myhost.com"

Spectrum™ Technology Platform 12.0 SP2 API Guide 152

The .NET API

Results

None.

Example
Server server = new Server ()

server.SetConnectionProperty (Server.HOST, "localhost");
server.SetConnectionProperty (Server.PORT, "8080");

//Connect to server
server.Connect () ;

GetService

Gets the service from the server.

Note: See the Component Reference section of this guide for a list of services that may be
available to you.

Syntax

public Service getService (String serviceName)

Parameters

« Name—name of service

Results

Returns the specific service.

Example

Service service = server.GetService ("ValidateAddress"):;

Service

The Service class is used to process the message (in other words, it sends the message to the
server and receives a response from the server).

Spectrum™ Technology Platform 12.0 SP2 API Guide 153

The .NET API

Process

Processes the input message and returns the response message.

Syntax

public Message Process (Message, message)

Parameters

* Input message

Results

Returns the response message.

Exceptions

MessageProcessingException

Example

//Process Input Message, return output Message
Message reply = service.Process (request);

Message

The Message class sends your input data and receives your output data from the service. The
properties for Message include context properties, such as account ID, account password, service
name, and service method; and option properties, which are the Service-specific runtime options.

GetContext

Gets the value by the name in the context properties. Context properties include the following
constants: account ID, account password, service name, service key, and request ID.

Syntax

public String GetContext (String name)

Spectrum™ Technology Platform 12.0 SP2 API Guide 154

The .NET API

Parameters

None.

Results

Returns the value associated with the name in the "context" properties. If the name does not exist,
the method returns NULL.

Example

String value = message.GetContext (Message.CONTEXT ACCOUNT_ 1ID);

GetContext

Gets the hashtable that contains all of the context entries. Hashtable is the .NET Framework class.

Syntax

public Hashtable GetContext ()

Parameters

* None

Results

Returns the hashtable that contains all of the context entries.

Example

Hashtable context = message.GetContext () ;

PutContext

Sets the value for the given name in the context properties. If there is an existing value present for
the entity identified by the name, it is replaced. Context properties include the following constants:
account ID, account password, service name, service key, and request ID.

Syntax

public void PutContext (String name, String value)

Spectrum™ Technology Platform 12.0 SP2 API Guide 155

The .NET API

Parameters

* Name—name with which the specified value is to be associated
» Value—value to be associated with the specified name

Example

message.PutContext (Message.CONTEXT ACCOUNT ID, "userl");

PutContext

Adds the new context properties to the current context properties.

Syntax

public void PutContext (Hashtable context)

Parameters

* The new context hashtable to be added to the current context hashtable

Results

None.

Example

//Hashtable is the .NET Framework class
Hashtable context = new Hashtable();

//more code
message.PutContext (context) ;

SetContexts

Overwrites the current context properties with the new context properties.
Syntax

public void SetContexts (Hashtable context)

Parameters

» Context - the new context hashtable that will replace the current context hashtable.

Spectrum™ Technology Platform 12.0 SP2 API Guide 156

The .NET API

Results

None.

Example
//Hashtable is the .NET Framework class
Hashtable context = new Hashtable();

//more code
message.SetContexts (context) ;

GetOption
Gets the value by the name in the option properties. Option properties are the service-specific
run-time options.
Syntax

public String GetOption (String name)

Parameters

» Name - the name whose associated value is to be returned.

Results

Returns the value for the name in the "option" properties in the message or NULL if the name does
not exist.

Example

String value = message.GetOption ("OutputCasing") ;

GetOptions

Gets the hashtable that contains all of the option entries. Hashtable is the .NET Framework class.
Syntax

public Hashtable GetOptions();

Parameters

* None

Spectrum™ Technology Platform 12.0 SP2 API Guide 157

The .NET API

Results

Returns the hashtable that contains all of the option entries.

Example

Hashtable options = message.GetOptions();

PutOption

Sets the value for the given name in the option properties. If there is an existing value present for
the entity identified by the name, it is replaced. Option properties are the Service specific run-time
options.

Syntax

public void PutOption (String name, String value)

Parameters

+ Name—name with which the specified value is to be associated
» Value—value to be associated with the specified name

Example

message.PutOption ("OutputCasing”, "M");

PutOptions

Adds the new option properties to the current option properties.
Syntax
public void PutOptions (Hashtable options)
Parameters
» Option - the new option hashtable to be added to the current option hashtable

Results

None.

Spectrum™ Technology Platform 12.0 SP2 API Guide 158

Example
//Hastable is the .NET Framework class
Hashtable options = new Hashtable();

// more code
message.PutOptions (options) ;

SetOptions

Overwrites the current option properties with the new option properties.

Syntax

public void SetOptions (Hashtable options)
Parameters
» Options - the new option hashtable to replace the current option hashtable

Results

None.

Example

//Hashtable is the .NET Framework class
Hashtable options = new Hashtable();
//more code

message.SetOptions (options) ;

GetError

Gets the error message from the message.

Syntax

public String GetError ()

Parameters

* None

The .NET API

Spectrum™ Technology Platform 12.0 SP2 API Guide

159

The .NET API

Results

Returns the error message in the message.

Example

String error = message.GetError();

GetDataTable

Gets the DataTable in this message. DataTable is .NET Framework class.

Syntax

public DataTable GetDataTable ()

Parameters

None.

Results
None.
Example

//DataTable is the .net Framework class
DataTable dataTable = message.GetDataTable() ;

DataColumn columnl = new DataColumn () ;
columnl.DataType = System.Type.GetType ("System.String") ;
columnl.ColumnName = "AddressLinel";

dataTable.Columns.Add (columnl) ;

DataColumn column2 = new DataColumn () ;

column?2.DataType = System.Type.GetType ("System.String") ;
column2.ColumnName = "City";

dataTable.Columns.Add (column?2) ;

DataRow newRow = dataTable.NewRow () ;
newRow[0]="4203 Greenridge";
newRow[1]="Austin";

dataTable.Rows.Add (newRow) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 160

The .NET API

EnhancedDataTable

EnhancedDataTable is a class which extends .NET class DataTable.

AddChild

Adds a new DataRow to the named parent/child relationship. If the named relationship exists, the
supplied DataRow will be appended to the existing DataRow collection. Otherwise, a new collection
will be created with the supplied DataRow as its only element.

Syntax

public void AddChild(DataRow parentRow, string name, DataRow newChild)

Parameters

* Name - the name of the parent/child relationship (e.g., "Flood Plain Data," "References, " "Used
By," etc.)

» DataRow - the DataRow to be added to the relationship.

Results

None.

Example
EnhancedDataTable dataTable = new EnhancedDataTable() ;

dataTable.Columns.Add (new DataColumn ("AddressLinel",

System.Type.GetType ("System.String")));
dataTable.Columns.Add (new DataColumn ("City",
System.Type.GetType ("System.String")));
dataTable.Columns.Add (new DataColumn ("StateProvince",
System.Type.GetType ("System.String")));
dataTable.Columns.Add (new DataColumn ("PostalCode",
System.Type.GetType ("System.String")));

DataRow row = dataTable.NewRow/() ;

row[0] = "510 S Coit St";
row[l] = "Florence";
row[2] = "SC";

Spectrum™ Technology Platform 12.0 SP2 API Guide 161

The .NET API

row[3] = "29501-5221";
EnhancedDataTable childDataTable = new EnhancedDataTable () ;

childDataTable.Columns.Add (new DataColumn ("AddressLine2",

System.Type.GetType ("System.String"))) ;
childDataTable.Columns.Add (new DataColumn ("City",
System.Type.GetType ("System.String"))) ;
childDataTable.Columns.Add (new DataColumn ("StateProvince",
System.Type.GetType ("System.String")));
childDataTable.Columns.Add (new DataColumn ("PostalCode",
System.Type.GetType ("System.String")));

DataRow childRow = childDataTable.NewRow () ;

childRow[0] = "241 Ne C St";
childRow[1l] = "Willamina";
childRow[2] = "OR";
childRow[3] = "97396-2714";

dataTable.AddChild (row, "Childl", childRow) ;
dataTable.Rows.Add (row) ;

GetChildren

Retrieves the child rows from a named relationship.

Syntax

public EnhancedDataTable GetChildren (DataRow parentRow, string name)

Parameters

» ParentRow - the parent row
* Name - the name of the parent/child relationship, e.g. "Flood Plain Data", "References", "Used
By", etc.

Results

Returns the child rows from the named relationship.

Example

EnhancedDataTable childRows = dataTable.GetChildren (parentRow, "childl");

Spectrum™ Technology Platform 12.0 SP2 API Guide 162

The .NET API

ListChildNames

Retrieves all of the names of the named parent/child relationships.

Syntax

public string[] ListChildrenNames (DataRow parentRow)

Parameters

None.

Results

Returns the set of the names of the named parent/child relationships.

Example

string[] childNames = dataTable.ListChildrenNames (parentRow) ;

SetChildren

Sets the rows of a supplied, named parent/child relationship. If rows previously existed under this
name, they will be returned to the caller.

Syntax

public void SetChildren (DataRow parentRow, string name, EnhancedDataTable
newTable)

Results
Returns the set of the names of the named parent/child relationships.
Example
EnhancedDataTable childRows = dataTablel.GetChildren (parentRow,

"childl") ;
dataTable2.SetChildren (otherParentRow, "childl", childRows) ;

Spectrum™ Technology Platform 12.0 SP2 API Guide 163

6 - ManagementAP]
Methods (Deprecated)

In this section

Introduction 165
GetLicenselnfo 165
GetVersioninfo 166

ManagementAPI Methods (Deprecated)

Introduction

Important: The ManagementAPI web service is deprecated and will be removed in a future release.
Use the Administration Utility to get license and version information about your system. For more
information about the Administration Utility, see the Administration Guide.

There are two management APl methods that are publicly available via the ManagementAPI web
service: getLicenseInfo and getVersionInfo. The WSDL URL for the ManagementAPI Web
service is:

http://SpectrumServer:8080/managers/ManagementAPIService?wsdl

Where SpectrumServer is the host name or IP address of your Spectrum™ Technology Platform
server.

GetLicenselnfo

Important: The ManagementAPI web service is deprecated and will be removed in a future release.
Use the Administration Utility to get license and version information about your system. For more
information about the Administration Utility, see the Administration Guide.

The method GetlLicenselnfo returns a license object. The license object contains properties for
machine type, operating system type, hostname, and CPU limit. It also contains an array of feature
objects and an array of restriction objects. These arrays can be processed to determine specific
information about features and restrictions. Feature has an ID, a name, and an enabled flag.
Restriction has an ID, a limit, and a start date.

Web Service

ManagementAPIService

Parameters

None.

Result

Returns the license object.

Spectrum™ Technology Platform 12.0 SP2 API Guide 165

ManagementAPI Methods (Deprecated)

Example

License
string machineType
string osType
string hostName
string CPULimit

Feature[] features
Restriction[] restrictions
Feature

string ID;

string name;
Restriction[] restrictions

Restriction
string ID
long limit
datetime startDate
Feature[] features

ExpirationRestriction extends Restriction

UsageRestriction extends Restriction
long usages

GetVersionInfo

Important: The ManagementAPI web service is deprecated and will be removed in a future release.
Use the Administration Utility to get license and version information about your system. For more
information about the Administration Utility, see the Administration Guide.

The GetVersionInfo method returns an array of Versionlnfo objects. A VersionInfo object has a
name, version number, and a list of VersionAttribute objects. VersionAttribute objects are simple
classes that have a label and a value. GetVersionInfo attributes are product-specific as the information
is gathered and returned by the product itself. This same information is also displayed in the Version
Information node of the Management Console.

Note: You must run GetVersioninfo once, see what values come back, and then parse the
information to get specific pieces of information.

Web Service

ManagementAPIService

Spectrum™ Technology Platform 12.0 SP2 API Guide 166

ManagementAP| Methods (Deprecated)

Parameters

None.

Result

Returns VersionInfo objects.

Example

VersionInfo

string name

string version
VersionAttribute[] attributes

VersionAttribute
string label
string value

Spectrum™ Technology Platform 12.0 SP2 API Guide 167

/ - Module Services

In this section

Enterprise Geocoding Module
Enterprise Tax Module
GeoConfidence Module
Universal Addressing Module
Universal Name Module

169
367
511
514
701

Module Services

Enterprise Geocoding Module

Enterprise Geocoding Module

The Enterprise Geocoding Module performs address standardization, address geocoding, and postal
code centroid geocoding. You can enter an address and get outputs such as geographic coordinates,
which can be used for detailed spatial analysis and demographics assignment. You can also enter
a geocode, a point represented by a latitude and longitude coordinate, and receive address
information about the provided geocode.

Components

Enterprise Geocoding Module consists of the following stages. The specific stages you have depend
on your license.

* GeocodeAddressAUS— Takes an address in Australia and returns latitude/longitude coordinates
and other information. It also can geocode against a Geocoded National Address File Persistent
Identifier point (G-NAF PID).

* GeocodeAddressGBR—This stage has been deprecated. In its place use the Global
Geocoding Module's Global Geocoding stage.. Takes an address in Great Britain and returns
latitude/longitude coordinates and other information.

* GeocodeAddressGlobal—Takes an address in any supported country and returns
latitude/longitude coordinates and other information. Geocode Address Global geocodes addresses
only from countries you have licensed. It does not support Australia and Great Britain.

» Geocode Address—Takes an address located in any of the supported countries and returns the
city centroid or, for some countries, postal centroid. Geocode Address World cannot geocode to
the street address level.

» Geocode Africa—Provides street-level geocoding for many African countries. It can also determine
city or locality centroids, as well as postal code centroids for selected countries.

» Geocode Middle East Provides street-level geocoding for many Middle East countries. It can
also determine city or locality centroids. Middle East supports both English and Arabic character
sets.

* Geocode Latin America Provides street-level geocoding for many Latin American countries. It
can also determine city or locality centroids. There is postal code coverage for selected countries.

+ GeocodeUSAddress—Takes an input address and returns latitude/longitude coordinates and
other address information.

* GNAFPIDLocationSearch—Identifies the address and latitude/longitude coordinates for a
Geocoded National Address File Persistent Identifier (G-NAF PID).

* ReverseAPNLookup—Takes an Assessor's Parcel Number (APN), Federal Information Processing
Standards (FIPS) county code, and FIPS state code and returns the address of the parcel.

Spectrum™ Technology Platform 12.0 SP2 API Guide

169

Module Services

* ReverseGeocodeUSLocation—Takes as input a geocode (latitude and longitude coordinate)
and returns the address of the location.

* ReversePBKeyLookup—Takes a pbKeyT'vI unique identifier as input and returns all standard
returns that are provided as part of address matching.

Enterprise Geocoding Databases

The following Enterprise Geocoding Module databases are installed on the Spectrum™ Technology
Platform server. Some of the databases are available by subscription from Pitney Bowes and are
updated monthly or quarterly. Others are licensed from the USPS®.

U.S. Geocoding Databases (U.S. Only)

These databases contain the spatial data necessary to perform address standardization and
geocoding. You must install at least one of these databases to perform geocoding for USA. You set
the database that you want to match against with the processing options. Enterprise Geocoding
tries to match to the database you indicate. To verify you are matching to the database you want,
you can review the value returned in the StreetDataType output field.

These databases use proprietary files called GSD files. For ZIP Code centroid matching, the file
us.Z9 contains all the centroid info for all states and normally has a z9 extension.

» Centrus Enhanced Geocoding—This database consists of TIGER data provided by the U.S.
Geological Survey and address data provided by the U.S. Postal Service.

* TomTom Geocoding—This database provides more up-to-date data than the Centrus Enhanced
Geocoding database. It requires an additional license. This data is provided by TomTom, a
third-party provider of spatial data, and postal data from the U.S. Postal Service.

* HERE Geocoding—This database provides more up-to-date data than the Centrus Enhanced
Geocoding database. It requires an additional license. HERE data is provided by HERE, a third-party
provider of spatial data. For more information about these databases, contact your sales
representative.

» ZIP + 4 Centroid—This database provides only address standardization and ZIP + 4 centroid
matching. It does not provide street-level matching.

Each geocoding database has an optional Statewide Intersections Index. The Statewide Intersection
Index is designed to enable fast intersection identification on a statewide basis. For example, the
Statewide Intersection Index will allow the database search for "1st and Main St, CO" and return a
list of possible matches in Colorado more quickly than searching the entire geocoding database for
each instance of the intersection.

U.S. Points Databases (U.S. Only)

Points databases contain data for locating the center of a parcel. These databases provides enhanced
geocoding accuracy for internet mapping, property and casualty insurance, telecommunications,
utilities, and others.

Spectrum™ Technology Platform 12.0 SP2 API Guide 170

Module Services

These databases are optional, but either Centrus Enhanced Points or Centrus Premium Points is
required for Reverse Assessor's Parcel Number (APN) Lookup. These databases are also separately
licensed.

» Centrus Points—This database contains the data necessary to locate the center of a parcel or
building. It does not contain Assessor's Parcel Number (APN) or elevation data.

» Centrus Elevation—This database contains the same data as Centrus Points, plus elevation
data.

» Centrus Enhanced Points—This database contains the same data as Centrus Points, plus APN
data.

» Centrus Premium Points—This database contains the same data as Centrus Points, plus both
APN and elevation data.

* HERE Points Database—The data in this database is provided by HERE, a third-party provider
of spatial data.

» TomTom Points Database—The data in this database is provided by TomTom, a third-party
provider of spatial data.

» Master Location Data — This database provides the best available address point location for
every mailable and deliverable address in the United States.

Reverse Geocoding Database (U.S. Only)
This database contains the data you need to convert a latitude/longitude location to an address.

This database is optional, but is required for ReverseGeocodeUS. This database is also separately
licensed.

Auxiliary Files (U.S. Only)

Auxiliary files contain user-defined records. You can use auxiliary files to provide custom data to
use in address matching and geocode matching.

DPV® Database (U.S. Only)

The Delivery Point Validation database allows you to check the validity of any individual mailing
address in the U.S. The DPV database is distributed as an optional feature and can be installed to
enhance the geocoding database's ability to validate mailing addresses. Each time an edition of the
geocoding database is released, a corresponding edition of the optional DPV database is released.
The date of the DPV database must match the date of the geocoding database for DPV processing
to function. DPV lookups may not be performed after the expiration date of the DPV database.

This database is optional, but is required for CASS™ processing. The DPV database is also required
to determine ZIP + 4 and ZIP + 4 related output (DPBC, USPS record type, etc.). This database is
also separately licensed.

Note:

Postal Service licensing prohibits using DPV for the generation of addresses or address lists,
and also prohibits the DPV database being exported outside the United States.

Spectrum™ Technology Platform 12.0 SP2 API Guide 171

Module Services

EWS Database (U.S. Only)

The Early Warning System (EWS) database contains data that prevents address records from
miscoding due to a delay in postal data reaching the U.S. Postal database.

The USPS® refreshes the EWS file on a weekly basis. Unlike the DPV and LACS™"™ databases,
the EWS database does not need to have the same date as the geocoding database. You can
download the EWS.zip file free of charge from the CASS section of the USPS® RIBBS website at:

Link

https://postalpro.usps.com/cass/EWS

When you download the EWS database, you will receive a file named OUT. You must rename the
OUT file to EWS.txt before using it.

LACS ™ Database (U.S. Only)

The LACS"™ database allows you to correct addresses that have changed as a result of a rural
route address converting to street-style address, a PO Box renumbering, or a street-style address
changing.

This database is optional, but is required for CASS™ processing. The LACS""™ database is also

required in CASS mode to receive ZIP + 4 and ZIP + 4 related output (delivery point bar code, USPS
record type, etc.).

The date of the LACS-"™ database must match the date of the geocoding database for LACS
processing to function.

Note:

Link

USPS licensing prohibits usingk LACS"™ for the generation of addresses or address lists,
and also prohibits the LACS""™ database being exported outside the United States.

International Geocoding Databases

International geocoding databases contain the spatial data necessary to perform address
standardization and geocoding for locations outside the U.S. Each country has its own database,
and some countries have optional databases that provide enhanced geocoding.

United Kingdom AddressBase Premium Database
AddressBase Premium is a point database sourced from Ordnance Survey®, Royal Mail, and local
authorities.

The AddressBase Premium database provides the highest level of precision, as reflected in S8
result codes. The database includes objects without postal addresses, such as subdivided properties,
places of worship and community centers.

The AddressBase Premium database is built around the UPRN (Unique Property Reference Number).
The UPRN is the unique identifier that provides a persistent reference to a unique property, regardless
of changes in the property name, status, subdivision, use (such as from single occupancy to multiple
occupancy) or demolition of the property. All historic, alternative, and provisional addresses are
recorded against the same UPRN. The UPRN is returned with every AddressBase Premium
candidate, except for Northern Ireland addresses.

Spectrum™ Technology Platform 12.0 SP2 API Guide 172

https://postalpro.usps.com/cass/EWS

Module Services

Since the Ordnance Survey data source does not contain addresses for Northern Ireland,
AddressBase Premium is supplemented with Royal Mail® postcode address data for Northern Ireland.
This Northern Ireland data has postcode centroid (result code S3) precision only.

For more information on the AddressBase Premium, see

hitps:/www.ordnancesurvey.co.ukbusiness-and-govemmenthelp-and-supportiproducts/addresshasepremiumhtml

from Ordnance Survey.

United Kingdom CodePoint Database

The CodePoint Postal Address File (PAF) database provides postcode centroid geocoding. The
CodePoint database is suitable for most applications involving address matching, validation, etc.

The CodePoint database is sourced from Royal Mail and covers street addresses for the UK (Great
Britain and Northern Ireland). The CodePoint database is licensed for the entire dataset, rather than
by region. The postcode centroid precision provided by the CodePoint database is reflected in S3
result codes.

For more information on the Royal Mail data source, see:

http://www.royalmail.com

Australia Geocoded National Address File (G-NAF)

This database provides enhanced geocoding for Australian addresses. This is the only authoritative
Australian national index of locality, street and number, validated with geographic coordinates. It
contains both officially recognized rural and urban addresses and unofficial addresses (aliases).
Postal addresses and PO Boxes are not included. However, because some rural areas do not have
adequate rural address information, roadside mail box (RMB) numbers, Lot numbers, and Block &
Section numbers have been included in the G-NAF data set.

When you install this database there will be two subfolders:

* GNAF123—Contains the point-level dictionary. This has the highest precision of geocoding
(characterized by Reliability Level 1, 2, or 3.)

* GNAF456 —Contains the remainder of address information in G-NAF that does not meet high
precision geocoding criteria (characterized by Reliability Level 4, 5, or 6.)

You must specify each of these as separate database resources in the Management Console.

We recommend that you use both databases to validate the existence of addresses but only use
the GNAF123 for parcel-level geocoding. If you do not require parcel-level geocodes you can use
the GNAF456 database for geocoding.

New Zealand Point Database

The New Zealand Point Database is based on postal point data which has a roof top precision point
of each unique street address. Location X and Y returned for candidates from this database are
roof top precision.

This data is maintained by the government authority, Land Information New Zealand.

Spectrum™ Technology Platform 12.0 SP2 API Guide 173

https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/addressbase-premium.html
http://www.royalmail.com

Module Services

Other Point Databases for International Countries

A number of other point databases are available for international countries. Refer to the quarterly
data release notes for more information.

Geocoding Concepts

Geocoding is the process of determining the latitude/longitude coordinates of an address. There
are different ways that an address can be geocoded. In order of most accurate to least accurate,
these methods are:

Point Level Matching

Point-level matching locates the center of the actual building footprint or parcel. This is the most
accurate type of geocode and is used in industries such as internet mapping, insurance,
telecommunications, and utilities.

Centerline matching is used with point-level matching to tie a point-level geocode with its parent
street segment. This provides you with additional data about the parent street segment that is not
retrievable using only the point-level match. The output information also includes the bearing from
the point data geocode to the centerline match.

Street Matching

Street matching identifies the approximate location of an address on a street segment. In street
matching, the location is determined by calculating the approximate location of a house number
based on the range of numbers in the location's street. For example, if the address is on a street
segment with a range of addresses from 50 to 99, then it is assumed that the house number 75
would be in the middle of the street segment. This method assumes that the addresses are evenly
spaced along the street segment. As a result, it is not as exact as point matching since addresses
may not be evenly distributed along a street segment.

For example, the following diagram shows the results of street-level matching along a segment with
unevenly-spaced buildings. The first three buildings are fairly accurately geocoded because they
are evenly spaced. The fourth building, however, resides on a slightly larger parcel than the others
along this street. Since street-level matching assumes that the buildings are evenly spaced, the
result is that fourth, fifth, and sixth houses are not as precise as the first three. If you were to use
point-level geocoding, the results would be more accurate.

Spectrum™ Technology Platform 12.0 SP2 API Guide 174

Module Services

Centroid Matching

ZIP Code centroid matching is a center point of an area defined by either a ZIP Code or a ZIP + 4,
and is the least accurate type of geocode. A ZIP Centroid is the center of a ZIP Code; a ZIP + 4
centroid is the center of a ZIP + 4. Since a ZIP + 4 represents a smaller area than a ZIP Code, a
ZIP + 4 centroid is more accurate than a ZIP Code centroid.

The following diagram illustrates centroid matching. All six houses would have the same geocode
in this example because they all reside in the same ZIP + 4 code.

ZIP Code
ZIP + 4 Code

K ZIP Code
ZIP + 4 Cantroid

Geocoding Match Strategies for Non-U.S. Locations

The Enterprise Geocoding Module offers a variety of options for controlling geocoding precision and
match rate. The following information describes different approaches for matching which you can
apply to any country geocoder except the U.S. geocoder (GeocodeUSAddress), which has a different
set of options.

Maximizing the Match Rate

To generate the highest match rate possible, do not specify house number, street, and city/locality
using the ExactMatch option.

Another way to maximize the match rate is by setting FallbackToPostal=Y. This means that the
geocoder will fall back to the four-digit postcode centroid if a close street level match cannot be

Spectrum™ Technology Platform 12.0 SP2 API Guide 175

Module Services

made. While this scenario might yield false positives, it may be the best matching solution when
you have large databases to geocode.

You should evaluate if the percentage of false positives will affect your analysis. To reduce the
number of false positives without sacrificing hit rate, analyze the result codes after a geocoding
session and adjust your settings accordingly.

Maximizing Precision

If your analysis requires highly precise geocoded addresses, choose a strategy in which the geocoder
returns the maximum percentage of high precision geocodes and the lowest number of imprecise
matches (false positives). To do this, use the ExactMatch option to require close matches to match
on all address elements. Also, set FallbackToPostal=N.

This technique may produce a lower percentage match rate, but will provide the best precision.

Balancing Match Rate and Precision

You may want to use a balanced strategy between match rate and geographic precision. That is,
you may want to geocode as many records as possible automatically, but at the same time want to
minimize the number of weaker matches (false positives). For example, false positives can occur
when the geocoder:

» finds a street that sounds like the input street.
« finds the same street in another city (if postal code match is not required).
« finds the street but with a different house number (if house number is not required).

The following settings may achieve a good balance between match rate and precision:

» CloseMatchesOnly—Specify "Y".

* MustMatchHouseNumber—Specify "Y".
* MustMatchStreet—Specify "Y".
 FallbackToPostal—Specify "N".

Postal Concepts

The following sections contain information about postal concepts used by the Enterprise Geocoding
Module.

Note: This section and the topics of Locatable Address Conversion System, Delivery Point
Validation, and Early Warning System are relevant to USA geocoding only.

Dual Addresses

GeocodeUSAddress can process input that contains two addresses for the same record on the
same address line. For example, GeocodeUSAddress can process the following input address:

3138 HWY 371
PO BOX 120
PRESCOTT AR 71857

Spectrum™ Technology Platform 12.0 SP2 API Guide 176

Module Services

GeocodeUSAddress does not recognize dual addresses where the two addresses are both street
addresses. For example, GeocodeUSAddress does NOT recognize 135 Main St 4750 Walnut St
Ste 200. GeocodeUSAddress does recognize dual addresses where the two addresses are the
same type of address but are not street addresses. For example, GeocodeUSAddress does recognize
PO BOX 12 PO BOX 2000.

After GeocodeUSAddress parses the dual address, it searches for a match. GeocodeUSAddress
determines which address has preference for a match based on the processing mode. In CASS
mode, GeocodeUSAddress ignores the prefer PO Box and prefer street options, and attempts to
find a match based on the following order: PO Box, Street, Rural Route, and General Delivery. In
Relaxed mode, GeocodeUSAddress recognizes the Address Preference (AddressPreference) input
option.

Note: GeocodeUSAddress does not perform dual address processing in Exact and Close
mode. GeocodeUSAddress does not perform dual address processing on multi-line addresses.

Locatable Address Conversion System (LACS)

The USPS® Locatable Address Conversion System (LACS) corrects addresses that have changed
as a result of a rural route address converting to street-style address, a PO Box renumbering, or a
street-style address changing. The following are examples of LACS""™ conversions:

* Rural Route Converted to Street-Style Address: Old Address: RR 3 Box 45 New Address: 1292
North Ridgeland Drive

» Street Renamed and Renumbered: Old Address: 23 Main Street New Address: 45 West First
Avenue

» PO Box Renumbered: Old Address: PO Box 453 New Address: PO Box 10435

LACS"" is required for CASS processing.

Delivery Point Validation

Delivery Point Validation (DPV®) is a United States Postal Service® (USPS®) technology that validates
the accuracy of address information down to the individual mailing address. By using DPV® to
validate addresses, you can reduce undeliverable-as-addressed (UAA) mail, thereby reducing
postage costs and other business costs associated with inaccurate address information.

Note: DPV®is only available for U.S. addresses.

Without DPV®, the address validation process only verifies that an individual address is within a
range of valid addresses for the given street. For example, the USPS data indicates that the range
of addresses on Maple Lane is 500 to 1000. You attempt to validate an address of 610 Maple Ln.
Without DPV®, this address would appear to be valid because it is in the range of 500 to 1000.
However, in reality the address 610 Maple Ln does not exist: the house numbers in this section of
the street are 608, 609, 613, and 616. With DPV® processing, you would be alerted to the fact that
610 Maple Ln does not exist and you could take action to correct the address.

Spectrum™ Technology Platform 12.0 SP2 API Guide 177

Module Services

DPV® also provides unique address attributes to help produce more targeted mailing lists. For
example, DPV® can indicate if a location is vacant and can identify commercial mail receiving
agencies (CMRAs) and private mail boxes.

Although DPV® can validate the accuracy of an existing address, you cannot use DPV® to create
address lists. For example, you can validate that 123 Elm Street Apartment 6 exists, but you cannot
ask if there is an Apartment 7 at the same street address. To prevent the generation of address
lists, the DPV® database contains false positive records. False positive records are artificially
manufactured addresses that reside in a false positive table. For each negative response that occurs
in a DPV® query, a query is made to the false positive table. A match to this table will stop DPV®
processing.

Early Warning System (EWS)

The Early Warning System (EWS) provides up-to-date address information for new and recently
changed addresses that have not yet been updated in the monthly USPS database. EWS prevents
address records from miscoding due to a delay in postal data reaching the USPS® databases.

The older the U.S. Postal Database, the higher potential you have for miscoding addresses. When
a valid address is miscoded because the address it matches to in the U.S. Postal Database is
inexact, it will result in a broken address.

EWS data consists of partial address information limited to the ZIP Code™, street name, predirectional,
postdirectional, and a suffix. For an address record to be EWS-eligible, it must be an address not
present on the most recent monthly production U.S. Postal Database.

The USPS® refreshes the EWS file on a weekly basis. You can download the EWS file from the
USPS® website at https://postalpro.usps.com/cass/EWS.

Geocode Address Global

For information on using the API to access Geocode Address Global, see the geocoding guides.

GeocodeAddressWorld

The GeocodeAddressWorld takes an address located in any of the supported countries and returns
the city centroid or, for some countries, postal centroid. GeocodeAddressWorld cannot geocode to
the street address level. If you require address-level geocoding, use GeocodeAddressGlobal.

GeocodeAddressWorld is typically used as a fallback geocoder to cover countries for which a
Geocode Address Global country is not available. For example, you may have licensed the Australia
geocoder because you are primarily interested in geocoding Australian addresses. However, your
data may have some records with locations outside Australia. In this case you could use
GeocodeAddressWorld to provide centroid geocodes for locations outside Australia, while using
the Australia geocoders to provide more precise geocodes for Australian addresses. In other

Spectrum™ Technology Platform 12.0 SP2 API Guide 178

https://postalpro.usps.com/cass/EWS

Module Services

dataflows, you may choose to use GeocodeAddressWorld as a first pass geocoder and then route
the results to country-specific geocoders. The best strategy depends on your business case and
the nature of your address data.

GeocodeAddressWorld is an optional part of the Enterprise Geocoding Module. For more information
about Enterprise Geocoding Module, see Enterprise Geocoding Module on page 169.

Adding an Enterprise Geocoding Module Database Resource for World Geocoder

Whenever you install a new database resource or modify an existing database resource you must
define it in the Management Console in order for it to become available on your system. This
procedure describes how to add or modify a database resource for the Enterprise Geocoding Module
for the World geocoder.

To create a Geocode Address World database resource:
1. If you haven't already done so, install the database files on your system. For instructions on

installing databases, see the Spectrum™ Technology Platform Installation Guide.
2. In Management Console, under Resources, choose Spectrum Databases.

3. Click the Add button * to create a new database or select an existing database resource then
click the Edit button ¥ Jto change it. You can also create a new database resource by copying
an existing one, by clicking the Copy button (2],

4. If you are creating a new database, enter a name for the database resource in the Name field.
The name can be anything you choose. If you are creating a new database by copying an
existing one, rename the default name as needed. You cannot modify the name of an existing
database resource, because any services or jobs that reference the database resource by its
original name would fail.

5. Inthe Pool size field, specify the maximum number of concurrent requests you want this
database to handle.

The optimal pool size varies by module. You will generally see the best results by setting the
pool size between one-half to twice the number of CPUs on the server, with the optimal pool
size for most modules being the same as the number of CPUs. For example, if your server has
four CPUs you may want to experiment with a pool size between 2 (one-half the number of
CPUs) and 8 (twice the number of CPUs) with the optimal size possibly being 4 (the number of
CPUs).

6. In the Module field, select InternationalGeocoder World.
7. Inthe Type field, select Geocode Address Global.

If you had extracted your .SPD files and placed them in the \server\app\dataimport folder,
Spectrum would automatically add them to the \repository\datastorage folder. You will
see a list of datasets in the Add Database screen.

8. Select the dataset(s) you want to add to the database as a resource. Use the Filter text box to
search for a dataset when you have a long list.

9. Save the database.

Spectrum™ Technology Platform 12.0 SP2 API Guide 179

Module Services

10. If there are any open Enterprise Designer sessions, click the refresh button to see the new
stage.

Geocode Precision

GeocodeAddressWorld automatically provides the best geocode possible based on the data you
provide on input. If you provide a city and valid postal code, you will receive a postal code centroid.
If you provide a city and an invalid postal code, or a city and no postal code, GeocodeAddressWorld
will return the geographic centroid of the city.

See Geographic Geocoding on page 181 and Postal Geocoding on page 180.

From Management Console, you can select Geographic or Postal geocoding. You can also select
Best Match. In both geographic and postal geocoding are possible, the Best Match selection will
return a close match geographic candidate if the geographic result is to a city level or better (that
is, a G3 or G4 result code). If the geographic result is less accurate than a city level (that is, a G1
or G2 result code), then Best Match may return a postal (Z1 result). If a postal result is not available,
then the best available geographic candidate is returned.

See Geographic Geocoding Result Codes and Postal Geocoding Result Codes.

Postal Geocoding

Geocode Address Geocode Address World can geocode to a postal centroid if postcode information
is available from the country. Postcode information can come from any of the data sources (TomTom,
GeoNames, or Pitney Bowes). See Country Postal Data Coverage for a summary of Geocode
Address Geocode Address World postal data coverage. Depending on the country, postal geocoding
may provide more accurate results that geographic geocoding.

Postal level geocoding is possible if these conditions are met:

* Your input address consists of a valid postcode.

» The data source contains postcode information for the country. Not every country has postcode
data.

Geocode Address Geocode Address World may return multiple close matches for postal geocoding.
For example, a postcode of 12180 matches Troy NY but the identical postcode occurs in several
other countries. If the input is the postcode only, then all those candidates are returned as close
matches.

If the input includes geographic address elements (such as country, state, region, or city name),
Geocode Address Geocode Address World may be able to use that information to return a more
accurate single close match. If you want to use geographic address content to refine your postal
geocoding results, consider the following:

Note: Different countries derive their postal data from either the TomTom, GeoNames, or
Pitney Bowes sources. Therefore, the available geographic content in the postal data source
varies by country. For example, city name (City) is a close match weighting factor for countries
that use the GeoNames postal data source, but city name is ignored for countries that use

Spectrum™ Technology Platform 12.0 SP2 API Guide 180

Module Services

the TomTom postal data source. See Data Sources and Coverage for information about
the geographic content of the TomTom, GeoNames, and Pitney Bowes data sources.

Postal Geocoding with Geographic Information

In this postal geocoding example, the input address includes a valid postcode of
41012 and the province (StateProvince) of Emilia Romagna. A street address is
provided, but this is ignored for postal geocoding.

Fornaci 40
Emilia Romagna
41012

Because the TomTom postal data source for Italy includes StateProvince, the province
of Emilia Romagna is considered when evaluating close matches. Therefore, Emilia
Romagna, Italy with the matching 41012 postal code is returned as the single close
match with a Z1 result code. Candidates with a 41012 postcode from other countries
may be returned as non-close candidates. If StateProvince or Country information
was not provided on input, then Geocode Address Geocode Address World would
return multiple close matches because the five-digit 41012 postcode can be found
in a number of countries.

Note: The geographic content must be present in the postal data
source in order refine postal geocoding results. For example, the Italy
TomTom postal data source does not include city/town (City). So if you
input the city of Carpi with the 41012 postal code, Geocode Address
Geocode Address World ignores the city name and returns multiple
close matches for the 41012 postal code (unless you also specified
the ITA country name). See Data Sources and Coverage for
information about the geographic content of the TomTom, GeoNames,
and Pitney Bowes data sources.

Geographic Geocoding

Geocode Address World can geocode to the centroid of an administrative division (such as town or
village).

Geocode Address World can geocode to the geographic level if these conditions are met:

* Your input addresses contains accurate geographic information without valid postcode address
content in the input. If the address in question includes valid postcode input, then Geocode Address
World will attempt postal geocoding.

» The data source contains geographic level information for the country. Geographic information
can come from any of the data sources (TomTom, GeoNames, or Pitney Bowes).

» Country name or ISO country codes are not required, but if included, they must be matched.
Including the country name may produce better close matches.

Spectrum™ Technology Platform 12.0 SP2 API Guide 181

Module Services

Geographic Geocoding to City

In this example, the input address includes the city (City) of Vaihingen an der Enz.
The country is not specified in this example. The street address information (street
name and number) is ignored for the purposed of geographic geocoding.

Muldenweg 2
Vaihingen an der Enz

Geocode Address World returns a G3 close match candidate. Even though the
country was not specified, Geocode Address World identifies one close match in
Germany (DEU).

StateProvince: Baden-Wirttemberg
County: Ludwigsburg

City: Vaihingen an der Enz
Country: DEU

Result Code: G3

X: 8.95948

Y: 48.930059

Geographic Geocoding with Common City Name

In this example, the input address includes the city (City) of Venice. This city name
occurs in a number of countries, but the country is not specified on input.

St Marks Plaza
Venice

Geocode Address World selects Venice, Italy as the close match candidate because
of its large population (approximately 270,000) and because Venice is the
administrative capital of the Veneto region of Italy. A number of non-close matches
may also be returned for cities of Venice in other countries. The close match candidate
for Venice, ITA is:

StateProvince: Veneto
County: Venezia

City: Venice

Country: ITA

Result Code: G3
X:12.33878

Y: 45.43434

Geographic Geocoding with State/Province Abbreviation

In this example the input address includes the city name of Rome and GA, which is
the abbreviation for the state of Georgia in the USA. See State or Province
Abbreviations on page 188 to see the countries for which state/province abbreviations

Spectrum™ Technology Platform 12.0 SP2 API Guide 182

Module Services

are recognized. Because the state abbreviation is used, it is not necessary to specify
the country name.

Rome, GA

Geocode Address World considers the StateProvince and returns a close match for
Rome, Georgia USA. Even though Rome, Italy is a much larger city and is the capital
of ltaly, that is returned as a non-close candidate because the StateProvince (GA)
that was specified on input

StateProvince: Georgia
County: Floyd

City: Rome

Country: USA

Result Code: G3

X: -85.16467

Y: 34.25704

Geographic Geocoding to Locality

In this example, the input address includes the locality of Altamira and province
abbreviation of GRO Geocode Address World recognizes the state abbreviation of
GRO, so the country name is not necessary.

City: Altamira
StateProvince: GRO

In this example, Geocode Address World returns a close match to Locality) of Altamira
even if Altamira was input as City. The (StateProvince) of GRO is also returned. If
Guerrero is entered as StateProvince then Guerrero is returned.

StateProvince: GRO)
City: ACAPULCO DE JUAREZ
Locality: ALTAMIRA

Country: MEX

Result Code: G4

X: 99.87984

Y: 16.87637

Address input can be formatted into separate input fields or input can be unformatted
(single line input). Geocoding of unformatted input is shown in Single Line Input on
page 190.

Geographic Areas

Every country has administrative divisions and many of these administrative areas are used in
addresses. Geocode Address World identifies four AreaNames, each one corresponding to an
administrative division. Administrative division naming and hierarchy vary by country.

* locality

Spectrum™ Technology Platform 12.0 SP2 API Guide 183

Module Services

* City
* county
* state/province

Geocoding Scenarios

You can use Enterprise Manager to create dataflows that are appropriate for your business
requirements and for the nature and quality of your data.

Multiple Country Stage with Geocode Address World as Last Geocoding Pass

You may be able to optimize your results by geocoding your input in several passes.
In general, you can use more strict matching criteria in the first pass. In subsequent
geocoding passes, you can apply less restrictive matching criteria to any addresses
that previously failed to return a close match candidate. This strategy can produce
accurate matches for your high-quality addresses and still give you the best possible
matches for less accurate addresses, or for addresses in countries that do not have
a comprehensive level of coverage.

Let's assume the following scenario:

* Your input file includes addresses for six countries: Argentina (ARG), Brazil (BRA),
Mexico (MEX), Chile (CHL), Venezuela (VEN), and Panama (PAN).

* You have geocoders for three of these countries (ARG, BRA, and MEX) are
deployed in a multiple country stage.

» Geocode Address World is deployed in a separate stage to geocode addresses
that could not be identified by the country-specific geocoders.

* Your stage uses conditional routers (and optionally stream combiner) to manage
the geocoding flow.

1. Read input into the multiple-country stage. Geocoded addresses can be written
out to a file or optionally sent to the stream combiner.

2. Some Addresses that could not be geocoded in step 1. This may be because
they were addresses from CHL, VEN, or PAN, and you do not have geocoders
for these countries in the first stage. Or they may have failed to return a close
match candidate in the first stage because of input errors or ambiguities in the
addresses. These ungeocoded addresses are sent to the Geocode Address
World stage.

3. Addresses can be geocoded to postal or geographic accuracy by Geocode
Address World. Successfully geocoded addresses can be written out to a file or
optionally sent to the stream combiner.

Postal geocoded candidates will have a Z1 result code. Postal geocoded results
may be very accurate in countries with robust postcode systems. See Postal

Geocoding on page 180. Geographic candidates will have a G result code (for
example G3 for a town/city match). See Geographic Geocoding on page 181.

Spectrum™ Technology Platform 12.0 SP2 API Guide

184

Module Services

4. The stream combiner (if used in your dataflow) can combine all geocoded
addresses and write them to a file or direct them for further processing.

This is one scenario. You could use Enterprise Manager to design more complex
dataflows that are suitable for your needs.

Using Geocode Address World as First Geocoding Pass

You could also use a strategy with Geocode Address World as the first geocoding
pass.

Assume the following:

* Your addresses typically do not specify a country (although some may).

» Some addresses contain only street and city address information.

* You have country-specific geocoders for some countries, but not all.

* You use a main dataflow with subflows to manage the geocoding process.

Use a dataflow (possibly with subflows) that perform the following actions. Note that
these steps illustrate a simplified view of a sample dataflow.

1. Read input into the mulitple-country stage that also includes Geocode Address
World. Based on city name (and possibly state name for USA addresses), each
address can produce one or more potential close match candidates for several
different countries. Each candidate will now be associated with a country, even
though the input address may not have included a country.

2. If a country-specific geocoder is available, the candidate is sent to that geocoder.
This processing involves conditional routing, stream combiners, and other
Spectrum™ Technology Platform control stages. Depending on the completeness
of the input address and capabilities of the country-specific geocoder, candidates
may be geocoded to a street (S result code), geographic (G result code), or
postal (Z result code) level.

3. If no country-specific geocoder is available, the candidate is routed to Geocode
Address World, where candidates can be geocoded to a geographic or postal
level.

4. Candidates from all subflows are combined and ranked using a number of criteria.
Ranking could be based on population of the city (city rank), accuracy of the
match (street, geographic, postal), proximity to a user's locality, or other criteria.

Input

GeocodeAddressWorld takes an address as input. To obtain the best performance and the most
possible matches, your input address lists should be as complete as possible, free of misspellings
and incomplete addresses, and as close to postal authority standards as possible. Most postal
authorities have websites that contain information about address standards for their particular
country.

Spectrum™ Technology Platform 12.0 SP2 API Guide 185

Module Services

Note: The country name or two- or three- character country ISO code is optional. If you omit
the country, GeocodeAddressWorld returns the best available candidates based on the other
input provided.

Input Fields
The following table provides information on the format and layout of GeocodeAddressWorld input.

Note: Specify input using the DataTable class. For more information, see the Spectrum™
Technology Platform APl Guide.

Table 24: GeocodeAddressWorld Input Data

columnName Format Description

AddressLine1 String The first address line. For example, 4360 DUKES RD:
4360 DUKES RD KALGOORLIE WA 6430

AddressLine2 String The second address line of a two-line address. For example, Level 6
51 Jacobson St:

26 WELLINGTON ST E SUITE 500 TORONTO ON M5E 1S2

This field is not used in Australia, Austria, Belgium, Brazil, Denmark,
Finland, France, Germany, Ireland, Italy, Liechtenstein, Luxembourg,
Malaysia, The Netherlands, Poland, Portugal, Spain, Sweden,
Switzerland, and Thailand.

City String The city or town name. Your input address should use the official city
name. This will produce the best geocoding results.

For Thailand, this field contains the subdistrict (tambon).

County String The name of one of the following depending on the country:

* Not used—AUT, BRA, CAN, FIN, GBR, MYS, PRT, SGP.

* Department—FRA

* District (amphoe)—THA

« District (fylke/counties)—NOR

* District (poviat)—POL

+ Kommun—SWE

* Kreis—DEU

* Local Government Authority (LGA)—AUS

* Province—BEL, CHE, DNK, ESP, IRL, ITA, LIE, LUX, NLD
* Region—NZL

Spectrum™ Technology Platform 12.0 SP2 API Guide 186

columnName

Format

Module Services

Description

FirmName

String

Company or name or place name. For example, PITNEY BOWES.
PITNEY BOWES 4360 DUKES RD KALGOORLIE WA 6430

LastLine

String

The last line of the address. For example, KALGOORLIE WA 6430:
4360 DUKES RD KALGOORLIE WA 6430

Locality

String

The name of one of the following depending on the country:

* Not used—AUS, AUT, BEL, CHE, DEU, DNK, FIN, FRA, IRL, LIE,
LUX, MYS, NLD, NOR, POL, SGP, SWE, THA

» Dissemination Area and Enumeration Area (DA and EA)—CAN

 Locality—BRA, GBR, ITA, PRT

* Suburb—NZL

PostalCode

String

The postal code in the appropriate format for the country.

StateProvince

String

The name of one of the following depending on the country:

* Not used—BEL, CHE, DNK, IRL, LIE, LUX, NLD, NOR, SGP
* Bundesland—DEU

* Province—CAN

* Province (changwat)—THA

* Province (voivodship)—POL

* Region—AUT, ESP, FRA, GBR, NZL, PRT

* Region (lan)—FIN

* Region (lan)}—SWE

- State—AUS, BRA

+ State (negeri)—MYS

Country

String

The two- or three-character ISO country code. This field is optional. If
you omit the country, GeocodeAddressWorld returns the best available
candidates based on the other input provided

For a list of ISO codes, see ISO Country Codes and Module Support
on page 729.

Address Aliases

Some countries have alternative administrative names. For example, there may be an official name
for a city or town, but there may also be common but unofficial alternative name for the same city

Spectrum™ Technology Platform 12.0 SP2

API Guide

187

Module Services

or town. If alias information is available in the source data, Geocode Address World includes this
alias in the database. This enables Geocode Address World to geocode successfully when alternative
names are used in input addresses.

Language Aliases on page 188 are also supported.
Language Aliases

Some countries have more than one official or prominent language. For example, the same town
may be commonly known by both German and Italian names. If language alias information is available
in the source data, Geocode Address World uses this in the database. This enables Geocode
Address World to geocode successfully when alternative language names are used in input
addresses.

Aliases can exist for all administrative levels, from StateProvince state/province to Locality locality.
See Administrative Divisions and Postal Codes on page 189 for a description of administrative
levels associated with the geographic data.

Address Aliases on page 187 are also supported for commonly used, alternative administrative
areas.

State or Province Abbreviations

In some countries, the state or province is an important part of the address and often this address
element is abbreviated. For selected countries, these state/province abbreviations are recognized
by Geocode Address World. For example, in the United States each state has a two-letter abbreviation
(such as CA for California). Similarly, Netherlands, state abbreviations (such as GLD for Gelderland)
are recognized.

Geocode Address World accepts state/province abbreviations for the following countries:

Table 25: Country State/Province Abbreviation Support

Country Name State Or Province Example
Division
Australia (AUS) StateProvince (State) NSW (abbreviation for New South Wales
Canada (CAN) StateProvince (Province) AB (abbreviation for Alberta)
Italy (ITA) County (Province) MO (abbreviation for Modena)
Mexico (MEX) StateProvince (State) JA (abbreviation for Jalisco)
Netherlands (NLD County (State) FR (abbreviation for Friesland)
United States (USA) StateProvince (State) CA (abbreviation for California)

Spectrum™ Technology Platform 12.0 SP2 API Guide 188

Module Services

Geocode Address World evaluates these state or province abbreviations to better identify close
matches. See Geographic Geocoding with State/Province Abbreviation on page 182 for an
example that illustrates this feature.

Administrative Divisions and Postal Codes

Typical input addresses consist of street address, administrative division, and postal code information.
Geocode Address World uses the administrative divisions and postal codes for geographic or postal
geocoding.

» StateProvince (state or province)

» County (county, region, or district)
« City (town or city)

* Locality (locality suburb, or village)
* postal code

Specific administrative divisions vary by country. For example, Locality may contain locality, suburb,
or barrio, depending on the country. StateProvince may contain state, province, region, or some
other name depending on the country. See State or Province Abbreviations on page 188 for more
information about how state/province abbreviations are interpreted by Geocode Address World.

Not all administrative divisions are used in addressing conventions for all countries. For example,
in the USA, County (county) is not typically used in addresses. But for some countries, County is
an important part of the address.

If your input data includes postal codes, Geocode Address Worldcan use this for postal geocoding,
assuming that the source data includes postal data for the specific country.

Input Recommendations

You can optimize Geocode Address World results if you prepare and understand your input records.
Follow these guidelines :

» Ensure that your input addresses are as complete and accurate as possible. If there are errors in
your input addresses, Geocode Address World may still be able to geocode those addresses, but
there may be more than one possible match or you may get non-close matches. If you can verify
and correct any incomplete or inaccurate input addresses, you can get better results.

* Include postcodes in your input addresses if you have them. This is not required, but it allows
Geocode Address World to perform postal geocoding. This may give you more accurate results
for some addresses, depending on the country and on the completeness and accuracy of other
address elements

* Include the country name or official three-character or two-character country ISO code in your
input addresses. This is not required, but it may help Geocode Address World distinguish between
similar addresses and city names that may occur in different countries.

» Format your input addresses consistently. Geocode Address World can handle input addresses
in a wide variety of input formats, or can handle unformatted (single line) input. But you can get
more accurate and faster results if your input addresses are consistently formatted and conform
to country-specific address conventions. Even if your input address are single line (unformatted),

Spectrum™ Technology Platform 12.0 SP2 API Guide 189

Module Services

you may get better results and performance if the address elements are ordered consistently. Use
the AddressLine1 input area for unformatted addresses. See Single Line Input on page 190

Single Line Input

Address input can be formatted into separate input fields or input can as single line input. Use
AddressLine1 to enter single line input.

Single Line Geographic Geocoding

In this example, unformatted (single line) input is used. Geocode Address World
analyzes single line input to identify the geographic address elements (Graz in this
example), and then geocodes to a geographic centroid. The MainAddress (street
information) is not used.

Sackstrale 10 Graz

Geocode Address World returns a geographic close match candidate based on an
City match. Even though the country was not specified, Geocode Address World
identifies the close match in Austria (AUT).

StateProvince: Steirmark
County: Graz (Stadt)
City: Graz

Country: AUT

Result Code: G3
X:15.44172

Y: 47.06792

If your input addresses are accurate, unformatted input can produce a match rate
comparable to that of formatted input. However, geocoding unformatted addresses
typically has slower performance than geocoding formatted addresses.

Single Line Postal Geocoding with Country Specified

In this example, single line input is used and a postcode is provided. The country
Austria (AUT) is also specified. The street address is also input, but this is ignored
by Austria.

Alpenstrale 117 5020 AUT

Austria returns a postal centroid close match candidate (Z1 result code). Because
the country (AUT) is specified in the input, the country must be matched and a single
close match for that postal code in Austria is returned. Non-close matches with the
5020 postal code from other countries are also returned.

StateProvince: Salzburg
Country: AUT
Postcode: 5020

Result Code: Z1

Spectrum™ Technology Platform 12.0 SP2 API Guide 190

Module Services

X:13.04685
Y: 47.80262

Options
Geocoding Options

The following table lists the options that control how a location's coordinates are determined.

Table 26: Geocoding Options

optionName Description

CoordinateSystem A coordinate system is a reference system for the unique location of a point in space.
Cartesian (planar) and Geodetic (geographical) coordinates are examples of
reference systems based on Euclidean geometry. Spectrum™ Technology Platform
supports systems recognized by the European Petroleum Survey Group (EPSG).

One the following:

EPSG:4283 Also known as the GDA94 coordinate system.
EPSG:4326 Also known as the WGS84 coordinate system. Default.
Matching Options
Table 27: Matching Options
optionName Description
KeepMultimatch Specifies whether to return results when the address matches to multiple candidates

in the database. If this option is not selected, an address that results in multiple
candidates will fail to geocode.

If you select this option, specify the maximum number of candidates to return using
the MaxCandidates option (see below).

Y Yes, return candidates when multiple candidates are found. Default.

N No, do not return candidates. Addresses that result in multiple candidates
will fail to geocode.

Spectrum™ Technology Platform 12.0 SP2 API Guide 191

Module Services

optionName Description

MaxCandidates If you specify KeepMultimatch=Y, this option specifies the maximum number of
results to return.
The default is 1.

CloseMatchesOnly Specifies whether to return only those geocoded results that are close match

candidates. For example, if there are 10 candidates and two of them are close
candidates, and you enable this option, only the two close matching candidates
would be returned instead of all 10.

Y Yes, return only close matches.

N No, do not return only close matches. Default.

Data Options

The Data tab allows you to specify which databases to use in geocoding. Databases contain the
address and geocode data necessary to determine the geocode for a given address. The data is
based on address and geocoding data from postal authorities and suppliers of geographical data.

Note: As the EGM Module transitions its administrative tasks to a web-based Management

Console, labels for the options may use different wording than what you see in Enterprise
Designer. There is no difference in behavior.

Table 28: Data Options

optionName

Description

DatabaseSearchOrder

The name of one or more database resources to use in the search process. Use
the database name specified in the Management Console's Spectrum Databases
page. tool. For more information, see the Spectrum™ Technology Platform
Administration Guide.

You can specify multiple database resources. If you specify more than one database,
listthem in order of preference. The order of the databases has an effect when there
are close match candidates from different databases. The close matches that are
returned come from the database that is first in the search list. Close matches from
lower ranked databases are demoted to non-close matches.

Spectrum™ Technology Platform 12.0 SP2

API Guide

192

Module Services

Output

GeocodeAddressWorld returns the latitude/longitude, city, county, and result indicators. Result
indicators describe how well the geocoder matched the input to a known location and assigned a
latitude/longitude; they also describe the overall status of a match attempt. The information is returned
in upper case.

If you are using the API, the output returned is in the DataTable class. For more information, see
the Spectrum™ Technology Platform API Guide.

Address Output

Table 29: Address Output

columnName Description
City Municipality name.
CityRank CityRank is a numeric value ranging from 1 (high) to 10 (low) based on total and

relative population, importance, and other criteria.

Country The three-letter ISO 3166-1 Alpha 3 country code. The two-letter code can also be
used. See Country Geographic Data Coverage for a list of countries and data
sources for geographic geocoding. See Country Postal Data Coverage for a list
of postal geocoding countries and data sources.

Spectrum™ Technology Platform 12.0 SP2 API Guide 193

columnName

Description

Module Services

County

This field contains an area that is smaller than a state/province but larger than a

city. The specific area varies by country:

+ AUS—Local Government Authority (LGA)

* AUT—Province

* BEL—Province

* BHS—Not used

* BRA—Not used

» CAN—Not used

* CHE—Province

+ DEU—KTreis

+ DNK—Province

* FIN—Province (kommune)
* FRA—Department

*+ GBR—County

* ITA—Province

* LIE—Province

* LUX—~Province

* MYS—District (daerah)
* NLD—Province

* NZL—Not used

* POL—District (poviat)
* PRT—Not used

* SGP—District

+ SWE—Region (kommun)
+ THA—District (amphoe)

PostalCode

The postal code for the address. The format of the postcode varies by country.

Spectrum™ Technology Platform 12.0 SP2

API Guide

194

columnName

Module Services

Description

StateProvince

The meaning of StateProvince varies by country:

+ AUS—State

* AUT—Region

+ BEL—Not used

+ BRA—State

* CAN—Province

+ CHE—State

+ DEU—Bundesland
* DNK—Not used

+ ESP—Region

* FIN—Region (1an)

*+ FRA—Region

* GBR—Region

* IRL—Not used

* ITA—Region

* LIE—State

* LUX—Not used

+ MYS—State (negeri)
* NLD—Not used

* NOR—Not used

* NZL—Region

* POL—Province (voivodship)
* PRT—Region

* SGP—Not used

+ SWE—Region (lan)
* THA—Province (changwat)

Geocode Output

Table 30: Geocode Output

columnName

Description

CoordinateSystem

The coordinate system used to determine the latitude and longitude coordinates. A
coordinate system specifies a map projection, coordinate units and more. An example
is EPSG:4326. EPSG stands for European Petroleum Survey Group.

Latitude

Seven-digit number in degrees and calculated to four decimal places (in the format
specified).

Spectrum™ Technology Platform 12.0 SP2

API Guide

195

columnName

Module Services

Description

Longitude

Seven-digit number in degrees and calculated to four decimal places (in the format
specified).

Result Codes

Result codes contain information about the success or failure of the geocoding attempt, as well as

information about the accuracy of the geocode.

Table 31: Result Code Output

columnName

Description

Geocoder.MatchCode

Indicates how closely the input address matches the candidate address.

IsCloseMatch

Indicates whether or not the address is considered a close match. An address is
considered close based on the "Close match criteria" options on the Matching tab.

Y Yes, the address is a close match.

N No, the address is not a close match.

MultiMatchCount

For street address geocoding, the number of matching address positions found for
the specified address.

For intersection geocoding, the number of matching street intersection positions
found for the specified addresses.

Status

Reports the success or failure of the match attempt
null Success

F Failure

Spectrum™ Technology Platform 12.0 SP2

API Guide

196

columnName

Description

Module Services

Status.Code

If the geocoder could not process the address, this field will show the reason.

* Internal System Error

* No Geocode Found

+ Insufficient Input Data

* Multiple Matches Found

» Exception occurred

+ Unable to initialize Geocoder
+ No Match Found

Status.Description

If the geocoder could not process the address, this field will show a description of

the failure.

Problem + explanation

Geocoding Failed

No location returned

No Candidates Returned

Multiple Candidates Returned
and Keep Multiple Matches
not selected

Returned when Status.Code = Internal System
Error.

Returned when Status.Code = No Geocode
Found.

Returned when Status.Code = No Geocode
Found.

The geocoder could not identify any candidate
matches for the address.

The address resulted in multiple candidates. In
order for the candidate address to be returned,
you must specify KeepMultimatch=Y.

Spectrum™ Technology Platform 12.0 SP2

API Guide

197

columnName Description

Module Services

LocationPrecision
0

N o a h~A W DN

9
10
1

12-15
(LocationPrecision
codes)

13
14
15
16
17

18

A code describing the precision of the geocode. One of the following:

No coordinate information is available for this candidate
address.

Interpolated street address.
Street segment midpoint.
Postal code 1 centroid.
Partial postal code 2 centroid.
Postal code 2 centroid.
Intersection.

Point of interest. This is a placeholder value. Spectrum
databases do not have POI data, so it is not possible to get
this return.

State/province centroid.
County centroid.

City centroid.

Locality centroid.

For most countries, LocationPrecision codes 12 through 15
are reserved for unspecified custom items.

Additional point precision for unspecified custom item.
Additional point precision for unspecified custom item.
Additional point precision for unspecified custom item.
The result is an address point.

The result was generated by using address point data to
modify the candidates segment data.

The result is an address point that was projected using the
centerline offset feature. You must have both a point and a
street range database to use the centerline offset feature, and
thereby return LocationPrecision 18.

StreetDataType

The default search order rank of the database used to geocode the address. A value

of "1" indicates that the database is first in the default search order, "2" indicates
that the database is second in the default search order, and so on.

Spectrum™ Technology Platform 12.0 SP2 API Guide

198

Module Services

Geographic Candidate Ranking

Identical geographic area names can be found in many countries. When this occurs, Geocode
Address World uses a ranking system to determine which of potential candidates is the most likely
close match.

The specific details of this weighted ranking depend somewhat on the data source (TomTom,
GeoNames, or Pitney Bowes source), but the following criteria are weighted to determine the most
likely close match candidate.

* country capital
» administrative area (state/province, regional, county) capital
* population range

Country capital status outweighs any other geographic ranking criteria. For example, San Juan
entered as City returns San Juan, Puerto Rico (PRI) as the close match because it is the capital of
PRI. Other San Juan cities in the world (including Spain, Costa Rica, Dominican Republic and
Philippines) can be returned as non-close matches regardless of their population. To return matches,
you must check the Keep multiple matches check box in Matching Options of the Management
Console, and specify the number of matches you want to return.

Similarly, Geocode Address World returns Roma, ITA as a close match since that is the capital of
Italy, but Roma in Romania, Honduras, and Panama are returned as non-close matches.

State/province administrative capitals are highly weighted even if their populations are not very
large. For example, Springdfield returns a close geographic match to Springfield, lllinois USA because
this is the state capital of lllinois. Springfield, Massachusetts has a somewhat larger population, but
this is outweighed by the state capital status of Springfield lllinois. Other less populous Springfield
communities in the USA and other countries are also returned as close matches, but are listed below
the Springfield Illinois candidate. It is possible for a large city to rate as an equal close match along
with a smaller, identically named state/province capital. However, the state/province capital will not
be demoted, even if it has a relatively small population.

Similarly, if your input is Albany in City with no country specified, Geocode Address World returns
Albany, NY, USA as the close match candidate. This is because Albany is the capital of New York
State, and therefore gets a high ranking as administrative area capital. The population is also a
contributing ranking factor. If you specify the city of Albany with a different country, such as New
Zealand, then the country is used and Albany, NZL is returned as the close match candidate.

If a candidate includes a city, a CityRank value is also returned, if available. CityRank is a numeric
value ranging from 1 (high) to 10 (low) that indicates the relative ranking of the city. This ranking is
based on relative population, administrative status, and other criteria. If multiple geographic
candidates are returned, they are listed in city rank order.

Match Codes

Matches in the G category indicate that the candidate is located at the geographic centroid with the
following possible accuracy levels. Not all levels of accuracy are possible for all countries.

* G0O—Country centroid. This is not returned for GeocodeAddressWorld.
+ G1—State or province centroid. For Japan, this indicates a prefecture (ken) match.

Spectrum™ Technology Platform 12.0 SP2 API Guide 199

Module Services

+ G2—County centroid. For Japan, this indicates a city (shi) match.

» G3—City centroid. For Japan, this indicates a municipality subdivision or sub-city (oaza) match.
For Australia, Local Government Authority (LGA) information can be returned from the Street
Range Address Database only (not the G-NAF database).

* G4—Locality centroid. For Japan, this indicates a city district (chome) match.
Matches in the Z category indicate that no street match was made for one of the following reasons:

* You specified to match to postal code centroids. The resulting point is located at the postal code
centroid with four possible accuracy levels.

» There is no close match and you specified to fall back to postal code centroid
The Z category contains the following accuracy levels:

» Z0—Postal Code match, no coordinates available (rare occurrence).

» Z1—Postal Code centroid match.

» Z3—Full postal code centroid match. For Canada, this is an FSALDU centroid.
» Z6—Postal Code centroid match for point ZIP.

GeocodeUSAddress

GeocodeUSAddress takes an address and returns latitude/longitude coordinates. GeocodeUSAddress
also standardizes and validates addresses using data from the U.S. Postal Service.

GeocodeUSAddress can also geocode intersections. Instead of entering a mailing address, you
can enter and intersection such as "Pearl St. and 28th" and obtain the coordinates of the intersection.

GeocodeUSAddress is part of the Enterprise Geocoding Module. For more information about the
Enterprise Geocoding Module, see Enterprise Geocoding Module on page 169.

GeocodeUSAddress

Input

GeocodeUSAddress takes an address as input. To obtain the best performance with
GeocodeUSAddress and the most possible matches, your input address should be as complete as
possible and free of misspellings and incomplete information. Input addresses should be as close
to USPS standards as possible for the highest match rate. For information about USPS standards,
see the USPS website http://www.usps.com.

Input addresses should contain a street address line and a lastline, or a single line with both address
and lastline elements. This helps GeocodeUSAddress accurately identify an area in which to search
for a match candidate, based on the city, state, and ZIP Code. However, matching can still be
performed in cases where only a city is input in the lastline rather than a full lastline containing the
city, state and ZIP Code elements. For more information, see City-only Lastline Matching on page
204.

Spectrum™ Technology Platform 12.0 SP2 API Guide 200

http://www.usps.com

Module Services

GeocodeUSAddress also accepts a street address line with individual city, state, and ZIP Code
lines instead of a last line. You should only use this type of input if you are confident that the input
address is free of misspellings and incomplete information.

If you are using GeocodeUSAddress for address standardization, input addresses must have at
least a street name, and either a city and state or a ZIP Code to obtain a match. If you are using
GeocodeUSAddress to obtain geocoding information, input addresses only need to contain a ZIP
+ 4 Code to receive geocoding information.

The following table provides information about the format and layout of GeocodeUSAddress input.

GeocodeUSAddress Input Data

columnName Format Description

AddressLine1 String The first address line or a street intersection.

To specify a street intersection, use and, &, at, or @. For example,
PEARL & 28th. GeocodeUSAddress does not match intersections when
processing in CASS mode.

You may enter an address range instead of an individual address
number. For example, 10-12 FRONT ST. For additional information,
see Address Range Matching on page 204.

AddressLine2 String The second address line or a street intersection.

To specify a street intersection, use and, &, at, or @. For example,
PEARL & 28th. GeocodeUSAddress does not match intersections when
processing in CASS mode.

AddressLine3 String Third address line.

AddressLine4 String Fourth address line.

AddressLine5 String Fifth address line.

AddressLine6 String Sixth address line.

City String The name of the municipality, such as a city or town.

Note: If there is any data in the input fields AddressLine3,
AddressLine4, AddressLine5, or AddressLine6,
GeocodeUSAddress will ignore data in the City input field.

Spectrum™ Technology Platform 12.0 SP2 API Guide 201

columnName

Format

Module Services

Description

FirmName

String

The name of a business. The geocoding process attempts to match the
input firm name to the recognized firm names in the USPS data for a
higher quality match. If the firm name is not in the USPS data, the firm
name is ignored when matching and is returned with the output.

LastLine

String

The last line of an address containing the city, state, and ZIP Code.

Latitude

String

Input latitude for matching using the Predictive Lastline feature. The
required input format is an integer value; for example, 40018301. Decimal
is not a valid input format.

For more information, see Predictive Lastline on page 205.

Longitude

String

Input longitude for matching using the Predictive Lastline feature. The
required input format is an integer value; for example: -105240976.
Decimal is not a valid input format.

For more information, see Predictive Lastline on page 205.

PostalCode

String

The 5-digit ZIP Code or the 9-digit ZIP + 4 code.

Note: If there is any data in the input fields AddressLine3,
AddressLine4, AddressLine5, or AddressLine6,
GeocodeUSAddress will ignore data in the PostalCode input
field.

StateProvince

String

The name or abbreviation of the state.

Note: If there is any data in the input fields AddressLine3,
AddressLine4, AddressLine5, or AddressLine6,
GeocodeUSAddress will ignore data in the StateProvince input
field.

How GeocodeUSAddress Processes Addresses

GeocodeUSAddress processes addresses in the following order:

1. Parses the address elements.

GeocodeUSAddress parses input address data into single elements. Parsing occurs on data
in the order in which you load the data. Even if a valid address is missing an element,
GeocodeUSAddress can find a match. Some elements, such as predirectionals, may not be
critical elements of some addresses. By comparing an address as input against all known

Spectrum™ Technology Platform 12.0 SP2

API Guide

202

Module Services

addresses in a search area, GeocodeUSAddress can usually determine if any of these elements
are missing or incorrect.

2. Finds possible matches within the search area.

GeocodeUSAddress uses the last line elements of an address to determine a search area. You
can specify if you want the search area based on a finance area or on an area defined by the
city, state, and ZIP Code. (A Finance Area is a collection of ZIP Codes within a contiguous
geographic region.) If the city and state are not in the ZIP Code, GeocodeUSAddress performs
separate searches for the ZIP Code and city.

After GeocodeUSAddress has determined the search area, it tries to match the elements from
the street address line to the records in the standardized data files and does the following:

» Checks input address ranges for missing or misplaced hyphens, and alpha-numeric ranges
for proper sequence.

» Searches for any misspellings and standard abbreviations. For example, the
GeocodeUSAddress can recognize Mane for Main and KC for Kansas City.

» Searches for any alias matches to the USPS and Spatial data (TIGER and TomTom). For
example, GeocodeUSAddress recognizes that in Boulder, CO Highway 36 is know as 28th
Street.

» Searches for any USPS recognized firm names for additional match verification.

+ Searches for street intersection matches. Matching to an intersection is extremely useful when
you are using address matching to obtain a geocode.

» Searches for addresses lines that contain a house number and unit number as the same
element. For example, GeocodeUSAddress recognizes the input 4750-200 Walnut Street and
performs recombination to output 4750 WALNUT ST STE 200.

Note: The USPS does not consider intersections valid addresses for postal delivery.
Therefore, the GeocodeUSAddress does not match intersections when processing in
CASS mode.

3. Scores each possible match against the parsed input.

GeocodeUSAddress compares each element in the input address to the corresponding element
in the match candidates, and assigns a confidence level. GeocodeUSAddress weighs the
confidence level for all of the elements within a match candidate, and assigns a final score to
the sum.

Note: GeocodeUSAddress uses a penalty scoring system. If an element does not exactly
match an element in the match candidate, the GeocodeUSAddress adds a penalty to the
score of the match candidate. Therefore, scores with lower numbers are better matches.

4. Determines the match.

GeocodeUSAddress prioritizes each match candidate based on the assigned confidence score
and returns as a match the candidate that has the lowest score.

Spectrum™ Technology Platform 12.0 SP2 API Guide 203

Module Services

The match mode you choose determines the range that GeocodeUSAddress allows for a match.
GeocodeUSAddress only returns a match if the score of the target address falls within the range
designated by the selected match mode.

In some cases, more than one match candidate may have the lowest score. In this instance,
GeocodeUSAddress cannot determine on its own which record is correct, and returns a status
indicating multiple matches.

Note: If you have enabled Delivery Point Validation (DPV) processing,
GeocodeUSAddress automatically attempts to resolve multiple matches using DPV.

Along with a standardized address, GeocodeUSAddress also returns the following:

» Geocode—Longitude and latitude for the address

» Match code—Information about the match of the input address to the reference data
 Location code—Precision level of a geocode

» Parity—The side of the street on which the match resides.

GeocodeUSAddress does not return parity when processing in relaxed mode. For more
information about GeocodeUSAddress output, see Output on page 234.

City-only Lastline Matching

City-only lastline matching permits address matching with only a city in the input lastline. The city
should be provided using either the AddressLinel (using single-line address input),
AddressLine2, LastLine or City input fields.

With city-only lastline input, all of the states are searched in which the input city exists. Therefore,
there is the possibility of an increase in multimatches (return of E023 or EO30 Match Codes) when
matching with city-only input instead of city+state input.

Restrictions:

* City-only lastine input matching is not supported in CASS mode.

+ City-only lastline is not supported when matching to User Dictionaries.

* When matching using city-only lastline, the PreferZipCodeOverCity setting is ignored

* Itis strongly recommended to not use city-only lastline matching in Relaxed match mode to avoid
the return of false-positive matches.

Address Range Matching

Some business locations are identified by address ranges. For example, a shopping plaza could
be addressed as 10-12 Front St. This is how business mail is typically addressed to such a business
location. These address ranges can be geocoded to the interpolated mid-point of the range.

Address ranges are different from hyphenated (dashed) addresses that occur in some metropolitan
areas. For example, a hyphenated address in Queens County (New York City) could be 243-20 147
Ave. This represents a single residence (rather than an address range) and is geocoded as a single

Spectrum™ Technology Platform 12.0 SP2 API Guide 204

Module Services

address. If a hyphenated address returns as an exact match, GeocodeUSAddress does not attempt
to obtain an address range match.

Address range matching is not available in Exact or CASS modes, since an address range is not
an actual, mailable USPS® address. The following fields are not returned by address range geocoding:

« ZIP + 4® (in multiple segment cases)
* Delivery point

» Check digit

* Carrier route

* Record type

* Multi-unit

Default flag

Address range matching works within the following guidelines:

* There must be two numbers separated by a hyphen.
* The first number must be lower than the second number.

» Both numbers must be of the same parity (odd or even) unless the address range itself has mixed
odd and even addresses.

* Numbers can be on the same street segment or can be on two different segments. The segments
do not have to be contiguous.

« If both numbers are on the same street segment, the geocoded point is interpolated to the
approximate mid-point of the range.

* If the numbers are on two different segments, the geocoded point is based on the last valid house
number of the first segment. The ZIP Code and FIPS Code are based on the first segment.

* In all cases, odd/even parity is evaluated to place the point on the correct side of the street.

Predictive Lastline

Predictive lastline allows you to match an address when only an input street address and latitude/
longitude coordinates are provided, rather than the traditional street address with lastline input. For
example, an input of 4750 Walnut with latitude/longitude coordinates located in Boulder, will return
full address information.

Additional feature information

* Predictive Lastline uses a search radius of 150 feet.

* Predictive Lastline is disabled by default.

» When Predictive Lastline is not enabled, if a singleline address is provided, any input latitude and
longitude values are ignored and the input address is geocoded.

« If the input latitude/longitude coordinates fall near the borders of multiple cities, the Enterprise
Geocoding Module processes all cities and returns the results of the best match. If the results are
determined as equal, then a multi-match is returned.

* Predictive lastline does not require a license for reverse geocoding.

* This feature will work with any type of dataset.

Spectrum™ Technology Platform 12.0 SP2 API Guide 205

optionName

Module Services

Description

PredictivelLastLine

Specifies whether GeocodeUSAddress should match using the street address
and input latitiude/longitude coordinates, rather than the traditional street
address with lastline input.

Y Enable Predictive Lastline processing.

N Disable Predictive Lastline processing. Default.

Enabling Predictive Lastline

The following procedure describes how to enable and set up the Predictive Lastline feature.

input street address

1. SetPredictivelastLine = Y

2. SetlLatitude = integer value
3. SetlLongitude = integer value
4. SetAddressLinel =

Options

Geocoding Options

GeocodeUSAddress Geocoding Options

The following table lists the options that control how a location's coordinates are determined.

optionName

Description

Dataset

The name of the database resource that contains the data to use in the search
process. Use the database name specified in Management Console's Spectrum
Databases page.

Spectrum™ Technology Platform 12.0 SP2

API Guide 206

optionName

Module Services

Description

Offset

Specifies the offset distance from the street segments, in feet. The range is 0
to 5280. Default = 50 feet.

The offset distance is used in street-level geocoding to prevent the geocode
from being in the middle of a street. It compensates for the fact that street-level
geocoding returns a latitude and longitude point in the center of the street where
the address is located. Since the building represented by an address is not on
the street itself, you do not want the geocode for an address to be a point on
the street. Instead, you want the geocode to represent the location of the
building which sits next to the street. For example, an offset of 40 feet means
that the geocode will represent a point 40 feet back from the center of the street.
The distance is calculated perpendicular to the portion of the street segment
for the address. Offset is also used to prevent addresses across the street from
each other from being given the same point. The diagram below shows an
offset point in relation to the original point.

Offset Poir&

[)
_Original Point\ _ _ _ _ _

Street coordinates are accurate to 10,000ths of a degree and interpolated
points are accurate to the millionths of a degree.

Spectrum™ Technology Platform 12.0 SP2

API Guide 207

optionName

Module Services

Description

Squeeze

Specifies the distance, in feet, to move the street segment end points toward
the middle of the segment. Squeeze is used in street-level matching. Use the
squeeze setting to prevent address points from residing in an intersection or
too close to the end of a street.

The range is 0 to 2147483647. Default = 50 feet.

The following diagram compares the end points of a street to squeezed end
points.

|~Squeezed Street Segment EndJ

Street Segment End

Squeezing the street segment endpoints affects street-level matching by
reducing the length of a street segment, thereby reducing the spacing between
address points along the segment. For example, if the length of a street segment
is 1,000 feet and there are 10 addresses along the segent, street-level matching
would result in each address being spaced 100 feet apart (1,000 + 10). If you
were to set a squeeze value of 100 feet, moving each street segment endpoint
100 feet torward the center of the street segment, the length of the street
segment would be reduced to 800 feet (reduced by 100 feet on each end).
Street-level matching would then result in addresses beging spaced 80 feet
apart (800 = 10).

LatLonFormat

Specifies the format of the latitude/longitude returned by the geocoder.

Decimal The latitude/longitude is returned in decimal format. Default.
For example: 90.000000-180.000000

Integer The latitude/longitude is returned in integer format. For
example: 90000000-180000000

Spectrum™ Technology Platform 12.0 SP2

API Guide 208

Module Services

optionName Description

Datum Determines the North American Datum to use when geocoding datum on the
input value. Datum is the mathematical model of the Earth used to calculate
the coordinates on any map, chart, or survey system.

NAD27 This datum does not include the Alaskan Islands or Hawaii.
Latitudes and longitudes that are surveyed in the NAD27 system
are valid only in reference to NAD27 and are not valid for maps
outside the U.S.

NAD83 This datum is earth-centered and defined with satellite and
terrestrial data. NAD83 is compatible with the World Geodetic
System 1984 (WGS84), which is the terrestrial reference frame
associated with the NAVSTAR Global Positioning System (GPS)
used extensively for navigation and surveying. Default.

CentroidPreference Determines the type of centroids returned by the geocoder. A centroid is the
center of an area. The centroid coordinates are the average of the sets of
coordinates that describe the area.

NoCentroids Do not return centroids. If an address-level geocode
cannot be determined, do not attempt to determine a
centroid.

AddressUnavailable Return a ZIP Code centroid if an address-level geocode
cannot be determined (default).

AllCentroids Return ZIP Code centroids only. If you select this
option, address-level geocodes will not be returned.

Spectrum™ Technology Platform 12.0 SP2 API Guide 209

Module Services

optionName Description

FallbackToStreet Specifies whether to attempt to return a street centroid when an address-level
geocode cannot be determined. To determine a street centroid, the geocoder
searches the input ZIP Code or city for the closest match. If the geocoder is
able to locate the street, it returns a geocode along the matched street segment.

For example, if the input address is 5000 Walnut Street, Boulder 80301, and
there is no 5000 Walnut Street, the geocoder searches for the closest match
to that address within the ZIP Code 80301. If there were no input ZIP Code,
the geocoder would search for the closest match to the input address within
Boulder.

If the input address is Walnut Street, Boulder 80301, since there is no house
number, the geocoder searches for the street within the input ZIP Code.

Street centroid geocodes are indicated by value in the LocationCode output
field that begins with "C". For more information, see Street Centroid Location
Codes on page 352.

Note: This option is not available if you set Mat chMode to CASS.

Y Yes, attempt to determine the street centroid when an address-level
geocode cannot be determined.

N No, do not attempt to determine the street centroid when an
address-level geocode cannot be determined. Default.

FallbackToGeographic Specifies whether to attempt to return a city, county, or state centroid when an
address-level geocode cannot be determined. The geocoder returns the most
precise geographic centroid that it can based on the input. For example, if the
input contains a valid city and state, a city centroid would be returned.

Note: There are approximately 300 major cities that can be geocoded
to a city centroid level even if a valid state is not provided in the input.

Geographic centroid geocodes are indicated by value in the LocationCode
output field that begins with "G". For more information, see Geographic
Centroid Location Codes on page 358.

Note: This option is not available if you set MatchMode to CASS.

Y Yes, attempt to determine the geographic centroid when an
address-level geocode cannot be determined.

N No, do not attempt to determine the geographic centroid when an
address-level geocode cannot be determined. Default.

Spectrum™ Technology Platform 12.0 SP2 API Guide 210

Module Services

optionName Description

AddressPointinterpolation Specifies whether to perform address point interpolation when an exact match
for the address cannot be found in the geocoding database. Address point
interpolation is a patented process that results in a more accurate interpolated
point. It improves upon regular street segment interpolation by using point data
in the interpolation process, as opposed to using street segments alone.

Note: Address point interpolation is only available when using a
point-level geocoding database. It is not available when using point
addresses in an auxiliary file.

Y Yes, perform address point interpolation.

N No, do not perform address point interpolation. Default.

The following illustration shows how address point interpolation works. In the
example, the input house number is 71. The geocoding database contains
address points for 67 and 77. The street segment has a range of 11 to 501.
With address point interpolation, GeocodeUSAddress performs the interpolation
for the input house number 71 using the points of 67 and 77. Without address
point interpolation, GeocodeUSAddress performs the interpolation with the
street segment end points of 11 and 501, resulting in a far less accurate result.

/ With address point interpolation

Without address % 9
point interpolation /, (Input Address) @[

_______ 77

Spectrum™ Technology Platform 12.0 SP2 API Guide 211

optionName

Module Services

Description

CenterlineOffset

The offset distance, in feet, used to calculate the street centerline coordinates.
Default = 0 feet.

If you specify a value other than 0, GeocodeUSAddress calculates the street
centerline coordinates by offsetting the centerline point by the distance you
specify in the direction of the parcel centroid.

Parcel\
Centroid
;\Centerline OTset

Centerline\'

In an interpolated match, the centerline offset cannot be greater than the
distance from the centerline to the interpolated address point. If you specify a
centerline offset distance that is greater than this distance, the offset will be
limited to the distance to the interpolated point. In effect, the centerline
coordinates would be the same as the coordinates for the interpolated point.

RetrieveAPN

Specifies whether to determine the address's APN (assessor's parcel number).
The APN is an ID number assigned to a property by the local property tax
authority. The APN is returned in the APN output field, which is part of the
Census output group.

Note: This option requires that you have licensed and installed the
Cenrus Enhanced Points or Centrus Premium Points database. APN
data is not available for all addresses. See the coverage map included
with the points database.

Yes, return the assessor's parcel number.

No, do not return the assessor's parcel number. Default.

Spectrum™ Technology Platform 12.0 SP2

API Guide

212

Module Services

optionName Description

RetrieveElevation Specifies whether to return the elevation of the address. Elevation is the
distance above or below sea level of a given location. The elevation is returned
in the Elevation output field, which is part of the Latitude/Longitude output

group.
Note: This option requires that you have licensed and installed the
Centrus Premium Points database. Elevation data is not available for
all addresses. See the coverage map included with the points
database.
Y Yes, return the elevation of the address.
N No, do not return the elevation of the address. Default.
AlwaysFindCandidates Specifies whether to enable centerline matching in order to get street centerline
information.
Note: Centerline matching requires that a point-level database is
installed.
Y Yes, enable centerline matching. To return centerline data in the
output, you must also set OutputRecordType = N.
N No, do not enable centerline matching. Default.

Spectrum™ Technology Platform 12.0 SP2 API Guide 213

Module Services

optionName Description

FIND_APPROXIMATE_PBKEY When FIND_APPROXIMATE_PBKEY is enabled, if an address match is not
made to Master Location Data (MLD), but to a different dataset, the pbKey™
unique identifier of the nearest MLD point located within the search distance
is returned. To distinguish when a fallback pbKey™ unique identifier is returned,
the PBKeYy return value contains a leading character of "X" rather than "P",
for example: X00001XSF1IF. Note, all of the other fields returned for the address
match, including the geocode and all associated data, reflect the match results
for the input address. The fallback pbKey™ unique identifier can then be used
for the lookup to the GeoEnrichment dataset(s), and the attribute data for the
fallback location is returned for the match.

For more information, see PBKey Fallback.
Note: This option requires that you have licensed and installed the
Master Location Dataset.

The search distance for the nearest MLD point is configurable using the
SearchDistance parameter with an allowable search radius of 0-5280
feet and a default value of 150 feet.

Y When a matched address does not have an associated pbKeyw unique
identifier, attempt to return the nearest address record's pbKeym unique
identifier.

N When a matched address does not have an associated pbKeyw unique

identifier, do not return the nearest address record's pbKey ™ unique
identifier. Default.

SearchDistance When the PBKey Fallback option is enabled, this field sets the distance to use
when searching for the nearest address record with an associated pbKey™
unique identifier. The allowable range is 0-5280 feet. Default = 150 feet.

Note: Supported only in forward geocoding.

Matching Options

GeocodeUSAddress Matching Options

Matching options are used to determine how address searches are performed. They let you set
match preferences, criteria and restrictions, and multiple match settings so that the matching can
be as strict or relaxed as you need.

Spectrum™ Technology Platform 12.0 SP2 API Guide 214

Module Services

optionName Description

AddressPreference Determines which address to use when more than one address is present in

the address block.
PreferPOBox Uses the P.O Box.

PreferBottom Uses the second line entered. Default. You must
select this value if you specify
MatchMode=CASS.

PreferStreetAddress Uses the street address.

FirstLetterSearch Specifies whether to look for the correct first letter of a street name if the first
letter is missing or incorrect. If enabled, the geocoder searches through the
alphabet looking for the correct first letter to complete the street address.

Note: This option is not available if the match mode is set to Exact.

Y Perform first letter search.

N Do not perform first letter search. Default.

This example includes an incorrect first letter:

Input: 4750 nalnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

This example excludes a first letter:

Input: 4750 alnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

This example includes an extra first letter:

Input: 4750 wwalnut boulder co 80301
Output: 4750 Walnut St Boulder CO 80301-2532

Spectrum™ Technology Platform 12.0 SP2 API Guide 215

optionName

Module Services

Description

PerformDPV

Specifies whether to process addresses using Delivery Point Validation (DPV).
DPV is a United States Postal Service (USPS) technology that validates the
accuracy of address information down to the physical delivery point. You must
have licensed the optional DPV processing option to use this feature. You
must also install the DPV database.

To use DPV, enable this processing option and specify D in OutputRecordType.
Y Perform DPV.
N Do not perform DPV. Default.

If you use DPV, multiple matches are automatically resolved.

False-positive addresses, also known as seed records, are addresses the
USPS monitors to ensure users are not attempting to create a mailing list from
the DPV data. If the geocoder matches an address in your input data to a
false-positive address, you receive a message indicating you have encountered
a false-positive address. Processing continues to the end of your job, but DPV
processing is not available for this job and subsequent jobs until you have
reported the false-positive address encounter to technical support and have
received a new security key.

PerformLACSLink

Specifies whether to process addresses using LACSH™.
Y Perform LACS-"™
N Do not perform LACS""™. Default.

If you use LACSLi”k, be sure to choose to specify output record types P and
Q so that the fields USLACS, USLACS.ReturnCode, and LACSADDRESS
are included in the output.

For more information, see Locatable Address Conversion System (LACS)
on page 177.

Spectrum™ Technology Platform 12.0 SP2

API Guide

216

optionName

Module Services

Description

PreferZipCodeOverCity

Specifies whether to prefer candidates that match the input ZIP over candidates
that match to input city.

Note: This option is not available when processing in CASS mode.

Y Prefer candidates that match the input ZIP Code.

N Prefer candidates that match the input city. Default.

For example, consider this input address:

301 BRYANT ST
SAN FRANCISCO CA 94301

Without this option enabled, the best match would be the one that matches
the input city name:

301 BRYANT ST
SAN FRANCISCO CA 94107-4167

With this option enabled, the best match would be the one that matches the
input ZIP Code:

301 BRYANT ST
PALO ALTO CA 94301-1408

Spectrum™ Technology Platform 12.0 SP2

API Guide 217

Module Services

Building, Firm name and Point of Interest matching

Firm name search

optionName Description

FirmNameSearch Specifies whether to use firm name matching logic to enhance address
matching. Firm matching logic matches a business name in the input to
recognized business names. The input firm name does not need to be spelled
correctly to obtain a match. A soundex algorithm is used to match the firm
name. A suite or unit number is not required to make the match.

Note: This type of match is not available when processing in CASS
mode.

One of the following:

Always Always attempt to match using firm name matching. If
firm name matching fails, attempt to match using
address matching.

OnAddressLineFail Use firm matching only if a match cannot be determined
using address matching.

Never Do not use firm matching. Default. Note that the firm
name may be corrected even if you specify Never if a
match can be found using the address line data.

Spectrum™ Technology Platform 12.0 SP2 API Guide 218

Module Services

Building search

optionName Description

BuildingSearch Specifies whether to attempt to obtain a street address when the input address
contains a building name with no suite or unit number.

When this option is disabled, the geocoder is able to match to building names
only if there is a unit number in the input. For example, if the building search
option were disabled and you entered this input:

5001 Chrysler Bldg
New York, NY 10174

The street address would be returned:

405 Lexington Ave
RM 5001
New York, NY 10174-5002

With this option enabled, the geocoder is also able to obtain a street address
when only a building name with no unit number is provided. For example, if
you enable this option and provide this address:

Chrysler Bldg
New York, NY 10174

You will get the street address:

405 Lexington Ave
New York, NY 10174-00

Note: This type of match is not available when processing in CASS
mode.

Y Use firm name matching logic. Default.

N Do not use firm name matching logic.

Point of Interest matching

The optional Point Of Interest (POI) Index file (poi.gsi) included with the Master Location Data and
HERE Point Addresses datasets provides expanded support in alias name matching.

To enable POI matching:

1. Add the MLD or HERE Point Addresses data as a Database Resource.

2. SetBuildingSearchto Y. The POI Index file will automatically be searched when this option
is enabled and a firm, building or POl name is specified in the AddressLinel input field.

3. If an alias match is made to the POI Index file, the ITsaAlias output field, or, in the case of a
centerline match, CenterlineIsAlias field, returns A11. To enable the return of these fields,
set OutputRecordType = Q and N respectively.

Spectrum™ Technology Platform 12.0 SP2 API Guide 219

Module Services

Predictive Lastline

Predictive lastline allows you to match an address when only an input street address and latitude/
longitude coordinates are provided, rather than the traditional street address with lastline input. For
example, an input of 4750 Walnut with latitude/longitude coordinates located in Boulder, will return
full address information.

Additional feature information

* Predictive Lastline uses a search radius of 150 feet.
* Predictive Lastline is disabled by default.

» When Predictive Lastline is not enabled, if a singleline address is provided, any input latitude and
longitude values are ignored and the input address is geocoded.

« If the input latitude/longitude coordinates fall near the borders of multiple cities, the Enterprise
Geocoding Module processes all cities and returns the results of the best match. If the results are
determined as equal, then a multi-match is returned.

* Predictive lastline does not require a license for reverse geocoding.

* This feature will work with any type of dataset.

optionName Description

PredictiveLastLine Specifies whether GeocodeUSAddress should match using the street address
and input latitiude/longitude coordinates, rather than the traditional street
address with lastline input.

Y Enable Predictive Lastline processing.

N Disable Predictive Lastline processing. Default.

Enabling Predictive Lastline
The following procedure describes how to enable and set up the Predictive Lastline feature.

Set PredictivelLastLine = Y
Set Latitude = integer value
Set Longitude = integer value

Powbd-~

Set AddressLinel = input street address

Search Area

The search area options set the search constraints to use when matching, such as to a city, finance
area, or within a specified search radius distance that can be limited to the input state. The search
area options can assist in finding a match when the input address contains limited or inaccurate city
or ZIP Code information.

The following example illustrates the different match results for an input address that contains an
incorrect ZIP Code when setting the Search Area to City, then to Finance Area.

Spectrum™ Technology Platform 12.0 SP2 API Guide 220

Module Services

Input Address Match with Search Area "City" Match with Search Area
"Finance Area"
100 Main St 100 MAIN ST 100 MAIN ST

East Aurora, NY 14166

Input address has an incorrect ZIP
Code.

EAST AURORA NY 14052-1633

Match is made to East Aurora 14052
as there is no candidate in the 14166
input ZIP Code.

DUNKIRK NY 14048-1844

Same finance area as the input ZIP
Code 14166.

Spectrum™ Technology Platform 12.0 SP2

API Guide

221

Module Services

Search Area and Distance Options

optionName Description

FIND_SEARCH_AREA

Spectrum™ Technology Platform 12.0 SP2 API Guide 222

Module Services

optionName Description

In CASS match mode, only the search area options described in
FIND SEARCH AREA DEFAULT are available.

FIND_SEARCH_AREA_DEFAULT The impact of the
FIND SEARCH AREA DEFAULT
setting depends on the match mode
you're using for matching.

When Default is enabled and you're
matching using either CASS or Relaxed
match mode, the search area is
determined based on the Centroid
preference setting in Geocoding:

+ If Return ZIP Code centroids is
enabled, the City search area is used.

+ If either No Centroids or Fallback
centroids (the latter being the default
setting) is enabled, the Finance Area
search area is used.

When

FIND SEARCH AREA DEFAULT
is set and you're matching using either
CASS or Relaxed match mode, the
search area is determined based on the
CentroidPreference setting:

« IfCentroidPreference =
AllCentroids, the
FIND SEARCH AREA CITY
search area is used. B

e IfCentroidPreferenceis set
to either NoCentroids or
AddressUnavailable, the
FIND SEARCH AREA FINANCE
search area is used. B

When

FIND SEARCH AREA DEFAULT
is set and you're matching using any
other match mode - Custom, Exact, Close
or Interactive - the

FIND SEARCH AREA FINANCE
search area is used.

FIND_SEARCH_AREA_FINANCE Searches the entire Finance Area for
possible streets.

Note: This option has no effect
when performing a ZIP centroid
match or a geographic geocode.

Spectrum™ Technology Platform 12.0 SP2 API Guide 223

optionName

Module Services

Description

FIND_SEARCH_AREA_CITY Searches the specified city.

FIND_SEARCH_AREA_EXPANDED Enables the setting of the search radius
distance to use when matching. See
FIND SEARCH AREA DISTANCE
below.

FIND_EXPND_SRCH_LIM_TO_STATE Limits the search to the state, within the
search radius distance. The default
search radius is 25 miles.

FIND_SEARCH_AREA_DISTANCE

When the FIND_SEARCH_AREA_EXPANDED option is selected, this field
allows you to enter the search radius distance to use when matching. Valid
values = 0-99 (miles). Default = 25 miles.

Note: Ignored in CASS match mode.

Multi-matches/Candidates

optionName

Description

KeepMultimatch

Select this option to return the list of possible matches when there is more
than one possible match for the input address and a single best match cannot
be identified.

Y Return the addresses that are possible matches for the input
address. Default.

N Do not return the ambiguous matches.

KeepCandidates

Select this option to return candidate addresses whenever the match attempt
produces candidates. If you enable this option, the geocoder will return
candidates both when the input address matches to a single address and
when the input address matches multiple addresses.

This option differs from KeepMultimatch in that the
KeepMultimatch option does not return candidates if the input address
matches to a single address.

Y Return candidates for all match attempts.
N Do not return candidates for all matches. Default.
Spectrum™ Technology Platform 12.0 SP2 API Guide 224

Module Services

optionName Description

CloseMatchesOnly If you specify KeepCandidates=Y you can choose to return just those
candidates that are considered to be a close match. The criteria used to
determine whether a candidate is a close match are those you specify in the

MatchMode option.
Y Return close match candidates only. Default.
N Return all candidates.

Match Modes

Match modes determine the leniency used to make a match between your input and the Centrus
data. Select a match mode based on the quality of your input and your desired output. For example,
if you have an input database that is prone to errors, you may want to select the relaxed match
mode.

Spectrum™ Technology Platform 12.0 SP2 API Guide 225

Module Services

optionName Description

MatchMode Custom

Exact

Close

Relax

Interactive

CASS

Allows you to select the specific criteria to use when matching the input
address to an address in the postal database.

Requires a very tight match. This is a restrictive mode that generates the
fewest number of match candidates to search, which decreases the time to
obtain a match. When using this mode, ensure that your input address list is
very clean; free of misspellings and incomplete addresses.

Requires a moderately confident match. Generates a moderate number of
match candidates.

This is the loosest match mode and generates the most match candidates,
which increases the processing time and results in more multiple matches.
Use this mode if your address list may contain misspellings and incomplete
addresses. This mode does not respect the street parity for an address match.
Default.

Available in single-line address matching only. This mode is designed to better
handle the specific matching challenges presented by interactive matching.
Interactive mode permits for more flexible matching patterns and may, in
some cases, return additional possible matches than relaxed match mode.
This mode recognizes and parses two unit numbers on the same address
line, for example a building and unit number. This mode does not respect the
range parity when making an address match.

Imposes additional rules to ensure compliance with the USPS regulations for
CASS. The purpose of this mode is to create a list of mailable addresses.
This mode generates a large number of match candidates. This mode deviates
from the other modes in its processing. This mode does not perform
intersection, building name, or spatial alias (TIGER and TomTom street name
alias) matches. It does not match to candidates from data sources that do
not have USPS equivalent records. This mode recognizes and parses two
unit numbers on the same address line, for example a building and unit
number.

Interactive match mode

Interactive mode is designed for interactive mobile/web applications. In this use case, it is expected
that users may enter single-line addresses that contain misspelled, inaccurate, and/or missing
information, so this input is processed utilizing a looser set of criteria for matching than the other
match modes. As a result, the matching output could include multiple match candidates. The list of
matches would be presented to the user who could then select the desired match candidate. If an
exact match is found, then that single match candidate is returned; a mix of accurate and inaccurate

results are not presented.

Capabilities and restrictions:

Spectrum™ Technology Platform 12.0 SP2 API Guide

226

Module Services

* Interactive match mode allows users to break the cardinal rule: If the user enters 123 S Main and
there is only 123 N Main, a match is made and a match code is returned that reflects the modified
directional.

* Interactive match mode handles cases where users transpose pre-directionals with post-directionals
without penalty.

* Interactive match mode ignores the 'Prefer ZIP Code over city' setting. When the city and ZIP
Code don't match correctly, the best geocoding result will be returned based on an analysis of all
the input address elements.

» When operating in interactive mode, in cases where a point address or interpolated street address
result cannot be determined, ZIP-9 or ZIP-7 centroid(s) may be returned.

The following table shows a comparison of the match results when running in interactive vs. close
or relaxed modes.

Single-line input address Interactive mode match Close/Relaxed mode single
candidates match candidate

HIGHLAND VIEW WINCHESTER 5 HIGHLAND VIEW AVE, 5 HIGHLAND VIEW AVE,

01890 WINCHESTER, MA 01890 WINCHESTER, MA 01890

5 HIGHLAND TER,
WINCHESTER, MA 01890

5 HIGHLAND AVE,
WINCHESTER, MA 01890

414 PINE WILLIAMSFIELD 61489 414 N PINE ST, WILLIMAMSFIELD, IL 414 N PINE ST, WILLIMAMSFIELD, IL
61849 61849

414 PINE ST,
WILLIAMSFIELD, IL 61489

46 HORNBEAM ST CRANSTON Rl 46 HORNBEAM DR, 46 HORNBINE ST,

L CRANSTON, RI CRANSTON, RI
(conflict with street type)

611 W 13TH JOPLIN MO 64801 611 E 13TH ST, 611 W 13TH ST,

) o JOPLIN, MO 64801 JOPLIN, MO 64804
(conflict between directional and ZIP

Code) 611 W 13TH ST,
JOPLIN, MO 64804

Spectrum™ Technology Platform 12.0 SP2 API Guide 227

Module Services

Match Code

Extended Match Codes

The Extended Match Codes option enables the return of additional information about any changes
in the house number, unit number and unit type fields. In addition, it can indicate whether there was
address information that was ignored. The Extended Match Code is only returned for address-level
matches (match codes that begin with A, G, H, J, Q, R, S, T or U), in which case a 3rd hex digit is
appended to the match code (see Match Codes on page 336).

Note: A typical match code contains up to 4 characters: a beginning alpha character followed
by 2 or 3 hex digits. The third hex digit is only populated for intersection matches or as part
of the Extended Match Code.

For information about the 3rd hex digit values for:

* Intersection matches, see Definitions for 1st-3rd hex digit match code values on page
338

» Extended Match Codes, see Definitions for Extended Match Code (3rd hex digit values)
on page 339

"Address information ignored" is specified when any of these conditions apply:

* The output address has content in the AdditionalInputData field.
» The output address has a second address line (AddressLine?2).

* The input address is a dual address (two complete addresses in the input address). For example,
"4750 Walnut St. P.O Box 50".

» The input last line has extra information that is not a city, state or ZIP Code, and is ignored. For
example, "Boulder, CO 80301 USA", where "USA" is ignored when matching.

The table below provides descriptions of the Extended Match Code 3rd hex digit return values.

Input Addressline Output Addressline Extended Description

Code
4750 WALNUT ST STE 4750 WALNUT ST STE 0 Matched on all address information on line, including
200 200 Unit Number and Unit Type if included.
4750 WALNUT ST C/O 4750 WALNUT ST 1 Matched on Unit Number and Unit Type if included.
JOE SMITH Extra information on address line ignored. Extra
information not considered for matching moved to
AddressLine2 or AdditionalInputData field.
4750 WALNUT ST UNIT 4750 WALNUT ST STE 2 Matched on Unit Number. Unit Type changed.

200 200

Spectrum™ Technology Platform 12.0 SP2 API Guide 228

Input Addressline

Output Addressline

Module Services

Extended Description

Code

4750 WALNUT ST UNIT 4750 WALNUT ST STE 3 Matched on Unit Number. Unit Type changed. Extra

200 C/O JOE SMITH 200 information on address line ignored. Extra information
not considered for matching moved to
AddressLine2 or AdditionalInputData field.

4750 WALNUT ST STE 4750 WALNUT ST STE 4 Unit Number changed or ignored.

2-00 200

4750 WALNUT ST STE 4750 WALNUT ST STE 5 Unit Number changed or ignored. Extra information

2-00 C/O JOE SMITH 200 on address line ignored. Extra information not
considered for matching moved to AddressLine2
or AdditionalInputData field.

4750 WALNUT ST STE 4750 WALNUT ST STE 6 Unit Number changed or ignored. Unit Type changed

400 400 or ignored. In this example, Suite 400 is not valid for
the input address, but the address match is not
prevented because of an invalid unit number.

4750 WALNUT ST UNIT 4750 WALNUT ST STE 7 Unit Number changed or ignored. Unit Type changed

2-00 C/O JOE SMITH 200 or ignored. Extra information on address line ignored.
Extra information not considered for matching moved
to AddressLine2 or AdditionalInputData field.

47-50 WALNUT ST STE 4750 WALNUT ST STE 8 Matched on Unit Number and Unit Type if included.

200 200 House number changed or ignored.

47-50 WALNUT ST STE 4750 WALNUT ST STE 9 Matched on Unit Number and Unit Type if included.

200 C/O JOE SMITH 200 House number changed or ignored. Extra information
not considered for matching moved to
AddressLine2 or AdditionalInputData field.

47-50 WALNUT ST UNIT 4750 WALNUT ST STE A Matched on Unit Number. Unit Type changed. House

200 200 Number changed or ignored.

47-50 WALNUT ST UNIT 4750 WALNUT ST STE B Matched on Unit Number. Unit Type changed. House

200 C/O JOE SMITH 200 Number changed or ignored. Extra information on
address line ignored. Extra information not considered
for matching moved to AddressLine?2 or
AdditionalInputData field.

47-50 WALNUT ST STE 4750 WALNUT ST STE C House Number changed or ignored. Unit Number

20-0 200 changed or ignored.

Spectrum™ Technology Platform 12.0 SP2

API Guide

229

Module Services

Input Addressline Output Addressline Extended Description

Code
47-50 WALNUT ST STE 4750 WALNUT ST STE D House Number changed or ignored. Unit Number
20-0 C/O JOE SMITH 200 changed or ignored. Extra information on address
line ignored. Extra information not considered for
matching moved to AddressLine2 or
AdditionalInputData field.
47-50 WALNUT ST UNIT 4750 WALNUT ST STE E House Number changed or ignored. Unit Number
20-0 200 changed or ignored. Unit Type changed or ignored.
47-50 WALNUT ST UNIT 4750 WALNUT ST STE F House Number changed or ignored. Unit Number
2-00 C/O JOE SMITH 200 changed or ignored. Unit Type changed or ignored.
Extra information on address line ignored. Extra
information not considered for matching moved to
AddressLine2 or AdditionalInputData field.
Match Code Option
optionName Description
ExtendedMatchCode Specifies whether to return the Extended Match Code. For more information,
see Match Code on page 228.
Y Yes, return the Extended Match Code.
N No, do not return the Extended Match Code. Default.

Custom Match Criteria

Difference Between Match Criteria for U.S. and Non-U.S. Geocoding

The "must match criteria" used in the custom match mode of Geocode US Address work differently
than the "close match criteria" in non-U.S. geocoders. For Geocode US Address, the custom match
criteria specify which address elements must match the reference database in order for the match
to be returned as a candidate. All candidates returned by Geocode US Address will match the
elements you specify as long as those elements are available in the reference database. However,
in non-U.S. geocoders, the "close match" criteria are used to determine which candidates are close
matches and which are non-close matches. Non U.S. geocoders can return both close candidates
and non-close candidates, depending on whether you enable the CloseMatchesOnly option. In
summary, the "must match" criteria used by Geocode US Address automatically limit the candidates
returned, whereas the "close match criteria" used by non-U.S. geocoders do not limit the candidates
returned.

Spectrum™ Technology Platform 12.0 SP2 API Guide 230

Module Services

Custom Match Criteria Options

optionName Description

MustMatchInput Specifies whether candidates must match all non-blank input fields. For
example, if an input address contains a city and postal code, then candidates
for this address must match the city and postal code.

Y Yes, candidates must match all input.

N No, candidates do not have to match all input. Default.
MustMatchStreet Specifies whether candidates must match the street name.

Y Yes, candidates must match the street name.

N No, candidates do not have to match the street name. Default.
MustMatchStateProvince Specifies whether candidates must match the state.

Y Yes, candidates must match the state.

N No, candidates do not have to match the state. Default.

Spectrum™ Technology Platform 12.0 SP2 API Guide 231

Module Services

optionName Description

MustMatchHouseNumber Specifies whether candidates must match the house number. If the input house
number is not within a range from the street, GeocodeUSAddress selects the
nearest range on the street which has the same parity (even or odd house
number) as the input address number. GeocodeUSAddress returns one or
more of the closest matches inside this range that preserves street parity. This
requires GeocodeUSAddress to change the house number. The new house
number is equal to one of the range's endpoints, possibly plus or minus one
to preserve street parity.

Note: Even when this option is disabled and an inexact match on
the house number is found, GeocodeUSAddress still returns an error
code.

When this option is disabled and no exact matching house number is found,
a match code of either E029 (no matching range, single street segment found),
or E030 (no matching range, multiple street segment) is returned.

GeocodeUSAddress does not change the house number on the output address.
In order to access the inexact address number candidates, you must specify
KeepMultimatch=Y. If there are inexact house number candidates
returned, the corresponding match codes begin with the letter 'H' indicating
that the house number was not matched.

Additionally, even when one or more exact candidates are found, inexact
matches to the house number are still on the list of possible candidates, and
these can be differentiated from the others by their Hxx match codes. For
more information about match codes, see Match Codes on page 336.

One of the following:

Y Yes, candidates must match the house number. Default.
N No, candidates do not have to match the house number.
MustMatchCity Specifies whether candidates must match the city. If you do not require exact

matches on city, the geocoder searches on the street address matched to the
particular postal code, and considers other cities that do not match the name,
but do match the postal code.

Y Yes, candidates must match the city.
N No, candidates do not have to match the city. Default.
MustMatchPostalCode Specifies whether candidates must match the postal code. If you do not require

exact match on postal codes, the geocoder searches a wider area for a match.
While this results in slower performance, the match rate is higher because
the request does not need to match exactly when it compares match

candidates.
Y Yes, candidates must match the postal code.
N No, candidates do not have to match the postal code. Default.

Spectrum™ Technology Platform 12.0 SP2 API Guide 232

Module Services

Output Format

GeocodeUSAddress Output Format Options

The following table lists the GeocodeUSAddress options that control the format of the output.

optionName Description
OutputCasing Specifies the casing of the output data. One of the following:
M Returns the output in mixed case. Default. For example:
123 Main St

Mytown FL 12345

U Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

OutputFormattedOnFail Specifies whether to normalize addresses that fail to match, and addresses
that are unchanged. Normalization formats an address to the USPS guidelines
without validating the address.

Y Perform standardization. Default.
N Do not perform standardization.
OutputPostalCodeSeparator Specifies whether to include the dash in full postal code output.
Y Include the dash. Default.
N Do not include the dash.
OutputVerbose Specifies whether to provide an additional description field as output. These

fields provide the text equivalent to a field represented by a code. For example,
LocationCode returns a code that indicates the accuracy (quality) of the
assigned geocode. LocationCode.Description provides the description for the
code returned.

Y Include verbose fields.

N Do not include verbose fields. Default.

Spectrum™ Technology Platform 12.0 SP2 API Guide 233

Output Data

Module Services

GeocodeUSAddress Output Data Options

The following table shows the GeocodeUSAddress options that control which data
GeocodeUSAddress returns in the output.

optionName Description

OutputRecordType Specifies optional data to include in the output. Note that GeocodeUSAddress always
returns the default data listed in Default Output on page 245. The data you select here is
returned with the default output data.

+ X—Auxiliary

+ B—Block Address

+ C—Census

+ N—Centerline Projection

+ D—DPV

+ Z—Geo Confidence

+ L—Latitude/Longitude

+ E—Parsed Elements

+ P—Postal Data

+ Q—AQualifiers

+ R—Range

+ §—Segment

For a description of the fields in each output group, see Output on page 234.
If you do not want all of the fields in a record type returned, do not use
OutputRecordType; instead, use OutputFields to specify the desired
individual output fields.

OutputFields Specifies the individual output fields you want returned. List fields with a pipe (|) between
each field. You can use this option instead of the OutputRecordType option to limit
the output to those fields that are important to your data needs.

By default, these are the address fields returned:
AddressLinel |LastLine|Longitude | Latitude |MatchCode | LocationCode
For a list of all the fields included in each data field, see Output on page 234.

Output

GeocodeUSAddress always returns a default set of output fields that contain the latitude/longitude,
standardized address, and result indicators. For information about these fields, see Default Output
on page 245. You can also choose to include optional categories of output data.

Spectrum™ Technology Platform 12.0 SP2 API Guide

234

Module Services

Auxiliary

Auxiliary data output fields contain information about the an auxiliary file match. For more information
about using an auxiliary file, see Auxiliary File Overview on page 329. GeocodeUSAddress only
returns values when matching against an auxiliary file. To include auxiliary data fields in the output,
set OutputRecordType = X.

columnName Max. Field Description
Length with
null
terminator
AuxiliaryData 301 The user data field in an auxiliary file match.

Note: GeocodeUSAddress does not process this information.
It simply includes the user data contained in the auxiliary file.

MCDCode 6 The Minor Civil Division (MCD) code. A Minor Civil Division is a
subdivision of a county, such as a township. There are Minor Civil
Divisions in 28 states, the District of Columbia, Puerto Rico, and Island
Areas. Minor Civil Divisions are defined by U.S. Census Bureau.

MCDName 41 The Minor Civil Division (MCD) name. A Minor Civil Division is a
subdivision of a county, such as a township. There are Minor Civil
Divisions in 28 states, the District of Columbia, Puerto Rico, and Island
Areas. Minor Civil Divisions are defined by U.S. Census Bureau.

Block Address

Block data output fields contain extraneous information from the input address that
GeocodeUSAddress could not process. To include block data in the output, set OutputRecordType
= B.

If there are any empty lines in the input fields AddressLine1 through AddressLine6,
GeocodeUSAddress moves the output lines to the first empty BlockLine output field, eliminating the
blank lines. For example:

Input Field Input Data Output Field Output Data

AddressLine1 4750 Walnut St Ste 200

Spectrum™ Technology Platform 12.0 SP2 API Guide 235

Module Services

Input Field Input Data Output Field Output Data

LastLine Boulder, CO 80301-2532
AddressLine1 Pitney Bowes BlockLine1 Pitney Bowes
AddressLine2 4750 Walnut BlockLine2
AddressLine3 BlockLine3
Data.AddressLine3
AddressLine4 Ste 200 BlockLine4 Dept ABC

Note: Moved up
one line from the

input
AddressLine5.
AddressLine5 Dept ABC BlockLine5
AddressLine6 80301 BlockLine6
Data.AddressLine6
The following table defines the Block Data Output Fields.
columnName Max. Field Description
Length with
null
terminator
BlockLine1 104 Returns input address information GeocodeUSAddress could not
process.
BlockLine2 104 Returns input address information GeocodeUSAddress could not
process.

Spectrum™ Technology Platform 12.0 SP2 API Guide

236

Module Services

columnName Max. Field Description
Length with
null
terminator
BlockLine3 104 Returns input address information GeocodeUSAddress could not
process.
BlockLine4 104 Returns input address information GeocodeUSAddress could not
process.
BlockLine5 104 Returns input address information GeocodeUSAddress could not
process.
BlockLine6 104 Returns input address information GeocodeUSAddress could not
process.
Census

Census output fields contain U.S. Census information about the address. To include census data
in the output, set OutputRecordType = C.

Note: The following Census output fields - CBSADivisionName, CBSAName, CSAName and
USCountyName - are only returned when you set the option OutputvVerbose=Y.

columnName Max. Field Description
Length with
null
terminator
APN 46 The assessor's parcel number of the property. The assessor's parcel

number is an ID number assigned to a property by the local property
tax authority.

Spectrum™ Technology Platform 12.0 SP2 API Guide 237

columnName Max. Field
Length with

null

terminator

Module Services

Description

BlockSuffix

The block suffix for the Census block in which the address is located.

A block suffix is a single character assigned to subsections of U.S.
Census blocks that are split by a higher-level boundary, such as a
municipal boundary. A block suffix is either "A" or "B". For information
about U.S. Census block suffixes, see the Geographic Areas Reference
Manual, available at the U.S. Census Bureau website:

www.census.gov/geo/www/garm.html

Block suffixes are only available if you are using Centrus Enhanced
data.

CBSACode

The code for the Core Based Statistical Area (CBSA) in which the
address is located.

A CBSA is a collective term that refers to both metropolitan and
micropolitan areas. A metropolitan area has a population of more than
50,000, and a micropolitan area has a population between 10,000 and
49,999. For more information, see Metropolitan and Micropolitan
Statistical Areas section of the U.S. Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.html

CBSADivisionCode

The code of the Core Based Statistical Area (CBSA) division in which
the address is located.

A CBSA division is a metropolitan statistical area with a population of
at least 2.5 million that has been subdivided to form smaller groupings
of counties referred to as "metropolitan divisions." For more information,
see Metropolitan and Micropolitan Statistical Areas section of the U.S.
Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.htmi

CBSADivisionName

128

The name of the Core Based Statistical Area (CBSA) division in which
the address is located.

A CBSA division is a metropolitan statistical area with a population of
at least 2.5 million that has been subdivided to form smaller groupings
of counties referred to as "metropolitan divisions." For more information,
see Metropolitan and Micropolitan Statistical Areas section of the U.S.
Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.html

Note: The CBSA division name is only returned if you set the
option OutputVerbose=Y.

Spectrum™ Technology Platform 12.0 SP2

API Guide

238

http://www.census.gov/geo/www/garm.html
http://www.census.gov/population/www/metroareas/metroarea.html
http://www.census.gov/population/www/metroareas/metroarea.html
http://www.census.gov/population/www/metroareas/metroarea.html

Module Services

columnName Max. Field Description
Length with
null
terminator
CBSAMetro 2 Indicates whether the core based statistical area (CBSA) in which the
address is located is a metropolitan area or a micropolitan area. One of
the following:
Y Yes, the address is located in a metropolitan statistical area.

Metropolitan areas have a population greater than 50,000.

N No, the address is not located in a metropolitan area. It is
located in a micropolitan area. Micropolitan areas have a
population between 10,000 and 49,999.

null There is no data available to determine whether the address
is in @ metropolitan or micropolitan area.

A CBSA is a collective term that refers to both metropolitan and
micropolitan areas. A metropolitan area has a population of more than
50,000, and a micropolitan area has a population between 10,000 and
49,999. For more information, see Metropolitan and Micropolitan
Statistical Areas section of the U.S. Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.html

CBSAName 128 The name of the core based statistical area (CBSA) in which the address
is located.

A CBSA is a collective term that refers to both metropolitan and
micropolitan areas. A metropolitan area has a population of more than
50,000, and a micropolitan area has a population between 10,000 and
49,999. For more information, see Metropolitan and Micropolitan
Statistical Areas section of the U.S. Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.htmi

Note: The CBSA name is only returned if you set the option
OutputVerbose=Y.

Spectrum™ Technology Platform 12.0 SP2 API Guide 239

http://www.census.gov/population/www/metroareas/metroarea.html
http://www.census.gov/population/www/metroareas/metroarea.html

columnName Max. Field
Length with

null

terminator

Module Services

Description

CensusBlockID

16

The 15-digit identification number of the census block in which the
address is located. Census blocks are the smallest geographic area for
which the Bureau of the Census collects and tabulates decennial census
data. Census blocks are formed by streets, roads, railroads, streams
and other bodies of water, other visible physical and cultural features,
and the legal boundaries shown on Census Bureau maps. For more
information about U.S. Census blocks, see the Geographic Areas
Reference Manual, available at the U.S. Census Bureau website:

www.census.gov/geo/www/garm.html

The Census block ID is in the format:
sscccttttttgbbb

Where:

ss The two-digit state FIPS code.

ccc The three-digit county FIPS code.

tttttt The six-digit Census tract FIPS code.

g The single-digit block group FIPS code.
bbb The block FIPS code.

Note: The value in the CensusBlockID field does not contain
a period for the Census tract FIPS code. This may deviate from
the industry standard.

CensusTract

The six-digit ID of the Census tract in which the address is located.
Census tracts are small, relatively permanent geographic entities within
counties (or the statistical equivalents of counties). Generally, census
tracts have between 2,500 and 8,000 residents and boundaries that
follow visible features. For more information about U.S. Census tracts,
see the Geographic Areas Reference Manual, available at the U.S.
Census Bureau website:

www.census.gov/geo/www/garm.html

CSACode

Denotes the code for a geographic entity that consists of 2 or more
adjacent CBSAs with employment interchange measures of at least 15.

Spectrum™ Technology Platform 12.0 SP2

API Guide

240

http://www.census.gov/geo/www/garm.html
http://www.census.gov/geo/www/garm.html

columnName Max. Field
Length with

null

terminator

Module Services

Description

CSAName

128

The name of the combined statistical area (CSA) in which the address
is located.

A CSA is a combination of two or more adjacent Core Based Statistical
Areas (CBSAs) with a high employment interchange measure. The
employment interchange measure is the sum of the percentage of
employed residents of the smaller entity who work in the larger entity
and the percentage of the employment in the smaller entity that is
accounted for by workers who reside in the larger entity. Pairs of CBSAs
with employment interchange measures of at least 25% combine
automatically. Pairs of CBSAs with employment interchange measures
of at least 15%, but less than 25%, may combine if local opinion in both
areas favors combination.

Note: The CSA name is only returned if you set the option
OutputVerbose=Y.

USCountyName

128

The name of the county or parish in which the address is located.

Note: The county/parish name is only returned if you set the
option OutputVerbose=Y.

USFIPSCountyNumber 4 The three-digit FIPS county code of the county in which the address is
located.

USFIPSStateCode 3 The two-digit FIPS state code of the state in which the address is located.

USFIPSStateCountyCode 6 The five-digit FIPS code for the state and county in which the address

is located.

Centerline

Centerline Output Fields

Centerline output fields contain information specific to a centerline match. For more information

about setting up centerline matching, refer to Geocoding Options on page 206. To include centerline

fields in the output, set OutputRecordType = N.

Spectrum™ Technology Platform 12.0 SP2

API Guide

241

columnName

Max. Field
Length with
null
terminator

Module Services

Description

CenterlineBearing

The compass direction, in decimal degrees, from the point data match
to the street centerline match. The compass direction is measured
clockwise from O degrees north. For example, if the centerline match is
directly north of the point match, the centerline bearing would be 0.

CenterlineBlockLeft

16

The Census FIPS Code that indicates the address is on the left side of
the street.

CenterlineBlockRight

16

The Census FIPS Code that indicates the address is on the right side
of the street.

CenterlineBlockSuffixLeft

The block suffix of the block on the left side of the street.

A block suffix is a single character assigned to subsections of U.S.
Census blocks that are split by a higher-level boundary, such as a
municipal boundary. A block suffix is either "A" or "B". For information
about U.S. Census block suffixes, see the Geographic Areas Reference
Manual, available at the U.S. Census Bureau website:

www.census.gov/geo/www/garm.html

Block suffixes are only available if you are using Centrus Enhanced
data.

CenterlineBlockSuffixRight

The block suffix of the block on the right side of the street.

A block suffix is a single character assigned to subsections of U.S.
Census blocks that are split by a higher-level boundary, such as a
municipal boundary. A block suffix is either "A" or "B". For information
about U.S. Census block suffixes, see the Geographic Areas Reference
Manual, available at the U.S. Census Bureau website:

www.census.gov/geo/www/garm.html

Block suffixes are only available if you are using Centrus Enhanced
data.

Spectrum™ Technology Platform 12.0 SP2

API Guide

242

http://www.census.gov/geo/www/garm.html
http://www.census.gov/geo/www/garm.html

Module Services

columnName Max. Field Description
Length with
null
terminator
CenterlineDataCode 3 Indicates the data used to obtain a centerline match for the address.
One of the following:
0 USPS data.
1 TIGER data.
2 TomTom data.
6 HERE data.
7 TomTom point-level data.
8 Centrus point-level data.
9 Auxiliary file data.
10 User Dictionary.
11 HERE point-level data.
12 Master Location data.

For more information about these databases, see Enterprise Geocoding
Databases on page 170

CenterlineDirection 2 Indicates the order of numbers on a segment for a centerline match.
F Forward
R Reversed
B Both
U Undetermined

CenterlineDistance 8 Distance, in feet, from the point-level match to the centerline match.

CenterlineHouseNumberHigh 12 The highest address number in the range of addresses on the street
segment. For example, if the address range for the street segment is
1000 to 2000, the CenterlineHouseNumberHigh would be 2000.

CenterlineHouseNumberLow 12 The lowest address number in the range of addresses on the street
segment. For example, if the address range for the street segment is
1000 to 2000, the CenterlineHouseNumberLow would be 1000.

Spectrum™ Technology Platform 12.0 SP2 API Guide 243

Module Services

columnName Max. Field Description
Length with
null
terminator
CenterlinelsAlias 4 Three characters indicating that GeocodeUSAddress located a centerline

match by an index alias. The first is an N for normal street match or A
for alias match (including buildings, aliases, firms, etc.). The next two
characters are:

01 Basic index (normal address match)

02 USPS street name alias index

03 USPS building index

04 USPS firm name index

05 Statewide intersection alias match (when using the

Usw.gsi or Use.gsi file)

06 Spatial data street name alias (when using, the
Us_pw.gsi, Us_pe.gsi, Us_psw.gsi, or Us_pse.gsi file is
required)

07 Alternate index (when using Zip9.gsu, Zip9e.gsu, and
Zip9w.gsu)

08 LACS-"™

09 Auxiliary file match

10 Centrus Alias index (when using usca.gsi)

1 POI index (when using poi.gsi)

CenterlineLatitude 1 A 7-digit number in degrees and calculated to 4 decimal places for a

centerline match. This field is only returned if
AlwaysFindCandidates=Y

CenterlineLeadingDirectional 3 The street directional that precedes the street name for a centerline
match. For example, the N in 138 N Main Street.

CenterlineLongitude 12 A 7-digit number in degrees and calculated to 4 decimal places (in the
format specified) for a centerline match. This field is only returned if
AlwaysFindCandidates=Y

Spectrum™ Technology Platform 12.0 SP2 API Guide 244

Module Services

columnName Max. Field Description
Length with
null
terminator
CenterlineParity 2 Indicates which side of the street has odd numbers for a centerline
match.
L The left side of the street has odd numbers.
R The right side of the street has odd numbers.
B Both sides of the street have odd numbers.
u Undetermined.

CenterlineRoadClass 3 The type of road for a centerline match:
1 Major
2 Minor
CenterlineSegmentCode 1" The unique 10-digit street segment ID assigned by the street network

data provider.

CenterlineStreetName 41 The name of the street.

CenterlineStreetSuffix 5 The street type of the matched centerline location. For example, AVE
in "Washington AVE".

CenterlineTrailingDirectional 3 The street directional that follows the street name. For example, the N
in 456 Washington AVE N.

Default Output

Default Output Fields

The geocoder always returns fields that contain the latitude/longitude, standardized address, and
result indicators. Result indicators describe how well the geocoder matched the input address to a
known address and assigned a location. Result indicators also describe the overall status of a match
attempt.

Spectrum™ Technology Platform 12.0 SP2 API Guide 245

columnName Max. Field
Length with

null

terminator

Module Services

Description

AdditionallnputData 61 This field is populated with input address information that appears after
a mail stop or attention designator, such as: MSC, MS, MAILSTOP,
MAIL STOP, ATTN, ATTENTION.
Note: This information is not used to process the address. It
simply includes the information as entered in the input data.
AddressLine1 104 The first line of the address. For example:
1 Global View
Troy, NY 12180-8371
AddressLine2 104 The second line of the address. For example:
4200 Parliament PI
STE 600
Lanham, MD 20706-1882
City 29 The municipality name.
Spectrum™ Technology Platform 12.0 SP2 API Guide 246

Module Services

columnName Max. Field Description
Length with
null
terminator
Confidence 4 Indicates the confidence in the output provided, from 0 to 100. The

higher the score, the higher the probability that the match is correct. If
the match is exact, the confidence score is 100. For all other matches,
the confidence score is calculated based on which portions of the input
address had to be changed to obtain a match. Specifically, the

confidence score is calculated by subtracting values from 100 as follows:

« If the state is changed to obtain a match:

* Added the state -3.75
* No state -7.5

« If the city is changed to obtain a match:
» Added city -2.5
* Nocity -5.0
« If the house number is changed to obtain a match:

* Added house number -3.75
* No house number -7.5

+ If the street name is changed to obtain a match:

* Added street name -3.75
* No street name -7.5

« If the trailing directional is changed to obtain a match:

* Added trailing directional -1.25
* No trailing directional -2.5

+ If the leading directional is changed to obtain a match:

* Added leading directional -1.25
* No leading directional -2.5

« If the street suffix is changed to obtain a match:

* Added street suffix -1.25
* No street suffix -2.5

+ If the postal code is changed to obtain a match: -11.25

If you have enabled the option to return centroids, the confidence value
indicates the type of centroid returned:

* 60 for a street centroid

» 50 for a postal code centroid
+ 35 for a city centroid

+ 30 for a county centroid

+ 25 for a state centroid

Spectrum™ Technology Platform 12.0 SP2

API Guide

247

Module Services

columnName Max. Field Description
Length with
null
terminator

Country 25 The name of the country. This field always contains United States of
America.

FirmName 41 The name of the business if the address is a business address.

LastLine 61 The complete last address line (city, state, and postal code).

Latitude 1 Seven-digit number in degrees and calculated to four decimal places
(in the format specified).

LocationCode 5 A value indicating the accuracy (quality) of the assigned geocode.
For more information, see Address Location Codes on page 344.

Longitude 12 Seven-digit number in degrees and calculated to four decimal places
(in the format specified).

MatchCode 5 Indicates the portions of the address that matched to the geocoding
directory file.

For more information, see Match Codes on page 336.

PBKey 13 A unique address identifier that is returned when an address match is
made using the Master Location Dataset. The pbKey™ unique identifier
is used as a lookup key to a GeoEnrichment dataset, in order to return
attribute data for the match.

PostalCode 10 Nine-digit ZIP Code with or without a hyphen.

PostalCode.AddOn 5 Four-digit ZIP Code extension.

PostalCode.Base 6 Five-digit ZIP Code.

Spectrum™ Technology Platform 12.0 SP2

API Guide

Module Services

columnName Max. Field Description
Length with
null
terminator
ProcessedBy 4 The underlying software that processed the request.

EnterpriseGeocoding for GeocodeUSAddress.

StateProvince

Two-character state abbreviation.

Status

Reports the success or failure of the match attempt
null Success

F Failure

Status.Code

23

If GeocodeUSAddress could not process the address, this field will show
the reason.

* Internal System Error
* No Geocode Found
* Insufficient Input Data

Status.Description

128

If GeocodeUSAddress could not process the address, this field will show
a description of the failure.

Problem + explanation = Returned when Status.Code = Internal
System Error.

Geocoding Failed Returned when Status.code = No
Geocode Found.

No location returned Returned when Status.code = No
Geocode Found.

Spectrum™ Technology Platform 12.0 SP2

API Guide

249

Module Services

columnName Max. Field Description
Length with
null
terminator
StreetDataType 20 The data set used to geocode the address.
USPS USPS
TIGER TIGER
TOMTOM TomTom Streets data set
SANBORN POINT DATA Sanborn Points data set
NAVTEQ NAVTEQ/HERE Streets data set
TOMTOM POINT DATA TomTom Points data set
AUXILIARY Auxiliary file
CENTRUS POINT DATA Centrus Points data set
USER DICTIONARY User Dictionary
NAVTEQ POINT DATA NAVTEQ/HERE Points data set
MASTER LOCATION Master Location Data
StreetSide 2 Indicates the side of the street the address range occupies. One of the
following:
L The address range occupies the left side of the street.
R The address range occupies the right side of the street.
B The address range occupies both sides of the street.
U Undetermined.

USUrbanName 31 Urbanization name. Used for addresses in Puerto Rico.

DPV

DPV data output fields contain information about a match made using DPV data. GeocodeUSAddress
only returns values when matching against DPV data. To include DPV data in the output, set
OutputRecordType = D.

Spectrum™ Technology Platform 12.0 SP2 API Guide 250

Module Services

columnName Max. Field Description
Length with
null
terminator
CMRA 2 Indicates whether the address is for a Commercial Mail Receiving Agent

(CMRA). A CMRA is a private company that rents out mailboxes. A
customer of a commercial mail receiving agency can receive mail and
other deliveries at the street address of the CMRA rather than the
customer's own street address. Depending on the agreement between
the customer and the CMRA, the CMRA can forward the mail to the
customer or hold it for pickup.

Y Yes, the address is a CMRA.
N No, the address is not a CMRA.
null DPV data is not available. DPV data is required to

determine if an address is a CMRA.

DPV 2 Indicates whether the address is confirmed to be a deliverable address
by USPS Delivery Point Validation (DPV).

N Nothing confirmed

Y Everything confirmed (ZIP+4, primary, and secondary)

S ZIP+4 and primary (house number) confirmed

D ZIP+4 and primary (house number) confirmed and a default
match

U Non-matched input address to USPS ZIP+4 data, or DPV

data not loaded

Spectrum™ Technology Platform 12.0 SP2 API Guide 251

Module Services

columnName Max. Field Description
Length with
null
terminator
DPVFootnote 3 per footnote Contains detailed information about the address. The DPV footnote

codes are combined together consecutively.

DPV footnotes include:

+ FOOTNOTE1 provides information about the matched DPV records.

AA—ZIP+4 matched record
A1—Failure to match a ZIP+4 record
null—Address not presented to hash table or DPV data not loaded

* FOOTNOTEZ2 provides information about the matched DPV records.

BB—AIl DPV categories matched

CC—Matched primary/house number, where the secondary/unit
number did not match (present but invalid)

M1—Missing primary/house number

M3—Invalid primary/house number

N1—Matched primary/house number, with a missing highrise
secondary number

P1—Missing PS, RR, or HC Box number

P3—lInvalid PS, RR or HC Box number

F1—All military addresses

G1—All general delivery addresses

U1—All unique ZIP Code addresses

null—Address not presented to hash table or DPV data not loaded

+ FOOTNOTES provides information about the matched DPV records.

R1—Matched CMRA, without a present secondary/unit number
RR—Matched CMRA
null—Address not presented to hash table or DPV data not loaded

Note: A unique ZIP Code is a ZIP Code assigned to a
company, agency, or entity with sufficient mail volume to have
its own ZIP Code.

Geoconfidence

Geoconfidence data output fields contain information about the type of geoconfidence polygon
returned. To include geoconfidence fields in the output, set OutputRecordType = Z.

Spectrum™ Technology Platform 12.0 SP2 API Guide

252

Module Services

columnName Max. Field Description
Length with
null
terminator
GeoConfidenceCode 13 The value returned in this field indicates which geoconfidence surface

type has been returned.
The possible values are:
INTERSECTION A geocode point for the intersection of two streets.

ADDRESS An array of street segment points representing the
street segment where the address is located.

POINT If the geocoder was able to match the address
using point data, the point geometry where the
address is located.

POSTAL1 A geocode point for the ZIP centroid.

POSTAL2 An array of points for all street segments in the
ZIP + 2 in which the address is located.

POSTAL3 An array of points for street segments in the ZIP
+ 4 in which the address is located.

ERROR An error has occurred.

StreetSegmentPoints 1024 An array of latitude/longitude values that represent the street segment
points.

Note: This field contains values only if the
GeoConfidenceCode field returns a value of ADDRES S,
POSTALZ, or POSTALS.

GeoConfidenceCentroidLatitude 11 The latitude of the centroid of the geoconfidence polygon.
GeoConfidenceCentroidLongitude 12 The longitude of the centroid of the geoconfidence polygon.
Latitude/Longitude

The latitude/longitude output fields contain the geographic coordinates of the address. To include
latitude/longitude output fields in the output, set OutputRecordType = L.

Spectrum™ Technology Platform 12.0 SP2 API Guide 253

Module Services

columnName Max. Field Description
Length with
null
terminator
Elevation 11 The location's elevation in feet above or below sea level.
Latitude 11 The latitude of the address. The latitude is a seven-digit number in

degrees, calculated to six decimal places.

Longitude 12 The longitude of the address. The longitude is a seven-digit number in
degrees, calculated to six decimal places.

Parsed Elements

The parsed elements output fields contain standard address information as individual units, such
as street suffixes (for example AVE, ST, or RD) and leading directionals (for example N and SE).
To include parsed elements in the output, set OutputRecordType = E.

columnName Max. Field Description
Length with
null
terminator
ApartmentLabel 5 The type of unit, such as apartment, suite, or lot.
ApartmentLabel2 5 The type of unit, such as apartment, suite, or lot, for addresses that

contain two units, such as: 123 E Main St APT 3, 4th Floor .

ApartmentNumber 12 Apartment number. For example: 123 E Main St APT 3
ApartmentNumber2 12 Secondary apartment number. For example: 123 E Main St APT 3, 4th
Floor

Spectrum™ Technology Platform 12.0 SP2 API Guide 254

Module Services

columnName Max. Field Description
Length with
null
terminator
CrossStreetlLeadingDirectional 3 Leading directional, for example: 123 E Main St Apt 3

Note: Cross street information is only returned if you entered
an intersection as an address. For example, entering Pearl and
28th, Boulder, CO returns cross street information. Entering
2800 Pearl, Boulder, CO does not return cross street
information.

CrossStreetName 41 Name of cross street.

Note: Cross street information is only returned if you entered
an intersection as an address. For example, entering Pearl and
28th, Boulder, CO returns cross street information. Entering
2800 Pearl, Boulder, CO does not return cross street
information.

CrossStreetSuffix 5 Street suffix, for example: 123 E Main St Apt 3

Note: Cross street information is only returned if you entered
an intersection as an address. For example, entering Pearl and
28th, Boulder, CO returns cross street information. Entering
2800 Pearl, Boulder, CO does not return cross street
information.

CrossStreetTrailingDirectional 3 Trailing directional, for example: 123 Pennsylvania Ave NW

Note: Cross street information is only returned if you entered
an intersection as an address. For example, entering Pearl and
28th, Boulder, CO returns cross street information. Entering
2800 Pearl, Boulder, CO does not return cross street

information.
HouseNumber 12 Building number for the address.
HouseNumber2 12 If an address consists of a range of house numbers, this field contains

the second house number. The HouseNumber field contains the first
number. For example, given this address:

5-7 Maple Ave.

The HouseNumber field would contain "5" and the HouseNumber2 field
would contain "7".

Spectrum™ Technology Platform 12.0 SP2 API Guide 255

columnName Max. Field
Length with

null

terminator

Module Services

Description

LeadingDirectional 3 Leading directional, for example: 123 E Main St Apt 3

PrivateMailbox 9 Private mailbox. Not returned for multiline input.

PrivateMailbox.Designator 5 Private mailbox description. Not returned for multiline input.

RRHC 2 Rural Route/Highway Contract portion of the address.

StreetName 41 The name of the street, not including any directionals or suffixes. For
example, the word "Main" in this address: 123 E Main St Apt 3

StreetSuffix 5 The street type of the matched location. For example, AVE for Avenue.

TrailingDirectional 3 Street directional that follows the street name. For example, the N in

456 Washington N.

Postal Data

Postal data output fields contain detailed postal information for the address, such as the preferred

city name and the US carrier route. To include postal data fields in the output, set

OutputRecordType = P.

columnName Max. Field Description
Length with
null
terminator
CityPreferredName 29 The USPS® preferred city name for the ZIP Code of the address.

Spectrum™ Technology Platform 12.0 SP2

API Guide

256

Module Services

columnName Max. Field Description
Length with
null
terminator
CityShortName 29 The USPS®-approved abbreviation for the city, if there is one. The USPS®
provides abbreviations for city names that are 14 characters long or
longer. City abbreviations are 13 characters or less and can be used
when there is limited space on the mailing label. If there is no short city
name for the city, then the full city name is returned.
CityStateRecordName 29 USPS® city state city name.

DeliveryPointCode 3 Two-digit delivery point barcode.
GovernmentBuilding 2 Indicates if a building is used by the city, state, or federal government.
A City government building
B Federal government building
(o State government building
D Firm only
E City government building and firm only
F Federal government building and firm only
G State government building and firm only
The values A, B, C, E, F, and G are valid for Alternate records only. The
value D is valid for both base and alternate records.
PostalBarCode 7 Six-digit combination of ZIP+4 Code and the delivery point barcode.
PostalCodeClass 2 ZIP Classification code.
null Standard ZIP Code
M Military ZIP Code
P ZIP Code has P.O. boxes only
U Unique ZIP Code (ZIP Code assigned to a single
organization)
Spectrum™ Technology Platform 12.0 SP2 API Guide 257

Module Services

columnName Max. Field Description
Length with
null
terminator
PostalCodeUnique 2 Indicates if the ZIP Code is a unique ZIP Code assigned to an individual
company or agency.
Y Unique ZIP name
null No unique ZIP name
PostalFacility 2 USPS City State Name Facility code.
A Airport Mail Facility (AMF)
B Branch
Cc Community Post Office (CPO)
D Area Distribution Center (ADC)
E Sectional Center Facility (SCF)
F Delivery Distribution Center (DDC)
G General Mail Facility (GMF)
K Bulk Mail Center (BMC)
M Money Order Unit
N Non-Postal Community Name, Former Postal Facility,
or Place Name
P Post Office
Station
Urbanization
USBCCheckDigit 2 Check-digit for delivery point barcode.
USCarrierRouteCode 5 Carrier Route code.

Spectrum™ Technology Platform 12.0 SP2 API Guide

258

Module Services

columnName Max. Field Description
Length with
null
terminator
USCarrierRouteSort 2 Indicates if the USPS uses a carrier route sort, and what type of sort
the USPS allows.
A Automation cart allowed, optional cart merging allowed
B Automation cart allowed, no optional cart merging allowed
(o No automation cart allowed, optional cart merging allowed
D No automation cart allowed, no optional cart merging allowed

USCityDelivery 2 Indicates if has city-delivery carrier routes.
Y Has city-delivery carrier routes
N Does not have city-delivery carrier routes.
USLACS 2 Indicates if LACS"™ match occurred.
Y Matched LACS"™ record
N LACS"™ match not found
F False-positive LACS""™ record
S Secondary information (unit number) removed to make

a LACS""™ match

null Records not processed through LACSHM&

For more information, see Locatable Address Conversion System
(LACS) on page 177.

USLACS.ReturnCode 3 Indicates LACS""™ results.
A Matched LACS"™ record
00 LACS""™ match was not found
09 Matched to highrise default, but noLACS"™ conversion
14 Found LACS"™ match, but no LACS"™ conversion
92 Secondary information (unit number) was removed to
make a LACS""™ match
null Records not processed through LACSH"&

For more information, see Locatable Address Conversion System
(LACS) on page 177.

Spectrum™ Technology Platform 12.0 SP2 API Guide 259

Module Services

columnName Max. Field Description
Length with
null
terminator
USLOTCode 2 A combination of the 4-digit Line of Travel (LOT) Code and the ascending

(A) or descending (D) indicator.

Qualifiers

Qualifier output fields contain qualification information about the match, such as the location code
and the match code. To include postal data fields in the output, set OutputRecordType = Q.

columnName Max. Field Description
Length with
null
terminator
AddressLineResolved 5 For two-line addresses, indicates which address line was used to obtain
the match.
0 The address could not be matched, or the address matched
to multiple addresses.
1 AddressLine1 was used to obtain the match.
2 AddressLine2 was used to obtain the match.
3 Both address lines were used in their original order.
4 Both address lines were used but the order of the lines was
switched to obtain the match.
5 The input address was a one line address.
CountryLevel 2 The category of the postal data used to validate the address. Always

returns "A" for U.S. addresses. Category A means that the postal data
is sufficient to validate and correct addresses, including providing missing
postal code, city name, state/county name, street address elements,
and country name.

DatabaseVersion The publish date of the USPS data used to validate the address, in the
format Month Year.

Spectrum™ Technology Platform 12.0 SP2 API Guide 260

Module Services

columnName Max. Field Description
Length with
null
terminator
EWSMatch 2 Indicates whether the address was not matched because it is in the
Early Warning System (EWS) data.
Y The address matched to an address in the EWS data so
the match was denied.
null The address did not match to an address in the EWS data.
ExpirationDate 1 Date the database expires, in the format MM/DD/YYYY.
Geocoder.MatchCode 4 Indicates how closely the input address matches the candidate address.

Note: The match codes returned in this field are different from
the match codes described in Match Codes on page 336.
Instead, the match codes returned in this field are taken from
a set of match codes that are compatible with all other country
geocoders. For more information, see Result Codes for
International Geocoding on page 359.

GeoStanMatchScore 13 Record matching score (for multimatches only).
Intersection 2 Indicates if the input address matched to a cross-street.
T True
F False

Spectrum™ Technology Platform 12.0 SP2 API Guide 261

Module Services

columnName Max. Field Description
Length with
null
terminator
IsAlias 4 Indicates whether the address matched an index alias in the postal data.

Returns three characters. The first is an N for normal street match or A
for alias match (including buildings, aliases, firms, etc.). The next two
characters are:

01 Basic index (normal address match)
02 USPS street name alias index
03 USPS building index
04 USPS firm name index
05 Statewide intersection alias match
06 Spatial data street name alias
07 Alternate index
08 LACS-™
09 Auxiliary file match
10 Centrus Alias index (when using usca.gsi)
1 POl index (when using poi.gsi)
IsCloseMatch 2 Indicates whether or not the address was a unique match or if there
were candidate addresses.
Y Yes, the address is a close match. This field always contains
"Y" if there is only one match.
N No, the address is not a close match. The record is a
candidate.
LACSAddress 2 Indicates if the input address was converted due to the Locatable
Address Conversion System (LACS).
L Converted
null Not converted
LocationCode.Description 128 LocationCode converted to text. Only returned when you set the

configuration options to return additional descriptions (verbose).

Spectrum™ Technology Platform 12.0 SP2 API Guide 262

Module Services

columnName Max. Field Description
Length with
null
terminator
MatchCode.Description 128 MatchCode converted to text. Only returned when you set the
configuration options to return additional descriptions (verbose).
RecordType 18 Indicates the record type:
» GeneralDelivery
* HighRise
* FirmRecord
* Normal
+ PostOfficeBox
* RRHighwayContract
» Geographic (non USPS TIGER match)
+ Auxiliary (match to an auxiliary file)
RecordType.Default 2 Indicates type of match that occurred for the record type HighRise or
RRHighwayContract:
Y Default match
N Exact match
U Not matched
StreetDataCode 3 Indicates the data used to geocode the address. One of the following:

0 USPS data

1 TIGER data

2 TomTom data

6 HERE data

7 TomTom point-level data
8 Centrus point-level data
9 Auxiliary file data

10 User Dictionary

1 HERE point-level data
12 Master Location Data

For more information about these databases, see Enterprise Geocoding
Databases on page 170.

Spectrum™ Technology Platform 12.0 SP2 API Guide

263

Module Services

columnName Max. Field Description
Length with
null
terminator
StreetDataType 20 Indicates the data initially used for the match attempt. Note that the

output field StreetDataCode shows which data was actually used to
obtain the match.

The data indicated in StreetDataType may be different from that in
StreetDataCode if a match cannot be made in the initial match attempt.
For example, if a points database is loaded, GeocodeUSAddress will
first attempt a match to the point data because this is the most accurate
type of match. If a point-level match cannot be made,
GeocodeUSAddress will attempt to match to street data. If the match is
made using street data, then the SreetDataType would indicate the
point-level data and the StreetDataCode would indicate the street data.

For more information, see How GeocodeUSAddress Processes
Addresses on page 202.

Range

Range output fields contain information about the street range, such as the high and low unit numbers.
To include range data fields in the output, set OutputRecordType = R.

columnName Max. Field Description
Length with
null
terminator
Alternate 2 USPS code that specifies whether a record is a base or alternate record.
B Base record. Base records can represent a range of addresses

or an individual address, such as a firm record.

A Alternate record. Alternate records are individual delivery
points.
HouseNumberHigh 12 The highest house number in the range.
HouseNumberLow 12 The lowest house number in the range.

Spectrum™ Technology Platform 12.0 SP2 API Guide 264

Module Services

columnName Max. Field Description
Length with
null
terminator
HouseNumberParity 2 Indicates if the house number range contains even or odd numbers.
E Even
(0] Odd
B Both
PostalCodeExtensionHigh 5 The highest four-digit ZIP Code extension in the range. The ZIP Code
extension is the four digits at the end of the ZIP Code. For example:
60510-1134.
PostalCodeExtensionLow 5 The lowest four-digit ZIP Code extension in the range. The ZIP Code
extension is the four digits at the end of the ZIP Code. For example:
60510-1134.
UnitNumberHigh 12 The highest unit number in the range.
UnitNumberLow 12 The lowest unit number in the range.
UnitNumberParity 2 Indicates if the unit number range contains even or odd numbers.
E Even
o Odd
B Both
Segment

Segment output fields contain information about the street segment identified by the data provider.
To include segment data fields in the output, set OutputRecordType = S.

Spectrum™ Technology Platform 12.0 SP2

API Guide

265

Module Services

columnName Max. Field Description
Length with
null
terminator

BlockLeft 16 The Census FIPS Code that indicates the address is on the left side of
the street.

BlockRight 16 The Census FIPS Code that indicates the address is on the right side
of the street.

BlockSuffixLeft 2 The block suffix of the block on the left side of the street.
A block suffix is a single character assigned to subsections of U.S.
Census blocks that are split by a higher-level boundary, such as a
municipal boundary. A block suffix is either "A" or "B". For information
about U.S. Census block suffixes, see the Geographic Areas Reference
Manual, available at the U.S. Census Bureau website:
www.census.gov/geo/www/garm.html
Block suffixes are only available if you are using Centrus Enhanced
data.

BlockSuffixRight 2 The block suffix of the block on the right side of the street.
A block suffix is a single character assigned to subsections of U.S.
Census blocks that are split by a higher-level boundary, such as a
municipal boundary. A block suffix is either "A" or "B". For information
about U.S. Census block suffixes, see the Geographic Areas Reference
Manual, available at the U.S. Census Bureau website:
www.census.gov/geo/www/garm.html
Block suffixes are only available if you are using Centrus Enhanced
data.

PointCode " Unique point ID of the matched record when matched to point-level data.
Blank if the matched record is not from point-level data.

RoadClass 3 The type of road:
1 Major
2 Minor

SegmentCode 1" The unique 10-digit street segment ID assigned by the street network

data provider.

Spectrum™ Technology Platform 12.0 SP2

API Guide

266

http://www.census.gov/geo/www/garm.html
http://www.census.gov/geo/www/garm.html

Module Services

columnName Max. Field Description
Length with
null
terminator
SegmentDirection 2 Indicates the order of numbers on a segment.
F Forward
R Reversed
B Both
U Undetermined
SegmentHouseNumberHigh 12 The highest house number in the segment.
SegmentHouseNumberLow 12 The lowest house number in the segment.
SegmentLength

The length, in feet, of a block segment. This field is deprecated.

SegmentParity 2 Indicates which side of the street has odd numbers.
L Left side of the street
R Right side of the street
B Both sides of the street
) Undetermined

Spectrum™ Technology Platform 12.0 SP2 API Guide 267

Module Services

columnName Max. Field Description
Length with
null
terminator
StreetSide.NAVTEQ 2 Indicates which side of the street the address is located on. The value

in this field is determined by using the NAVTEQ/HERE reference nodes
for the street segment. A street segment represents part of a street.
Each segment has a node at each end: the reference node and the
non-reference node. The reference node is the node with the lower
latitude (southernmost). If the latitudes of both nodes are identical, the
reference node is the end node with the lower longitude (westernmost).
The street side corresponds to the street sides you would see if you
were standing at the reference node and looking at the non-reference
node.

One of the following:

L The address is on the left side of the street.

R The address is on the right side of the street.

B The address occupies both sides of the street.

U The street side is unknown.

null NAVTEQ/HERE data was not used, or segment output data

was not selected, or the address did not match a street
segment (for example, the address was geocoded to a
centroid).

GNAFPIDLocationSearch

GNAFPIDLocationSearch identifies the address and latitude/longitude coordinates for a Geocoded
National Address File Persistent Identifier (G-NAF PID). The G-NAF PID is a 14-character
alphanumeric string that uniquely identifies each G-NAF address in the G-NAF database (a database
of Australian locations). The PID is constructed from a combination of the major address fields of
the G-NAF database. An example of a G-NAF PID is:

GAACT718519668
Note: You must have the G-NAF database installed to use GNAFPIDLocationSearch.

GNAFPIDLocationSearch is part of the Geocoding Address AUS component.

For more information about the Enterprise Geocoding Module, see Enterprise Geocoding Module
on page 169.

Spectrum™ Technology Platform 12.0 SP2 API Guide 268

Module Services

G-NAF PID Input

GNAFPIDLocationSearch takes a G-NAF PID as input and returns the address and latitude/longitude
coordinates for a Geocoded National Address File Persistent Identifier (G-NAF PID).

Note: GNAF PID Location Search functionality is not supported by the Geocode Address
Global component. You must use the Geocode Address AUS component for this functionality.

Table 32: GNAFPIDLocationSearch Input

columnName Format Description

GNAFPID String The 14-character G-NAF persistent identifier you want to look up. For
example:
GAACT718519668

Note: Specify input using the DataTable class. For more information, see the Spectrum™
Technology Platform API Guide.

G-NAF PID Location Search Options
GNAFPIDLocationSearch includes an option to select the G-NAF database for the PID search.

Spectrum™ Technology Platform 12.0 SP2 API Guide 269

Module Services

G-NAF Geocoding Options

Table 33: GNAFPIDLocationSearch Geocoding Options

optionName Description

GNAFPointType Specifies whether to return the parcel latitude/longitude or
the street frontage latitude/longitude. This option is only
available if you have the G-NAF database installed. This
option only affects addresses matched to the G-NAF
database.

One of the following:

P In a street address match, return the exact location
of the parcel. This is the standard G-NAF point which
is the exact authoritative point returned by the G-NAF
database. Default.

S In a street address match, return the street frontage
point for the parcel. The street frontage point is 12.5
metres from the front boundary of the parcel. Street
frontage points are more suitable for routing
applications.

Return8DecimalPlacelLatLong Specifies whether to return the original latitude and
longitude, precise up to eight digits after the decimal. This
is the latitude/longitude that the candidate matched to in the
G-NAF database. These are the original coordinates directly
from the G-NAF data prior to truncation or rounding. This
option is only available if you have the G-NAF database
installed. This option only affects addresses matched to the
G-NAF database.

Y Yes, return the original latitude/longitude, up to
eight digits after the decimal.

N No, do not return the original latitude/longitude.

Spectrum™ Technology Platform 12.0 SP2 API Guide 270

Module Services

G-NAF PID Data Options

Table 34: GNAFPIDLocationSearch Data Options

optionName Description

Database Specifies the database to use to look up the parcel. Use the database name specified
in the Management Console. For more information, see the Spectrum™ Technology
Platform Administration Guide.

Note: Only database resources that contain G-NAF databases are available

in this list.

Output
Address Output

Table 35: Address Output

columnName Description

AddressLine1 First line of the address.

AddressLine2 Second line of the address.

ApartmentLabel The type of unit, such as apartment, suite, or lot.
ApartmentNumber Unit number.

City Municipality name.

Country The three-letter ISO 3166-1 Alpha 3 country code.
County The Local Government Authority (LGA).

Spectrum™ Technology Platform 12.0 SP2 API Guide 271

columnName

Module Services

Description

FirmName Name of the company or a place name.
HouseNumber Building number for the matched location.
HouseNumberHigh The highest house number of the range in which the address resides.
HouseNumberLow The lowest house number of the range in which the address resides.
HouseNumberParity Indicates if the house number range contains even or odd numbers or both.
E Even
o Odd
B Both
LastLine Complete last address line (city, state/province, and postal code).

LeadingDirectional

Street directional that precedes the street name. For example, the N in 138 N Main

Street.

Locality

Generally a locality in rural areas or suburb in urban areas.

NumberOfCandidateRanges

Indicates whether or not the address has a house number. One of the following:

0

The address has no house number. Examples of addresses that have no
house number are P.O. box addresses and general delivery addresses.

The address has a house number. For information about the range in which
the house number falls, see the HouseNumberHigh, HouseNumberLow,
and HouseNumberParity fields.

NumberOfRangeUnits

Indicates whether or not the address has a unit number, such as a suite number or
apartment number. One of the following:

0 The address has no unit number.
1 The address has a unit number. For information about the range in which
the unit number falls, see the UnitNumberHigh and UnitNumberLow.
Spectrum™ Technology Platform 12.0 SP2 API Guide 272

columnName

Module Services

Description

PostalCode The postal code for the address. The format of the postcode varies by country.

PostalCode.Addon The second part of the postcode. For example, for Canadian addresses this will be
the LDU. This field is not used by most countries.

PreAddress Miscellaneous information that appears before the street name.

PrivateMailbox

This field is not currently used.

SegmentParity

Indicates which side of the street has odd numbers.

L Left side of the street
R Right side of the street
B Both sides of the street
U Undetermined

StateProvince

The state name.

StreetDataType

The default search order rank of the database used to geocode the address. A value
of "1" indicates that the database is first in the default search order, "2" indicates
that the database is second in the default search order, and so on.

The default database search order is specified in the Management Console with the
Spectrum Databases page.

StreetName

The street name.

StreetPrefix

The type of street when the street type appears before the base street name. For
example, AVENUE:

12 AVENUE B KALGOORLIE WA 6430

StreetSuffix

The street type of the matched location. For example, AVE for Avenue.

Spectrum™ Technology Platform 12.0 SP2

API Guide 273

columnName

Module Services

Description

TrailingDirectional

Street directional that follows the street name. For example, the N in 456 Washington
N.

UnitNumberHigh

The highest unit number of the range in which the unit resides.

UnitNumberLow

The lowest unit number of the range in which the unit resides.

Geocode Output

Table 36: Geocode Output

columnName

Description

CoordinateSystem

The coordinate system used to determine the latitude and longitude coordinates. A
coordinate system specifies a map projection, coordinate units, etc. An example is
EPSG:4326. EPSG stands for European Petroleum Survey Group.

Latitude Seven-digit number in degrees and calculated to four decimal places (in the format
specified).

Longitude Seven-digit number in degrees and calculated to four decimal places (in the format
specified).

Result Codes

Result codes contain information about the success or failure of the geocoding attempt, as well as

information about the accuracy of the geocode.

Note: As the EGM Module transitions its administrative tasks to a web-based Management

Console, labels for the options may use different wording than what you see in Enterprise
Designer. There is no difference in behavior.

Spectrum™ Technology Platform 12.0 SP2

API Guide

274

Module Services

Table 37: Result Code Output

columnName

Description

Geocoder.MatchCode Indicates how closely the input address matches the candidate address.
IsCloseMatch Indicates whether or not the address is considered a close match. An address is
considered close based on the "Close match criteria" options on the Matching tab.
Y Yes, the address is a close match.
N No, the address is not a close match.
MultiMatchCount For street address geocoding, the number of matching address positions found for
the specified address.
For intersection geocoding, the number of matching street intersection positions
found for the specified addresses.
Status Reports the success or failure of the match attempt

null Success

F Failure

Status.Code

If the geocoder could not process the address, this field will show the reason.

* Internal System Error

* No Geocode Found

+ Insufficient Input Data

* Multiple Matches Found

» Exception occurred

» Unable to initialize Geocoder
* No Match Found

Spectrum™ Technology Platform 12.0 SP2

API Guide

275

columnName

Description

Module Services

Status.Description

If the geocoder could not process the address, this field will show a description of

the failure.

Problem + explanation

Geocoding Failed

No location returned

No Candidates Returned

Multiple Candidates Returned
and Keep Multiple Matches
not selected

Returned when Status.Code = Internal System
Error.

Returned when Status.Code = No Geocode
Found.

Returned when Status.Code = No Geocode
Found.

The geocoder could not identify any candidate
matches for the address.

The address resulted in multiple candidates. In
order for the candidate address to be returned,
you must specify KeepMultimatch=Y.

Spectrum™ Technology Platform 12.0 SP2

API Guide

276

columnName Description

Module Services

LocationPrecision
0

N o a h~A W DN

9
10
1

12-15
(LocationPrecision
codes)

13
14
15
16
17

18

A code describing the precision of the geocode. One of the following:

No coordinate information is available for this candidate
address.

Interpolated street address.
Street segment midpoint.
Postal code 1 centroid.
Partial postal code 2 centroid.
Postal code 2 centroid.
Intersection.

Point of interest. This is a placeholder value. Spectrum
databases do not have POI data, so it is not possible to get
this return.

State/province centroid.
County centroid.

City centroid.

Locality centroid.

For most countries, LocationPrecision codes 12 through 15
are reserved for unspecified custom items.

Additional point precision for unspecified custom item.
Additional point precision for unspecified custom item.
Additional point precision for unspecified custom item.
The result is an address point.

The result was generated by using address point data to
modify the candidates segment data.

The result is an address point that was projected using the
centerline offset feature. You must have both a point and a
street range database to use the centerline offset feature, and
thereby return LocationPrecision 18.

StreetDataType

The default search order rank of the database used to geocode the address. A value

of "1" indicates that the database is first in the default search order, "2" indicates
that the database is second in the default search order, and so on.

Spectrum™ Technology Platform 12.0 SP2 API Guide

277

G-NAF Output

Module Services

The following table lists output fields that are unique to the Australian Geocoded National Address
File (G-NAF®) database. G-NAF is an optional database that is available for all six states and two
territories. G-NAF is the only authoritative Australian national index of locality, street and number,

validated with geographic coordinates.

Table 38: Australia G-NAF Output

columnName

Description

AUS.GNAF_ADDRESS_CLASS

The Address_Class is constructed using a combination of
elements from the G-NAF Data Dictionary source tables.
The components of the Address_Class field are:

A Alias address record

P Principal address record

PP Principal primary address record
PS Principal secondary address record
AP Alias primary address record

AS Alias secondary address record

AUS.GNAF_CONFIDENCE

A number indicating how many G-NAF datasets the address
is found in. A higher confidence level means that the same
address was found in more data contributor sources. One
of the following:

<number> The number of datasets the address was found
in, minus 1. For example, a value of 0 indicates
that the address was found in one contributor's
dataset, a value of 1 indicates that the address
was found in two contributors' datasets, a value
of 2 indicates that the address was found in
three contributors' datasets, and so forth.

-1 The address could not be found in any G-NAF
dataset.

AUS.GNAF_EIGHT_DECIMAL_PLACE_LATITUDE

The parcel latitude, precise to eight digits after the decimal.
This is the latitude that the candidate matched to in the
G-NAF database. These are the original coordinates directly
from the G-NAF data prior to truncation or rounding.

This field is only returned if you specify
Return8DecimalPlaceLatLong=Y.

Spectrum™ Technology Platform 12.0 SP2 API Guide

278

columnName

Module Services

Description

AUS.GNAF_EIGHT_DECIMAL_PLACE_LONGITUDE

The parcel longitude, precise to eight digits after the decimal.
This is the longitude that the candidate matched to in the
G-NAF database. These are the original coordinates directly
from the G-NAF data prior to truncation or rounding.

This field is only returned if you specify
Return8DecimalPlaceLatLong=Y.

AUS.GNAF_GEOCODE_LEVEL

A number indicating the level o f geocode for the address.
Every principal address within the G-NAF database has at
least a locality level geocode. They may also have a street
level geocode and a point level geocode.

One of the following:
0 No geocode.

1 Parcel level geocode only (no locality or street
level geocode).

2 Street level geocode only (no locality or parcel
level geocode).

3 Street and parcel level geocodes (no locality
geocode).
4 Locality level geocode only (no street or parcel

level geocode).

5 Locality and parcel level geocodes (no street level
geocode).

6 Locality and street level geocodes (no parcel level
geocodes).

7 Locality, street and parcel level geocodes.

AUS_GNAF_PARCEL_ID

The Parcel ID field is the generic parcel id field provided by
custodial data, and represents a Lot on Plan description
that is useful for government agencies. The exact format
varies. G-NAF source data has over 7 million records with
a Parcel_ID. The Australia geocoder supplements this to
populate over 12,730,000 G-NAF records with a Parcel_ID
field.

Spectrum™ Technology Platform 12.0 SP2 API Guide

279

columnName

Module Services

Description

AUS.GNAF_PID

The G-NAF Persistent Identifier (G-NAF PID) is a
14-character alphanumeric string that uniquely identifies
each G-NAF address. The PID is constructed from a
combination of the major address fields of the G-NAF
database. An example of a G-NAF PID is:

GAACT718519668

AUS.GNAF_RELIABILITY

A number indicating the geocode precision. Reliability is
related to the dictionary used to determine the geocode.
Data with geocoded reliability levels 1, 2, and 3 is contained
in the GNAF123 Dictionary. This is point (parcel) level
geocoded data. Data with geocoded reliability levels 4, 5,
and 6 is contained in the GNAF456 Dictionary. This contains
non-parcel centroid geocoded data.

1 Geocode accuracy recorded to appropriate surveying
standard. For example, this could apply to an address
level geocode that was manually geocoded. Geocode
resolution is sufficient to place the centroid within
address site boundary with a GPS.

2 Geocode accuracy sufficient to place centroid within
address site boundary. For example, this could apply
to an address level geocode that was automatically
calculated as the centroid of the corresponding
cadastre parcel.

3 Geocode accuracy sufficient to place centroid near
(or possibly within) address site boundary. For
example, this could apply to an address level geocode
that was automatically calculated by calculating where
on the road the address was likely to appear based
upon other bounding geocoded addresses.

4 Geocode accuracy sufficient to associate address site
with a unique road feature. For example, this could
apply to a street level geocode that was automatically
calculated by using the road centerline reference data.

5 Geocode resolution sufficient to associate address
site with a unique locality or neighborhood. For
example, this could apply to a locality level geocode
that was automatically calculated as the centroid of
the locality.

6 Geocode resolution sufficient to associate address
site with a unique region. For example, this could apply
to a locality level geocode that was derived from
topographic feature.

Spectrum™ Technology Platform 12.0 SP2

API Guide

280

Module Services

columnName Description

AUS.GNAF_SA1 The Statistical Area Level 1 (SA1) field as the second
smallest geographic area defined in the Australian Statistical
Geography Standard (ASGS). Mesh Block is the smallest
unit. The SA1 is designed for use in the Census of
Population and Housing as the smallest unit for the
processing and release of Census data. An SA1 is
represented by a unique seven digit code.

AUS.LEVEL_NUMBER The number of a floor or level in a multistory building. For
example,

Floor 2, 17 Jones Street

The G-NAF database includes level information for some
Australian states. Level information may be associated with
unit information, but not necessarily. If the G-NAF database
contains multiple records with the same level, the level
information is returned only if the input address contains
unique content (such as a unit number). If the G-NAF
database has level information for an address, that
information is returned with the matched candidate.

The correct level information is returned (when available)
even if the input address did not include level information,
or if the input had the wrong level information. If the input
address has level information but the G-NAF database does
not include level information for the matching address, then
the input level information is discarded since it is not
validated in the G-NAF data.

Spectrum™ Technology Platform 12.0 SP2 API Guide 281

Module Services

columnName Description

AUS.LEVEL_TYPE The label used for a floor of a multistory building. For
example, "Level" or "Floor". In this example, the level type
is "Level":

Suite 3 Level 7, 17 Jones Street
In this example, Suite 3 is a unit.

The G-NAF database includes level information for some
Australian states. Level information may be associated with
unit information, but not necessarily. If the G-NAF database
contains multiple records with the same level, the level
information is returned only if the input address contains
unique content (such as a unit number). If the G-NAF
database has level information for an address, that
information is returned with the matched candidate.

The correct level information is returned (when available)
even if the input address did not include level information,
or if the input had the wrong level information. If the input
address has level information but the G-NAF database does
not include level information for the matching address, then
the input level information is discarded since it is not
validated in the G-NAF data.

AUS.MESH_BLOCK_ID A Meshblock is the smallest geographic unit for which
statistical data is collected by the Australian Bureau of
Statistics (ABS). Meshblocks usually contain a minimum of
20 to 50 households. This is about one fifth the size of a
Collection District (CD). You can use the Meshblock ID to
do additional attributions against your own data.

AUS.LOT_NUMBER Lot numbers are returned for G-NAF candidates because
some rural addresses do not have adequate physical or
house number information.

AUS.STREET_TYPE_ABB This is an abbreviation for the street type. For example, EX
is an abbreviation for Extension and FTRL is an abbreviation
for Firetrail.

ReverseAPNLookup

ReverseAPNLookup allows you to look up an address using:

Spectrum™ Technology Platform 12.0 SP2 API Guide 282

Module Services

* An Assessor's Parcel Number (APN). An APN is an ID number assigned to a piece of land by a
county assessor. An APN is unique only within a county.

» A FIPS county code. A Federal Information Processing Standard (FIPS) code is an ID number
assigned to a county by the U.S. Federal government.

» A FIPS state code. A FIPS state code is an ID number assigned to each state by the U.S. Federal
government.

These three pieces of information, used together, can uniquely identify a specific parcel. You must
use all three pieces of information to perform a lookup using ReverseAPNLookup.

Note: ReverseAPNLookup only works for U.S. addresses for which APN data is available,
such as Centrus Enhanced or Centrus Premium Points. See the coverage map included with
the points database for more information.

ReverseAPNLookup is part of the Enterprise Geocoding Module. For more information about the
Enterprise Geocoding Module, see Enterprise Geocoding Module on page 169.

ReverseAPNLookup

Input

Reverse APNLookup Input Data

ReverseAPNLookup takes an APN, FIPS county code, and FIPS state code as input. The following
table provides information about the format and layout of the input.

columnName Format Description
APN String [45] The assessor's parcel number (APN) for the property you want to look
up.
InputKeyValue String User-defined data, such as a record ID or source code.
USFIPSCountyNumber String [6] The FIPS county code for the county in which the property resides.
USFIPSStateCode String [2] The FIPS state code for the state in which the property resides.
Options

The following table lists the options that control ReverseAPNLookup processing.

Spectrum™ Technology Platform 12.0 SP2 API Guide 283

Module Services

Note: As the Enterprise Geocoding Module transitions its administrative tasks to a web-based
Management Console, labels for the options may use different wording than what you see
in Enterprise Designer. There is no difference in behavior.

optionName Description

Dataset Specifies the database to use to look up the parcel. Use the database name specified
in Management Console's Spectrum Databases page.

LatLongFormat Specifies the format for returned latitude/longitude.
Decimal (90.000000-180.000000) Default.
Integer (90000000-180000000)
RetrieveElevation Specifies whether ReverseAPNLookup returns the elevation of the address. Elevation

is the distance above or below sea level of a given location. The elevation is returned
in the Elevation output field, which is part of the Latitude/Longitude output group.

Note: This option requires that you have licensed and installed the Centrus
Premium Points database. Elevation data is not available for all addresses.
See the coverage map included with the points database.

Y Return elevation data.

Do not return elevation data. Default.

OutputCasing Specifies the casing of the output data.
M Returns the output in mixed case. Default. For example:
123 Main St

Mytown FL 12345

U Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Spectrum™ Technology Platform 12.0 SP2 API Guide 284

Module Services

optionName Description

OutputVerbose Specifies whether ReverseAPNLookup provides an additional description field as
output. This field provides the text equivalent to a field represented by a code. For
example, LocationCode returns a code that indicates the accuracy (quality)
of the assigned geocode. LocationCode.Description provides the
description for the code returned.

Y Include verbose fields.
N Do not include verbose fields. Default.
OutputRecordType Specifies optional data to include in the output. Note that ReverseAPNLookup always

returns the default data listed in Default Output on page 287. The data you select
here is returned with the default output data.

+ C—Census

* L—Latitude/Longitude
+ E—Parsed Elements
+ Q—AQualifiers

* R—Range

+ §—Segment

For a list of fields included in each record type, see Output on page 285.

If you do not want all of the fields in a group returned, do not select the group, and
instead list only those fields you want returned in OutputFields.

OutputFields Indicates the individual output fields you want returned. List fields with a pipe (|)
between each field. You can use this field instead of the OutputRecordType
field to limit the output to the specific fields you want.

Default list: AddressLine1|LastLine|Longitude|Latitude|MatchCode|LocationCode

Output

ReverseAPNLookup always returns a default set of output fields that contain the address, geocode,
and result indicators. For information about these fields, see Default Output on page 287. You can
also choose to include optional categories of output data.

Census

Census output fields contain U.S. Census information about the address. To include census data
in the output, set OutputRecordType = C.

Note: The following Census output fields - CBSADivisionName, CBSAName, CSAName
and USCountyName - are only returned when you set the option Outputverbose=Y.

Spectrum™ Technology Platform 12.0 SP2 API Guide 285

Module Services

columnName Max. Field Description
Length with
null
terminator
BlockSuffix 2 Single character block suffix for split Census blocks. Returns A or B.
Only available in Centrus Enhanced data.
CBSACode 6 Indicates Core Based Statistical Area (CBSA).
CBSADivisionCode 6 Denotes a subdivision of a CBSA.
CBSADivisionName 128 The name of the Core Based Statistical Area (CBSA) division in which
the address is located.
A CBSA division is a metropolitan statistical area with a population of
at least 2.5 million that has been subdivided to form smaller groupings
of counties referred to as "metropolitan divisions." For more information,
see Metropolitan and Micropolitan Statistical Areas section of the U.S.
Census Bureau website:
www.census.gov/population/www/metroareas/metroarea.html
Note: The CBSA division name is only returned if you set the
option OutputVerbose=Y.
CBSAMetro 2 Metropolitan Statistical Area. Valid values include:
Y Metro statistical area
N Micro statistical area
null Data unavailable
CBSAName 128 The name of the core based statistical area (CBSA) in which the address

is located.

A CBSA is a collective term that refers to both metropolitan and
micropolitan areas. A metropolitan area has a population of more than
50,000, and a micropolitan area has a population between 10,000 and
49,999. For more information, see Metropolitan and Micropolitan
Statistical Areas section of the U.S. Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.html

Note: The CBSA name is only returned if you set the option
OutputVerbose=Y.

Spectrum™ Technology Platform 12.0 SP2

API Guide

286

http://www.census.gov/population/www/metroareas/metroarea.html
http://www.census.gov/population/www/metroareas/metroarea.html

columnName

Max. Field
Length with
null
terminator

Module Services

Description

CensusBlockID

16

The ID of the Census Federal Information Processing Standard (FIPS)
code.

CensusTract

Six digits extracted from the CensusBlockID.

CSACode

Denotes the code for a geographic entity that consists of 2 or more
adjacent CBSAs with employment interchange measures of at least 15.

CSAName

128

The name of the combined statistical area (CSA) in which the address
is located.

A CSA is a combination of two or more adjacent Core Based Statistical
Areas (CBSAs) with a high employment interchange measure. The
employment interchange measure is the sum of the percentage of
employed residents of the smaller entity who work in the larger entity
and the percentage of the employment in the smaller entity that is
accounted for by workers who reside in the larger entity. Pairs of CBSAs
with employment interchange measures of at least 25% combine
automatically. Pairs of CBSAs with employment interchange measures
of at least 15%, but less than 25%, may combine if local opinion in both
areas favors combination.

Note: The CSA name is only returned if you set the option
OutputVerbose=Y.

USCountyName

128

The name of the county or parish in which the address is located.

Note: The county/parish name is only returned if you set the
option OutputVerbose=Y.

USFIPSStateCountyCode

Five-digit FIPS code for state and county extracted from the
CensusBlockID.

Default Output

Default Output Fields

ReverseAPNLookup always returns the address, geocode, and result indicators.

Spectrum™ Technology Platform 12.0 SP2

API Guide

287

Module Services

columnName Max. Field Description
Length with
null
terminator
AdditionallnputData 61 This field is populated with input address information that appears after

a mail stop or attention designator, such as: MSC, MS, MAILSTOP,
MAIL STOP, ATTN, ATTENTION.

Note: ReverseAPNLookup does not process this information.
It simply includes the information as entered in the input data.

AddressLine1 104 First line of the address.

AddressLine2 104 Second line of the address.

APN 46 The Assessor's Parcel Number that was specified in the input.

City 29 Municipality name.

Confidence 4 Indicates the confidence in the output provided. The range is from 0

(zero) to 100, with 0 being no match and 100 being an exact match.

Country 25 The name of the country. Since ReverseAPNLookup only works for U.S.
locations, this field will always contain United States of America.

Distance 8 The distance, in feet, from the input geocode to nearest matched address
or intersection.

Elevation 1" The distance in feet above or below sea level of the parcel.
FirmName 41 Name of the company.
LastLine 61 Complete last address line (municipality, state, and postal code).

Spectrum™ Technology Platform 12.0 SP2 API Guide 288

Module Services

columnName Max. Field Description
Length with
null
terminator
Latitude 11 Seven-digit number in degrees and calculated to 4 decimal places (in
the format specified).
LocationCode 5 Indicates the accuracy (quality) of the assigned geocode.
For more information, see Address Location Codes on page 344.
Longitude 12 Seven-digit number in degrees and calculated to 4 decimal places (in
the format specified).
MatchCode 5 Indicates the portions of the address that matched to the directory file.
For more information, see Match Codes on page 336.
PercentGeocode 6 The percent along the street segment that matches the geocode. For
example, if the returned geocode falls 1/3 along the way of the entire
street segment, the percent is 33.000.
Note: This value is always 0.0 for matches to point-level data
and intersections.
PostalCode 10 Nine-digit ZIP Code with or without a hyphen.
PostalCode.AddOn 5 Four-digit ZIP Code extension.

PostalCode.Base 6 Five-digit ZIP Code.
ProcessedBy 4 The feature code for the stage that processed the request. The value
is EnterpriseGeocoding for ReverseAPNLookup.
StateProvince 3 Two-character state abbreviation.
Spectrum™ Technology Platform 12.0 SP2 API Guide 289

Module Services

columnName Max. Field Description
Length with
null
terminator
Status 2 Reports the success or failure of the match attempt
null Success
F Failure
Status.Code 23 Reason for failure:
* Internal System Error
* No Address Found
* Insufficient Input Data
Status.Description 128 Description of the problem:
Problem + explanation Returned when Status.Code = Internal
System Error.
Geocoding Failed Returned when Status.code = No Address
Found.
No location returned Returned when Status.code = No Address
Found.
StreetDataType 20 The data set that ReverseAPNLookup attempted to match against.

USPS

TIGER

TOMTOM

SANBORN POINT DATA
NAVTEQ

TOMTOM POINT DATA
AUXILIARY

CENTRUS POINT DATA
USER DICTIONARY
NAVTEQ POINT DATA
MASTER LOCATION

USPS

TIGER

TomTom Streets data set
Sanborn Points data set
NAVTEQ Streets data set
TomTom Points data set
Auxiliary file

Centrus Points data set

User Dictionary
NAVTEQ/HERE Points data set

Master Location Data

Spectrum™ Technology Platform 12.0 SP2

API Guide

290

columnName

Module Services

Max. Field Description

Length with
null
terminator
StreetSide 2 Indicates the side of the street the range occupies. One of the following:
L The range occupies the left side of the street.
R The range occupies the right side of the street.
B The range occupies both sides of the street.
) Undetermined.
USFIPSCountyNumber 4 Three-digit FIPS county code specified in the input.
USFIPSStateCode 3 Two-digit FIPS state code specified in the input.
USUrbanName 6 USPS® urbanization name. Puerto Rican addresses only.
Latitude/Longitude

The latitude/longitude output fields contain the geographic coordinates of the location and elevation.
To include latitude/longitude output fields in the output, set OutputRecordType = L.

columnName

Max. Field Description

Length with
null
terminator
Elevation 1" The distance in feet above or below sea level of the parcel.
Latitude 1" 7-digit number in degrees and calculated to 4 decimal places (in the
format specified).
Longitude 12 7-digit number in degrees and calculated to 4 decimal places (in the

format specified).

Spectrum™ Technology Platform 12.0 SP2 API Guide 291

Module Services

Parsed Elements

The Parsed Elements output fields contain standard address information as individual units, such
as street suffixes (AVE) and leading directionals (N and SE). To include parsed elements in the
output, set OutputRecordType = E.

columnName Max. Field Description
Length with
null
terminator
ApartmentLabel 5 Apartment designator (such as STE or APT), for example: 123 E Main
St. APT 3
ApartmentLabel2 5 Secondary apartment designator, for example: 123 E Main St. APT 3,
4th Floor
ApartmentNumber 12 Apartment number, for example: 123 E Main St. APT 3
ApartmentNumber2 12 Secondary apartment number, for example: 123 E Main St. APT 3, 4th
Floor
City 29 Municipality name.
CrossStreetl eadingDirectional 3 Leading directional, for example: 123 E Main St. Apt 3
CrossStreetName' 41 Cross street name, for example: 123 E Main St. Apt 3
CrossStreetSuffix 5 Cross street suffix, for example: 123 E Main St. Apt 3
CrossStreetTrailingDirectional 3 Cross street trailing directional, for example: 123 Pennsylvania Ave NW

! ReverseAPNLookup only returns Cross street outputs if you entered an intersection as an address.
For example, entering Pearl and 28th, Boulder, CO returns cross street information. Entering 2800
Pearl, Boulder, CO does NOT return cross street information.

Spectrum™ Technology Platform 12.0 SP2 API Guide

292

Module Services

columnName Max. Field Description
Length with
null
terminator
HouseNumber 12 Building number, for example: 123 E Main St. Apt 3
Note: This is an approximate building number based on the
APN, FIPS county code, and FIPS state code provided. This
approximate address may not exist or may not accept mail
delivery.
LeadingDirectional 3 Leading directional, for example: 123 E Main St. Apt 3
PrivateMailbox 9 Private mailbox indicator. Not output for multiline input.
PrivateMailbox.Designator 5 The type of private mailbox. Possible values include:
» Standard
* Non-Standard
RRHC 2 Rural Route/Highway Contract indicator.
StreetName 41 Street name, for example: 123 E Main St. Apt 3
StreetSuffix 5 Street suffix, for example: 123 E Main St. Apt 3
TrailingDirectional 3 Trailing directional, for example: 123 Pennsylvania Ave NW

Postal Data

Postal data output fields contain detailed postal information for the address, such as the preferred

city name and the US carrier route. To include postal data fields in the output, set

OutputRecordType =

P.

Spectrum™ Technology Platform 12.0 SP2 API Guide

293

Module Services

columnName Max. Field Description
Length with
null
terminator
CityPreferredName 29 The USPS® preferred city name for the ZIP Code of the address.
CityShortName 29 The USPS®-approved abbreviation for the city, if there is one. The USPS®
provides abbreviations for city names that are 14 characters long or
longer. City abbreviations are 13 characters or less and can be used
when there is limited space on the mailing label. If there is no short city
name for the city, then the full city name is returned.
CityStateRecordName 29 USPS® city state city name.

DeliveryPointCode 3 Two-digit delivery point barcode.
GovernmentBuilding 2 Indicates if a building is used by the city, state, or federal government.
A City government building
B Federal government building
Cc State government building
D Firm only
E City government building and firm only
F Federal government building and firm only
G State government building and firm only
The values A, B, C, E, F, and G are valid for Alternate records only. The
value D is valid for both base and alternate records.
PostalBarCode 7 Six-digit combination of ZIP+4 Code and the delivery point barcode.
PostalCodeClass 2 ZIP Classification code.
null Standard ZIP Code
M Military ZIP Code
P ZIP Code has P.O. boxes only
U Unique ZIP Code (ZIP Code assigned to a single
organization)
Spectrum™ Technology Platform 12.0 SP2 API Guide 294

Module Services

columnName Max. Field Description
Length with
null
terminator
PostalCodeUnique 2 Indicates if the ZIP Code is a unique ZIP Code assigned to an individual
company or agency.
Y Unique ZIP name
null No unique ZIP name
PostalFacility 2 USPS City State Name Facility code.
A Airport Mail Facility (AMF)
B Branch
Cc Community Post Office (CPO)
D Area Distribution Center (ADC)
E Sectional Center Facility (SCF)
F Delivery Distribution Center (DDC)
G General Mail Facility (GMF)
K Bulk Mail Center (BMC)
M Money Order Unit
N Non-Postal Community Name, Former Postal Facility,
or Place Name
P Post Office
Station
Urbanization
USBCCheckDigit 2 Check-digit for delivery point barcode.
USCarrierRouteCode 5 Carrier Route code.

Spectrum™ Technology Platform 12.0 SP2 API Guide

295

Module Services

columnName Max. Field Description
Length with
null
terminator
USCarrierRouteSort 2 Indicates if the USPS uses a carrier route sort, and what type of sort
the USPS allows.
A Automation cart allowed, optional cart merging allowed
B Automation cart allowed, no optional cart merging allowed
(o No automation cart allowed, optional cart merging allowed
D No automation cart allowed, no optional cart merging allowed

USCityDelivery 2 Indicates if has city-delivery carrier routes.
Y Has city-delivery carrier routes
N Does not have city-delivery carrier routes.
USLACS 2 Indicates if LACS"™ match occurred.
Y Matched LACS"™ record
N LACS"™ match not found
F False-positive LACS""™ record
S Secondary information (unit number) removed to make

a LACS""™ match

null Records not processed through LACSHM&

For more information, see Locatable Address Conversion System
(LACS) on page 177.

USLACS.ReturnCode 3 Indicates LACS""™ results.
A Matched LACS"™ record
00 LACS""™ match was not found
09 Matched to highrise default, but noLACS"™ conversion
14 Found LACS"™ match, but no LACS"™ conversion
92 Secondary information (unit number) was removed to
make a LACS""™ match
null Records not processed through LACSH"&

For more information, see Locatable Address Conversion System
(LACS) on page 177.

Spectrum™ Technology Platform 12.0 SP2 API Guide 296

Module Services

columnName Max. Field Description
Length with
null
terminator
USLOTCode 2 A combination of the 4-digit Line of Travel (LOT) Code and the ascending

(A) or descending (D) indicator.

Qualifiers

The qualifiers output fields contain qualification information about the match, such as the location
code and the match code. To include qualifier output fields in the output, set OutputRecordType

= Q.
columnName Max. Field Description
Length with
null
terminator
CountryLevel 2 The category of postal data available. Always returns A in
ReverseAPNLookup—Validates, corrects, and provides missing postal
code, city name, state/county name, street address elements, and
country name.
DatabaseVersion 15 USPS publish date, in the format Month Year.
EWSMatch 2 Indicates if ReverseAPNLookup denied a match because of Early
Warning System (EWS) data.
Y EWS denied a match.
null EWS did not deny a match.
For more information about EWS, see Early Warning System (EWS)
on page 178.
ExpirationDate 1" Date the database expires, in the format MM/DD/YYYY.
GeoStanMatchScore 13 Record matching score (for multimatches only).

Spectrum™ Technology Platform 12.0 SP2

API Guide

297

Module Services

columnName Max. Field Description
Length with
null
terminator
Intersection 2 Indicates if ReverseAPNLookup found a cross-street match.
T True, a cross-street match was found.
F False, a cross-street match was not found.

IsAlias 4 ReverseAPNLookup located a matched record by an index alias. Returns
3 characters. The first is an N for normal street match or A for alias
match (including buildings, aliases, firms, etc.). The next 2 characters
are:

01 Basic index (normal address match)

02 USPS street name alias index

03 USPS building index

04 USPS firm name index

05 Statewide intersection alias match (when using the
Usw.gsi or Use.gsi file)

06 Spatial data street name alias (when using the
Us_pw.gsi, Us_pe.gsi, Us_psw.gsi, or Us_pse.gsi file)

07 Alternate index (when using Zip9.gsu, Zip9e.gsu, and
Zip9w.gsu)

08 LACS"

09 Auxiliary file match

10 Centrus Alias index (when using usca.gsi)

11 POl index (when using poi.gsi)

LACSAddress 2 Indicates if ReverseAPNLookup converted an address due to the

Locatable Address Conversion System (LACS).

L

null

For more information about LACS, see Locatable Address Conversion

Converted

Not converted

System (LACS) on page 177.

LocationCode.Description

128

LocationCode converted to text. Only returned when you set the
configuration options to return additional descriptions (verbose).

Spectrum™ Technology Platform 12.0 SP2

API Guide

298

Module Services

columnName Max. Field Description
Length with
null
terminator
MatchCode.Description 128 MatchCode converted to text. Only returned when you set the
configuration options to return additional descriptions (verbose).
RecordType 18 Indicates the record type:
» GeneralDelivery
* HighRise
* FirmRecord
* Normal
+ PostOfficeBox
* RRHighwayContract
RecordType.Default 2 Indicates type of match that occurred for the record type HighRise or
RRHighwayContract:
Y Default match
N Exact match
u Not matched
StreetDataCode 3 Indicates the data used to obtain a match.

0 USPS data.

1 TIGER data.

2 TomTom data.

6 HERE data.

7 TomTom point-level data.
8 Centrus point-level data.
9 Auxiliary file data.

10 User Dictionary.

11 HERE point-level data.
12 Master Location data.

For more information about these databases, see Enterprise Geocoding
Databases on page 170.

Spectrum™ Technology Platform 12.0 SP2 API Guide

299

Module Services

Range

The range output fields contain information about the street range, such as the high and low unit
numbers. To include range data fields in the output, set OutputRecordType = R.

columnName Max. Field Description
Length with
null
terminator
Alternate 2 USPS code that specifies whether a record is a base or alternate record.
B Base record. Base records can represent a range of addresses

or an individual address, such as a firm record.

A Alternate record. Alternate records are individual delivery
points.
HouseNumberHigh 12 House number high.
HouseNumberLow 12 House number low.
HouseNumberParity 2 Indicates if the house number range contains even or odd numbers.
E Even
o Odd
B Both
PostalCodeExtensionHigh 5 4-digit ZIP Code extension high.
PostalCodeExtensionLow 5 4-digit Zip Code extension low.
UnitNumberHigh 12 Unit number high.
UnitNumberLow 12 Unit number low.

Spectrum™ Technology Platform 12.0 SP2 API Guide 300

Module Services

columnName Max. Field Description
Length with
null
terminator
UnitNumberParity 2 Indicates if the unit number range contains even or odd numbers.
E Even
(0] Odd
B Both
Segment

The segment output fields contain information about the street segment identified by the data
provider. To include segment data fields in the output, set OutputRecordType = S.

columnName Max. Field Description
Length with
null
terminator
BlockLeft 16 Provides the Census FIPS Code that indicates the address is on the

left side of the street.

BlockRight 16 Provides the Census FIPS Code that indicates the address is on the
right side of the street.

BlockSuffixLeft 2 Current left Block suffix for Census 2010 Geography. Returns A or B.
Only available in Centrus Enhanced data.

BlockSuffixRight 2 Current right Block suffix for Census 2010 Geography. Returns A or B.
Only available in Centrus Enhanced data.

RoadClass 3 The type of road:
1 The road is a major road.
2 The road is a minor road.

Spectrum™ Technology Platform 12.0 SP2 API Guide 301

Module Services

columnName Max. Field Description
Length with
null
terminator
PointCode 11 Unique point ID assigned by the data provider. This field is blank if the

matched record is not from point-level data.

SegmentCode 11 Unique 10-digit segment ID assigned by the street network provider.
SegmentDirection 2 Indicates the order of numbers on a segment.

F Forward

R Reversed

B Both

U Undetermined

SegmentHouseNumberHigh 12 A high range number in the segment.
SegmentHouseNumberLow 12 A low range number in the segment.
SegmentLength The length, in feet, of a block segment. This field is deprecated.
SegmentParity 2 Indicates which side of the street has odd numbers.

L Left side of the street

R Right side of the street

B Both sides of the street

U Undetermined

Reverse Geocode Address Global

For information on using the API to access Reverse Geocode Address Global, see the geocoding
guides.

Spectrum™ Technology Platform 12.0 SP2 API Guide 302

Module Services

ReverseGeocodeUSLocation

ReverseGeocodeUSLocation takes a latitude and longitude point as input and returns the address
that is the best match for that point.

ReverseGeocodeUSLocation is part of the Enterprise Geocoding Module.

ReverseGeocodeUSLocation

ReverseGeocodeUSLocation takes a latitude and longitude point as input and returns the address
that is the best match for that point. For example, you could enter the following information:

Longitude: -105239771 Latitude: 40018912 Search Distance: 150 feet

This input would result in the following output:

4750 WALNUT ST BOULDER, CO 80301-2538
MatchCode = NSO
LocCode = ASO

Lon = -105239773
Lat = 40018911
Distances:
Search = 150
Offset = 50
Squeeze = 50
Nearest = 50.0

Pct Geocode = 94.0

SegID = 472881795

PtID = GDT

Block = 080130122032066
County Name = BOULDER COUNTY
DPBC = 50

Note: The address returned is an approximate address based on the latitude and longitude
provided. This approximate address may not exist or may not accept mail delivery.

ReverseGeocodeUSLocation processes geocodes in the following order:

1. ReverseGeocodeUSLocation defines a small rectangle based on your input geocode and search
distance.

2. ReverseGeocodeUSLocation computes the distance between each street segment and the
input location.

3. If one segment is closest, ReverseGeocodeUSLocation finds the offset and interpolated
percentage (using the squeeze factor) and the street side. It then computes an approximate
house number based on this information.

Spectrum™ Technology Platform 12.0 SP2 API Guide 303

Module Services

If there is more than one segment that is equally close to the input location, a multi-match occurs.
ReverseGeocodeUSLocation returns the information for all of the equally close segments so
that you can determine which segment is applicable.

4. ReverseGeocodeUSLocation returns the address information, including the segment range,
the approximate house number, and the parity of the range along with other standard address
information.

Note: Although many of the standard address matching outputs apply to the reverse
geocoding option, several outputs are unavailable (such as LACS""™ information and unit
numbers). ReverseGeocodeUSLocation returns these outputs as blank.
ReverseGeocodeUSLocation also has outputs specific to reverse geocode processing, such
as specific match codes and the distance from the input location to the matched segment.

To use ReverseGeocodeUSLocation, you need additional data files, called GSX files. There is an
option to install these files when you install the geocoding database. The GSX files must be installed
the GSX subdirectory of the geocoding database. If you install the Centrus Enhanced Points, Centrus
Premium Points, or TomTom Points database, you must recreate the GSX files. Consult with Pitney
Bowes Software Technical Support if you need more information about GSX files.

Input

ReverseGeocodeUSLocation Input Data

ReverseGeocodeUSLocation takes longitude and latitude information as input. The following table
provides information about the format and layout of the input.

columnName Format Description

Latitude String Latitude of the point for which you want address information returned.
Specify latitude in millionths of decimal degrees.

Longitude String Longitude of the point for which you want address information returned.
Specify longitude in millionths of decimal degrees.

Options

Configuration Options

ReverseGeocodeUSLocation Configuration Options

The following table lists the configuration options for ReverseGeocodeUSLocation.

Spectrum™ Technology Platform 12.0 SP2 API Guide 304

optionName

Module Services

Description

Dataset

The name of the database that contains the data to use in the search process.

SearchDistance

Specifies the radius, in feet, that ReverseGeocodeUSLocation searches for
matches. The allowable range is 0 - 5280 feet. Default = 150 feet.

FindClosestPoint Enables matching to the nearest point address within the search radius, rather
than to the closest feature - such as a street segment or intersection as well
as point addresses.

Note: This option requires that at least one streets data set and one
points data set are loaded; otherwise, the match will be made to the
closest feature.
Y Match to the nearest point address within the search radius.
N Match to the closest point address or feature. Default.
FindNearestAddress Specifies whether ReverseGeocodeUSLocation should find the nearest

interpolated address to the input geocode.
Y Find the nearest address. Default.

N Do not find the nearest address.

Note: You can use this option with the
FindNearestIntersection option to geocode to both
addresses and intersections.

FindNearestUnranged

Specifies whether ReverseGeocodeUSLocation can match to a street segment
that does not have a number range. This option is active when

FindNearestAddress=Y.

Y Allow ReverGeocodeUSLocation to match to an unranged street
segment. Default.

N Do not allow ReverseGeocodeUSLocation to match to an unranged
street segment.

Note: If you are using the point-level data option,
ReverseGeocodeUSLocation ignores the Nearest Unranged option.

Spectrum™ Technology Platform 12.0 SP2

API Guide 305

Module Services

optionName Description

FindNearestIntersection Specifies whether ReverseGeocodeUSLocation should find the nearest street
intersection to the input geocode.
Y Find the nearest street intersection. Default.
N Do not find the nearest street intersection.

Note: You can use this option withthe FindNearestAddress
option to geocode to both addresses and intersections.

Offset Specifies the offset distance from the street segments. The allowable range
is 0 - 5280 feet. Default = 50 feet.

The offset distance is used in street-level geocoding to prevent the geocode
from being in the middle of a street. It compensates for the fact that street-level
geocoding returns a latitude and longitude point in the center of the street
where the address is located. Since the building represented by an address
is not on the street itself, you do not want the geocode for an address to be a
point on the street. Instead, you want the geocode to represent the location
of the building which sits next to the street. For example, an offset of 40 feet
means that the geocode will represent a point 40 feet back from the center of
the street. The distance is calculated perpendicular to the portion of the street
segment for the address. Offset is also used to prevent addresses across the
street from each other from being given the same point. The diagram below
shows an offset point in relation to the original point.

Offset Poin&

®
_Original Point _

Street coordinates are accurate to 1/10,000th of a degree and interpolated
points are accurate to 1/1,000,000th of a degree.

Spectrum™ Technology Platform 12.0 SP2 API Guide 306

optionName

Module Services

Description

Squeeze

Specifies the distance, in feet, to squeeze the street end points in street-level
geocoding. The range is 0 -2147483647 feet. Default = 50 feet. The following
diagram compares the end points of a street to squeezed end points.

00 069

L Squeezed Street Segment EndJ

Street Segment End

LatLonFormat

Specifies the format to use for returned latitude/longitude.
Decimal The format is 90.000000-180.000000. Default.
Integer The format is 90000000-180000000.

InputLatLonFormat

Specifies the format to use for input latitude/longitude.
Decimal The format is 90.000000-180.000000.
Integer The format is 90000000-180000000. Default.

RetrieveElevation

Specifies whether ReverseGeocodeUSLocation returns the elevation of the
address. Elevation is the distance above or below sea level of a given location.
The elevation is returned in the Elevation output field, which is part of the
Latitude/Longitude output group.

Note: This option requires that you have licensed and installed the
Centrus Premium Points database. Elevation data is not available
for all addresses. See the coverage map included with the points
database.

Return elevation data.

Do not return elevation data. Default.

Spectrum™ Technology Platform 12.0 SP2

API Guide 307

Module Services

optionName Description

RetrieveAPN Specifies whether ReverseGeocodeUSLocation should determine the address's
APN (assessor's parcel number). The APN is an ID number assigned to a
property by the local property tax authority. The APN is returned in the APN
output field, which is part of the Census output group.

Note: This option requires that you have licensed and installed the
Cenrus Enhanced Points or Centrus Premium Points database. APN
data is not available for all addresses. See the coverage map included
with the points database.

Y Return APN data.
Do not return APN data. Default.

FIND _APPROXIMATE_PBKEY When FIND_APPROXIMATE_PBKEY is enabled, if an address match is not
made to Master Location Data (MLD), but to a different dataset, the pbKey™
unique identifier of the nearest MLD point located within the search distance
is returned. To distinguish when a fallback pbKey™ unique identifier is returned,
the PBKey return value contains a leading character of "X" rather than "P",
for example: X00001XSF1IF. Note, all of the other fields returned for the
address match, including the geocode and all associated data, reflect the
match results for the input address. The fallback pbKey™ unique identifier can
then be used for the lookup to the GeoEnrichment dataset(s), and the attribute
data for the fallback location is returned for the match.

For more information, see PBKey Fallback.

Note: This option requires that you have licensed and installed the
Master Location Dataset.

The search distance for the nearest MLD point is configurable using the
ReverseGeocodeUSLocation SearchDistance field. The allowable range is 0
- 5280 feet. Default = 150 feet.

Y When a matched address does not have an associated pbKeym
unique identifier, attempt to return the nearest address record's
pbKeym unique identifier.

N When a matched address does not have an associated pbKeyw unique
identifier, do not return the nearest address record's pbKey unique
identifier. Default.

Output Format

ReverseGeocodeUSLocation Output Format Options

The following table lists the options that control the format of the output.

Spectrum™ Technology Platform 12.0 SP2 API Guide 308

Module Services

optionName Description
OutputCasing Specifies the casing of the output data.
M Returns the output in mixed case. Default. For example:
123 Main St

Mytown FL 12345

U Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

QutputVerbose Specifies whether ReverseGeocodeUSLocation provides an additional description
field as output. This field provides the text equivalent to a field represented by a
code. For example, LocationCode returns a code that indicates the accuracy

(quality) of the assigned geocode. LocationCode.Description provides
the description for the code returned.

Y Include verbose fields.

N Do not include verbose fields. Default.

Output Data

ReverseGeocodeUSLocation Output Data Options

The following table lists the options that control which data is returned by
ReverseGeocodeUSLocation.

Spectrum™ Technology Platform 12.0 SP2 API Guide 309

Module Services

optionName Description

OutputRecordType Specifies the optional data to include in the output. Note that
ReverseGeocodeUSLocation always returns the data listed in Default Output on
page 313. The data you select here is returned with the default output data.

+ C—Census

+ E—Parsed Elements
+ L—Latitude/Longitude
* R—Range

+ §—Segment

+ Q—AQualifiers

For a list of the fields included in each data type, see Output on page 310.

If you do not want all of the fields in a record type returned, do not use
OutputRecordType;instead, use OutputFields to specify the desired
individual output fields.

OutputFields Specifies the individual output fields you want returned. List fields with a pipe (|)
between each field. You can use this field instead of the Output Record Type to limit
the output to those fields that are important to your data needs.

Default list: AddressLine1|LastLine|Longitude|Latitude|MatchCode|LocationCode

Output

ReverseGeocodeUSLocation always returns a default set of output fields that contain the address,
geocode, and result indicators. For information about these fields, see Default Output on page 313.
You can also choose to include optional categories of output data.

Census

Census output fields contain U.S. Census information about the address. To include census data
in the output, set OutputRecordType = C.

Note: The following Census output fields - CBSADivisionName, CBSAName, CSAName
and USCountyName - are only returned when you set the option OutputvVerbose=Y.

Spectrum™ Technology Platform 12.0 SP2 API Guide 310

Module Services

columnName Max. Field Description
Length with
null
terminator

APN 46 The assessor's parcel number of the property. The assessor's parcel
number is an ID number assigned to a property by the local property
tax authority.

BlockSuffix 2 Single character block suffix for split Census blocks. Returns A or B.
Only available in Centrus Enhanced data.

CBSACode 6 Indicates Core Based Statistical Area (CBSA).

CBSADivisionCode 6 Denotes a subdivision of a CBSA.

CBSADivisionName 128 The name of the Core Based Statistical Area (CBSA) division in which
the address is located.
A CBSA division is a metropolitan statistical area with a population of
at least 2.5 million that has been subdivided to form smaller groupings
of counties referred to as "metropolitan divisions." For more information,
see Metropolitan and Micropolitan Statistical Areas section of the U.S.
Census Bureau website:
www.census.gov/population/www/metroareas/metroarea.htmi

Note: The CBSA division name is only returned if you set the
option OutputVerbose=Y.
CBSAMetro 2 Metropolitan Statistical Area. Valid values include:

Y Metro statistical area.
N Micro statistical area.
null Data unavailable.

Spectrum™ Technology Platform 12.0 SP2

API Guide

311

http://www.census.gov/population/www/metroareas/metroarea.html

Module Services

columnName Max. Field Description
Length with
null
terminator
CBSAName 128 The name of the core based statistical area (CBSA) in which the address

is located.

A CBSA is a collective term that refers to both metropolitan and
micropolitan areas. A metropolitan area has a population of more than
50,000, and a micropolitan area has a population between 10,000 and
49,999. For more information, see Metropolitan and Micropolitan
Statistical Areas section of the U.S. Census Bureau website:

www.census.gov/population/www/metroareas/metroarea.html

Note: The CBSA name is only returned if you set the option
OutputVerbose=Y.

CensusBlockID

16

The ID of the Census Federal Information Processing Standard (FIPS)
code.

CensusTract

6-digits extracted from the CensusBlockID.

CSACode

Denotes the code for a geographic entity that consists of 2 or more
adjacent CBSAs with employment interchange measures of at least 15.

CSAName

128

The name of the combined statistical area (CSA) in which the address
is located.

A CSA is a combination of two or more adjacent Core Based Statistical
Areas (CBSAs) with a high employment interchange measure. The
employment interchange measure is the sum of the percentage of
employed residents of the smaller entity who work in the larger entity
and the percentage of the employment in the smaller entity that is
accounted for by workers who reside in the larger entity. Pairs of CBSAs
with employment interchange measures of at least 25% combine
automatically. Pairs of CBSAs with employment interchange measures
of at least 15%, but less than 25%, may combine if local opinion in both
areas favors combination.

Note: The CSA name is only returned if you set the option
OutputVerbose=Y.

Spectrum™ Technology Platform 12.0 SP2

API Guide

312

http://www.census.gov/population/www/metroareas/metroarea.html

Module Services

columnName Max. Field Description
Length with
null
terminator
USCountyName 128 The name of the county or parish in which the address is located.

Note: The county/parish name is only returned if you set the
option OutputVerbose=Y.

USFIPSCountyNumber 4 3-digit FIPS county code extracted from the CensusBlockID.
USFIPSStateCode 3 2-digit FIPS state code extracted from the CensusBlockID.
USFIPSStateCountyCode 6 5-digit FIPS code for state and county extracted from the CensusBlockID.

Default Output

ReverseGeocodeUSAddress always includes the following fields in the output.

columnName Max. Field Description
Length with

null

terminator

AdditionallnputData 61 This field is populated with input address information that appears after
a mail stop or attention designator, such as: MSC, MS, MAILSTOP,
MAIL STOP, ATTN, ATTENTION.
Note: ReverseGeocodeUSLocation does not process this
information. It simply includes the information as entered in the
input data.
AddressLine1 104 First line of the address.
AddressLine2 104 Second line of the address.
City 29 Municipality name.
Spectrum™ Technology Platform 12.0 SP2 API Guide 313

Module Services

columnName Max. Field Description
Length with
null
terminator
Confidence 4 Indicates the confidence in the output provided. The range is from 0

(zero) to 100, with 0 being no match and 100 being an exact match.

Country 25 The name of the country. Since ReverseAPNLookup only works for U.S.
locations, this field will always contain United States of America.

Distance 8 The distance, in feet, from the input geocode to nearest matched address
or intersection.

Elevation 11 The location's elevation in feet above or below sea level.

FirmName 41 Name of the company.

LastLine 61 Complete last address line (municipality, state, and postal code).
Latitude 1 7-digit number in degrees and calculated to 4 decimal places (in the

format specified).

LocationCode 5 Indicate the accuracy (quality) of the assigned geocode.

For more information, see Address Location Codes on page 344.

Longitude 12 7-digit number in degrees and calculated to 4 decimal places (in the
format specified).

MatchCode 5 Indicates the portions of the address that matched to the directory file.

For more information, see Match Codes on page 336.

PBKey 13 A unique address identifier that is returned when an address match is
made using the Master Location Dataset. The pbKey™ unique identifier
is used as a lookup key to a GeoEnrichment dataset, in order to return
attribute data for the match.

Spectrum™ Technology Platform 12.0 SP2 API Guide 314

Module Services

columnName Max. Field Description
Length with
null
terminator
PercentGeocode 6 The percent along the street segment that matches the geocode. For

example, if the returned geocode falls 1/3 along the way of the entire
street segment, the percent is 33.000.

Note: This value is always 0.0 for matches to point-level data
and intersections.

PostalCode 10 9-digit ZIP Code with or without a hyphen.
PostalCode.AddOn 5 4-digit ZIP Code extension.

PostalCode.Base 6 5-digit ZIP Code.

ProcessedBy 4 The underlying software that processed the request. KGR for

ReverseGeocodeUSLocation.

RRHC 2 Rural Route Highway Contract (RRHC). This field is null if the address
not a RRHC.

StateProvince 3 2-character state abbreviation.

Status 2 Reports the success or failure of the match attempt.
null Success
F Failure

Status.Code 23 Reason for failure:

* Internal System Error
* No Geocode Found
* Insufficient Input Data

Spectrum™ Technology Platform 12.0 SP2 API Guide 315

columnName

Module Services

Max. Field Description

Length with

null

terminator

Status.Description

32 Description of the problem:

Problem + explanation Returned when Status.Code contains
"Internal System Error"

Geocoding Failed Returned when Status .Code contains

"No Geocode Found"

No location returned Returned when Status .Code contains

"No Geocode Found"

StreetDataType

20 The data set that ReverseGeocodeUSLocation attempted to match
against.
USPS USPS
TIGER TIGER
TOMTOM TomTom Streets data set
SANBORN POINT DATA

HERE

Sanborn Points data set
HERE Streets data set
TOMTOM POINT DATA TomTom Points data set

AUXILIARY Auxiliary file

CENTRUS POINT DATA
USER DICTIONARY
HERE POINT DATA
MASTER LOCATION

Centrus Points data set
User Dictionary
HERE Points data set

Master Location Data

StreetSide 2

Indicates the side of the street the range occupies.

L The range occupies the left side of the street.

The range occupies the right side of the street.

R
B The range occupies both sides of the street.
u

Undetermined.

USUrbanName 31

Urbanization name. Puerto Rico addresses only.

Spectrum™ Technology Platform 12.0 SP2 API Guide

316

Module Services

Latitude/Longitude

The latitude/longitude output fields contain the geographic coordinates of the location. To include
latitude/longitude output fields in the output, set OutputRecordType = L.

columnName Max. Field Description
Length with
null
terminator
Elevation 1 The location's elevation in feet above or below sea level.
Latitude " 7-digit number in degrees and calculated to 4 decimal places (in the

format specified).

Longitude 12 7-digit number in degrees and calculated to 4 decimal places (in the
format specified).

Parsed Elements

The Parsed Elements output record type contains standard address information as individual units,
such as street suffixes (AVE) and leading directionals (N and SE). To include parsed elements in
the output, set OutputRecordType = E.

columnName Max. Field Description

Length with

null

terminator
ApartmentLabel 5 Unit, such as apartment, suite, or lot.
ApartmentLabel2 5 Unit, such as apartment, suite, or lot.
ApartmentNumber 12 Unit number.
ApartmentNumber2 12 Unit number.

Spectrum™ Technology Platform 12.0 SP2 API Guide 317

Module Services

columnName Max. Field Description
Length with
null
terminator
CrossStreetl eadingDirectional 3 Prefix for cross street.
CrossStreetName 41 Name of cross street.
CrossStreetSuffix 5 Cross street suffix.
CrossStreetTrailingDirectional 3 Postfix for cross street.
HouseNumber 12 Building number for the matched location.
Note: This is an approximate building number based on the
latitude and longitude provided. This approximate address may
not exist or may not accept mail delivery.
LeadingDirectional 3 Street directional that precedes the street name. For example, the N in
138 N Main Street.
PrivateMailbox 9 Private mailbox. Not output for multiline input.
PrivateMailbox.Designator 5 Private mailbox description. Not output for multiline input.
StreetName 41 Street name.
StreetSuffix 5 The street type of the matched location. For example, AVE for Avenue.
TrailingDirectional 3 Street directional that follows the street name. For example, the N in

456 Washington N.

Spectrum™ Technology Platform 12.0 SP2

API Guide

318

Module Services

Postal Data

Postal data output fields contain detailed postal information for the address, such as the preferred
city name and the US carrier route. To include postal data fields in the output, set
OutputRecordType = P.

columnName Max. Field Description
Length with
null
terminator
CityPreferredName 29 The USPS® preferred city name for the ZIP Code of the address.
CityShortName 29 The USPS®-approved abbreviation for the city, if there is one. The USPS®

provides abbreviations for city names that are 14 characters long or
longer. City abbreviations are 13 characters or less and can be used
when there is limited space on the mailing label. If there is no short city
name for the city, then the full city name is returned.

CityStateRecordName 29 USPS® city state city name.
DeliveryPointCode 3 Two-digit delivery point barcode.
GovernmentBuilding 2 Indicates if a building is used by the city, state, or federal government.
A City government building
B Federal government building
C State government building
D Firm only
E City government building and firm only
F Federal government building and firm only
G State government building and firm only

The values A, B, C, E, F, and G are valid for Alternate records only. The
value D is valid for both base and alternate records.

PostalBarCode 7 Six-digit combination of ZIP+4 Code and the delivery point barcode.

Spectrum™ Technology Platform 12.0 SP2 API Guide 319

Module Services

columnName Max. Field Description
Length with
null
terminator
PostalCodeClass 2 ZIP Classification code.
null Standard ZIP Code
M Military ZIP Code
P ZIP Code has P.O. boxes only
) Unique ZIP Code (ZIP Code assigned to a single
organization)
PostalCodeUnique 2 Indicates if the ZIP Code is a unique ZIP Code assigned to an individual
company or agency.
Y Unique ZIP name
null No unique ZIP name
PostalFacility 2 USPS City State Name Facility code.
A Airport Mail Facility (AMF)
B Branch
C Community Post Office (CPO)
D Area Distribution Center (ADC)
E Sectional Center Facility (SCF)
F Delivery Distribution Center (DDC)
G General Mail Facility (GMF)
K Bulk Mail Center (BMC)
M Money Order Unit
N Non-Postal Community Name, Former Postal Facility,
or Place Name
P Post Office
Station
U Urbanization
USBCCheckDigit 2 Check-digit for delivery point barcode.

Spectrum™ Technology Platform 12.0 SP2 API Guide

320

Module Services

columnName Max. Field Description
Length with
null
terminator
USCarrierRouteCode 5 Carrier Route code.
USCarrierRouteSort 2 Indicates if the USPS uses a carrier route sort, and what type of sort
the USPS allows.
A Automation cart allowed, optional cart merging allowed
B Automation cart allowed, no optional cart merging allowed
Cc No automation cart allowed, optional cart merging allowed
D No automation cart allowed, no optional cart merging allowed

USCityDelivery 2 Indicates if has city-delivery carrier routes.
Y Has city-delivery carrier routes
N Does not have city-delivery carrier routes.
USLACS 2 Indicates if LACS™ match occurred.
Y Matched LACS"™ record
N LACS"™ match not found
F False-positive LACS""™ record
S Secondary information (unit number) removed to make
a LACS"™ match
null Records not processed through LACSHk

For more information, see Locatable Address Conversion System
(LACS) on page 177.

Spectrum™ Technology Platform 12.0 SP2 API Guide 321

Module Services

columnName Max. Field Description
Length with
null
terminator
USLACS.ReturnCode 3 Indicates LACS""™ results.
A Matched LACS"™ record
00 LACS""™ match was not found
09 Matched to highrise default, but noLACS“™ conversion
14 Found LACS"™ match, but no LACS"™ conversion
92 Secondary information (unit number) was removed to
make a LACS"™ match
null Records not processed through LACSH

For more information, see Locatable Address Conversion System
(LACS) on page 177.

USLOTCode 2 A combination of the 4-digit Line of Travel (LOT) Code and the ascending
(A) or descending (D) indicator.

Qualifiers

The qualifiers output record type contains qualification information about the match, such as the
location code and the match code. To include latitude/longitude output fields in the output, set
OutputRecordType = Q.

columnName Max. Field Description
Length with
null
terminator
CountryLevel 2 The category of postal data available. Always returns A in

ReverseGeocodeUSLocation—Validates, corrects, and provides missing
postal code, city name, state/county name, street address elements,
and country name.

DatabaseVersion 15 USPS publish date, in the format Month Year.

Spectrum™ Technology Platform 12.0 SP2 API Guide 322

Module Services

columnName Max. Field Description
Length with
null
terminator
EWSMatch 2 Indicates if ReverseGeocodeUSLocation denied a match because of
Early Warning System (EWS) data.
Y EWS denied a match.
null EWS did not deny a match.
For more information about EWS, see Early Warning System (EWS)
on page 178.
ExpirationDate 1 Date the database expires, in the format MM/DD/YYYY.
GeoStanMatchScore 13 Record matching score (for multimatches only).
Intersection 2 Indicates if ReverseGeocodeUSLocation found a cross-street match.
T True, a cross-street match was found.
F False, a cross-street match was not found.

Spectrum™ Technology Platform 12.0 SP2 API Guide 323

Module Services

columnName Max. Field Description
Length with
null
terminator
IsAlias 4 ReverseGeocodeUSLocation located a matched record by an index
alias. Returns 3 characters. The first is an N for normal street match or
A for alias match (including buildings, aliases and firms). The next 2
characters are:
01 Basic index (normal address match)
02 USPS street name alias index
03 USPS building index
04 USPS firm name index
05 Statewide intersection alias match (when using the
Usw.gsi or Use.gsi file)
06 Spatial data street name alias (when using, the
Us_pw.gsi, Us_pe.gsi, Us_psw.gsi, or Us_pse.gsi file is
required)
07 Alternate index (when using the Zip9.gsu, Zip9e.gsu,
and Zip9w.gsu files)
08 LACS-"
09 Auxiliary file match
10 Centrus Alias index (when using the usca.gsi file)
1" POl index (when using poi.gsi)
LACSAddress 2 Indicates if ReverseGeocodeUSLocation converted an address due to

the Locatable Address Conversion System (LACS).
L Converted

null Not converted.

For more information about LACS, see Locatable Address Conversion
System (LACS) on page 177.

LocationCode.Description 128 LocationCode converted to text. Only returned when you set the
configuration options to return additional descriptions (verbose).
MatchCode.Description 128 MatchCode converted to text. Only returned when you set the
configuration options to return additional descriptions (verbose).
Spectrum™ Technology Platform 12.0 SP2 API Guide

324

columnName Max. Field
Length with

null
terminator

Module Services

Description

RecordType 18

Indicates the record type:

» GeneralDelivery

* HighRise

* FirmRecord

* Normal

+ PostOfficeBox

* RRHighwayContract

RecordType.Default 2

Indicates type of match that occurred for the record type HighRise or
RRHighwayContract:

Y Default match.
N Exact match.

U Not matched.

StreetDataCode 3

Indicates the data used to obtain a match.
0 USPS data.

1 TIGER data.

2 TomTom data.

6 HERE data.

7 TomTom point-level data.
8 Centrus point-level data.
9 Auxiliary file data.

10 User Dictionary.

11 HERE point-level data.

12 Master Location data.

For more information about these databases, see Enterprise Geocoding
Databases on page 170.

StreetDataType 20

Indicates the data first used to attempt a match.

Spectrum™ Technology Platform 12.0 SP2 API Guide

325

Module Services

Range

The range output record type contains information about the street range, such as the high and low
unit numbers. To include range data fields in the output, set OutputRecordType = R.

columnName Max. Field Description
Length with
null
terminator
Alternate 2 USPS code that specifies whether a record is a base or alternate record.
B Base record. Base records can represent a range of addresses

or an individual address, such as a firm record.

A Alternate record. Alternate records are individual delivery
points.
HouseNumberHigh 12 House number high.
HouseNumberLow 12 House number low.
HouseNumberParity 2 Indicates if the house number range contains even or odd numbers.
E Even
o Odd
B Both
PostalCodeExtensionHigh 5 4-digit ZIP Code extension high.
PostalCodeExtensionLow 5 4-digit Zip Code extension low.
UnitNumberHigh 12 Unit number high.
UnitNumberLow 12 Unit number low.

Spectrum™ Technology Platform 12.0 SP2 API Guide 326

Module Services

columnName Max. Field Description
Length with
null
terminator
UnitNumberParity 2 Indicates if the unit number range contains even or odd numbers.
E Even
(0] Odd
B Both
Segment

The segment output record type contains information about the street segment identified by the
data provider. To include segment data fields in the output, set OutputRecordType = S.

columnName Max. Field Description
Length with
null
terminator
BlockLeft 16 Provides the Census FIPS Code that indicates the address is on the

left side of the street.

BlockRight 16 Provides the Census FIPS Code that indicates the address is on the
right side of the street.
BlockSuffixLeft 2 Current left Block suffix for Census 2010 Geography. Returns A or B.

Only available in Centrus Enhanced data.

BlockSuffixRight 2 Current right Block suffix for Census 2010 Geography. Returns A or B.
Only available in Centrus Enhanced data.

RoadClass 3 The type of road:
1 Major
2 Minor
SegmentCode 1" Unique 10-digit segment ID assigned by the street network provider.

Spectrum™ Technology Platform 12.0 SP2 API Guide 327

Module Services

columnName Max. Field Description
Length with
null
terminator
SegmentDirection 2 Indicates the order of numbers on a segment.
F Forward
R Reversed
B Both
U Undetermined
SegmentHouseNumberHigh 12 A high range number in the segment.
SegmentHouseNumberLow 12 A low range number in the segment.
SegmentLength The length, in feet, of a block segment. This field is deprecated.
SegmentParity 2 Indicates which side of the street has odd numbers.
L Left side of the street
R Right side of the street
B Both sides of the street
u Undetermined
SegmentPoints 1024 An array of latitude/longitude values that represent the segment

coordinates to the matched segment.

The segment points data that is returned for each type of match is as
follows:

» Street matches - a list of points

» Point matches - one point is returned that is the same as the matched
point since a point match consists of a single segment with a single
range.

+ Intersection matches - the segment points are returned for the segment
listed first in the intersection output. For example, Forest Ave at 6th
returns the segment points for Forest Ave.

Spectrum™ Technology Platform 12.0 SP2 API Guide 328

Module Services

Geocode US Address Auxiliary Files

Auxiliary File Overview

Use auxiliary files to match against special data that is not included in the GeocodeUSAddress
database.

The GeocodeUSAddress database is updated regularly to incorporate changes made by the USPS
and third-party data vendors. You may have newer information that has not yet been incorporated.
Aukxiliary files provide a way for you to process your input records against a file that includes these
changes.

Note: ReverseGeocodeUSAddress does not support auxiliary files.

There are two types of auxiliary file records:

+ Street Records—Contains a range of one or more addresses on a street. For required fields, see
Auxiliary File Layout on page 331. A street record must not have secondary address information
mailstops, Private mail boxes (PMBs), and PO Boxes.

» Landmark Records—Represents a single site. For required fields, see Auxiliary File Layout on
page 331. A landmark record must not have street type abbreviations, predirectional and
postdirectional abbreviations, or low and high house numbers.

Note: You cannot update the auxiliary file while GeocodeUSAddress is running. If you want
to update the auxiliary file, stop GeocodeUSAddress before attempting to replace or edit the
file.

Matching to Auxiliary Files
GeocodeUSAddress matches an input address to an auxiliary file as follows:
1. GeocodeUSAddress determines if there is an auxiliary file present.

If you have an auxiliary file in the dataset directory, GeocodeUSAddress automatically loads
and attempts to match to the auxiliary file. You can verify that GeocodeUSAddress found an
auxiliary file by looking at the version information page in the Management Console. One of the
following statuses display:

* Loaded—An auxiliary file is loaded
* None—An auxiliary file has not been found or loaded
* Invalid—An auxiliary file was found, but failed to successfully load

GeocodeUSAddress only accepts one auxiliary file. If more than one auxiliary files is present,
GeocodeUSAddress attempts to match against the first file. GeocodeUSAddress ignores any
additional auxiliary files for matching, regardless if GeocodeUSAddress found a match to the
first auxiliary file.

Spectrum™ Technology Platform 12.0 SP2 API Guide 329

Module Services

If a record in the auxiliary files is invalid, GeocodeUSAddress returns a invalid record message.
GeocodeUSAddress continues to match input addresses with the auxiliary file, but will not match
to the invalid auxiliary file record.

2. If an auxiliary file is present, GeocodeUSAddress attempts to match to the auxiliary file.

GeocodeUSAddress assumes that the auxiliary file is the most accurate data set and attempts
to find a match to the input address in the auxiliary file. If GeocodeUSAddress cannot find a
match in the auxiliary file, it matches the input address with the other Enterprise Geocoding
Module databases.

Note: GeocodeUSAddress only matches input address lists to auxiliary files if there is
an exact match. Your input address list should be free of misspellings and incomplete
addresses.

3. If GeocodeUSAddress finds an exact record match to the auxiliary file, it standardizes the match
to USPS regulations and returns the output of the auxiliary file match.

GeocodeUSAddress uses the following defaults if you do not include the values in the auxiliary
file:

* House number parity = B (both odds and evens)
» Segment direction = A (ascending)
+ Side of street = U (unknown)

Record Type Matching Rules
When matching against an auxiliary file, GeocodeUSAddress uses the following rules:
Street record match

* The input house number must fall within or be equal to the low and high house number values of
the auxiliary record.

» The input house number must agree with the parity of the auxiliary record.

» The input ZIP Code must exactly match the ZIP Code of the auxiliary record.

Landmark record match

* The input data must contain a ZIP Code and address line, and the values must exactly match the
values on the auxiliary record.

* The input address cannot have any other data, such as a house number, unit number, or Private
Mail Box (PMB).

Note: GeocodeUSAddress only matches the ZIP Code against the auxiliary file.
GeocodeUSAddress does not verify that the ZIP Code of the input address record is correct
for the city and state. Validate this information in your input lists before processing against
the auxiliary file.

Spectrum™ Technology Platform 12.0 SP2 API Guide 330

Module Services

Unavailable Features and Functions

The following features and functions do not apply when GeocodeUSAddress makes an auxiliary
file match.

» GeocodeUSAddress does not match to

* two-line addresses

* multi-line addresses

* intersection addresses

* dual addresses

» GeocodeUSAddress does not perform EWS, ZIPMove, LACSLink, or DPV processing on auxiliary
matches

* You can only access the auxiliary file with processing through the Find function. You cannot access
the auxiliary file through the Find First/Next or MBR functions

* You can only access the auxiliary file logic using the address code option of the Find function, not
the geocode option.

Auxiliary Match Output

GeocodeUSAddress provides special data type, match codes, and location code values for auxiliary
matches. When GeocodeUSAddress finds a match to an auxiliary file, the default output follows
these conventions:

» GeocodeUSAddress formats the auxiliary file match as a street-style address for output. This
excludes PO Boxes, Rural Routes, General Delivery, etc.

» GeocodeUSAddress follows the case setting you indicate (by default, upper case) by the casing
function. GeocodeUSAddress does not maintain the casing in the auxiliary file for mixed casing
values. For example, GeocodeUSAddress returns O'Donnell as ODONNELL or Odonnell depending
on the setting of the casing function.

Note: GeocodeUSAddress does not change the casing for the User Data field.

» GeocodeUSAddress removes spaces at the beginning and ending of fields in the auxiliary file.

Note: GeocodeUSAddress does not remove spaces for the User Data field.

Auxiliary File Layout
You must comply with the following organizational rules when you create auxiliary file:

* Files are fixed-width text files with a . gax extension

* Files can contain up to 500,000 records.

» Use semicolons in the first column to indicate a row is a comment, not a data record;
GeocodeUSAddress ignores rows that begin with a semicolon.

* For optimal performance, order the records within the file by descending ZIP Code, and then
descending street name.

Spectrum™ Technology Platform 12.0 SP2 API Guide 331

Module Services

» Records must represent only one side of a street. To represent both sides of a street, create a
record for each side of the street.

* Records must represent segments that are straight lines.

* House numbers must follow USPS rules documented in Publication 28.

Numeric fields, such as ZIP Codes, must contain only numbers.

* If house numbers are present in the record, the house number range must be valid according to
USPS rules documented in Publication 28, Appendix E.

+ Latitude and Longitude values must be in millionths of decimal degrees.

» Records cannot contain PO Box addresses.

The following table shows auxiliary file layout.

Field Description Required Required Required Exact Length Position
for Street for Match
Segment Landmark Required
Match Match if Present

ZIP Code 5-digit ZIP Code. X X X X 5 1-5

Street name Name of the street or X X X X 30 6-35
landmark.

Street type Street type. Also called X 4 36-39

abbreviation street suffix.

See the USPS Publication
28, Appendix C for a
complete list of supported
street types.

Predirectional USPS street name X 2 40-41
predirectional abbreviation.
Supported values are N, E,
S, W, NE, NW, SE, and
SW.

Postdirectional USPS street name X 2 42-43
postdirectional
abbreviations. Supported
values are N, E, S, W, NE,
NW, SE, and SW.

Spectrum™ Technology Platform 12.0 SP2 API Guide 332

Module Services

Field Description Required Required Required Exact Length Position
for Street for Match
Segment Landmark Required
Match Match if Present

RESERVED RESERVED 4 44-47
Low house Low house number of the X X 11 48-58
number address range.
High house High house number of the X X 11 59-69
number address range.
House number Indicates the parity of the 1 70
parity house number in the

range.

E - Even

O - Odd

B - Both
Segmentdirection Direction the house 1 71

numbers progress along
the segment:

F - Forward (default)

R - Reverse
RESERVED RESERVED 1 72
FIPS state US government FIPS state 2 73-74
code.
FIPS county US government FIPS 3 75-77

county code.

Census tract US Census tract number. 6 78-83

Spectrum™ Technology Platform 12.0 SP2 API Guide 333

Module Services

Field Description Required Required Required Exact Length Position
for Street for Match
Segment Landmark Required
Match Match if Present
Census block US Census block group 1 84
group number.
Census block ID US Census block ID 3 85-87
number.
RESERVED RESERVED 5 88-92
State abbreviation USPS state abbreviation. 2 93-94
County name Name of the county. 25 95-119
MCD code Minor Civil Division code. 5 120-124
MCD name Minor Civil Division name. 40 125-164
CBSA code Core Based Statistical 5 165-169
Area code.
CBSA name Core Based Statistical 49 170-218
Area name.
RESERVED RESERVED 5 219-223
City Name City name. Overrides the 40 224-263
city/state preferred city
name upon a return.
RESERVED RESERVED 237 264-500

Spectrum™ Technology Platform 12.0 SP2

API Guide

334

Module Services

Field Description Required Required Required Exact Length Position
for Street for Match
Segment Landmark Required
Match Match if Present

User-defined data User-defined data. 300 501-800
Record ID User-defined unique record 10 801-810
Number identifier.
Side of street Side of the street for the 1 811
address:
L - Left side
R - Right side
B - Both sides

U - Unknown side (default)

This is relative to the
segment endpoints and the
segment direction.

Beginning Beginning longitude of the X X X 11 812-822
longitude street segment in millionths
of degrees.

Beginning latitude Beginning latitude of the X X X 10 823-832
street segment in millionths
of degrees.

Ending longitude Ending longitude of the 11 833-843
street segment in millionths
of degrees.

Ending latitude Ending latitude of the street 10 844-853
segment in millionths of
degrees.

Spectrum™ Technology Platform 12.0 SP2 API Guide 335

Module Services

Match and Location Codes for U.S. Geocoding

Match Codes

The geocoder returns match codes indicating the address portions that matched or did not match
to the database.

If the geocoder cannot make a match, the match code begins with "E" and the remaining digits
indicate why the address did not match. For the descriptions of the "E" match codes, see Match
Codes for No Match - Definitions for "Ennn" return codes on page 342. The digits do not
specifically refer to which address elements did not match, but rather why the address did not match.

Match Codes
This section covers:

» Match Code Definitions on page 336

 Definitions for 1st-3rd hex digit match code values on page 338

* Definitions for Extended Match Code (3rd hex digit values) on page 339

* Definitions for the Reverse PBKey Lookup "Vhhh" return codes on page 341
Match Codes for No Match - Definitions for "Ennn" return codes on page 342

Match Code Definitions
The table below contains the match code values.

For descriptions of the hex digits for the match codes, see Definitions for 1st-3rd hex digit match
code values on page 338.

Code Description
Ahhh Same as Shhh, but indicates match to an alias name record or an alternate record.
Chh The street address did not match, but the geocoder located a street segment based on

the input ZIP Code or city

DOO Matched to a small town with P.O. Box or General Delivery only.

Ghhh Matched to an auxiliary file.

Spectrum™ Technology Platform 12.0 SP2 API Guide 336

Module Services

Code Description

Hhhh The house number was changed.

Jhhh Matched to a user-defined dictionary.

Nxx Matched to the nearest address. Used with reverse geocoding. The following are the only
values for N:
NSO Nearest street center match (nearest street segment interpolated)
NS1 Nearest unranged street segment
NPO Nearest point address
NX0 Nearest intersection

P Successful reverse APN lookup.

Qhhh Matched to USPS range records with unique ZIP Codes. CASS rules prohibit altering an
input ZIP if it matches a unique ZIP Code value.

Rhhh Matched to a ranged address.

Shhh Matched to USPS data. This is considered the best address match, because it matched
directly against the USPS list of addresses. S is returned for a small number of addresses
when the matched address has a blank ZIP + 4.

Thhh Matched to a street segment record.

Uhhh Matched to USPS data but cannot resolve the ZIP + 4 code without the firm name or other
information. CASS mode returns an E023 (multiple match) error code.

Vhhh Matched to MLD and DVDMLDR using Reverse PBKey Lookup. For match code values,

see Definitions for the Reverse PBKey Lookup "Vhhh" return codes on page 341.

Spectrum™ Technology Platform 12.0 SP2 API Guide

337

Code Description

Module Services

Xhhh Matched to an intersection of two streets, for example, "Clay St & Michigan Ave." The first
hex digit refers to the last line information, the second hex digit refers to the first street in
the intersection, and the third hex digit refers to the second street in the intersection.

Note: The USPS does not allow intersections as a valid deliverable address.

Yhhh Same as Xhhh, but an alias name record was used for one or both streets.

7 No address given, but verified the provided ZIP Code .

Definitions for 1st-3rd hex digit match code values

The table below contains the description of the hex digits for the match code values.

Note: The third hex digitis only populated for intersection matches or as part of the Extended

Match Code.

 For intersection matches, use the table below for the 3rd hex digit definitions.
» For Extended Match Code, see Definitions for Extended Match Code (3rd hex digit

values) on page 339.

Code In first hex position means: In second and third hex position
means:

0 No change in last line. No change in address line.

1 ZIP Code changed. Street type changed.

2 City changed. Predirectional changed.

3 City and ZIP Code changed. Street type and predirectional changed.

4 State changed. Postdirectional changed.

Spectrum™ Technology Platform 12.0 SP2 API Guide

338

Module Services

Code In first hex position means: In second and third hex position
means:

5 State and ZIP Code changed. Street type and postdirectional changed.

6 State and City changed. Predirectional and postdirectional changed.

7 State, City, and ZIP Code changed. Street type, predirectional, and postdirectional
changed.

8 ZIP + 4 changed. Street name changed.

9 ZIP and ZIP + 4 changed. Street name and street type changed.

A City and ZIP + 4 changed. Street name and predirectional changed.

B City, ZIP, and ZIP + 4 changed. Street name, street type, and predirectional
changed.

C State and ZIP + 4 changed. Street name and postdirectional changed.

D State, ZIP, and ZIP + 4 changed. Street name, street type, and postdirectional
changed.

E State, City, and ZIP + 4 changed. Street name, predirectional, and postdirectional
changed.

F State, City, ZIP, and ZIP + 4 changed. Street name, street type, predirectional, and

postdirectional changed.

Definitions for Extended Match Code (3rd hex digit values)

As mentioned in Match Code on page 228, when ExtendedMatchCode is set to "Y", additional
information is returned about any changes in the house number, unit number and unit type fields in
the matched address, as well as whether there was address information that was ignored. This

Spectrum™ Technology Platform 12.0 SP2 API Guide

339

Module Services

additional information is provided in a 3rd hex digit that is appended to match codes for address-level
matches only - A, G, H, J, Q, R, S, T or U (see Match Code Definitions on page 336).

"Address information ignored" is specified when any of these conditions apply:

* The output address has content in the AdditionalInputData field.
* The output address has a second address line (AddressLine?2).

» The input address is a dual address (two complete addresses in the input address). For example,
"4750 Walnut St. P.O Box 50".

» The input last line has extra information that is not a city, state or ZIP Code, and is ignored. For
example, "Boulder, CO 80301 USA", where "USA" is ignored when matching.

The table below provides the descriptions for the Extended Match Code 3rd hex digit return values:

Note: For Auxiliary file matches, the 3rd hex digit is always "0".

Code In 3rd hex position means:
0 Matched on all address information on line, including Unit Number and Unit Type if included.
1 Matched on Unit Number and Unit Type if included. Extra information on address line

ignored. Extra information on address line ignored. Extra information not considered for
matching moved to AddressLine2 or AdditionalInputData field.

2 Matched on Unit Number. Unit Type changed.

3 Matched on Unit Number. Unit Type changed. Extra information on address line ignored.
Extra information on address line ignored. Extra information not considered for matching
moved to AddressLine2 or AdditionalInputData field.

4 Unit Number changed or ignored.

5 Unit Number changed or ignored. Extra information on address line ignored. Extra
information on address line ignored. Extra information not considered for matching moved
to AddressLine2 or AdditionalInputData field.

6 Unit Number changed or ignored. Unit Type changed or ignored.

7 Unit Number changed or ignored. Unit Type changed or ignored. Extra information on
address line ignored. Extra information on address line ignored. Extra information not
considered for matching moved to AddressLine2 or AdditionalInputData field.

8 Matched on Unit Number and Unit Type if included. House Number changed or ignored.

Spectrum™ Technology Platform 12.0 SP2 API Guide

340

Module Services

Code In 3rd hex position means:

9 Matched on Unit Number and Unit Type if included. House Number changed or ignored.
Extra information on address line ignored. Extra information not considered for matching
moved to AddressLine2 or AdditionalInputData field.

A Matched on Unit Number. Unit Type changed. House Number changed or ignored.

B Matched on Unit Number. Unit Type changed. House Number changed or ignored. Extra
information on address line ignored. Extra information not considered for matching moved
to AddressLine2 or AdditionalInputData field.

¢ House Number changed or ignored. Unit Number changed or ignored.

D House Number changed or ignored. Unit Number changed or ignored. Extra information
on address line ignored. Extra information on address line ignored. Extra information not
considered for matching moved to AddressLine2 or AdditionalInputData field.

E House Number changed or ignored. Unit Number changed or ignored. Unit Type changed
or ignored.
F House Number changed or ignored. Unit Number changed or ignored. Unit Type changed

or ignored. Extra information on address line ignored. Extra information on address line
ignored. Extra information not considered for matching moved to AddressLine?2 or
AdditionalInputData field.

Definitions for the Reverse PBKey Lookup "Vhhh" return codes

The table below lists the "Vhhh" hex digit values returned with Reverse PBKey Lookup. For more
information, see ReversePBKeyLookup.

Note: When there are one or more address variations for a Reverse PBKey Lookup, the
match code returned is always "v000".

Match Code Definition

V000 Match made using input pbKey. One Standard or Enhanced point address result returned
depending on license.

V001 Match made using input pbKey. Multiple Standard and/or Enhanced point address variations
results returned depending on license.

V002 Match made using input pbKey. One Standard, some Enhanced point address variations
results returned depending on license.

Spectrum™ Technology Platform 12.0 SP2 API Guide

341

Match Code

Module Services

Definition

V003

Match made using input pbKey. Multiple Standard, some Enhanced point address variations
results depending on license.

Match Codes for No Match - Definitions for "Ennn" return codes

The table below describes the values returned when the application cannot find a match or an error

occurs.
Code "nnn" values Description
Ennn Indicates an error, or no match. This can occur when the address entered

does not exist in the database, or the address is badly formed and cannot
be parsed correctly. The last three digits of an error code indicate which
parts of an address the application could not match to the database.

nnn 000 No match made.

nnn 001 Low level error.

nnn 002 Could not find data file.

nnn 003 Incorrect GSD file signature or version ID.

nnn 004 GSD file out of date. Only occurs in CASS mode.
nnn 010 No city and state or ZIP Code found.

nnn 011 Input ZIP not in the directory.

nnn 012 Input city not in the directory.

nnn 013 Input city not unique in the directory.

Spectrum™ Technology Platform 12.0 SP2

API Guide 342

Module Services

Code "nnn" values Description
nnn 014 Out of licensed area. Only occurs if using Group 1 licensing technology.
nnn 015 Record count is depleted and license has expired.
nnn 020 No matching streets found in directory.
nnn 021 No matching cross streets for an intersection match.
nnn 022 No matching segments.
nnn 023 Unresolved match.
nnn 024 No matching segments. (Same as 022.)
nnn 025 Too many possible cross streets for intersection matching.
nnn 026 No address found when attempting a multiline match.
nnn 027 Invalid directional attempted.
nnn 028 Record also matched EWS data, therefore the application denied the
match.
nnn 029 No matching range, single street segment found.
nnn 030 No matching range, multiple street segments found.
nnn 040 No match found using input PBKey with ReversePBKeyLookup.

Spectrum™ Technology Platform 12.0 SP2

API Guide

343

Module Services

Code "nnn" values Description

nnn = 041 Not licensed to return Enhanced point address(es) found for input PBKey.
Additional ReversePBKeyLookup license option required to return results.

Location Codes

Location codes indicate the locational accuracy of the assigned geocode. Note that an accurately
placed candidate is not necessarily an ideal candidate. Examine the match codes and/or result
codes in addition to location codes to best evaluate the overall quality of the candidate.

A Location Code of "E" indicates a location code is not available. This usually occurs when you
have requested ZIP Code centroids of a high quality, and one is not available for that match. It can
occur infrequently when the Enterprise Geocoding Module does not have a 5-digit centroid location.
The Enterprise Geocoding Module can also return an "E" location code when it cannot standardize
an input address and there is no input ZIP Code. In this case, do not assume the ZIP Code returned
with the non-standardized address is the correct ZIP Code because the Enterprise Geocoding
Module did not standardize the address; therefore, the Enterprise Geocoding Module does not return
geocoding or Census Block information.

Address Location Codes

Location codes that begin with an "A" are address location codes. Address location codes indicate
a geocode made directly to a street network segment (or two segments, in the case of an intersection).

An address location code has the following characters.

18! character Always an "A" indicating an address location.

2" character May be one of the following:
C Interpolated address point location
G Auxiliary file data location

| Application infers the correct segment
from the candidate records

P Point-level data location

Spectrum™ Technology Platform 12.0 SP2 API Guide 344

Module Services

R Location represents a ranged address
S Location on a street range
X Location on an intersection of two
streets

3" and 4" character Digit indicating other qualities about the location.

Table 39: Address Location Codes

Code Description

AGn Indicates an Auxiliary file for a geocode match where

n is one of the following values:

n=0 The geocode represents the center of a parcel or
building.

n=1 The geocode is an interpolated address along a
segment.

n =2 The geocode is an interpolated address along a

segment, and the side of the street cannot be
determined from the data provided in the auxiliary
file record.

n =3 The geocode is the midpoint of the street segment.

APnn Indicates a point-level geocode match representing
the center of a parcel or building, where nn is one of
the following values:

nn = 00 User Dictionary centroid. Geocode returned by a User
Dictionary.

Spectrum™ Technology Platform 12.0 SP2 API Guide 345

Code

Module Services

Description

Parcel centroid

Indicates the center of an accessor's parcel (tract or
lot) polygon. When the center of an irregularly shaped
parcel falls outside of its polygon, the centroid is
manually repositioned to fall inside the polygon as
closely as possible to the actual center.

Address points

Represents field-collected GPS points with
field-collected address data.

nn = 05

Structure centroid

Indicates the center of a building footprint polygon,
where the building receives mail or has telephone
service.

Usually a residential address consists of a single
building. For houses with outbuildings (detached
garages, shed, barns, etc.), only the residences have
a structure point. Condominiums and duplexes have
multiple points for each building. Larger buildings,
such as apartment complexes, typically receive mail
at one address for each building and therefore
individual apartments are not represented as discrete
structure points.

Shopping malls, industrial complexes, and academic
or medical center campuses where one building
accepts mail for the entire complex are represented
as one point. When addresses are assigned to
multiple buildings within one complex, each
addressed structure is represented by a point.

If the center of a structure falls outside of its polygon,
the center is manually repositioned to fall inside the

polygon.

Manually placed

Address points are manually placed to coincide with
the midpoint of a parcel's street frontage at a distance
from the center line.

Spectrum™ Technology Platform 12.0 SP2

API Guide

346

Code

Module Services

Description

Front door point

Represents the designated primary entrance to a
building. If a building has multiple entrances and there
is no designated primary entrance or the primary
entrance cannot readily be determined, the primary
entrance is chosen based on proximity to the main
access street and availability of parking.

nn = 09

Driveway offset point

Represents a point located on the primary access
road (most commonly a driveway) at a perpendicular
distance of between 33-98 feet (10-30 meters) from
the main roadway.

nn = 10

Street access point

Represents the primary point of access from the
street network. This address point type is located
where the driveway or other access road intersects
the main roadway.

Base parcel point

When unable to match to an input unit number, or
when the unit number is missing from an address
location with multiple units, the "base" parcel
information is returned, the address is not
standardized to a unit number, and additional
information, such as an Assessor's Parcel Number,
is not returned.

Backfill address point

The precise parcel centroid is unknown. The address
location assigned is based on two known parcel
centroids.

Virtual address point

The precise parcel centroid is unknown. The address
location assigned is relative to a known parcel
centroid and a street segment end point.

Spectrum™ Technology Platform 12.0 SP2 API Guide

347

Module Services

Code Description

nn = 24 Interpolated address point

The precise parcel centroid is unknown. The address
location assigned is based on street segment end
points.

Aln The correct segment is inferred from the candidate
records at match time.

ASn House range address geocode. This is the most
accurate street interpolated geocode available.

Aln, ASn and ACnh share the same values for the 3" character "n" as follows:

n=20 Best location.

n=1 Street side is unknown. The Census FIPS Block ID
is assigned from the left side; however, there is no
assigned offset and the point is placed directly on
the street.

n=2 Indicates one or both of the following:

» The address is interpolated onto a TIGER segment
that did not initially contain address ranges.

» The original segment name changed to match the
USPS spelling. This specifically refers to street
type, predirectional, and postdirectional.

Note: Only the second case is valid for
non-TIGER data because segment range
interpolation is only completed for TIGER

data.
n=3 Both 1 and 2.
n=7 Placeholder. Used when starting and ending points

of segments contain the same value and shape data
is not available.

Spectrum™ Technology Platform 12.0 SP2 API Guide 348

Code

Module Services

Description

ACnh

Indicates a point-level geocode that is interpolated
between 2 parcel centroids (points), a parcel centroid
and a street segment endpoint, or 2 street segment
endpoints.

The ACnh 4" character "h" values are as follows:

Represents the interpolation between two points,
both coming from User Dictionaries.

Represents the interpolation between two points. The
low boundary came from a User Dictionary and the
high boundary, from a non-User Dictionary.

Represents the interpolation between one point and
one street segment end point, both coming from User
Dictionaries.

Represents the interpolation between one point (low
boundary) and one street segment end point (high
boundary). The low boundary came from a User
Dictionary and the high boundary from a non-User
Dictionary.

Represents the interpolation between two points. The
low boundary came from a non-User Dictionary and
the high boundary from a User Dictionary.

Represents the interpolation between two points,
both coming from non-User Dictionaries.

Represents the interpolation between one point (low
boundary) and one street segment end point (high
boundary). The low boundary came from a non-User
Dictionary and the high boundary from a User
Dictionary.

Spectrum™ Technology Platform 12.0 SP2

API Guide

349

Code

Module Services

Description

Represents the interpolation between one point and
one street segment end point and both came from
non-User Dictionaries.

Represents the interpolation between one street
segment end point andone point, both coming from
User Dictionaries.

Represents the interpolation between one street
segment end point (low boundary) andone point (high
boundary). The low boundary came from a User
Dictionary and the high boundary from a non-User
Dictionary.

Represents the interpolation between two street
segment end points, both coming from User
Dictionaries.

Represents the interpolation between two street
segment end points. The low boundary came from a
User Dictionary and the high boundary from a
non-User Dictionary.

Represents the interpolation between one street
segment end point (low boundary) and one point
(high boundary). The low boundary came from a
non-User Dictionary and the high boundary from a
User Dictionary.

Represents the interpolation between one street
segment end point and one point, both coming from
non-User Dictionary.

Represents the interpolation between two street
segment end points. The low boundary came from a
non-User Dictionary and the high boundary from a
User Dictionary.

Spectrum™ Technology Platform 12.0 SP2

API Guide

350

Code

Module Services

Description

Represents the interpolation between two street
segment end points, both coming from non-User
Dictionaries.

ARn

Ranged address geocode, where "n" is one of the
following:

The geocode is placed along a single street segment,
midway between the interpolated location of the first
and second input house numbers in the range.

The geocode is placed along a single street segment,
midway between the interpolated location of the first
and second input house numbers in the range, and
the side of the street is unknown. The Census FIPS
Block ID is assigned from the left side; however, there
is no assigned offset and the point is placed directly
on the street.

The input range spans multiple USPS segments. The
geocode is placed on the endpoint of the segment
which corresponds to the first input house number,
closest to the end nearest the second input house
number.

Placeholder. Used when the starting and ending
points of the matched segment contain the same
value and shape data is not available.

AXn

Intersection geocode, where n is one of the following:

Standard single-point intersection computed from the
center lines of street segments.

Interpolated (divided-road) intersection geocode.
Attempts to return a centroid for the intersection.

Spectrum™ Technology Platform 12.0 SP2 API Guide

351

Street Centroid Location Codes

Location codes that begin with "C" are street centroid location codes. Street centroid location codes

Module Services

indicate the Census ID accuracy and the position of the geocode on the returned street segment.

Street centroids may be returned if the street centroid fallback option is enabled and an address-level

geocode could not be determined.

A street centroid location code has the following characters.

1% character

Always "C" indicating a location derived from a street
segment.

d
2"¢ character

Census ID accuracy based on the search area used to
obtain matching Street Segment.

3" character

Location of geocode on the returned street segment.

The table below contains the values and descriptions for the location codes.

Character position Code Description
2" Character
B Block Group accuracy (most accurate).
Based on input ZIP Code.
T Census Tract accuracy. Based on input
ZIP Code.
C Unclassified Census accuracy.
Normally accurate to at least the County
level. Based on input ZIP Code.
F Unknown Census accuracy. Based on
Finance area.
Spectrum™ Technology Platform 12.0 SP2 API Guide 352

Character position Code

Module Services

Description

Unknown Census accuracy. Based on
input City.

3" Character

C Segment Centroid.
L Segment low-range end point.
H Segment high-range end point.

ZIP + 4 Centroid Location Codes

Location codes that begin with a "Z" are ZIP + 4 centroid location codes. ZIP + 4 centroids indicate
a geocode could not be determined for the address, so the location of the center of the address's
ZIP + 4 was returned instead. ZIP + 4 centroid location codes indicate the quality of two location
attributes: Census ID accuracy and positional accuracy.

A ZIP + 4 centroid location code has the following characters.

t
1% character

Always "z" indicating a location derived from a ZIP centroid.

d
2"¢ character

Census ID accuracy.

3" character

Location type.

h
4™ character

How the location and Census ID was defined. Provided for
completeness, but may not be useful for most applications.

Spectrum™ Technology Platform 12.0 SP2 API Guide

3563

Table 40: ZIP + 4 Centroid Location Codes

Character Position Code

Module Services

Description

2" Character

Block Group accuracy (most accurate).

Census Tract accuracy.

Unclassified Census accuracy.
Normally accurate to at least the County
level.

3" Character

Location of the Post Office that delivers
mail to the address, a 5-digit ZIP Code
centroid, or a location based upon
locale (city). See the 4" character for
a precise indication of locational
accuracy.

Location based upon a ZIP + 2 centroid.
These locations can represent a

multiple block area in urban locations,
or a slightly larger area in rural settings.

Location based upon a ZIP + 4 centroid.
These are the most accurate centroids
and normally place the location on the
correct block face. For a small number
of records, the location may be the
middle of the entire street on which the
ZIP + 4 falls. See the 4™ character for
a precise indication of locational
accuracy.

4™ Character

Spectrum™ Technology Platform 12.0 SP2 API Guide

354

Character Position

Code

Module Services

Description

Address matched to a single segment.
Location assigned in the middle of the
matched street segment, offset to the

proper side of the street.

Address matched to a single segment,
but the correct side of the street is
unknown. Location assigned in the
middle of the matched street segment,
offset to the left side of the street, as
address ranges increase.

Address matched to multiple segments,
all segments have the same Block
Group. Location assigned to the middle
of the matched street segment with the
most house number ranges within this
ZIP + 4. Location offset to the proper
side of the street.

Same as methodology B except the
correct side of the street is unknown.
Location assigned in the middle of the
matched street segment, offset to the
left side of the street, as address ranges
increase.

Address matched to multiple segments,
with all segments having the same
Census Tract. Returns the Block Group
representing the most households in
this ZIP + 4. Location assigned to t he
middle of the matched street segment
with the most house number ranges
within this ZIP + 4. Location offset to
the proper side of the street.

Same as methodology C except the
correct side of the street is unknown.
Location assigned in the middle of the
matched street segment, offset to the
left side of the street, as address ranges
increase.

Spectrum™ Technology Platform 12.0 SP2

API Guide

355

Character Position

Code

Module Services

Description

Address matched to multiple segments,
with all segments having the same
County. Returns the Block Group
representing the most households in
this ZIP + 4. Location assigned to the
middle of the matched street segment
with the most house number ranges
within this ZIP + 4. Location offset to
the proper side of the street.

Same as methodology D except the
correct side of the street is unknown.
Location assigned in the middle of the
matched street segment, offset to the
left side of the street, as address ranges
increase.

Street name matched; no house ranges
available. All matched segments have
the same Block Group. Location placed
on the segment closest to the center of
the matched segments. In most cases,
this is on the mid-point of the entire
street.

Street name matched; no house ranges
available. All matched segments have
the same Census Tract. Location
placed on the segment closest to the
center of the matched segments. In
most cases, this is on the mid-point of
the entire street.

Street name matched (no house ranges
available). All matched segments have
the same County. Location placed on

the segment closest to the center of the
matched segments. In most cases, this
is on the mid-point of the entire street.

Same as methodology G, but some
segments are not in the same County.
Used for less than .05% of the
centroids.

Spectrum™ Technology Platform 12.0 SP2

API Guide

356

Character Position

Code

Module Services

Description

Created ZIP + 2 cluster centroid as
defined by methodologies A, a, B, and
b. All centroids in this ZIP + 2 cluster
have the same Block Group. Location
assigned to the ZIP + 2 centroid.

Created ZIP + 2 cluster centroid as
defined by methodologies A, a, B, b, C,
and c. All centroids in this ZIP + 2
cluster have the same Census Tract.
Location assigned to the ZIP + 2
centroid.

Created ZIP + 2 cluster centroid as
defined by methodologies A, a, B, b, C,
¢, D, and d. Location assigned to the
ZIP + 2 centroid.

Created ZIP + 2 cluster centroid as
defined by methodology E. All centroids
in this ZIP + 2 cluster have the same
Block Group. Location assigned to the
ZIP + 2 centroid.

Created ZIP+2 cluster centroid as
defined by methodology E and F. All
centroids in this ZIP + 2 cluster have
the same Census Tract. Location
assigned to the ZIP + 2 centroid.

Created ZIP + 2 cluster centroid as
defined by methodology E, F, G, and
H. Location assigned to the ZIP + 2
centroid.

ZIP Code is obsolete and not currently
used by the USPS. Historic location
assigned.

Spectrum™ Technology Platform 12.0 SP2

API Guide

357

Module Services

Character Position Code Description

\% Over 95% of addresses in this ZIP
Code are in a single Census Tract.
Location assigned to the ZIP Code
centroid.

W Over 80% of addresses in this ZIP
Code are in a single Census Tract.
Reasonable Census Tract accuracy.
Location assigned to the ZIP Code
centroid.

X Less than 80% of addresses in this ZIP
Code are in a single Census Tract.
Census ID is uncertain. Location
assigned to the ZIP Code centroid.

Y Rural or sparsely populated area.
Census code is uncertain. Location
based upon the USGS places file.

Z P.O. Box or General Delivery
addresses. Census code is uncertain.
Location based upon the Post Office
location that delivers the mail to that
address.

Geographic Centroid Location Codes

Location codes that begin with "G" are geographic centroid location codes. Geographic centroids
may be returned if the street centroid fallback option is enabled and an address-level geocode could
not be determined. Geographic centroid location codes indicate the quality of a city, county, or state
centroid.

A geographic centroid location code has the following characters.

1% character Always "G" indicating a location derived from a geographic
centroid.

Spectrum™ Technology Platform 12.0 SP2 API Guide

358

2" character

Module Services

Geographic area type. One of the following:

M Municipality (for example, a city)
C County
S State

Result Codes for International Geocoding

Candidates returned by Spectrum geocoders return another class of return codes that are referred
to as International Geocoding Result Codes. Each attempted match returns a result code in the
Geocoder.MatchCode output field.

International Street Geocoding Result Codes (S Codes)

Street level geocoded candidates return a result code beginning with the letter S. The second
character in the code indicates the positional accuracy of the resulting point for the geocoded record.

Table 41: Street (S) Result Codes

S Result Code

Description

S1 Single close match with the point located at postal code centroid.

S3 Single close match with the point located at postal code centroid.

S4 Single close match with the point located at the street centroid. For databases vintage 2014
Q4 or newer, the input house number is returned with the candidate even if no such house
number was found. The S4 code is followed by letters and dashes indicating match precision.
See Interpreting S Result Codes on page 360

S5 Single close match with the point located at a street address position. The S5 code is followed
by letters and dashes indicating match precision. For information about these letters, see
Interpreting S Result Codes on page 360.

S7 Single match with the point located at an interpolated point along the candidate's street segment.

When the potential candidate is not an address point candidate and there are no exact house
number matches among other address point candidates, the S7 result is returned using address
point interpolation. The point is interpolated according to the next highest or lowest address
point candidate that both intersects the segment and whose house number is contained within
the range of houses of the original candidate. By using known address reference points on the
street segment, the S7 point can be adjusted to a more accurate position.

Spectrum™ Technology Platform 12.0 SP2 API Guide

359

S Result Code Description

Module Services

S8 Single close match with the point located at either the single point associated with an address
point candidate or at an address point candidate that shares the same house number. No
interpolation is required. S8 returns are possible with point databases only.

SX Single close match with the point located at street intersection.

Interpreting S Result Codes

For S (street geocoded) international result codes, eight additional characters describe how closely
the address matches an address in the database. The characters appear in the order listed in the
following table. Any non-matched address elements are represented by a dash.

For example, the result code S5--N-SCZA represents a single close match that matched the street
name, street suffix direction, town, and postcode. The dashes indicate that there was no match on
house number, street prefix direction, or thoroughfare type. The match came from the Street Range
Address database. This record would be geocoded at the street address position of the match

candidate.
Category Description Example
H House number 18
P Street prefix direction North
P is present if any of these conditions are satisfied:
* The candidate pre-directional matches the input
pre-directional.
* The candidate post-directional matches the input
pre-directional after pre- and post-directionals are
swapped.
» The input does not have a pre-directional.
N Street name Merivale
T Street type St

Spectrum™ Technology Platform 12.0 SP2 API Guide

360

Module Services

Category Description Example

S Street suffix direction W

S in result code is present if any of these conditions are
satisfied:

* The candidate post-directional matches the input
post-directional.

* The candidate pre-directional matches the input
post-directional after pre- and post-directionals are
swapped.

* The input does not have a post-directional.

C City name South Brisbane
Z Postal code 4101
A, G,oruU Database type used to obtain the match. A

+ A—Street Range Address database.
* G—G-NAF Point Address Dictionary (Australia only).
» U—Customer (user-defined) database.

International Postal Geocoding Result Codes (Z Codes)

Matches in the Z category indicate that a match was made at the postcode level. A postcode match
is returned in either of these cases:

* You specified to match to postal code centroids. The resulting point is located at the postal code
centroid with the following possible accuracy levels.

» There is no street level close match and you specified to fall back to postal code centroid.

Table 42: Postal (Z) Result Codes

Z Result Code Description
Z1 Postal Code centroid match.
Z3 Full postal code centroid match. For Canada, this is an FSALDU centroid.

Spectrum™ Technology Platform 12.0 SP2 API Guide 361

Module Services

Postal level geocoded candidates return a result code beginning with the letter Z. Geocode Address
World can generate a Z1 result code. Country-specific geocoders can often generate more accurate
postcode results (with Z2 or Z3 result codes).

If the postal candidate comes from a user dictionary, the letter U is appended to the result. For
example, Z1U indicates a postal centroid match from a custom user dictionary.

International Geographic Geocoding Result Codes (G Codes)

Geographic level geocoded candidates return a result code beginning with the letter G. The numbers
following the G in the result code provides more detailed information about the accuracy of the
candidate.

Table 43: Geographic (G) Result Codes

G Result Code Description

G1 State or province centroid. match.

G2 County (district or region) centroid match.

G3 City or town (municipality) centroid match.

G4 Locality (village, suburb, or neighborhood) centroid match.

If the geographic candidate comes from a user dictionary, the letter U is appended to the result
code. For example, G4U indicates a locality centroid match from a custom user dictionary.

Reverse Geocoding Codes (R Codes)

Matches in the R category indicate that the record was matched by reverse geocoding. The second
two characters of the R result code indicate the type of match found. R geocode results include an
additional letter to indicate the dictionary from which the match was made.

Example reverse geocoding codes:

Table 44: Reverse Geocoding (R) Result Codes

Reverse Geocoding Code Description

RS8A Point/parcel level precision for reverse geocoding. Candidate returned from address
dictionary.

Spectrum™ Technology Platform 12.0 SP2 API Guide 362

Module Services

Reverse Geocoding Code Description

RS5A Interpolated street candidate for reverse geocoding. Candidate returned from address
dictionary.

RS4A Street centroid candidate for reverse geocoding. Candidate returned from address
dictionary.

If the reverse geocoded candidate comes from a user dictionary, the letter U is appended to the
result. For example, RS8U indicates a point/parcel level reverse geocode match from a custom user
dictionary.

Non-match Codes
The following result codes indicate no match was made:

* N—No close match.
« NX—No close match for street intersections.

« ND—Spectrum™ Technology Platform could not find the geocoding database for the given postal
code or municipality/state/province.

Encountering False Positives

What is a False-Positive?

To prevent the generation of address lists, the DPV and LACS""™ databases include false- -positive

records. False-positive records are artificially manufactured addresses that reside in a false-positive
table. For each negative response that occurs in a DPV or LACSH" query, a query is made to the
false- posmve table. A match to this table (called a false-positive match) disables your DPV or
LACSH"k key. In batch processing the job that contains the violation WI|| complete successfully but
you will not be able to run any subsequentjobs that use DPV or LACS"™ until you report the violation
and obtain a key to reactivate DPV or LACS-"™

Note: The term "seed record violation" is also used to refer to encountering false positive
records. The two terms mean the same thing.

Reporting DPV False-Positive Violations

Spectrum™ Technology Platform indicates a false-positive match via messages in the server log.

Spectrum™ Technology Platform 12.0 SP2 API Guide 363

Module Services

Client/server calls throw an exception if a false-positive match occurs. When a DPV fals positive
record violation occurs, the server log will say:

WARN [Log] Seed record violation for S<ZIP, ZIP+4, Address, Unit> ERROR
[Log] Feature Disabled: DPU: DPV Seed Record Violation. Seed Code:
S<Address, ZIP, ZIP+4, Unit>

Note: If a DPV false positive record is found, the process() method (COM, C++, Java, and
.NET) will throw an exception that the feature DPU has been disabled. In C, the
processMessage() function will return a non-zero value.

You can report the violation and obtain a restart key by following these steps.

1. In your browser, go to http://<yourserver>:<port>/<product code>/dpv.jsp. For example,
http://localhost:8080/unc/dpv.jsp for the Universal Addressing Module and
http://localhost:8080/geostan/dpv.jsp for the Enterprise Geocoding Module.

2. Enter the mailer's information into each field. The number in parentheses after each field name
indicates the maximum length of the field.

3. Click Submit when you're done. A File Download dialog will appear.
4. Click Save to save the file to your computer. A Save As dialog will appear.

5. Specify a file name and location on your local hard drive (for example c: \DPVSeedFile. txt)
and click Save.

6. Go to www.g1.com/support and log in.
7. Click DPV & LACS"™ False Positive.
8. Follow the on-screen instructions to attach your seed file and obtain a restart key.

DPV False Positive Header File Layout

The USPS® has determined the required layout of the DPV false-positive header file, which is
currently defined as a fixed-length file containing two or more 180-byte records. The first record
must always be the header record, whose layout is shown below.

Table 45: DPV False-Positive Header Record Layout

Position Length Description Format

1-40 40 Mailer's company name Alphanumeric
41-98 58 Mailer's address line Alphanumeric
99-126 28 Mailer's city name Alphanumeric

Spectrum™ Technology Platform 12.0 SP2 API Guide 364

http://www.g1.com/support

Module Services

Position Length Description Format
127-128 2 Mailer's state abbreviation Alphabetic
129-137 9 Mailer's 9-digit ZIP Code Numeric
138-146 9 Total Records Processed Numeric
147-155 9 Total Records DPV Matched Numeric
156-164 9 Percent Match Rate to DSF Numeric
165-173 9 Percent Match Rate to ZIP + 4® Numeric
174-178 5 Number of ZIP Codes on file Numeric
179-180 2 Number of False-Positives Numeric

The trailer record contains information regarding the DPV false-positive match. There must be one
trailer record added to the false-positive file for every DPV false-positive match. The layout is shown

below.

Table 46: DPV False-Positive Trailer Record Layout

Position Length Description Format

1-2 2 Street predirectional Alphanumeric
3-30 28 Street name Alphanumeric
31-34 4 Street suffix abbreviation Alphanumeric

Spectrum™ Technology Platform 12.0 SP2

API Guide

365

Module Services

Position Length Description Format
35-36 2 Street postdirectional Alphanumeric
37-46 10 Address primary number Alphanumeric
47-50 4 Address secondary abbreviation Alphanumeric
51-58 8 Address secondary number Numeric
59-63 5 Matched ZIP Code Numeric
64-67 4 Matched ZIP + 4° Numeric
68-180 113 Filler Spaces

Reporting LACS/Link False-Positive Violations

Spectrum™ Technology Platform indicates a false-positive match via messages in the server log.
Batch jobs will fail if a false-positive match occurs and client/server calls will throw an exception.

Note: The term "seed record violation" is also used to refer to encountering false positive
records. The two terms mean the same thing.

When a false positive record is encountered, the server log will say:

2005-05-06 17:05:38,978 WARN [com.gl.component.ValidateAddress] Seed
record violation for RR 2 28562 31373

2005-05-06 17:05:38,978 ERROR [com.gl.component.ValidateAddress] Feature
Disabled: LLU: LACS Seed Record Violation. Seed Code: 28562 31373
2005-05-06 17:05:38,978 ERROR [com.gl.dcg.gateway.Gateway] Gateway
exception: com.gl.dcg.stage.StageException:
com.gl.dcg.component.ComponentException: Feature Disabled: LLU
2005-05-06 17:06:30,291 ERROR
[com.pb.spectrum.platform.server.runtime.core.license.impl.policy.Policy]
Feature LACSLink Real- time is disabled.

Spectrum™ Technology Platform 12.0 SP2 API Guide 366

Module Services

Note: If a LACS-™ false positive record is found, the process() method (COM, C++, Java,
and .NET) will throw an exception that the feature LLU has been disabled. In C, the
processMessage() function will return a non-zero value.

1. In your browser, go to http://<ServerName>:<port>/<product code>/lacslink.jsp. For example,
http://localhost:8080/unc/lacslink.jsp for the Universal Addressing Module and
http://localhost:8080/geostan/lacslink.jsp for the Enterprise Geocoding Module.

2. Enter the mailer's information into each field. The number in parentheses after the field name
indicates the maximum length of the field. Click Submit when you're done. A File Download
dialog will appear.

3. Click Save to save the file to your computer. A Save As dialog will appear.

4. Specify a file name and location on your local hard drive (for example c:\lacslink.txt)and
click Save.

5. Go to www.g1.com/support and log in.
6. Click DPV & LACS"™ False Positive.
7. Follow the on-screen instructions to attach your seed file and obtain a restart key.

Enterprise Tax Module

Enterprise Tax Module

The Enterprise Tax Module determines the tax jurisdiction for an address. The Enterprise Tax Module
takes an address, standardizes it, then matches the address to an exact physical location, returning
latitude/longitude coordinates with the correct tax jurisdictions for the address. This solution greatly
reduces the inaccuracies associated with matching to 9-digit and 5-digit ZIP Codes. The Enterprise
Tax Module can also calculate latitude/longitude coordinates for individual address locations, including
the use of interpolation and offset.

For companies that deliver goods or services to locations that don't have a recognizable address,
the Enterprise Tax Module can accept latitude/longitude coordinates as input to return the tax
jurisdictions and corresponding GeoTAX Key values. Examples of this type of location include bill
boards, street lights, communications towers or new housing developments.

The Enterprise Tax Module uses a database of tax jurisdictions provided by TomTom. This data,
which is collected through an ongoing research program and updated regularly, provides current
jurisdictional boundary information down to the municipal and special tax district levels.

In addition to determining the tax jurisdiction for an address or location, with the optional Pitney
Bowes Sales and Use Tax Rate file, the Enterprise Tax Module can return sales and use tax rates
for each of the assigned tax jurisdictions as well as the total tax rate for the assigned locations.

Spectrum™ Technology Platform 12.0 SP2 API Guide 367

http://www.g1.com/support

Module Services

There is also the option to use other software, such as Vertex or Sovos, to cross-reference and
supply tax rate data.

Note: The Enterprise Tax Module processes only U.S. addresses.

Components
The Enterprise Tax Module consists of:

» AssignGeoTAXInfo - Takes an input address and returns census, latitude/longitude, and tax
information about the address. AssignGeoTAXInfo utilizes Pithey Bowes' GeoTAX technology.
 CalculateDistance - Takes two latitude/longitude coordinates as input and computes and returns

the distance between the coordinates.

* ReverseGeoTAXInfo Lookup - Takes an input latitude/longitude coordinate and returns census
and tax information about the location. This service will not return an address for the location.

Enterprise Tax Databases

The Enterprise Tax Module provides you with several different databases along with the ability to
include additional databases to match against your input addresses or geographic coordinates.

Database Name and Description Required or Optional Supplier
GeoTAX/Enterprise Tax Premium Master Files Required Pitney Bowes
The master files are the main data files used by the Enterprise Tax Module. Srlc;)nstgiy/ﬂgirterly
They identify all geographic components associated with a street address, P
such as the tax jurisdictions, latitude/longitude coordinates, census tract,
and block group. These files, at over two gigabytes of data, are significantly
larger than the postal file, but provide the greatest coding accuracy.

Note: The GeoTAX/Enterprise Tax Premium Database is a

required data set and is the master file for the Enterprise Tax

Premium Module software. This data is not compatible with

versions of the Enterprise Tax Module prior to version 9.0 SP3.
The master files are available for download from the technical support web
site: www.g1.com/support.
Point Data Files Optional Pitney Bowes
Point data products include Master Location Data (MLD), Centrus Points, monthly .

subscription

HERE Points, and TomTom Points. The point data provides point-level
geocoding for the most accurate placement of addresses throughout the
U.S. The Master Location Data database provides the best available address
point location for every mailable and deliverable address in the United
States.

Spectrum™ Technology Platform 12.0 SP2 API Guide 368

http://www.g1.com/support

Module Services

Database Name and Description Required or Optional Supplier
State-Supplied Files Optional State
Governments

State-supplied files are provided by individual state governments that the
Enterprise Tax Module uses to override results from the master files.

The Enterprise Tax Module provides you with the ability to override, at the
state level, match results based upon information supplied by the states.
By matching to the state-supplied files, you can remain compliant with tax
jurisdiction assignment requirements mandated by new federal and state
laws, such as the Mobile Telecommunications Sourcing Act and the Florida
state Communications Services Tax Simplification Law.

Currently, there are two file formats supported in the Enterprise Tax Module:
the Florida-native format, and the national TS-158 format (ANSI Transaction
Set No. 158). The state of Florida provides address files in both the TS-158
and its own native format.

Note: This database option may not be available to all Enterprise
Tax Module users. Individual states may restrict the use of
state-supplied address files to licensed communications carriers
or other business entities registered with the individual state.

The Enterprise Tax Module first attempts to match to the state database.
If the Enterprise Tax Module cannot find a state match, it attempts a match
to the GeoTAX Auxiliary file, if loaded, then to the master files.

GeoTAX Auxiliary File Optional Pitney Bowes

The GeoTAX Auxiliary file contains new addresses that have not yet been monthly

added to the master files. It provides the most up-to-date address data subscription
possible.
Landmark Auxiliary File Optional User-defined

The Landmark Auxiliary File is a user-defined file that allows you to specify
customized address information in your input records. The recommended
primary use of this file is to match to your company’s non-address locations
such as well heads, transmission towers or any other descriptive location.
The latitude/longitude coordinates that is part of the input needed to build
this file allows companies to automatically keep track of any jurisdictional
changes that affect these unique locations. Matching to this file requires
that the input record information match exactly to the Landmark Auxiliary
file contents. This also applies to street records if you choose to enter them
in the Landmark Auxiliary file.

Note: For more information, see Creating a Landmark Auxiliary
File on page 494.

Spectrum™ Technology Platform 12.0 SP2 API Guide 369

Module Services

Database Name and Description Required or Optional Supplier

User Auxiliary File Optional User-defined

User Auxiliary files are user-defined files that the Enterprise Tax Module
uses to override results from the master files in street-level matching. If you
have data that is more current than that in the master files, you can enter
the new data into the auxiliary file and use it for your address matching.
The Enterprise Tax Module returns matches made with a code that signifies
the answer came from the auxiliary file. You can also return user-defined
data from the auxiliary file with the match.

Note: For more information, see Creating a User-Defined
Auxiliary File on page 500.

Boundary Files Optional Pitney Bowes

Boundary files provide additional data about locations of special tax districts:
Special Purpose Tax Districts (SPD), Insurance Premium Tax Districts
(IPD), Payroll Tax Districts (PAY), and User-Defined Boundary (USR) .

» The Special Purpose Districts file (SPD.txb) provides you with return
data on special purpose tax districts. Special purpose tax districts include
such districts as Regional Transit Areas and Metropolitan Football districts.

* The Insurance Premium Districts file (IPD.txb) is used by the insurance
industry to determine sales tax on insurance premiums written in some
states. This file allows insurers to correctly determine the rate due on
each insurance policy. Boundaries vary by state and are based on fire
and police district and municipal boundaries.

» The Payroll Tax Districts file (PAY.txb) can help your company comply
with state legislation that requires employers to deduct taxes from
employee paychecks for special districts, such as taxes for emergency
municipal services districts.

Pitney Bowes provides you with the appropriate boundary file on separate
media if you license any of the optional files.

Important: The Enterprise Tax Module only uses one boundary file at a
time. For more information, see the configuration options in
AssignGeoTAXInfo on page 373.

User-Defined Boundary File Optional User-created

A user-defined boundary file (usr.txb) is a file that you create to represent
polygons that you want to match against, such as sales territories, insurance
rating territories, or any geographic areas that are of interest to you.

Note: For more information, see Creating a User-Defined
Boundary File on page 503.

Spectrum™ Technology Platform 12.0 SP2 API Guide 370

Module Services

Database Name and Description Required or Optional Supplier

Pitney Bowes Sales and Use Tax Rate File Optional Pitney Bowes

You can optionally license the Pitney Bowes Sales and Use Tax Rate file
to supply sales and/or use tax rate data for the general, automotive,
construction or medical industries. Sales and use tax rates can be returned
fo