
Spectrum Enterprise Designer

Spectrum Dataflow Designer's Guide

Version 2020.1.0

1 - Getting Started

Installing the Client Tools.......................................5
Starting Spectrum Enterprise Designer.................6
A First Look at Spectrum Enterprise Designer......6
My First Dataflow (Job)...9
My First Dataflow (Service).................................12
Dataflow Templates...14
Importing and Exporting Dataflows.....................15

2 - Designing a Flow

Types of Flows..18
Flow Input..20
Fields...25
Control Stages...39
Module Stages..96
Flow Output...783
Embedded flows..788
Reports..792
Performance Considerations.............................797
Flow Versions..810

3 - Inspecting and Testing

Checking a Flow for Errors................................815
Inspecting a flow..815
Testing a service with Spectrum Management

Console..819

4 - Running a Flow

Running a Job or Process Flow........................821
Exposing a Service..841

Runtime Options..843
Configuring Email Notification for a Flow..........846

5 - Combining Flows into a
Process Flow

Introduction to Process Flows...........................849
Designing Process Flows..................................849

6 - Creating Reusable Flow
Components

Introduction to Subflows....................................863
Using a Subflow as a Source............................863
Using a Subflow in the Middle of a Flow...........864
Using a Subflow as a Sink.................................865
Modifying a Subflow..866
Deleting a Subflow..867
Exposing and Unexposing a Subflow................867
Converting a Stage to a Subflow.......................867

7 - Sample Flows

Introduction..870
Integration between SugarCRM OnPremises and

Microsoft Dynamics 365 Online...................872
Integration between Salesforce and Oracle

Eloqua..874

8 - About Spectrum
Technology Platform

What Is Spectrum Technology Platform?..........878

Table of Contents

Enterprise Data Management Architecture.......879
Spectrum Technology Platform Architecture.....883
Modules and Components................................887

3Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

1 - Getting Started

In this section

Installing the Client Tools..5
Starting Spectrum Enterprise Designer..6
A First Look at Spectrum Enterprise Designer...6
My First Dataflow (Job)...9
My First Dataflow (Service)..12
Dataflow Templates..14
Importing and Exporting Dataflows..15

Installing the Client Tools

The Spectrum Technology Platform client tools are applications that you use to administer your
server and design and run dataflows and process flows. You must install your Spectrum Technology
Platform server before installing the client tools.

Before installing, be sure to read the release notes. The release notes contains a list of known issues,
important compatibility information, and release-specific installation notes.

This procedure describes how to install the client tools:

• Enterprise Designer allows you to create, modify, and run dataflows.
• FlowDesigner is the next-generationWeb UI dataflow design tool. This release provides a technical
preview version of Flow Designer.

Note: Enterprise Designer will be retired once Flow Designer contains the full feature set
in a future release.

• Job Executor is a command line tool that allows you to run a job from a command line or script.
The job must have been previously created and saved on Spectrum Technology Platform using
Enterprise Designer or Flow Designer.

• Process Flow Executor is a command line tool that allows the execution of a process flow from
a command line or script. The process flow must have been previously created and saved on
Spectrum Technology Platform using Enterprise Designer or Flow Designer.

• Administration Utility provides command line access to several administrative functions. You
can use it in a script, allowing you to automate certain administrative tasks. You can also use it
interactively.

To install the client tools:

1. Open a web browser and go to the Spectrum Technology Platform Welcome Page at:

http://servername:port

For example, if you installed Spectrum Technology Platform on a computer named
myspectrumplatform and it is using the default HTTP port 8080, you would go to:

http://myspectrumplatform:8080

2. Click Platform Client Tools.
3. Download the client tool you want to install.

5Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

Starting Spectrum Enterprise Designer

Spectrum Enterprise Designer is a Windows application for creating dataflows. To start Spectrum
Enterprise Designer:

1. Select Start > Precisely > Spectrum Enterprise Designer.
2. Enter the server name or IP address, or select it from the drop-down list. If you are using Spectrum

Technology Platform in a cluster, enter the name of IP address of the cluster's load balancer.
3. Enter your user name and password.
4. In the Port field, enter the network port that the server has been configured to use for Spectrum

Technology Platform communication. The default port number is 8080.
5. Click Use secure connection if you want communication between the client and the server to

take place over an HTTPS connection.

Note: A secure connection is only available if HTTPS communication has been configured
on the server. If you are running Spectrum Enterprise Designer on Windows 7, using the
IP address in the Server name field may not work, depending on the type of certificate
used to secure the communication between Spectrum Enterprise Designer and the server.
If the IP address does not work, use the host name instead.

6. Click Login.

A First Look at Spectrum Enterprise Designer

Spectrum Enterprise Designer is a visual tool for creating dataflows. Using this client, you can:

• Create and modify jobs, services, subflows, and process flows
• Inspect and validate dataflows for correctness
• Expose and hide services
• Generate reports

The Spectrum Enterprise Designer window looks like this:

6Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

These concepts are important for working with flows:

The canvas is the main work area. The picture above shows the canvas open with a
dataflow named ValidateUSAndCanadianAddresses. It is a job dataflow, which means it

Canvas

performs batch processing by reading data from a file and writing output to a file. In this
case, the dataflow is writing output to two files.
Stages, represented by icons on the canvas, perform a specific type of activity, such as
sorting records, validating addresses, matching similar records, and so on. To add a stage,
drag the stage from the Palette (on the left side of the window) onto the canvas.

If a stage requires your attention, a blue circle appears on the icon:

Stage

A dataflow cannot run successfully if it has stages that require attention. So, double-click
the stage to configure the required settings. Once you have configured all the required
settings, the blue circle no longer appears:

A channel is a connection between two or more stages through which records are passed
from one stage to another. In the above example, you can see that the Read from File

Channel

stage is connected to the ValidateAddress stage with a channel. Records are read into

7Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

the dataflow in Read from File then sent to ValidateAddress through this channel.
ValidateAddress is then connected to Conditional Router through a channel. Conditional
Router, which analyzes records and sends them along different paths in a dataflow
depending on the conditions defined by the dataflow designer, has two channels going
out of it, one to a Write Validated stage and one to a Write Failed stage.

The dot in the middle of a channel may change colors to indicate different conditions:

Indicates an error, such as a type conversion failure that makes a
field unusable by the downstream stage.

Red

You have removed a field that is needed by a downstream stage.Yellow

Automatic type conversion has successfully converted a field to the
data type required by the downstream stage.

Blue

A field is being renamed in the channel.Black

No action is being taken on fields.White

If you look closely at the stage icons you will notice small triangular or diamond shaped
ports on the sides of each stage. A port is the mechanism by which a stage sends data

Port

into, or reads data from, a channel. Stages that read data into the dataflow (called "sources")
only have output ports since they are always at the start of a dataflow. Stages that send
data out of the dataflow (called "sinks") only have input ports since they are always at the
end of a dataflow. All other stages have both input and output ports. In addition, some
stages have error ports, which are used to output records that cause errors during the
stage's processing, and some stages have report ports, which are used to generate reports
about the stage's output.

The Spectrum Enterprise Designer window provides these features:

DescriptionFeature

Provides a quick way to create a new job, service, subflow, or process flow. Also
allows you to open dataflows that were recently open.

Tasks

Shows all the flows saved on the Spectrum Technology Platform server. If the server
explorer this is not visible, select View > Server Explorer. You can organize flows
into folders. To create a folder, right-click the server name and select New Folder.
Flow names must be unique across all folders. You cannot have two flows with the
same name even if they are in different folders.

Server Explorer

8Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

DescriptionFeature

Contains all the stages and reports you can add to your dataflow. The stages available
in the palette depend on the modules you have licensed.

Palette

The work area onto which you drag stages and connect them with channels to make
dataflows. You can have several dataflow canvases open at once.

Canvas

The Versions feature in Spectrum Enterprise Designer allows you to keep a revision
history of your flows. You can view previous versions of a flow, expose older versions
for execution, and keep a history of your changes in case you ever need to revert to
a previous version of a flow.

Versions

Lists the stages and reports in the flow. You can right-click an item in the Navigator
pane to edit its options.

Navigator

My First Dataflow (Job)

This example shows how to create a simple dataflow that reads data from a file, sorts it, then writes
it to a file. Since this dataflow reads data from a file and writes its output to a file, it is a job: a dataflow
that performs batch processing. (The other primary type of dataflow, a service, performs interactive
processing via an API or web service call to the server.)

1. The first step will be to create some sample data to use as input to your dataflow. Using a text
editor, create a file that looks like this:

FirstName,LastName,Region,Amount
Alan,Smith,East,18.23
Jeannie,Wagner,North,45.43
Joe,Simmons,East,10.87
Pam,Hiznay,Central,98.78

2. Save the file in a convenient location.
3. Select Start > Programs > Precisely > Spectrum Technology Platform > Client Tools >

Enterprise Designer.
4. Select File > New > Dataflow > Job.
5. You are now ready to begin creating your dataflow. The first step is to define the input to the

dataflow. To do this:

9Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

a) Drag a Read from File stage to the canvas:

b) Double-click the Read from File stage on the canvas.
c) In the File name field, specify the file you created for this task.
d) In the Record type field, choose Delimited.
e) In the Field separator field, select Comma (,).
f) Check the First row is header record box.
g) Click the Fields tab.
h) Click Regenerate then click Yes.

The stage is automatically configured for the fields in your input file.

i) Click Detect Type. This scans the input file and determines the appropriate data type for
each field. Notice that the type for the Amount filed changes from string to double.

j) You have finished configuring Read from File. Click OK.

6. Next, you will add a stage that will sort the records by region. To do this:
a) Drag the Sorter stage to the canvas
b) Click the solid black triangle on the right side of the Read from File stage (the output port)

and drag it to the left side of the Sorter stage on the canvas to create a channel connecting
Read from File and Sorter.

Your dataflow should look like this:

10Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

c) Double-click the Sorter stage on the canvas.
d) Click Add.
e) In the Field Name field, select Region.
f) You have finished configuring Sorter. Click OK.

7. Finally, you will define the output file where the dataflow will write its output. To do this:
a) Drag a Write to File stage to the canvas.
b) Click the solid black triangle on the right side of the Sorter stage and drag it to the left side

of the Write to File stage on the canvas.

Your dataflow should look like this:

c) Double-click the Write to File stage.
d) In the File name field, specify an output file. This can be any file you want.
e) In the Field separator field, select Comma (,).
f) Check the First row is header record box.
g) Click the Fields tab.
h) Click Quick Add.
i) Click Select All then click OK.
j) Using the Move Up and Move Down buttons, reorder the fields so that they are in the

following order:

FirstName
LastName
Region
Amount

This will make the records in your output file have the fields in the same order as your input
file.

k) You have finished configuring Write to File. Click OK.

8. In Enterprise Designer, select File > Save.
9. Give your dataflow a name and click OK.
10. Your dataflow is now ready to run. Select Run > Run Current Flow.
11. The Execution Details window appears and shows the status of the job. Click Refresh. Once

the status shows Succeeded click Close.

11Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

Open the output file you specified in the Write to File stage. You will see that the records have been
sorted by region as you specified in the Sorter stage.

FirstName,LastName,Region,Amount
Pam,Hiznay,Central,98.78
Alan,Smith,East,18.23
Joe,Simmons,East,10.87
Jeannie,Wagner,North,45.43

Congratulations! You have designed and run your first job dataflow.

My First Dataflow (Service)

This example shows how to create a simple dataflow that accepts data from an API or web service
call, processes the data, and returns a response via the API or web service. Since this dataflow is
intended to be exposed as a service on the Spectrum Technology Platform server, it is a service
dataflow. (The other primary type of dataflow, a job, performs batch processing, reading data from
a file or database, processing the data, then writing the output to a file or database.)

1. Select Start > Programs > Precisely > Spectrum Technology Platform > Client Tools >
Enterprise Designer.

2. Select File > New > Dataflow > Service.
You are now ready to begin creating your dataflow.

3. The first step is to define the input to the dataflow.
Your dataflow will take two fields as input: FirstName and LastName.
a) Drag an Input stage from the palette to the canvas.

b) Double-click the Input stage on the canvas.
c) Click Add then click Add again.
d) In the Field name field, type FirstName.
e) Click OK, then click OK again.
f) Click Add then click Add again.
g) In the Field name field, type LastName.

12Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

h) Click OK, then click OK again.
i) You have finished defining the dataflow input. Click OK.

4. Next, you will add a stage to change the casing of the data in the FirstName and LastName fields
to all upper case.
a) Drag a Transformer stage from the palette to the canvas.
b) Click the solid black triangle on the right side of the Input stage (the output port) and drag it

to the left side of the Transformer stage on the canvas to create a channel connecting Input
and Transformer.

Your dataflow should look like this:

c) Double-click the Transformer stage.
d) Click Add.
e) In the tree on the left side, under Formatting click Case.
f) In the Field field, select FirstName. Leave Upper selected.
g) Click Add.
h) In the Field field, select LastName. Leave Upper selected.
i) Click Add.
j) Click Close.
k) You have finished configuring Transformer to change the value in the FirstName and

LastName fields to upper case. Click OK.

5. Finally, you will define the output for the dataflow. Your dataflow will return the FirstName and
LastName fields as output.
a) Drag an Output stage to the canvas.
b) Click the solid black triangle on the right side of the Transformer stage and drag it to the left

side of the Output stage on the canvas.

Your dataflow should look like this:

c) Double-click the Output stage on the canvas.
d) Check the Expose box. The check boxes next to FirstName and LastName should now be

checked.
e) Click OK.

6. In Enterprise Designer, select File > Save.
7. Give your dataflow the name MyFirstDataflow-Service and click OK.
8. Select File > Expose/Unexpose and Save. This exposes your dataflow, making it available as

a service on the server.

13Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

9. To test your service:
a) Open Management Console by going to this URL in a web browser:

http://server:port/managementconsole

Where server is the server name or IP address of your Spectrum Technology Platform server
and port is the HTTP port used by Spectrum Technology Platform. By default, the HTTP
port is 8080 and the HTTPS port is 8443.

b) Go to Services > Other Services.
c) In the list of services, check the box next to MyFirstDataflow-Service then click the Edit

button .
d) Enter a name in the FirstName field in all lower case letters.
e) Enter a name in the LastName field in all lower case letters.
f) Click Run Preview.

You can see that the service made the name fields all upper case letters, as you specified
in your dataflow Transformer stage.

Congratulations! You have designed and run your first service dataflow. The service is now available
on the server and can be accessed via an API or web services call. The resource URL for this
service's SOAP endpoint is:

http://<ServerName>:<Port>/soap/MyFirstDataflow-Service

The resource URL for this service's REST endpoint is:

http://<ServerName>:<Port>/rest/MyFirstDataflow-Service

Dataflow Templates

Dataflow templates illustrate ways in which you can use Spectrum Technology Platform and its
modules to meet your business needs. They show how particular modules solve various requirements,

14Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

such as parsing, standardizing, and validating names and addresses, geocoding addresses, and so
on.

Dataflow templates are delivered with each module that you license. For instance, if you are licensed
for Spectrum Data Normalization, you receive the Standardizing Personal Names dataflow template.
If you are licensed for Spectrum Universal Addressing, you receive the Validating U.S. and Canadian
Addresses dataflow templates.

Depending on the purpose of each template, it may be a job with sample data or it may be a service
with no sample data. You can use dataflows in their original state and run those that are delivered
as jobs to see how they function. Alternatively, you can manipulate the dataflows by changing input
and output files or by bringing services into your own jobs and adding input and output files.

Note: These samples are intended as illustrations of various Spectrum Technology Platform
features. They are intended to be starting points and examples for solutions you can create
for your environment.

Creating a Dataflow Using a Template

Dataflow templates are delivered with each module that you license. To create a dataflow using a
template,

• In Enterprise Designer go to File > New > Dataflow > From Template.
• Or, you can click the New icon and select New Dataflow From Template.

A list of templates available for the modules you have installed is displayed.

Importing and Exporting Dataflows

You can exchange dataflows with other Spectrum Enterprise Designer users with the import and
export features.

Note: Dataflows can only be exchanged between identical versions of Spectrum Technology
Platform.

• To export a dataflow, select File > Export. If you have used the Versions feature to save versions
of the dataflow, the version you have currently selected is the version that is exported.

Note: Do not use special characters in the name of the services and jobs you define. Doing
so may result in an error during export.

• To import a process flow, select File > Import > Process Flow.

15Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

• To import a dataflow, select File > Import >Dataflow. The stages in the dataflowmust be available
on your system before you import the dataflow. If the dataflow you import contains unavailable
stages, you will see an error.

• If you use Server Explorer to organize your dataflows you can also export a dataflow by right-clicking
it and selecting Export. To import a dataflow using Server Explorer, right-click in the location in
Server Explorer where you want to import the dataflow and select Import.

16Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Getting Started

2 - Designing a Flow

In this section

Types of Flows..18
Flow Input...20
Fields..25
Control Stages..39
Module Stages..96
Flow Output..783
Embedded flows...788
Reports...792
Performance Considerations..797
Flow Versions...810

Types of Flows

A dataflow is a series of operations that takes data from some source, processes that data, then
writes the output to some destination. The processing of the data can be anything from simple sorting
to more complex data quality and enrichment actions. The concept of a dataflow is simple, but you
can design very complex dataflows with branching paths, multiple sources of input, and multiple
output destinations.

There are four types of dataflows: jobs, services, subflows, and process flows.

Job

A job is a dataflow that performs batch processing. A job reads data from one or more files or
databases, processes that data, and writes the output to one or more files or databases. Jobs run
manually through the UI or from a command line using the job executor.

This dataflow is a job. Note that it uses the Read from File stage for input and twoWrite to File stages
as output.

Service

A service is a dataflow that you can access as web services or using the Spectrum Technology
Platform API. You pass a record to the service and optionally specify the options to use when
processing the record. The service processes the data and returns the data.

Some services become available when you install a Spectrum process. For example, when you
install Spectrum Universal Addressing the service ValidateAddress becomes available on your
system. In other cases, you must create a service in Spectrum Enterprise Designer then expose that
service on your system as a user-defined service. For example, Spectrum Spatial services are
unavailable until you create a service using a Spectrum Spatial stage.

You can also design your own custom services in Spectrum Enterprise Designer. For example, the
following dataflow determines if an address is at risk for flooding:

18Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: Since the service name, option name, and field name ultimately become XML elements,
they may not contain characters that are invalid in XML element names (for example, spaces
are not valid). Services not meeting this requirement will still function but will not be exposed
as web services.

Subflow

A subflow is a dataflow that can be reused within other dataflows. Subflows are useful when you
want to create a reusable process that can be easily incorporated into dataflows. For example, you
might want to create a subflow that performs deduplication using certain settings in each stage so
that you can use the same deduplication process in multiple dataflows. To do this you could create
a subflow like this:

You could then use this subflow in a dataflow. For example, you could use the deduplication subflow
within a dataflow that performs geocoding so that the data is deduplicated before the geocoding
operation:

In this example, data would be read in from a database then passed to the deduplication subflow,
where it would be processed through Match Key Generator, then Intraflow Match, then Best of Breed,
and finally sent out of the subflow and on to the next stage in the parent dataflow, in this case Geocode
US Address. Subflows are represented as a puzzle piece icon in the dataflow, as shown above.

Subflows that are saved and exposed are displayed in the User Defined Stages folder.

Process Flow

A process flow runs a series of activities such as jobs and external applications. Each activity in the
process flow runs after the previous activity finishes. Process flows are useful if you want to run
multiple flows in sequence or if you want to run an external program. For example, a process flow
could run a job to standardize names, validate addresses, then invoke an external application to sort
the records into the proper sequence to claim postal discounts. Such a process flow would look like
this:

19Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

In this example, the jobs Standardize Names and Validate Addresses are exposed jobs on the
Spectrum Technology Platform server. Run Program invokes an external application, and the Success
activity indicates the end of the process flow.

Flow Input

To define the input for a dataflow, use a source stage. A source is the first stage in a dataflow. It
defines the input data you want to process.

Input for a Job

Input data for a job can come from a file or a database. Spectrum Technology Platform has the ability
to read data from many file formats and database types. The types of data sources you can read
from depend on which Spectrum processes you have licensed. Spectrum Data Integration provides
access to the most data sources of any module.

Note: When designing a job, it is a good idea to account for the possibility of malformed input
records. A malformed record is one that cannot be parsed using one of the parser classes
provided by Spectrum Technology Platform. For information about handling malformed input
records, see Managing malformed input records on page 21.

Input for a Service

Input data for a service is defined in an Input stage. This stage defines the fields that the service will
accept from a web service request or an API call.

Defining Job Input

Input data for a job can come from a file, database, or cloud service, depending on the modules you
have licensed. Each module supports input from different sources, and the procedure for configuring
each type of source varies greatly. See the solution guide for your modules available at
support.precisely.com.

20Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://support.precisely.com

Managing malformed input records
A malformed record is one that Spectrum Technology Platform cannot parse. When Spectrum
Technology Platform encounters a malformed record, it can do one or more of these tasks:

• Terminate the job
• Continue processing
• Continue processing until a certain number of bad records are encountered
• Continue processing but write bad records to a log file (via an optional sink stage)

Note: Malformed records functionality is limited to sources configured to read from files local
to the server and that do not have sorting configured. When a source is configured with either
a remote file or with sort fields and the source encounters a malformed record, the job will
terminate regardless of the configuration for malformed records.

To manage malformed records,

1. Open the flow on the canvas.
2. Add a malformed records sink in your flow.

a) Create your job by defining your input file and source stage and adding services and subflows
to your flow.

b) You can:

• Connect a sink stage to the optional output port on the source stage in your flow. The
optional port is the clear output port just beneath the black output port on your source
stage. If you mouse over this port, you will see a tool tip that says, "error_port." Malformed
records go to this sink.

• Connect nothing to the optional output port on the source stage in your flow, ignoring all
malformed records.

3. By default, processing stops at malformed records. This default behavior can be changed in
your Advanced configuration options or in Spectrum Management Console. Regardless of your
system's default behavior, you can override the default behavior for a job by following these
steps:
a) Open the job in Spectrum Flow Designer.
b) Within an open job, go to Edit > Job Options.
c) Select either Do not terminate the job on a malformed record or select Terminate the

job after encountering this manymalformed records and enter the number of malformed
records you will allow a job to encounter before terminating.

21Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Defining Service Input

The Input stage defines the input fields for a service or subflow. It also defines test data to use during
data inspection.

Input Fields Tab

This tab lists the fields that the dataflow accepts as input. If the Input stage is connected to another
stage in the dataflow, a list of fields used by the stages in the dataflow is shown. For more information,
see Defining Input Fields for a Service or Subflow on page 22.

Inspection Input Tab

This tab allows you to specify test input records to use with the Data Inspection tool. For more
information about data inspection, see Inspecting a flow on page 815.

Defining Input Fields for a Service or Subflow
To define the input fields for a service or subflow, use the Input stage.

Note: If you define hierarchical data in the input fields, you cannot import data or view the
data vertically.

1. Drag an Input stage to the canvas.
2. Connect the Input stage to the next stage in the dataflow.
3. Double-click the Input stage.
4. Select the fields you want to use for input. The list of fields shown depends on the stage that the

Input stage is connected to.
5. To add a new field to the field list, click Add. The Add Custom Field window appears.
6. Click Add again.
7. In the Field name field, enter the name you want to use for this field.
8. Select the data type.

These data types are supported:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

22Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

You can also add a new, user-defined data type if necessary, and that new type can be a list of
any defined data type. For example, you could define a list of names (string), or a new data type
of addresses that includes AddressLine1 (string), City (string), StateProvince (string) and
PostalCode (string). After you create the field, you can view the data type by accessing the Input

23Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options dialog and pressing the button in the Data Type column. The Data Type Details dialog
box will appear, showing the structure of the field.

9. Press OK again.
10. Click the Expose column check box to make the field available for stage operations. Clearing

the check box and clicking OK deletes the field from the field list.
11. The Data type name field displays the default element name to use for input records in SOAP

and REST web service requests to this service. The default is Row. If you want to use a different
element name for input records, enter it here.

For example, with the default value Row, a JSON web service request would use Row as the
element name for the input record, as shown here:

{
"Input":
{
"Row": [
{
"AddressLine1": "1825 Kramer Ln",
"City": "Austin",
"StateProvince": "TX"

}
]

}
}

If you were to change the value in the Data type name field to Address, the JSON request
would need to use Address instead of Row as the element name for the record, as shown here:

{
"Input":
{
"Address": [
{
"AddressLine1": "1825 Kramer Ln",
"City": "Austin",
"StateProvince": "TX"

}
]

}
}

Defining A Web Service Data Type
The Data type name field allows you to control the WSDL (SOAP) and WADL (REST) interfaces
for the service you are creating. The name of the Rows element is determined by the name you give
this stage in the service, and the name of the Row element is determined by the text you enter here.

24Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: For WSDL, both requests and responses are affected, but for WADL only responses
are affected.

Prior to naming this stage and entering text in this field, your code might look like this:

<Rows>
<Row>

<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Row>
<Row>

<FirstName>Jane</FirstName>
<LastName>Doe></LastName>
</Row>

</Rows>

After naming this stage and entering text in this field, your code might look like this:

<Names>
<Name>

<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Name>
<Name>

<FirstName>Jane</FirstName>
<LastName>Doe></LastName>

</Name>
</Names>

Fields

Flat and Hierarchical Data

Spectrum Technology Platform supports flat data and hierarchical data. In general you can use either
flat or hierarchical data as input and output for a flow. A few stages in Spectrum Spatial Routing
require data to be in a hierarchical format.

25Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Flat Data

Flat data consists of records, one on each line, and fields in each record. Fields are delimited by a
specific character or positioned in a defined location on the line. For example, this is flat data with
comma-delimited fields:

Sam,43,United States
Jeff,32,Canada
Mary,61,Ireland

To read flat data into a flow, you can use the Read from File, Read from DB, or Input stages. To
write flat data output from a flow, you can use the Write to File, Write to DB, or Output stages.

Hierarchical Data

Hierarchical data is a tree-like structure with data elements that have parent-child relationships.
Spectrum Technology Platform can read and write hierarchical data in XML and Variable Format
File format. For example, this shows hierarchical data in XML:

<customers>
<customer>
<name>Sam</name>
<age>43</age>
<country>United States</country>
</customer>
<customer>
<name>Jeff</name>
<age>32</age>
<country>Canada</country>
</customer>
<customer>
<name>Mary</name>
<age>61</age>
<country>Ireland</country>
</customer>
</customers>

This example shows a structure where <customer> represents a record and each record consists
of simple XML elements (<name>, <age>, and <country>).

Converting Data

There are many cases where you might need to convert data from flat to hierarchical, or from
hierarchical to flat. For example, you may have data flow input in hierarchical format but want the
data flow to output flat data. You may also need to convert flat input data to hierarchical data for
certain stages (especially stages in Spectrum Spatial) then convert the data back to flat data for
output.

To convert data from flat to hierarchical you can use:

26Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• The Process List tool
• The Aggregator stage in a flow

To convert data from hierarchical to flat use the Splitter stage.

Converting flat data to a list
Process List is a tool you can use within a service or subflow to turn flat data into a list.

This feature is useful if your dataflows include stages that require list input, such as those in Spectrum
Spatial.

1. With an existing flow in place, right-click the stage whose output you want to convert into a list.
This could be any stage except Input or Output.

2. Select Process List. You will see the stage within a blue square background.
3. To move a stage into and out of the process list, press the Shift key while dragging the additional

stage.

Note: If you have several stages whose data you would like Process List to handle,
consider creating a subflow, bringing it into your flow, and applying the Process List feature
to the subflow as a whole.

4. The input and output fields of a process list are called "ListField." Using the Rename Fields
function, youmust map your input stage field to "ListField" in the input channel, andmap "ListField"
to your output stage field. For more information, see Changing a field name on page 39.

5. If you want the list to keep the data in original input order, right-click the Process List box and
select Options.

6. Check the Maintain sort order box.
7. To confirm that the data input into the next stage will be formatted as a list, validate or inspect

the flow. For more information about inspecting data, see Inspecting a flow.

Data Types

Spectrum Technology Platform supports a variety of numeric, string, and complex data types.
Depending on the type of processing you want to perform you may use one or more of these. For
an address validation flow you might only use string data. For flows that involve the mathematical
computations you may use numeric or Boolean data types. For flows that perform spatial processing
you may use a complex data type. For flows that combine these, you may use a variety of data types.

Specifying a Field's Data Type

You can specify the data type for a field in these situations:

27Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Source stages: Specifying data types allows you to set the data type at the beginning of a flow,
eliminating the need for data type conversions later in the flow. Note that for Read from DB, the
data type is selected automatically and cannot be changed.

• Sink stages: Specifying data types allows you to control the data format returned by the flow. Note
that for Write to DB, the data type is selected automatically and cannot be changed.

• Transformer stage: You can specify data types in this stage if you use a custom script.
• Math stage and Group Statistics stage: Since these stages perform mathematical calculations,
choosing to use a particular numeric data type can have an effect on the results of the calculations,
such as the precision of a division operation. If you specify a data type for a field that is different
than the data type of the field coming into the stage, the downstream channel will automatically
convert the field to the data type you specify, as described in Automatic Data Type Conversion
on page 28.

Note: Each stage supports different data types. For a description of the supported data types
for each stage, see the documentation for a specific stage.

Related reference
Data types

Automatic Data Type Conversion
When the data presented to a stage is of an inappropriate type, Spectrum Technology Platform can,
in some cases, automatically convert the data to the appropriate type. For example, Validate Address
accepts only string data as input. If the PostalCode input field is of type integer, Spectrum Technology
Platform can automatically convert the field to string and successfully process the PostalCode field.
Likewise, the Math stage needs data to be of a numeric data type. If the incoming data is of type
string, Spectrum Technology Platform can convert the data to the data type specified in the Math
stage's Fields tab.

Automatic data type conversions happen in the channels of a flow. If a channel is successfully
converting a data type, there will be a blue dot in the middle of the channel:

If you double-click the channel you can see the data type conversion that's occurring. In this case,
string data is being converted to integer data:

28Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note that you cannot change the data type in this dialog box for automatic data type conversions.
The output data type is determined by settings in the downstream stage.

Fields that do not contain valid values or that cannot be converted result in a red circle in the channel.

You can specify what the flow should do if type conversion fails by using the type conversion options.

Setting Data Type Conversion Options for a Flow
Data type conversion occurs when a flow automatically converts a field to the data type needed by
a stage. Data type conversion also occurs when within some stages. For example, in Read from DB
you can choose to have a field use the string data type even though the source data is in a numeric
data type. The data is converted into the string data type when it is read into the flow.

There are two settings that you can use to control data type conversions. First, there are settings
that determine how to format numeric, date, and time data converted into a string. For example, you
may want date data that is converted into a string to be represented in the format mm/dd/yyyy rather
than dd/mm/yyyy. The other setting controls what should happen if the system is unable to convert
a field from one data type to another.

The default data type conversion settings for your system are specified in Management Console.
You can override the default formats for individual flows in Spectrum Enterprise Designer.

This procedure describes how to override the default data type conversion options for a flow.

29Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: Subflows inherit the type conversion settings from the flow they are in. You cannot
specify type conversion settings for subflows.

1. Open the flow in Spectrum Enterprise Designer.
2. Select Edit > Type Conversion Options.
3. Check the box Override system default options with the following values.
4. In the Failure handling field, specify what to do when a field's value cannot be automatically

converted to the data type required by a stage.
If a field cannot be converted the flow will fail.Fail the flow

If a field cannot be converted the record will fail but the flow will
continue to run.

Fail the record

If a field cannot be converted the field's value is replaced with the
value you specify here. This option is useful if you know that some

Initialize the field using
default values

records contain bad data and you want to replace the bad data
with a default value. Specify a value for each data type.

5. Specify the formats that you want to use for date and time data that is converted to a string.
When the data or time is converted to a string, the string will be in the format you specify here.
a) In the Locale field, select the country whose format you want to use for dates converted to

a string. Your selection will determine the default values in the Date, Time, and DateTime
fields. Your selection will also determine the language used when a month is spelled out.
For example, if you specify English the first month of the year would be "January" but if you
specify French it would be "Janvier."

b) In the Date field, select the format to use for date data when it is converted to a string. A list
of the most commonly used formats for the selected locale is provided.

For example, if you choose the formatM/D/YY and a date field contains 2020-3-2, that date
data would be converted to the string 3/2/20.

c) In the Time field, select the format to use for time data when it is converted to a string. A list
of the most commonly used formats for the selected locale is provided.

For example, if you choose the format h:mm a and a time field contains 23:00, that time
data would be converted to the string 11:00 PM.

d) In the DateTime field, select the format to use for fields containing the DateTime data type
when converted to a string. A list of the most commonly used formats for the selected locale
is provided.

For example, if you choose the formatM/d/yy h:mma and a DateTime field contains 2020-3-2
23:00, that DateTime data would be converted to the string 3/2/20 11:00 PM.

e) In theWhole numbers field, select the formatting you want to use for whole numbers (data
types float and double).

For example, if you choose the format #,### then the number 4324 would be formatted as
4,324.

30Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: If you leave this field blank, numbers will be formatted in the same way they
were in Spectrum Technology Platform 8.0 and earlier. Specifically, no thousands
separator is used, the dot (".") is used as the decimal separator, numbers less than
10-3 or greater than or equal to 107 are shown in scientific notation, and negative
numbers have a minus sign ("-") in front of them. Also note that if you leave this field
blank, numbers that use the bigdecimal data type will always be in the format
#,###.000.

f) In theDecimal numbers field, select the formatting you want to use for numbers that contain
a decimal value (data types integer and long).

For example, if you choose the format #,##0.0# then the number 4324.25 would be formatted
as 4,324.25.

Note: If you leave this field blank, numbers will be formatted in the same way they were
in Spectrum Technology Platform 8.0 and earlier. Specifically, no thousands separator is
used, the dot (".") is used as the decimal separator, numbers less than 10-3 or greater
than or equal to 107 are shown in scientific notation, and negative numbers have a minus
sign ("-") in front of them. Also note that if you leave this field blank, numbers that use the
bigdecimal data type will always be in the format #,###.000.

You can also specify your own date, time, and number formats if the ones available for selection
do not meet your needs. To specify your own date or time format, type the format into the field
using the notation described inDate and time patterns on page 32. To specify your own number
format, type the format into the file using the notation described in Number Patterns on page
34.

6. Under Null handling, choose what to do if a field that needs type conversion contains a null
value. If you select any of the options below, either the flow or the record containing the null
value will fail based on whether you selected Fail the flow or Fail the record under Type
Conversion Failures.

Fail the flow or record if type conversion is needed on a string field
that contains a null value.

Fail null string

Fail the flow or record if type conversion is needed on a Boolean field
that contains a null value.

Fail null Boolean

Fail the flow or record if type conversion is needed on a numeric field
that contains a null value. Numeric fields include double, float, long,
integer, and Big Decimal fields.

Fail null numeric

Fail the flow or record if type conversion is needed on a date field that
contains a null value. This includes date, time, and DateTime fields.

Fail null date

31Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Date and time patterns
When defining data type options for date and time data, you can create your own custom date or
time pattern if the predefined ones do not meet your needs. To create a date or time pattern, use
the notation described in the table below. For example, this pattern:

dd MMMM yyyy

Would produce a date like this:

14 December 2020

ExampleDescriptionLetter

ADEra designatorG

96Two-digit yearyy

1996Four-digit yearyyyy

7Numeric month of the year.M

07Numeric month of the year. If the number is less than 10 a
zero is added to make it a two-digit number.

MM

JulShort name of the monthMMM

JulyLong name of the monthMMMM

27Week of the yearw

06Two-digit week of the year. If the week is less than 10 an
extra zero is added.

ww

2Week of the monthW

189Day of the yearD

006Three-digit day of the year. If the number contains less than
three digits, zeros are added.

DDD

10Day of the monthd

32Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ExampleDescriptionLetter

09Two-digit day of the month. Numbers less than 10 have a
zero added.

dd

2Day of the week in monthF

TueShort name of the day of the weekE

TuesdayLong name of the day of the weekEEEE

PMAM PM markera

0Hour of the day, with the first hour being 0 and the last hour
being 23.

H

08Two-digit hour of the day, with the first hour being 0 and the
last hour being 23. Numbers less than 10 have a zero added.

HH

24Hour of the day, with the first hour being 1 and the last hour
being 24.

k

02Two-digit hour of the day, with the first hour being 1 and the
last hour being 24. Numbers less than 10 have a zero added.

kk

0Hour hour of the morning (AM) or afternoon (PM), with 0
being the first hour and 11 being the last hour.

K

02Two-digit hour of the day, with the first hour being 1 and the
last hour being 24. Numbers less than 10 have a zero added.

KK

12Hour of the morning (AM) or afternoon (PM), with 1 being
the first hour and 12 being the last hour.

h

09Two-digit hour of the morning (AM) or afternoon (PM), with
1 being the first hour and 12 being the last hour. Numbers
less than 10 have a zero added.

hh

30Minute of the hourm

05Two-digit minutes of the hour. Numbers less than 10 have
a zero added.

mm

33Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ExampleDescriptionLetter

55Second of the minutes

02Two-digit second of the minute. Numbers less than 10 have
a zero added.

ss

978Millisecond of the secondS

978
078
008

Three-digit millisecond of the second. Numbers containing
fewer than three digits will have one or two zeros added to
make them three digits.

SSS

PST
GMT-08:00

Time abbreviation of the time zone name. If the time zone
does not have a name, the GMT offset.

z

Pacific Standard Time
GMT-08:00

The full time zone name. If the time zone does not have a
name, the GMT offset.

zzzz

-0800The RFC 822 time zone.Z

-08ZThe ISO 8601 time zone.X

-0800ZThe ISO 8601 time zone with minutes.XX

-08:00ZThe ISO 8601 time zone with minutes and a colon separator
between hours and minutes.

XXX

Number Patterns
When defining data type options for numeric data, you can create your own custom number pattern
if the predefined ones do not meet your needs. A basic number pattern consists of the elements
below:

• A prefix such as a currency symbol (optional)
• A pattern of numbers containing an optional grouping character (for example a comma as a
thousands separator)

• A suffix (optional)

For example, this pattern:

$ ###,###.00

34Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Would produce a number formatted like this (note the use of a thousands separator after the first
three digits):

$232,998.60

Patterns for Negative Numbers

By default, negative numbers are formatted the same as positive numbers but have the negative
sign added as a prefix. The character used for the number sign is based on the locale. The negative
sign is "-" in most locales. For example, if you specify this number pattern:

0.00

The number negative ten would be formatted like this in most locales:

-10.00

However, if you want to define a different prefix or suffix to use for negative numbers, specify a
second pattern, separating it from the first pattern with a semicolon (";"). For example:

0.00;(0.00)

In this pattern, negative numbers would be contained in parentheses:

(10.00)

Scientific Notation

If you want to format a number into scientific notation, use the character E followed by the minimum
number of digits you want to include in the exponent. For example, given this pattern:

0.###E0

The number 1234 would be formatted like this:

1.234E3

In other words, 1.234 x 103.

Note that:

• The number of digit characters after the exponent character gives the minimum exponent digit
count. There is no maximum.

• Negative exponents are formatted using the localized minus sign, not the prefix and suffix from the
pattern.

• Scientific notation patterns cannot contain grouping separators (for example, a thousands separator).

Special Number Pattern Characters

The characters below render other characters, as opposed to being reproduced literally in the resulting
number. If you want to use any of these special charters as literal characters in your number pattern's
prefix or suffix, surround the special character with quotes.

35Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionSymbol

Represents a digit in the pattern including zeros where needed to fill in the pattern.
For example, the number twenty-seven when applied to this pattern:

0000

Would be:

0027

0

Represents a digit but zeros are omitted. For example, the number twenty-seven
when applied to this pattern:

####

Would be:

27

#

The decimal separator or monetary decimal separator used in the selected locale.
For example, in the U.S. the dot (.) is used as the decimal separator but in France
the comma (,) is used as the decimal separator.

.

The negative sign used in the selected locale. For most locals this is the minus sign
(-).

-

The grouping character used in the selected locale. The appropriate character for
the selected locale will be used. For example, in the U.S., the comma (,) is used as
a separator.

The grouping separator is commonly used for thousands, but in some countries it
separates ten-thousands. The grouping size is a constant number of digits between
the grouping characters, such as 3 for 100,000,000 or 4 for 1,0000,0000. If you
supply a pattern with multiple grouping characters, the interval between the last one
and the end of the integer is the one that is used. For example, all the following
patterns produce the same result:

#,##,###,####

######,####

##,####,####

,

Separates mantissa and exponent in scientific notation. You do not need to surround
the E with quotes in your pattern. See Scientific Notation on page 35.

E

Separates positive and negative subpatterns. See Patterns for Negative Numbers
on page 35.

;

36Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionSymbol

Multiply the number by 100 and show the number as a percentage. For example,
the number .35 when applied to this pattern:

##%

Would produce this result:

35%

%

The currency symbol for the selected locale. If doubled, the international currency
symbol is used. If present in a pattern, the monetary decimal separator is used instead
of the decimal separator.

¤

Used to quote special characters in a prefix or suffix. For example,

"'#'#"

Formats 123 to:

"#123"

To create a single quote itself, use two in a row:

"# o''clock"

'

*Changing a field's data type
Spectrum Technology Platform automatically changes field data types as needed using the type
conversion settings specified in Spectrum Management Console, or the dataflow type conversion
options specified in Spectrum Enterprise Designer. In most situations you do not need to manually
change field data types because any necessary data type conversions are handled automatically.
However, in cases where a stage is unable to convert incoming data to the necessary data type, you
may need to manually change the data type in the upstream channel.

There are only a few possible type conversions that you can perform manually. Those are:

• Polygon and MultiPolygon types can be converted to and from a geometry type.
• Date, time, and datetime data types can be converted to and from a string type.

To manually change a field's data type, follow this procedure.

1. In Spectrum Enterprise Designer, double-click the channel where you want to change the field's
data type. A channel is the line that connects two stages on the canvas.

2. Click the small square button next to the data type that you want to change.

Note: If a small square button is not visible next to the data type, then manual data type
conversion is not available for your situation.

37Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. For date, time, and datetime data types:

Note: Only the appropriate options will be displayed depending on the data type chosen.

a) In the Locale field, select the country whose format you want to use for dates converted to
a string. Your selection will determine the default values in the Date, Time, and DateTime
fields. Your selection will also determine the language used when a month is spelled out.
For example, if you specify English the first month of the year would be "January" but if you
specify French it would be "Janvier."

b) In the Date field, select the format to use for date data when it is converted to a string. A list
of the most commonly used formats for the selected locale is provided.

For example, if you choose the formatM/D/YY and a date field contains 2020-3-2, that date
data would be converted to the string 3/2/20.

c) In the Time field, select the format to use for time data when it is converted to a string. A list
of the most commonly used formats for the selected locale is provided.

For example, if you choose the format h:mm a and a time field contains 23:00, that time
data would be converted to the string 11:00 PM.

d) In the DateTime field, select the format to use for fields containing the DateTime data type
when converted to a string. A list of the most commonly used formats for the selected locale
is provided.

For example, if you choose the formatM/d/yy h:mma and a DateTime field contains 2020-3-2
23:00, that DateTime data would be converted to the string 3/2/20 11:00 PM.

e) In theWhole numbers field, select the formatting you want to use for whole numbers (data
types float and double).

For example, if you choose the format #,### then the number 4324 would be formatted as
4,324.

Note: If you leave this field blank, numbers will be formatted in the same way they
were in Spectrum Technology Platform 8.0 and earlier. Specifically, no thousands
separator is used, the dot (".") is used as the decimal separator, numbers less than
10-3 or greater than or equal to 107 are shown in scientific notation, and negative
numbers have a minus sign ("-") in front of them. Also note that if you leave this field
blank, numbers that use the bigdecimal data type will always be in the format
#,###.000.

f) In theDecimal numbers field, select the formatting you want to use for numbers that contain
a decimal value (data types integer and long).

For example, if you choose the format #,##0.0# then the number 4324.25 would be formatted
as 4,324.25.

4. Click OK.

38Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The color of the data type name changes to green.

5. Click OK again to save the change.

Changing a field name

There are a variety of situations where you may need to rename a field in a flow. For example:

• A stage's input requires certain field names but the previous stage's output uses other field names.
• There is data in a field which you want to preserve when a downstream stage writes data to a field
of the same name.

Note: After a field is renamed, it is no longer available in subsequent stages with the old
name.

1. In a flow, double-click the channel between two stages. The Field Transform Options dialog
box appears.

2. Change the field name or names as desired.

For example, the latter stage could require "AddressLine3" but the former stage uses "FirmName"
instead. In this case, you would click the drop-down arrow in the Input Field Name that
corresponds to AddressLine3 as the Output Field Name and select "FirmName."

The color of the output field name changes to green.

3. Click OK.

Reserved Field Names

Flow designer reserves these field names, so do not use these names in your flows:

• Status
• Status.Code
• Status.Description

Control Stages

Use control stages to move data along different paths in a flow, to split or group records, and to
perform basic data transforms and mathematical operations.

39Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Aggregator

Aggregator converts flat data to hierarchical data. It takes input data from a single source, creates
a schema (a structured hierarchy of data) by grouping the data based on fields you specify, then
constructs the groups in the schema.

Note: You cannot configure this stage in the technical preview version of Spectrum Flow
Designer.

Aggregator converts flat data to hierarchical data. It takes input data from a single source, creates
a schema (a structured hierarchy of data) by grouping the data based on fields you specify, then
constructs the groups in the schema.

Note: If your data includes a field by which you will group your data, such as an ID field, you
must sort your data before running it through an Aggregator. You can do this by sorting the
data prior to bringing it into the flow, by sorting the input file within Spectrum Enterprise Designer
(for jobs or subflows, but not services) or by adding a Sorter stage to your flow (for jobs,
services, or subflows).

Group By

Choose the field you want to use as the basis for aggregating into a hierarchy by selecting Group
by in the tree then clicking Add. Records that have the same value in the field you choose will have
their data aggregated into a single hierarchy. If you select multiple fields then the data from all fields
must match in order for the records to be grouped into a hierarchy.

For example, if you want to group data by account number you would select the account number
field. All incoming records that have the same value in the account number field would have their
data grouped into a single hierarchical record.

Note: You must connect a stage to the Aggregator input port in order for a list of fields to be
available to choose from.

Output Lists

The fields you choose underOutput lists determine which fields are included in each record created
by Aggregator. To add a field, select Output lists then click Add and choose one of these options:

Select this option if you want to add a field from the flow to the hierarchy.Existing field
Select this option if you want to create a parent field to which you can
then add child fields.

New data type

This option allows you to add a field based on data in the stage
connected to the Aggregator's output port.

Template

If you want the field to have child fields, check the List box.

40Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Enter the name of the field in the Name text box, or leave it as-is if it auto-filled and you are satisfied
with the name. Keep in mind that the Aggregator stage does not allow invalid XML characters in field
names; it does allow alphanumeric characters, periods (.), underscores (_), and hyphens (-).

Click Add to add the field. You can specify another field to add to the same level in the hierarchy or
you can click Close.

To add child fields to an existing field, select the parent field then click Add.

Note: You can modify the field group by highlighting a row and clicking Modify, and you can
remove a field group by highlighting a row and clicking Remove. You can also change the
order of fields by clicking a field and clicking Move Up or Move Down.

Broadcaster

A Broadcaster takes a stream of records and splits it into multiple streams, allowing you to send
records to multiple stages for simultaneous processing.

Broadcaster has no settings to change.

Conditional Router

The Conditional Router stage sends records to different paths in the flow depending on the criteria
you specify. The stage can have one or more output ports, depending on the defined criteria. Output
ports are numbered consecutively, starting with 1 (which displays as "port").

The output ports connect to different stages to which the data is to be sent, depending on defined
conditions. For example, you can send one set of records to port 1 in case of a successful match,
while a different set of records can be sent to port 2 in case of a failed match.

An input record is written to the Conditional Router's output port only if the entire expression evaluates
to true.

Configuring a Conditional Router
1. Under Control Stages, click on Conditional Router and drag it to the canvas, placing it in the

desired location within the flow.
2. Connect the router to other stages on the canvas.

Note: This is a mandatory step before defining the port settings. Otherwise the ports are
not available for editing.

3. Double-click on the Conditional Router stage on the canvas.
The Conditional Router Options window appears.

41Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. Click the square button in the Condition/Expression column against the port row.
The Expressions Editor window appears.

5. In the Choose Expression Type section, select one of the following:

• Expression created with Expression Builder: Select this option to create a basic expression,
where you can add Groups and Expressions, which can be combined using different logical
operators. For more information, see Using the Expression Builder on page 42.

• Custom expression: Select this option to write an expression using the Groovy scripting
language. For more information, seeWriting a Custom Expression on page 45.

• Default expression: Select this to route records to this port by default. Records that do not
match any of the other ports' expressions will be routed to this port. You should always have
an output port with "default" as the expression to ensure that no rows are missed in case of a
port mismatch, and all rows are written from the router.

6. Click OK. The Expressions Editor window closes.
7. Click OK on the Conditional Router Options window.

Using the Expression Builder
The Expression Builder of the Conditional Router stage allows you to create an expression that
must evaluate to true for an input record to be routed to the output port of the stage.

1. Each parent group comprises of a desired conditional combination of child expressions and child
groups.

2. Each expression consists of a left operand, a right operand and a logical operator.
3. Each group must specify whether all or any of its constituent conditions must hold true for the

entire group to evaluate to true.

To build an expression using the Expression Builder:

1. In the Expression Editor, select the option Expression created with Expression Builder.
By default, the Expression Builder option is selected and a parent group is displayed in the
expression hierarchy tree on the left of the Expression Builder section.

2. To add a child group within the selected group, click Add Group .
This newly added group gets added as a child of the parent group, and is selected in the tree
by default. Within each group, you can add child expressions and child groups.

3. For each group, select either All true or Any true under the Combine expression method
header.

• All true: The group evaluates to true only if all the child criteria of the group hold true.
• Any true: The group evaluates to true if even one of its child criteria hold true.

4. To add a child expression within the selected group, click Add Expression.
The newly added expression gets added as a child of the parent group and is selected in the
tree by default.

To define this child expression:

42Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

a) Specify the left operand of the selected expression using the Field dropdown to select any
one of the columns in the input file.

b) Specify the logical operator connecting the two components of the selected expression by
selecting the appropriate operator from the Operator field as explained below:

Table 1: Expression Builder Operators

DescriptionOperator

Checks if the value in the field matches the value or field specified.Is Equal

Checks if the value in the field does not match the value or field specified.Is Not Equal

Checks if the field is a null value.Is Null

Checks if the field is not a null value.Is Not Null

Checks if the field is null or a string with a length of 0.

Note: This operation is only available for fields with a data type of string.

Is Empty

Checks if the field is neither null nor a string with a length of 0.

Note: This operation is only available for fields with a data type of string.

Is Not Empty

Checks if the field has a numeric value that is less than the value specified. This
operator works on numeric data types as well as string fields that contain numbers.

Note: This operation is not available for fields with a data type of Boolean.

Is Less Than

Checks if the field has a numeric value that is less than or equal to the value
specified. This operator works on numeric data types as well as string fields that
contain numbers.

Note: This operation is not available for fields with a data type of Boolean.

Is Less Than Or Equal To

43Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOperator

Checks if the field has a numeric value that is greater than the value specified. This
operator works on numeric data types as well as string fields that contain numbers.

Note: This operation is not available for fields with a data type of Boolean.

Is Greater Than

Checks if the field has a numeric value that is greater than or equal to the value
specified. This operator works on numeric data types as well as string fields that
contain numbers.

Note: This operation is not available for fields with a data type of Boolean.

Is Greater Than Or Equal
To

Checks if the field begins with the characters specified.

Note: This operation is only available for fields with a data type of string.

Starts With

Checks if the field does not begin with the characters specified.

Note: This operation is only available for fields with a data type of string.

Does Not Start With

Checks if the field contains the string specified.

Note: This operation is only available for fields with a data type of string.

Contains

Checks if the field does not contain the string specified.

Note: This operation is only available for fields with a data type of string.

Does Not Contain

Checks if the field ends with the characters specified.

Note: This operation is only available for fields with a data type of string.

Ends With

Checks if the field ends with the characters specified.

Note: This operation is only available for fields with a data type of string.

Does Not End With

44Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOperator

Matches the field with a regular expression for identifying strings of text of interest,
such as particular characters, words, or patterns of characters. The value field
should contain a valid regular expression pattern.

Note: This operation is only available for fields with a data type of string.

Matches Regular
Expression

c) Specify the right operand of the selected expression by selecting either Value or Field.

• Value: The left operand of the selected expression is compared to this value.
• Field: The left operand of the selected expression is compared to this column of the same
input file. Select the right operand column from the dropdown.

5. To add a sibling expression or sibling group to any entity, select that entity in the tree and click
Add Expression or Add Group respectively.

6. To shift a child expression or child group from one parent group to a different parent group, drag
it to the desired parent group header in the criteria tree on the left.

7. Repeat the above steps to add as many child expressions and child groups as are required to
create the desired final expression criteria.

8. Click OK.
TheCondition/Expression column in theConditional Router Optionswindow displays the defined
expression criteria, which must evaluate to true for a record to be written to the stage's corresponding
output port.

Writing a Custom Expression
You can write your own custom expressions to control how Conditional Router routes records using
the Groovy scripting language to create an expression.

Using Groovy Scripting

For information about Groovy, see groovy-lang.org.

Groovy expressions used in the Conditional Router stage must evaluate to a Boolean value (true or
false) which indicates whether the record should be written to the port. The record is routed to the
first output port whose expression evaluates to true.

For example, if you need to route records with a validation confidence level of >=85 to one stage
and records with a validation confidence level of <85 to another stage, your script would look like:

data['Confidence']>=85

The script for the other port would look like:

data['Confidence']<85

45Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org

The router would evaluate the value of the Confidence field against your criteria to determine which
output port to send it to.

Checking a Field for a Single Value
This example evaluates to true if the Status field has 'F' in it. This would have to be
an exact match, so 'f' would not evaluate to true.

return data['Status'] == 'F';

Checking a Field for Multiple Values
This example evaluates to true if the Status field has 'F' or 'f' in it.

boolean returnValue = false;
if (data['Status'] == 'F' || data['Status'] == 'f')
{
returnValue = true;
}
return returnValue;

Evaluating Field Length
This example evaluates to true if the PostalCode field has more than 5 characters.

return data['PostalCode'].length() > 5;

Checking for a Character Within a Field Value
This example evaluates to true if the PostalCode field has a dash in it.

boolean returnValue = false;
if (data['PostalCode'].indexOf('-') != -1)
{
returnValue = true;
}
return returnValue;

Scripting Guidelines

1. Column names must be enclosed within either single or double quotes.

For example, this syntax is incorrect because the column name PostalCode is not enclosed
within either single or double quotes.

return data[PostalCode];

46Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. A column name must be specified.

For example, this syntax is incorrect because no column is specified.

return data[];

3. A return statement must return a Boolean value.

For example, this script is incorrect because row.set('PostalCode', '88989') does not
return a Boolean value. It just sets the value of the PostalCode field to 88989.

return row.set('PostalCode', '88989');

4. Use a single equals sign (=) to set the value of a field, and a double equals sign (==) to check
the value of a field.

Group Statistics

The Group Statistics stage allows you to run statistical operations across multiple data rows broken
down into groups that you want to analyze. If no groups are defined all rows will be treated as
belonging to one group.

Groups are defined by one or more fields that have the same value across multiple data rows.

For example, the data in this table could be grouped by region, state, or both.

StateRegion
MDEast
MDEast
CTEast
CAWest
CAWest

A group by Region would yield East and West. A group by State would yield California, Connecticut,
and Maryland. A group by Region and State would yield East/Maryland, East/Connecticut, and
West/California.

Input

The Group Statistics stage takes any field as input. Grouping can be performed on numeric or string
data.

47Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options

Table 2: Operations Tab

DescriptionOption

Lists the fields in the flow that you can use to group records and perform calculations.Input fields

Specifies the field or fields you want to use as categories for the calculations. For example,
if you had data that included a Region field and you wanted to calculate total population
by region, you would group by the Region field.

To add a field, select the field in the Input fields list then click >>.

Row

Optional. For creating a pivot table, specifies the field or fields whose values you want to
pivot into columns for the purposes of cross tabulation.

To add a field, select the field in the Input fields list then click >>.

For example, if you had data that includes regions and shipping dates, and you want to
tally the number of shipments each day for each state, you must specify the state field as
a row and the shipment date field as a column.

Column

Indicates that the input data is already sorted.

If this check box is checked, the stage does not sort the data and performs the specified
operation directly on the input data.

Rows and Columns are
presorted in the configured
order

Specifies the calculation to perform on each group. To add an operation, select the field
in the Input fields list that you want to use for the operation then click >>.

For more information about the supported Group Statistics operations, see Operations
on page 50.

Operation

48Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

For the input and output fields, specifies the data type.

A numeric data type that contains both negative and positive whole
numbers between -231 (-2,147,483,648) and 231-1 (2,147,483,647)

Integer

A numeric data type that contains both negative and positive whole
numbers between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807)

Long

A numeric data type that contains both negative and positive single
precision numbers between 2-149 (1.4E-45) and (2-223)×2127

(3.4028235E38)

Float

A numeric data type that contains both negative and positive double
precision numbers between 2-1074 (4.9E-324) and (2-2-52)×21023

(1.7976931348623157E308)

Double

Note: When using the integer and long types, data can be lost if the input number
or calculated number from an operation contains decimal data.

Type

Returns the actual number of records in a group on which the selected operation is
performed.

This columnComputational Count excludes those input records where the column on which
the operation is performed contains null values.

Get count of records that are
computed upon

Fields Tab
The Fields tab is used when creating a pivot table. For more information, seeCreating a Pivot Table
on page 55.

Output Tab

DescriptionOption

For each group of rows, return a single row that contains the aggregated data for all
rows in the group. Individual rows will be dropped. If this option is not selected, all
rows will be returned. No data will be dropped.

This option is not available if you use the Percent Rank or ZScore operations.

Return one row for each group

Returns the number of rows in each group. The default output field name that will
contain the count is GroupCount.

Return a count of rows in each
group

49Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Returns a unique ID for each group of rows. The ID starts at 1 and increments by 1
for each additional group found. The default field name is GroupID.

Return a unique ID for each group

Operations
The calculations available are:

For each group, calculates the average value of a given field. For example, if you
had a group of records with values 10, 12, 1, and 600 in a given field, the average
value of that field for that group would be 155.75, calculated as (10+12+1+600)÷4.

Average

For each group, returns the largest value in a given field. For example, if you had
a group of records with values 10, 12, 1, and 600 in a given field, the maximum
value of that field for that group would be 600.

Maximum

For each group, returns the smallest value in a given field. For example, if you
had a group of records with values 10, 12, 1, and 600 in a given field, the minimum
value of that field for that group would be 1.

Minimum

For each record within a group, calculates the percentile rank of a value in a given
field relative to other records in the group. The percentile rank represents the
percentage of records in the group with lower values in the field.

Percent Rank

For each group, calculates the value that would represent the percentile you
specify (0 - 100) for a given field. A percentile represents the percentage of records

Percentile

that have a lower score. For example, if you have a group of records with values
22, 26, and 74, and you perform a percentile calculation specifying the 60th
percentile, the operation would return 35.6. This means that a record with a value
of 35.6 in the given field would be in the 60th percentile of records in the group.

For each group, calculates the standard deviation for a given field. The standard
deviation measures the amount of dispersion within the group. The lower the

Standard
Deviation

standard deviation, the more the values are centered around the mean value, and
therefore the less dispersed the values. The higher the value, the more widely
dispersed the values. The standard deviation is expressed in the same units as
the data. The standard deviation is the square root of the variance.

For each group, calculates the sum of the values for a given field.Sum

For each group, calculates the variance for a given field. The variance measures
the amount of dispersion within the group. It is the square of the standard deviation.

Variance

For each record in a group, returns the ZScore. The ZScore indicates how many
standard deviations a value is above or below the group's mean.

ZScore

For each group, returns first dictionary value. If there are more than one field
values having same length or dictionary position, it returns the first occurrence of

Alphabetical
First

50Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

that value. For example, if group has a record with values Joel and Joey in a field,
then the alphabetical first value for a group will be Joel as l comes before y in
alphabet.

For each group, returns last dictionary value. If there are more than one field
values having same length or dictionary position, it returns the last occurrence of

Alphabetical
Last

that value. For example, if group has a record with values Joel and Joey in a field,
then the alphabetical last value for a group will be Joey as y comes after l in
alphabet.

For each group, returns longest value. For example, if group has a record with
values Joel and Jacob in a field, then the longest length value for a group will be
Jacob as it has 5 alphabets whereas Joel has 4.

Longest

For each group, returns shortest value. For example, if group has a record with
values Joel and Jacob in a field, then the shortest length value for a group will be
Joel as it has 4 alphabets whereas Jacob has 5.

Shortest

For each group, returns the latest date or datetime value. For example, if a group
has a record with values 15-12-2014 and 24-12-2014 in a field, then the latest
value for the group is 24-12-2014.

Latest

For each group, returns the earliest date or datetime value. For example, if a
group has a record with values 15-12-2014 and 24-12-2014 in a field, then the
earliest value for the group will be 15-12-2014.

Earliest

Output Columns

Description and Valid ValuesField Name

Contains the result of a calculation. Group Statistics creates one output field for
each operation and names the field based on the operation and field. For example,
the default field name for a Sum operation performed on a field named Population
would be SumOfPopulation.

OperationOfInputFieldName

Contains the result of a pivot, where Value is one of the values in a pivot column
and Operation is the operation performed on the column. For more information,
see Creating a Pivot Table on page 55.

Value_Operation

Indicates the number of records in the group.GroupCount

A unique number assigned to each group sequentially. The first group has a
GroupID value of 1, the second has a value of 2, and increments accordingly.

GroupID

51Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description and Valid ValuesField Name

Indicates the actual number of records in a group on which the operation is
performed. For example, for the operation Average performed on the Salary
column, the column ComputationalCountAverageOfSalary is generated.

ComputationalCountOperationOfInputFieldName

Reports the success or failure of the Group Statistics calculations.

Successnull

FailureF

Status

Reason for the processing failure. The status codes available are:

The Group Statistics stage was unable to
perform its calculations.

UnableToDoGroupStatistics

The percentile value could not be calculated
using the input data provided.

Error calculating percentile
value

Status.Code

A verbose description of the error.

The input field value could not be converted to the field type. It might be
overflow!

A number in an input field is larger than the data type allows. Try converting to a
data type that supports larger numbers, such as double.

Status.Description

Group Statistics Example
This input data shows the number of customers you have in certain counties. The
data also shows the U.S. state in which the county is located (MD, VA, CA, and
NV), as well as the region (East or West). The first row is a header record.

Region|State|County|Customers
East|MD|Calvert|25
East|MD|Calvert|30
East|MD|Prince Georges|30
East|MD|Montgomery|20
East|MD|Baltimore|25
East|VA|Fairfax|45
East|VA|Clarke|35
West|CA|Alameda|74
West|CA|Los Angeles|26
West|NV|Washoe|22

If you wanted to calculate the total number of customers for each region, you would
define the Region field as a row in theOperations tab. For the operation, you would
perform a sum operation on the Customers field.

52Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The result:

Region|SumOfCustomers
East|210.0
West|122.0

Note: This example shows a basic group statistics operation using only
rows to aggregate data. You can also create a pivot table, which aggregates
both rows and columns, by specifying a column to group by in theOperations
tab. For more information about creating a pivot table, see Creating a Pivot
Table on page 55.

Pivot Tables
A pivot table aggregates and transposes column values in the flow to make it easier to analyze data
visually. With pivot, you can arrange input columns into a cross tabulation format (also known as
crosstab) that produces rows, columns and summarized values. You can also use fields as input
and not display them. You can use pivot to pivot on two dimensions or to group aggregate data on
one dimension.

This example shows sales data for shirts.

Table 3: Input Data

CostPriceUnitsShip DateStyleGenderRegion

10.4211.04121/31/2010TeeBoyEast

10.6013.00126/31/2010GolfBoyEast

11.7411.96122/25/2010FancyBoyEast

10.5611.27101/31/2010TeeGirlEast

11.9512.12106/31/2010GolfGirlEast

13.3313.74101/31/2010FancyGirlEast

10.9411.44111/31/2010TeeBoyWest

11.7312.63112/25/2010GolfBoyWest

53Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

CostPriceUnitsShip DateStyleGenderRegion

10.5112.06112/25/2010FancyBoyWest

13.2913.42152/25/2010TeeGirlWest

10.6711.48156/31/2010GolfGirlWest

10.4216.04172/25/2010TeeBoyNorth

12.4211.56122/25/2010FancyBoyNorth

18.4212.32162/25/2010TeeGirlNorth

13.2311.78181/31/2010GolfBoyNorth

11.6418.45122/25/2010TeeGirlNorth

19.8511.23142/25/2010GolfGirlNorth

13.4212.54161/31/2010FancyBoyNorth

15.83181.73172/25/2010TeeGirlNorth

13.4214.15191/31/2010FancyBoySouth

12.9211.85112/25/2010TeeGirlSouth

14.3511.54131/31/2010FancyGirlSouth

14.7314.14152/25/2010TeeBoySouth

17.8317.83162/25/2010GolfBoySouth

12.3518.24116/31/2010FancyGirlSouth

12.9519.94201/31/2010TeeGirlSouth

19.5621.25122/25/2010GolfBoySouth

54Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

We want to be able to determine how many units we sold in each region for every
ship date. To do this, we use pivot to generate this table:

Table 4: Pivot Table

6/31/2020_ShipDate2/25/2020_ShipDate1/31/2020_ShipDateRegion

221232East

8834North

115452South

153711West

In this case, the column is Ship Date, the row is Region, and the data we would
like to see is Units. The total number of units shipped is displayed here using a sum
aggregation.

Creating a Pivot Table
A pivot table summarizes data for easier analysis by creating table row and column categories based
on input data. For more information, see Pivot Tables on page 53.
In the Group Statistics stage options:
1. In the Operations tab, select a field from Input Fields which contains the data you want to use

as the row labels in your pivot table. Then click the >> button next to the Rows field.
2. Select a field that contains the data you want to use as the columns in your pivot table then click

the >> button next to the Columns field.

Tip: At this point, run inspection to see the results of your selections. This will help you visualize
the results of the cross tabulations based on the columns and rows you have selected.

3. To skip sorting the input records, check Rows and Columns are pre-sorted in the configured
order.
If this field is checked, the stage processes the input records without sorting them.

Note: Check this if the records are already sorted.

4. To define the operation to be performed, click the >> button next to the Operations field.
In the Add Operation window:
a) Select the Operation to be performed.

55Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

b) In the Input Field section, select theName and Type of the input field on which the operation
must be performed.

c) In the Output Field section, enter the Name and select the Type of the output field to be
generated once the operation is performed.

d) To fetch the actual count of input records on which the operation is performed as a separate
output column, check Get count of records that are computed upon.
Records with null values are not included in the count
ComputationalCount<Operation>Of<InputFieldName>.

Functions on which Computational Count is supported:

• Average
• Variance
• ZScore
• Standard Deviation
• Percentile
• Percent Rank
• Sum

For any other operation, this check box remains disabled.

5. To define the output fields for each column in the pivot table, click the Fields tab of the stage
options.

Tip: In order to define fields accurately, run an inspection flow once, before this step, to see the
column names generated by your data.

a) Click Add to display the Add Field window.
b) In the Add Field window, the grid columns are based on the Columns fields you chose in

the Operations tab. In these grid columns, enter those values that you see as the column
headings on running an inspection flow.
The records in the column Data can also be populated in one go by using the Import feature.
To import data from a CSV or TXT file:

1. Click Import
2. Browse the source file using File name field
3. Enter the Field and Record Separator values
4. Click OK

All the records in the file get populated in the Column Data table.

Note: The source file should not have any header row.

For example, if you selected an input field called ShipDat e inColumns in theOperations
tab, the grid in the Add Field window would have a column labeled ShipDate. In this grid
column, enter the exact ShipDate values present in your flow input data, such as
2/25/2010, 1/31/2010.

56Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

c) In theOperation field, select one or more operations for which output columns are generated
for each entered column field value. Note that the operation you select only affects the field
name and does not control the actual calculation.
To change the operations listed in the Operation field of the Fields tab, modify the
Operations field values in the Operations tab.

Attention: The Computational Count operation option
ComputationalCountOperationOfInputFieldName is listed only if the Get count of
records that are computed upon check box is selected while defining the Operation in
the Operations tab.

d) Click Add.

6. Click OK.

For each input value you entered in the grid above, output columns are automatically created by
mapping those against each of the selected Operation values. A Cartesian product of the entered
input column values in the grid and the selected Operations is used to automatically generate the
final output columns.

The names of these output columns follow the naming convention
Data_OperationOfInputFieldName, where Data is the value you specified in the first field,
Operation is the operation you selected in the Operation field, and InputFieldName is input
column on which the Operation is performed.

Pivot Table Example
The input data which shows shipping information from the fulfillment department:

Region,State,County,ShipDate,Unit
East,MD,Calvert,1/31/2010,
East,MD,Calvert,6/31/2010,212
East,MD,Calvert,1/31/2010,633
East,MD,Calvert,6/31/2010,234
East,MD,Prince Georges,2/25/2010,112
East,MD,Montgomery,1/31/2010,120
East,MD,Baltimore,6/31/2010,210
East,VA,Fairfax,1/31/2010,710
West,CA,SanJose,1/31/2010,191
West,CA,Alameda,2/25/2010,411
West,CA,Los Angeles,2/25/2010,
West,CA,Los Angeles,2/25/2010,215
West,CA,Los Angeles,6/31/2010,615
West,CA,Los Angeles,6/31/2010,727

To determine the number of shipments that went out on each shipping date for
each state, create a pivot table by configuring the Group Statistics stage as:

• Operations tab > Input Fields = County, Region, ShipDate, State, Unit

• Rows = State
• Columns = ShipDate

57Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Operations = Assign Sum of Unit to SumOfUnit

• Fields tab > Stage options = Add the exact dates in the grid that appear in the
ShipDate field of the flow input data, and select the Operation values to be
displayed for each of the column values.

• Fields tab >

On clicking OK in the Add Field window, the output columns to be created are
automatically listed in the Fields tab. These output columns are aCartesian product
of the exact input values and the operations you selected in the Add Field window.
Output

State,1/31/2010_GroupCount,1/31/2010_ComputationalCountSumOfUnit,
1/31/2010_SumOfUnit,2/25/2010_GroupCount,2/25/2010_ComputationalCountSumOfUnit,
2/25/2010_SumOfUnit,6/31/2010_GroupCount,6/31/2010_ComputationalCountSumOfUnit,
6/31/2010_SumOfUnit
VA,1,1,710,,,,,,
CA,1,1,191,3,2,626,2,2,1342
MD,3,2,753,1,1,112,3,3,656

Math

The Math stage handles mathematical calculations on a single data row and allows you to conduct
a variety of math functions using one or more expressions. Data is input as strings but the values
must be numeric or Boolean, based on the type of operation being performed on the data.

1. Under Control Stages, click the Math stage and drag it to the canvas, placing it where you want
on the flow.

2. Connect the stage to other stages on the canvas.
3. Double-click the Math stage. The Math Options dialog box appears, with the Expressions tab

open. This view shows the input fields, the Calculator, and the Expressions canvas. Alternately,
you can click the Functions tab to use functions instead of the Calculator.

The Input fields control lists the valid fields found on the input port. Field name syntax is very flexible
but has some restrictions based on Groovy scripting rules. If you are not familiar with Groovy scripting,
see this website for complete information about Groovy:groovy-lang.org.

Note: This stage is not available in the tech preview version of Flow Designer.

58Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org

Using the Calculator
The Calculator control contains buttons for entering numeric constants and operators into an
expression. Double-clicking fields, constants, operators, and functions will insert them into an
expression.

Table 5: Calculator Operators

Description

Used to go back one space in an expression

Pi, a mathematical constant which is the ratio of the circumference of a circle to its diameter

Euler's Number, a mathematical constant that is the base of the natural logarithm

Division

Multiplication

Addition

Subtraction

Power of (for example, x^2 is x to the power of 2)

Modulo, the remainder of an operation

Semicolon, used at the end of expressions

Assignment operator

Parentheses, to represent hierarchy in an expression

Decimal point

Conditional statement to take action if a condition is true, otherwise, take a different action

59Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description

Multiple conditional statement to take action if a condition is true, otherwise, take a different action

Equal to, in a math function

Not equal to

Logical and

Logical or

Greater than

Greater than or equal to

Less than

Less than or equal to

Using Functions and Constants
The Math stage provides several functions that can be used in an expression. Functions take the
general form function(parameter); function(parameter,parameter);
function(parameter,...), where "parameter" is a numeric constant, a variable, or a math
expression. Functions can be used with other math expressions (for example: x=Sin(y)*Cos(z)).

Constants, Conversion, Math, and Trigonometry

Each of the supported functions is listed below within its corresponding category.

Table 6: Supported Functions

DescriptionFunction

Constants

A mathematical constant that is the base of the natural algorithm.e

60Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFunction

A Boolean constant that represents the value false.false

A mathematical constant that represents infinity.Infinity

A mathematical constant that represents a value that is not a number.NaN

A mathematical constant that is the ratio of the circumference of a circle to its diameter.Pi

a Boolean constant that represents the value true.true

Conversion

Takes one parameter.

Returns the absolute value of the given value.

Abs (value)

Takes one parameter.

Returns a rounded-up value (for example, Ceil(5.5) returns 6).

Ceil (value)

Takes one parameter.

Converts a given value from degrees to radians.

DegToRad (value)

Takes one parameter.

Returns a rounded-down value (for example, Floor(5.5) returns 5).

Floor (value)

Takes one parameter.

Converts a given value from radians to degrees.

RadToDeg (value)

Takes one parameter.

Returns a rounded value.

Round (value)

Math

Takes one or more parameters.

Returns the average of all given values.

Avg (value, value,...)

61Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFunction

Takes one parameter.

Returns Euler's number raised to the power of the value.

Exp (value)

Takes one parameter.

Returns the factorial of a given value (for example, Fac(6) is computed to 6*5*4*3*2*1
and returns 720).

Fac (value)

Takes one parameter.

Returns the natural logarithm (base e) of a given value.

Ln (value)

Takes one parameter.

Returns the natural logarithm (base 10) of a given value.

Log (value)

Takes one or more parameters.

Returns the maximum value passed in.

Max (value, value,...)

Takes one or more parameters.

Returns the minimum value passed in.

Min (value, value,...)

Takes one or more parameters.

Returns the square root of the value passed in.

Sqrt (value)

Takes one parameter.

Returns the sum of the given values.

Sum (value)

Trigonometry

Takes one parameter.

Returns the arc cosine of a value.

ArcCos (value)

Takes one parameter.

Returns the arc sine of a value.

ArcSin (value)

62Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFunction

Takes one parameter.

Returns the arc tangent of a value.

ArcTan (value)

Takes one parameter.

Returns the cosine of a value.

Cos (value)

Takes one parameter.

Returns the natural logarithm (base e) of a given value.

Ln (value)

Takes one parameter.

Returns the sine of a value.

Sin (value)

Takes one parameter.

Returns the tangent of a value.

Tan (value)

Using Conditional Statements
Conditional statements can be used to take actions depending on whether various conditions evaluate
to true or false. Grouping using parentheses (and) can be used for more complex conditions.

Table 7: Conditions

DescriptionCondition

expression = = expressionEquals

expression != expressionNot Equals

expression > expressionGreater Than

expression >= expressionGreater Than or Equal To

expression < expressionLess Than

63Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionCondition

expression <= expressionLess Than or Equal To

!conditionNot condition

condition && conditionAnd

condition || conditionOr

If Statement

if(condition)
{

actions to take if condition is true
}

Brackets are needed only if more than one statement is run after the "if."

If-Else If Statements

if(condition)
{

actions to take if condition is true
}
else if(condition)
{

actions to take if condition is true
}
else if...

if(SideLength != NaN)
{

AreaOfPolygon=
((SideLength^2)*NumberOfSides)/
(4*Tan(pi/NumberOfSides));

}
else if(Radius != NaN)
{

AreaOfPolygon=
(Radius^2)*NumberOfSides*Sin((2*pi)/NumberOfSides)/2;

}

One or more else if statements can be specified. Brackets are needed only if more than one statement
is run after the "if-else- if-else."

64Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Else-If Statement

if(condition)
{

actions to take if condition is true
}
else if(condition)
{

actions to take if condition is true
}
else if...
else
{

actions to take if no conditions are met
}

Using the Expressions Console
The Expressions console is used to enter math expressions to be evaluated by the Math stage. The
Input, Calculator, and Functions controls are used to insert values into this console. You can also
manually type expressions into the console. Expressions take the form of a constant, variable, or
math operation, and consist of numeric constants and variables. Numeric constants are whole or
decimal numbers, which can be signed. Variables represent data from the incoming row. For example,
if fields x, y, and z are defined in the input, then x, y, and z can be used in an expression. Variables
are replaced with field values at runtime.

The Math stage also allows grouped expressions, which involve using parentheses to group
expressions and override operator precedence. For example, 2*5^2 equals 50, while (2*5)^2 equals
100.

Note: Every expression you enter must end with a semi-colon.

Additionally, conditional statements can be used in the Expressions console to take actions depending
on whether various conditions evaluate to true or false. SeeUsing Conditional Statements on page
63 for more information about conditional statements.

The Math stage deals primarily with assignment expressions, in which the output from an expression
is assigned to a variable. Multiple assignment operations are supported in the stage and can use
the output of a previous assignment operation.

Assignment Expression Examples
In the scenario below, x=10 and z=1000:

x=5+5
z=x*100

65Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

In the scenario below, the area of a polygon is calculated based on the length of
one side and the number of sides.

AreaOfPolygon=
((SideLength^2)*NumberOfSides)/
(4*Tan(pi/NumberOfSides));

Using the Fields Control
The Fields control allows you to change input and output field types. You can change field types
from within this control by clicking the drop-down arrow in the Type column and selecting from the
list, which includes these options:

A logical type with two values: true and false. Boolean variables can be used in
conditional statements to control flow. The code sample, below, shows a Boolean
expression:

if(x && y)
z=1;

boolean

else if(x)
z=2;

else if(y)
z=3;

else
z=4;

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values is
-1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers between
-231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers between
-263 (-9,223,372,036,854,775,808) and 263-1 (9,223,372,036,854,775,807).

long

Using the Preview Control
The Preview control allows you to test math expressions. Fields are listed in the Input Data area;
you can provide specific values to pass to the expression and view the output in the Results area
beneath Input Data.

Numeric fields are initialized to 0 (0.000 for double) and boolean fields are initialized to False. Double
and float fields are limited to four decimal places, and integer and long fields have no decimal places.

66Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Record Combiner

Record Combiner merges two or more records from multiple streams into a single record based on
a commonality. Record Combiner can have one or more stage input ports. For example, you can
have one group of records from one stage input (port) and the other group from a second stage input
(port 2), and the records will merge into a single record. If you delete a middle stage, the ports will
not renumber consecutively.

Note: Record Combiner will not release a record on output until each of its input ports has
received a record. It must combine as many records as it has input ports before outputting a
record.

You can specify which port should be preserved in cases where the input streams have fields of the
same name. For example, if you are combining records from two streams, and both streams contain
a field named AccountNumber, you could specify which stream's AccountNumber field you want to
preserve by choosing the Record Combiner input port that corresponds to the stream you want to
preserve. The data from the AccountNumber field in the other stream would be discarded.

Record Joiner

Record Joiner performs a SQL-style JOIN operation to combine records from different streams based
on a relationship between fields in the streams. You can use Record Joiner to join records from
multiple files, multiple databases, or any upstream channels in the flow. You must connect at least
two input channels to Record Joiner. The results of the JOIN operation are then written to one
output channel. Optionally, records that do not match the join condition can be written to a separate
output channel.

Using Record Joiner

To use the Record Joiner stage in a new Flow, perform these steps:

1. On the Spectrum Flow Designer Home page, click New.
2. On the New Flow page, click Job, Service, or Subflow, as required and then click the

correcsponding blank canvas.
3. Click Ok.
4. In the dialog box that appears, give a name to the Flow, Job, Service, or Subflow you are

creating.
5. Click Ok.
6. From the Palette Panel drag the Record Joiner stage to the canvas.

Note: Record Joiner is one of the Control Stages.

67Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

7. Drag all Sources (of the records that are to be joined) to the canvas and connect their Output
Port to the Record Joiner Input Port.

8. Drag the Sink for the joined records and connect its Input Port to the Record Joiner Output
Port.

9. Configure the Sources. See the documentation of the respective stage for field-level details.
10. Click Record Joiner and configure the Join Definition as described below.

Join Definition

DescriptionOption

The port whose records you want to use as the left table in the JOIN operation. All
other input ports will be used as right tables in the JOIN operation.

Note: "Left" table and "right" table are SQL JOIN concepts. Before using
Record Joiner you should have a good understanding of the SQL JOIN
operation. For more information, see wikipedia.org/wiki/Join_(SQL).

Left port

The type of JOIN operation you want to perform. One of the following:

Returns all records from the left port even if there are no matches
between the left port and the other ports. This option returns all
records from the left port plus any records that match in any of the
other ports.

Left Outer

Returns all records from all ports.Full

Returns only those records that have a match between the left port
and another port. For example, if you have four input sources and
port 1 is the left port, an inner join will return records that have
matching fields between port 1 and port 2, port 1 and port 3, and port
1 and port 4.

Inner

Join type

The field or fields from the left port that must match the data in a field from another
port in order for the records to be joined.

Note: The valid data types for join fields are integer, string, datetime, date,
long, float, double, and big decimal.

Join Fields

68Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://wikipedia.org/wiki/Join_%28SQL%29

DescriptionOption

Specifies whether the records in the left port are already sorted by the field specified
in Join Fields. If the records are already sorted, checking this box can improve
performance. If you do not check this box, Record Joiner will sort the records
according to the field specified in Join Fields before performing the join operation.

If you have specified multiple join fields, then the records must be sorted using the
order of the fields listed in Join Fields. For example, if you have two join fields:

Amount
Region

Then the records must be sorted first by the Amount field, then by the Region field.

Important: If you select this option but the records are not sorted, you will get
incorrect results from Record Joiner. Only select this option if you are sure that the
records in the left port are already sorted.

Data from the left port is sorted

Describes the join conditions that will be used to determine if a record from the left
port should be joined with a record from one of the other ports: port1.Name =
port2.Name

This indicates that if the value in the Name field of a record from port1 matches the
value in the Name field of a record from port2, the two records will be joined.

To modify a join condition, clickModify. Select a field from the right port whose data
must match the data in the join field from the left port in order for the records to be
joined. If you want to change the left port field, click Cancel and change it in the Join
Fields field. If the records in the right port are sorted by the join field, check the box
Data from the right port is sorted. Checking this box can improve performance.

Important: If you select Data from the right port is sorted but the records are not
sorted, you will get incorrect results from Record Joiner. Only select this option if you
are sure that the records in the right port are already sorted.

Join Definitions

Field Resolution

This tab specifies which port's data to use in the joined record in cases where the same field name
exists in more than one input port. For example, if you are performing a join on two sources of data,
and each source contains a field named DateOfBirth, you can specify which port's data to use in the
DateOfBirth field in the joined record.

If there are fields of the same name but with different data, and you want to preserve both fields'
data in the joined record, you must rename one of the fields before the data is sent to Record Joiner.
You can use the Transformer stage to rename fields.

69Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Handling Records That Are Not Joined

In order for a record to be included in the Record Joiner output it must meet the join condition, or a
join type must be selected that returns both joined records and those that did not meet the join
condition. For example, a full join will return all records from all input ports regardless of whether a
record meets the join condition. In the case of a join type that does not return all records from all
ports, such as a left outer join or an inner join, only records that match the join condition are included
in the Record Joiner output.

To capture the records that are not included in the result of the join operation, use the not_joined
output port. The output from this port contains all records that were not included in the regular output
port.

Records that come out of this port have the field InputPortIndex added to them. This field contains
the number of the Record Joiner input port where the record came from. This allows you to identify
the source of the record.

Note:

• For optimal performance of this stage, ensure two independent streams of records are joined
to generate a consolidated output.

• If a single path is first branched using either a broadcaster or conditional router then re-joined
back using a Record Joiner, the flow may hang. In case multiple stages are used between
branching and joining, use the Sorter as close to the Record Joiner as possible.

Math
The Math stage handles mathematical calculations on a single data row and allows you to conduct
a variety of math functions using one or more expressions. Data is input as strings but the values
must be numeric or Boolean, based on the type of operation being performed on the data.

1. Under Control Stages, click the Math stage and drag it to the canvas, placing it where you want
on the flow.

2. Connect the stage to other stages on the canvas.
3. Double-click the Math stage. The Math Options dialog box appears, with the Expressions tab

open. This view shows the input fields, the Calculator, and the Expressions canvas. Alternately,
you can click the Functions tab to use functions instead of the Calculator.

The Input fields control lists the valid fields found on the input port. Field name syntax is very flexible
but has some restrictions based on Groovy scripting rules. If you are not familiar with Groovy scripting,
see this website for complete information about Groovy:groovy-lang.org.

Note: This stage is not available in the tech preview version of Flow Designer.

70Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org

Sorter

Sorter sorts records using the fields you specify. For example, you can have records sorted by names,
cities, or any other field in your dataflow.

Sorting Records with Sorter
The Sorter stage allows you to sort records using the fields you specify.

1. Under Control Stages, drag Sorter to the canvas, placing it where you want on the dataflow.
2. Double-click Sorter.
3. Click Add.
4. Click the down-arrow in the Field Name column and select the field that you want to sort on.

Note: The list of available fields is based on the fields used in the previous stages in the
dataflow.

5. In the Order column, choose whether you want to sort in ascending or descending order.
6. In the Type column, select the field's data type.

Note: If your incoming data is not in string format, the Type column will be disabled.

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

7. To remove blank space from before and after the value before sorting, check the box in the Trim
column. The trim option does not modify the value of the field. It only trims the value for the

71Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

purpose of sorting. Note that if your incoming data is not in string format, the Trim column will
be disabled.

8. In the Treat Null As column, select Largest or Smallest to indicate the placement of null values
in the sorted list. The placement depends on the combination of options selected in the Order
and Treat Null As fields, as shown in the table below:

Placement of null values in the sorted listTreat Null AsOrder

Bottom of the listLargestAscending

Top of the listSmallestAscending

Top of the listLargestDescending

Bottom of the listSmallestDescending

9. Repeat until you have added all the fields you want to sort.
10. Rearrange the sort order as desired by clicking Up or Down. This allows you to sort first by one

field, then sort the resulting order again by another field.
11. If you want to override the default sort performance options that have been defined by your

administrator, clickAdvanced, check theOverride sort performance options box, then specify
these options:

Specifies the maximum number of data rows a sorter will hold in memory
before it starts paging to disk. By default, a sort of 10,000 records or less

In memory
record limit

will be done in memory and a sort of more than 10,000 records will be
performed as a disk sort. The maximum limit is 100,000 records. Typically
an in-memory sort is much faster than a disk sort, so this value should be
set high enough so that most of the sorts will be in-memory sorts and only
large sets will be written to disk.

Note: Be careful in environments where there are jobs running
concurrently because increasing the In memory record limit setting
increases the likelihood of running out of memory.

Specifies the maximum number of temporary files that may be used by a
sort process. Using a larger number of temporary files can result in better

Maximum
number of
temporary files performance. However, the optimal number is highly dependent on the

configuration of the server running Spectrum Technology Platform. You
should experiment with different settings, observing the effect on performance
of using more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:

72Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Note: Themaximum number of temporary files cannot be more than
1,000.

Specifies that temporary files are compressed when they are written to disk.Enable
compression

Note: The optimal sort performance settings depends on your server's hardware
configuration. You can use this equation as a general guideline to produce good sort
performance: (InMemoryRecordLimit × MaxNumberOfTempFiles ÷ 2) >=
TotalNumberOfRecords

12. Click OK.

Note: You can remove the sort criteria as desired by highlighting a row and clicking
Remove.

Splitter

A Splitter converts hierarchical data to flat data. Splitters have one input port and one output port
that delivers data from the Splitter to the next stage. One way you could use the Splitter's functionality
is to take a list of information in a file and extract each discrete item of information into its own data
row. For example, your input could include landmarks within a certain distance of a
latitudinal-longitudinal point, and the Splitter could put each landmark into a separate data row.

Using the Splitter Stage

1. Under Control Stages, click the Splitter and drag it to the canvas, placing it where you want on
the flow and connecting it to input and output stages.

2. Double-click the Splitter. The Splitter Options dialog box appears.
3. Click the Split at drop-down to see other list types available for this stage. Click the list type you

want the Splitter to create. The Splitter Options dialog box will adjust accordingly with your
selection, showing the fields available for that list type.

Alternatively, you can click the ellipses (...) button next to the Split at drop-down. The Field
Schema dialog box appears, showing the schema for the data coming into the Splitter. The list
types are shown in bold, followed by the individual lists for each type. Also shown is the format
of those fields (string, and double, for instance). Click the list type you want the Splitter to create
and clickOK. The Splitter Options dialog box will adjust accordingly with your selection, showing
the fields available for that list type.

4. Click Output header record to return the original record with the split list extracted.

73Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. Click Only when input list is empty to return the original record only when there is no split list
for that record.

6. Select which fields you want the Splitter to include on output by checking the Include box for
those fields.

7. Click OK.

Splitter Example
This example takes output from a routing stage that includes driving directions and
puts each direction (or list item) into a data row. The flow looks like this:

The flow performs the function as follows:

1. The Read from File stage contains latitudes, longitudes, and input key values
to help you identify the individual points.

2. The Aggregator stage builds up the data from the Read from File stage into a
schema (a structured hierarchy of data) and identifies the group of latitudes
and longitudes as a list of route points, which is a necessary step for the next
stage to work correctly.

74Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Spectrum Spatial Get Travel Directions stage creates directions from one
location to another using the route points from step 2.

4. The Splitter stage establishes that the data should be split at the Route
Directions field and that the output lists should include all of the possible fields
from the Get Travel Directions stage.

The schema is structured as follows, with Route Directions and Route Points
being the available list types for this job:

75Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. TheWrite to File stage writes the output to a file.

Stream Combiner

Stream Combiner joins two or more streams of records from multiple stages. Stream Combiner has
one or more stage input ports. For example, you can have one group of records from one stage and
another group from a second stage, and the records will merge into a single stream.

Stream Combiner has no settings.

Transformer stage transform types

The Transformer stagemodifies field values and formatting. You can performmore than one transform
on a field as long as the input and output field names are identical.

76Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

General Transforms
Uses values from existing fields and/or constant values to either replace field values
or create a new field. For example, say you have a field named City and you want

Construct
Field

to add the phrase "City of" to the values in the City field. You would create a template
like this:

City of ${City}

In the To field field, you would select the City field. This has the effect of replacing
the existing values in the City field with a value constructed using the template. For
example, if the value in the City field is Chicago, the new value would be City of
Chicago.

Some characters must be preceded by a backslash to produce a valid template.
For example, the single quote character must be preceded by a backslash like this:
\'. See groovy-lang.org/syntax.html for a list of characters that must be escaped
with a backslash.

Copies the value from one field to another.Copy
Allows you to define your own transform using the Groovy language. For more
information, see Creating a Custom Transform on page 81.

Custom

Changes the name of a field. You can select from a list of field names already in
the dataflow or you can type the name you want.

Rename

Changes the Status field to a value of either Success or Fail. When set to Fail, an
optional Description and Code may also be set.

Status

Formatting Transforms
Changes casing upper or lower case.Case
Applies or removes characters from a field. For more information, see Using
a Mask Transform on page 88.

Mask

Adds characters to the left or right of the field value.Pad

String Transforms
Removes white space at the beginning and end of the field. It also replaces
any sequence of white spaces (such as multiple, consecutive spaces) to
a single white space character.

Minimize Whitespace

Removes all occurrences of a string from a field. For example, you could
remove "CA" from the StateProvince field.

Remove Substring

Copies a contiguous sequence of characters from one field to another.Substring
Removes specified characters from the left, right, or both sides of a field.
Note that this transform is case-sensitive.

Trim

77Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org/syntax.html#_escaping_special_characters

Removes a specified number of characters from the left and right sides
of a field.

Truncate

List Transforms

This feature helps you to create canned transformation that operate on lists, for example input from
read from XML.

For defining list transformations, follow these steps:

1. Select a list transformation operation. Input fields appear in a tree view on the right.
2. Select a valid field in the tree to apply the operation on. Properties for the operation show up

below the input fields tree view.
3. Specify the operation properties and click add. The transform gets added to the list in the parent

window, that is the ‘Transformer Options’ window.

Allows creating a field under the user selected list type field. For example if a list called
Football has two clubs, Knitters and Lambs, you user can add a new club called Irons,
for a total of three clubs.

Create
Field

Performs sorting on values present in the selected field. In a complex list, the user
needs to specify the key element for sorting while in case of simple list, the sorting

Sort

takes place on the elements present in the list. The user can select the sort order as
either ascending or descending. In the example of Football, when the list has three
clubs, the user needs to select field ‘name’ under ‘club’ to sort the clubs based on
name. The current club entries list as Irons, Knitters and Lambs if sort order is
ascending and descending for sort order descending. Now, if the user wants the list
of players sorted, the field ‘player’ needs to be selected and sort order defined for it

Performs summation of all the values present in the selected field. The output is stored
in a field specified by the user. For example, if the user wants to view the total points

Sum

gained by each football club, user needs to select field ‘points’ under ‘Tournament’
and specify the output field name.

Performs the copy operation from the selected field to the field specified by the user.
When user selects a field to copy, the field and all fields under it (if any) are copied
to the new field specified. This operation takes place at the same level of hierarchy.

Copy

Performs the rename operation of the selected field to the new name specified by the
user.

Rename

This sample XML code provides a reference to the List Transform feature:

<?xml version="1.0"?>
<sports_details>
<sports name="football">
<clubs>
<club name="Knitters">

78Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<player>Samuel</player>
<player>Messi</player>
<player>kaka</player>
<player>Alan</player>
<coach>Stuart</coach>
<Tournament name="Football League">
<result>won</result>
<points>4</points>
</Tournament>
<Tournament name="UEFA">
<result>draw</result>
<points>2</points>
</Tournament>
</club>
<club name="Lambs">
<player>Ronaldo</player>
<player>Neymar</player>
<player>Zlatan</player>
<player>Mesut</player>
<coach>Ivan</coach>
<Tournament name="Airtel League">
<result>draw</result>
<points>2</points>
</Tournament>
<Tournament name="Champions League">
<result>lost</result>
<points>0</points>
</Tournament>
</club>
<club name="Irons">
<player>Scott</player>
<player>Paul</player>
<player>John</player>
<player>Andrew</player>
<coach>Jeff</coach>
<Tournament name="CAF">
<result>won</result>
<points>4</points>
</Tournament>
<Tournament name="Copa America">
<result>won</result>
<points>4</points>
</Tournament>
</club>

</clubs>
</sports>
<sports name="badminton">
<clubs>
<club name="Shuttlers">
<player>Saina</player>
<player>Viktor</player>
<player>Chen</player>
<player>Srikanth</player>

79Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<coach>Jan</coach>
<Tournament name="Olympic Games">
<result>won</result>
<points>4</points>
</Tournament>
<Tournament name="Commonwealth Games">
<result>won</result>
<points>4</points>
</Tournament>
</club>
<club name="Choppers">
<player>Wang</player>
<player>Sindhu</player>
<player>Carolina</player>
<player>Li Xuerui</player>
<coach>Ratchanok</coach>
<Tournament name="World Junior">
<result>draw</result>
<points>2</points>
</Tournament>
<Tournament name="Uber Cup">
<result>draw</result>
<points>2</points>
</Tournament>
</club>
<club name="Lobbers">
<player>Nozomi</player>
<player>Chou</player>
<player>Marc</player>
<player>Lin</player>
<coach>Kevin</coach>
<Tournament name="World Senior">
<result>won</result>
<points>4</points>
</Tournament>
<Tournament name="Thomas Cup">
<result>won</result>
<points>4</points>
</Tournament>
</club>

</clubs>
</sports>

</sports_details>

Changing the Order of Transforms
If you have more than one transform to run on a particular output field, you can define the order in
which they run.

Note: If you map a single field to two different output fields (for example,
ValidateAddress.City to Output.City1 and ValidateAddress.City to

80Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output.City2), and you add transforms to each field, the transform for the secondary field
must be run first. You must change the order of the transforms to run the second field transform
(Output.City2) first.

1. Double-click the Transformer stage. The Transformer Options dialog box appears.
2. Select a transform and use the Move Up and Move Down buttons to rearrange the order of the

transforms. Spectrum Flow Designer funs the top transform first.

Note: Dependent transforms cannot be moved above primary transforms (the transforms
upon which the dependent transforms rely).

3. Click OK.

Creating a Custom Transform
The Transformer stage has predefined transforms that perform a variety of common data
transformations. If the predefined transforms do not meet your needs, you can write a custom
transform script using Groovy. This procedure describes how to create basic custom transforms
using Groovy. For complete documentation on Groovy, see groovy-lang.org.

1. In Spectrum Enterprise Designer, add a Transformer stage to the dataflow.
2. Double-click the Transformer stage.
3. Click Add.
4. Under General, click Custom.
5. In the Custom transform name field, enter a name for the transform you will create. The name

must be unique.
6. Click Script Editor.

This editor provides a variety of features to make developing your transform easier, such as
code completion and palettes listing functions and fields.

InstructionsTask

In the Functions pane, double-click the function you want to add.To add a function

Note: The functions listed in the editor are functions provided to
make writing custom transform scripts easier. They perform
functions that would otherwise require multiple lines of Groovy code
to accomplish. They are not standard Groovy functions.

In the Input Fields pane, double-click the input field you want. The following
will be added to your script:

data['FieldName']

To get the value
from a dataflow
field

81Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org

InstructionsTask

For example, if you want to get the value from the field CurrentBalance,
the following would be added:

data['CurrentBalance']

Enter this code in the script editor:

data['FieldName']=NewValue

To set the value of
a dataflow field

For example, to set the field Day to the day of the week contained in the
field PurchaseDate:

data['Day']=dayOfWeek(data['PurchaseDate'])

In this example, the function dayOfWeek() is used to get the day from
the date value in the PurchaseDate field, and the result is written to the
Day field.

Tip: You can double-click the name of the output field in theOutput Fields
pane to add the field reference to the script.

To change the scope of a script variable from a single input record to all
the input records in a dataflow, use the@Field annotation in your script
as shown:

import groovy.transform.Field;
@Field ['data type']['VariableName']= Value;

To change the
scope of a script
variable in a
dataflow

For example, to set the scope of a variable RecordNumber to a single
input record, specify this:

int recordNumber = 1;
data['Record_Number']= recordNumber;
recordNumber++;

The output will be:

82Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

InstructionsTask

To change the scope of this variable to all input records, specify this:

import groovy.transform.Field
@Field int recordNumber = 1;
data['Record_Number']= recordNumber;
recordNumber++;

The output will be:

Enter this code in the script editor:

data['FieldName'] = new constructor;

To create a new
field using a
numeric data type

Where constructor is one of these:

java.lang.Double(number)
Creates a field with a data type of Double.

java.lang.Float(number)
Creates a field with a data type of Float.

java.lang.Integer(number)
Creates a field with a data type of Integer. You can also
create a new integer field by specifying a whole number.

83Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

InstructionsTask

For example, this will create an integer field with a value
of 23:

data['MyNewField'] = 23;

java.lang.Long(number)
Creates a field with a data type of Long.

For example, to create a new field named "Transactions" with a data type
of Double and the value 23.10, you would specify the following:

data['Transactions'] = new com.java.lang.Double(23.10);

Enter this code in the script editor:

data['FieldName'] = new constructor;

To create a new
field using a date
or time data type

Where constructor is one of these:

com.pb.spectrum.api.datetime.Date(year,month,day)
Creates a field with a data type of date. For example,
December 23, 2013 would be:

2013,12,23

com.pb.spectrum.api.datetime.Time(hour,minute,second)
Creates a field with a data type of time. For example,
4:15 PM would be:

16,15,0

.

com.pb.spectrum.api.datetime.DateTime(year,month,day,hour,minute,second)
Creates a field with a data type of DateTime. For
example, 4:15 PM on December 23, 2013 would be:

2013,12,23,16,15,0

For example, to create a new field named "TransactionDate" with a data
type of Date and the value December 23, 2013, you would specify this:

data['TransactionDate'] = new
com.pb.spectrum.api.datetime.Date(2013,12,23);

84Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

InstructionsTask

Enter this code in the script editor:

data['FieldName'] = true or false;

To create a new
field with a data
type of Boolean

For example, to create a field named IsValidated and set it to false, you
would specify this:

data['IsValidated'] = false;

Use the factory.create()method to create new fields in a record then
use the leftShift operator << to append the new record to the list field.

NewListField = []

To create a new
list field

NewRecord = factory.create()
NewRecord['NewField1'] = "Value"
NewRecord['NewField12'] = "Value"
...
NewListField << NewRecord

NewRecord = factory.create()
NewRecord['NewField1'] = "Value"
NewRecord['NewField12'] = "Value"
...
NewListField << NewRecord
data['ListOfRecords'] = NewListField

For example, this creates a new list field called "addresses" consisting of
two "address" records.

addresses = []
address = factory.create()
address['AddressLine1'] = "123 Main St"
address['PostalCode'] = "12345"
addresses << address

address = factory.create()
address['AddressLine1'] = "PO Box 350"
address['PostalCode'] = "02134"
addresses << address
data['Addresses'] = addresses

85Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

InstructionsTask

You can also create a new list field that contains a list of individual fields
rather than a list of records. For example, this creates a new list field called
PhoneNumbers containing home and work phone numbers:

phoneNumbers = []
phoneNumbers << data['HomePhone']
phoneNumbers << data['WorkPhone']
data['PhoneNumbers'] = phoneNumbers

Use the + symbol. For example, this example concatenates the FirstName
field and the LastName field into a value and stores it in the FullName field

String fullname = data['FirstName'] + ' ' +
data['LastName'];
data['FullName']=fullname;

To concatenate
fields

In this example there are two input fields (AddressLine1 and AddressLine2)
which are concatenated and written to the output field Address.

address1 = data['AddressLine1'];
address2 = data['AddressLine2'];
data['Address']=address1+ ',' + address2;

Identify a separation character then use substring to parse the field. In
this example, if the PostalCode field is greater than five characters, it

To parse a field

separates the five-character ZIP Code and the +4 portion and writes them
to separate fields in the output record.

if (data['PostalCode'].length() > 5)
{
String postalCode = data['PostalCode'];
int separatorPosition = postalCode.indexOf('-');
String zip = postalCode.substring(0,

separatorPosition);
String plusFour = postalCode.substring(
separatorPosition + 1,
postalCode.length();

data['Zip']=zip;
data['PlusFour']=plusFour;

}

86Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

InstructionsTask

Use an if or switch statement. These are the most common conditional
processing constructs. For more information see groovy-lang.org.

To perform
conditional
processing This example sets the field AddressCity to the first address line and city

name if the city is Austin.

city = data['City'];
address1 = data['AddressLine1']
if(city.equals('Austin'))
data['AddressCity']=address1 +',' + city;

Use the for loop. This is the only looping construct you should need. For
more information about looping or syntax see groovy-lang.org.

To perform
looping

Define a constant and use the concatenation character +. For example,
this script appends the word "Incorporated" to the FirmName field.

firmname = data['FirmName'];
constant = 'Incorporated';

To augment data

if(firmname.length() > 0)
data['FirmName']=firmname + ' ' + constant;

If the dataflow has runtime options enabled, you can access settings
passed to the dataflow at runtime by using this syntax:

options.get("optionName")

To access an
option specified at
runtime

For example, to access an option named casing, you would include this
in your custom transform script:

options.get("casing")

7. After you are done entering your script, click the "X" button in the window to close the editor.
8. In the Input fields field, select the field or fields to which you want to apply the transform.
9. In theOutput fields field, specify the field to which you want to write the output from the transform.

If necessary, you can define a new field by clicking the Add button to the right of the Output
fields field.

10. When you are done, click the Add button at the bottom of the window.

87Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org
http://groovy-lang.org

11. Click OK.

Using a Mask Transform
You can use the Transformer stage to apply a mask transform to a field. A mask transform applies
characters to a field, or removes characters from a field, using a specified pattern. For example,
using a mask transform you could format a string of numbers like 8003685806 into a phone number
like this: (800) 368 5806.

1. In Spectrum Enterprise Designer, drag a Transformer stage to the canvas and connect it in the
desired location.

2. Double-click the Transformer stage.
3. Click Add.
4. Expand Formatting and select Mask.
5. Select the type of mask you want to use.

Adds characters to a field to form the string into a new pattern.Apply

Extracts a pattern of characters from a string.Remove

6. In the Mask string field, specify the pattern you want to use when either adding characters or
removing characters.

There are two types of characters you use when specifying the mask string: literal characters
and mask characters.

Literal characters represent actual characters that are present in the string. When a remove
mask is used, the input character must match the literal character exactly. If that is the case,
then they will be removed from the input. Similarly, the literal characters will be added to the
input in the position indicated by the mask definition when the apply mask is used.

The other type of character you can use in a mask string is a mask character. A mask character
indicates the type of character that can be in a particular location of the input string. For example,
if you have an input where the first character is a number, the first mask character needs to be
#. Anything in the input that matches this mask character will be kept in the output.

The table below lists the mask characters you can use in the Mask string field:

Table 8: Mask Characters

DefinitionCharacter

Any number.#

Escape character, used to escape any of the special formatting characters.'

88Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DefinitionCharacter

Any character. All lowercase letters are mapped to upper case.U

Any character. All upper case letters are mapped to lower case.L

Any character or number.A

Any character.?

Anything.*

Any hex character (0-9, a-f or A-F).H

7. Click Add.
8. Click OK.

Mask Transform Examples
This is an apply mask that applies formatting to a string. Because "(" and ")" and
<space> are literals, they will be added to the output. All the numbers will be kept
because # is a mask character.

Input: 8003685806
Mask string: (###) ### ####
Output: (800) 368 5806

This remove mask example omits the dash in the ZIP Code.

Input: 60510-1135
Mask string: *****-****
Output: 605101135

Unique ID Generator

The Unique ID Generator stage creates a unique key that identifies a specific record. A unique ID
is crucial for data warehouse initiatives in which transactions may not carry all name and address

89Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

data, but must be attributed to the same record or contact. A unique ID may be implemented at the
individual, household, business, and premises level. Unique ID Generator provides a variety of
algorithms to create unique IDs.

The unique ID is based on either a sequential number or date and time stamp. In addition, you can
optionally use a variety of algorithms to generate data to appended to the ID, thereby increasing the
likelihood that the ID will be unique. The sequential number or date and time stamp IDs are required
and cannot be removed from the generated ID.

Unique ID Generator can be used to generate a non-unique key using one of the key generation
algorithms. In non-unique mode, you can create keys to use for matching. This may be useful in a
data warehouse where you have already added keys to a dimension and you want to generate a
key for new records in order to see if the new records match an existing record.

This example shows that each record in the input is assigned a sequential record ID in the output.

RecordIDRecord

0John Smith

1Mary Smith

2Jane Doe

3John Doe

The Unique ID stage produces a field named RecordID which contains the unique ID. You can
rename the RecordID field as required.

Defining a Unique ID
By default, the Unique ID Generator stage creates a sequential ID, with the first record having an ID
of 0, the second record having an ID of 1, the third record having an ID of 2, and so forth. If you want
to change how the unique ID is generated, follow this procedure.

1. In the Unique ID Generator stage, on the Rules tab, click Modify.
2. Choose the method you want to use to generate the unique ID.

For more information, see Unique ID Definition Methods on page 91.

3. Click OK.

90Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Unique ID Definition Methods

DescriptionOptions

Assigns an incremental numeric value to each record starting with the number
you specify. If you specify 0, the first record will have an ID of 0, the second
record will have an ID of 1, and so on.

Note: For this Unique Key, ensure you do not increase the Runtime
instances (in the Runtime Performance tab) beyond 1 as this can
create duplicate IDs.

Sequential Numeric tag starting at

91Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOptions

Assigns an incremental numerical value to each record starting with themaximum
number read from the database field. This number is then incremented by 1 and
assigned to the first record. For example, if the number read from the database
field is 30, the first record will have an ID of 31, the second record will have an
ID of 32, and so forth.

Select the database connection you want to use. Your choices
vary depending on what connections are defined in the Connection
Manager of Spectrum Management Console. If you need to make
a new database, or modify or delete an existing connection, click
Manage.
If you are adding or modifying a database connection, complete
these fields:
Connection name
Enter a name for the connection. This can be anything you choose.
Database driver
Select the appropriate database type.
Connection options
Specify the host, port, instance, user name, and password to use
to connect to the database.

Connection

Specifies the table or view in the database that you want to query.Table view

Select a column from the list to generate a unique key.

The supported data types for unique ID generation are:

Database
field

A numeric data type that contains both negative and
positive whole numbers between -263

(-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A numeric data type that contains both negative and
positive whole numbers between -231

(-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that supports 38 decimal points
of precision. Use this data type for data that will be
used in mathematical calculations requiring a high
degree of precision, especially those involving
financial data. The bigdecimal data type supports
more precise calculations than the double data type.

bigdecimal

A numeric data type that contains both negative and
positive double precision numbers between 2-1074

and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to
1.79769313486232E+308.

double

A numeric data type that contains both negative and
positive single precision numbers between 2-149 and
(2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

Sequential Numeric tag starting at
value in a database field

92Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOptions

Creates a unique key based on the date and time stamp instead of sequential
numbering.

Date/Time stamp

Creates a universally unique 32-digit identifier key for each record. The digits in
the key are displayed in five groups separated by hyphens, in the form 8-4-4-4-12
for a total of 36 characters (32 alphanumeric characters and four hyphens).
Example: 123e4567-e89b-12d3-a456-432255330000

UUID

Select this option only if you want to generate a non-unique key using an
algorithm.

Off

Using Algorithms to Augment a Unique ID
Unique ID Generator generates a unique ID for each record by either numbering each record
sequentially or generating a date-time stamp for each record. You can optionally use algorithms to
append additional information to the sequential or date-time unique ID, thereby creating a more
complex unique ID and one that is more likely to be truly unique.

1. In the Unique ID Generator stage, click Add.
2. In the Algorithm field, select the algorithm you want to use to generate additional information

in the ID.
Returns specified fields with consonants removed.Consonant

Returns a code based on a phonetic representation of their characters.
Double Metaphone is an improved version of the Metaphone algorithm,

DoubleMetaphone

and attempts to account for the many irregularities found in different
languages.

Indexes names by sound as they are pronounced in German. Allows
names with the same pronunciation to be encoded to the same

Koeln

representation so that they can be matched, despite minor differences in
spelling. The result is always a sequence of numbers; special characters
and white spaces are ignored. This option was developed to respond to
limitations of Soundex.

A message digest algorithm that produces a 128-bit hash value. This
algorithm is commonly used to check data integrity.

MD5

Returns a Metaphone coded key of selected fields. Metaphone is an
algorithm for coding words using their English pronunciation.

Metaphone

Returns a Metaphone coded key of selected fields for the Spanish
language. This metaphone algorithm codes words using their Spanish
pronunciation.

SpanishMetaphone

93Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Improves upon the Metaphone and Double Metaphone algorithms with
more exact consonant and internal vowel settings that allow you to produce

Metaphone 3

words or names more or less closely matched to search terms on a
phonetic basis. Metaphone 3 increases the accuracy of phonetic encoding
to 98%. This option was developed to respond to limitations of Soundex.

3. In the Field name field, choose the field to which you want to apply the algorithm. For example,
if you chose the soundex algorithm and chose a field named City, the ID would be generated by
applying the soundex algorithm to the data in the City field.

4. If you selected the substring algorithm, specify the portion of the field you want to use in the
substring:
a) In the Start position field, specify the position in the field where you want the substring to

begin.
b) In the Length field, select the number of characters from the start position that you want to

include in the substring.

For example, say you have this data in a field named LastName:

Augustine

If you specified 3 as the start position and 6 as the end position, the substring would produce:

gustin

5. Check the Remove noise characters box to remove all non-numeric and non-alpha characters
such as hyphens, white space, and other special characters from the field before applying the
algorithm.

6. For consonant and substring algorithms, you can sort the data in the field before applying the
algorithm by checking the Sort input box. You can then choose to sort either the characters in
the field or terms in the field in alphabetical order.

7. Click OK to save your settings.
8. Repeat as needed if you want to add additional algorithms to produce a more complex ID.

Note: The unique key definition is always displayed in a different color and cannot be
deleted.

Defining a Non-Unique ID
Unique ID Generator can be used to generate a non-unique key using one of the key generation
algorithms. In non-unique mode, you can create keys to use for matching. This may be useful in a
data warehouse where you have already added keys to a dimension and you want to generate a
key for new records in order to see if the new records match an existing record.

1. In the Unique ID Generator stage, on the Rules tab, click Modify.
2. Select Off.

94Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

This turns off the unique ID portion of the ID generation rules. With this option off, only the
algorithm you choose in the steps below are used to create the ID. This means that any records
that have the same data in the fields you use to generate the ID will have the same ID. You can
then use the ID for matching.

3. Click OK.
4. At the warning prompt, click Yes.
5. In the Unique ID Generator stage, click Add.
6. In the Algorithm field, select the algorithm you want to use to generate additional information

in the ID.
Returns specified fields with consonants removed.Consonant

Returns a code based on a phonetic representation of their characters.
Double Metaphone is an improved version of the Metaphone algorithm,

DoubleMetaphone

and attempts to account for the many irregularities found in different
languages.

Indexes names by sound as they are pronounced in German. Allows
names with the same pronunciation to be encoded to the same

Koeln

representation so that they can be matched, despite minor differences in
spelling. The result is always a sequence of numbers; special characters
and white spaces are ignored. This option was developed to respond to
limitations of Soundex.

A message digest algorithm that produces a 128-bit hash value. This
algorithm is commonly used to check data integrity.

MD5

Returns a Metaphone coded key of selected fields. Metaphone is an
algorithm for coding words using their English pronunciation.

Metaphone

Returns a Metaphone coded key of selected fields for the Spanish
language. This metaphone algorithm codes words using their Spanish
pronunciation.

SpanishMetaphone

Improves upon the Metaphone and Double Metaphone algorithms with
more exact consonant and internal vowel settings that allow you to produce

Metaphone 3

words or names more or less closely matched to search terms on a
phonetic basis. Metaphone 3 increases the accuracy of phonetic encoding
to 98%. This option was developed to respond to limitations of Soundex.

7. In the Field name field, choose the field to which you want to apply the algorithm. For example,
if you chose the soundex algorithm and chose a field named City, the ID would be generated by
applying the soundex algorithm to the data in the City field.

8. If you selected the substring algorithm, specify the portion of the field you want to use in the
substring:
a) In the Start position field, specify the position in the field where you want the substring to

begin.

95Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

b) In the Length field, select the number of characters from the start position that you want to
include in the substring.

For example, say you have this data in a field named LastName:

Augustine

If you specified 3 as the start position and 6 as the end position, the substring would produce:

gustin

9. Check the Remove noise characters box to remove all non-numeric and non-alpha characters
such as hyphens, white space, and other special characters from the field before applying the
algorithm.

10. For consonant and substring algorithms, you can sort the data in the field before applying the
algorithm by checking the Sort input box. You can then choose to sort either the characters in
the field or terms in the field in alphabetical order.

11. Click OK to save your settings.
12. Repeat as needed if you want to add additional algorithms to produce a more complex ID.

Note: The unique key definition is always displayed in a different color and cannot be
deleted.

Module Stages

Advanced Matching stages

Best of Breed
Best of Breed consolidates duplicate records by selecting the best data in a duplicate record collection
and creating a new consolidated record using the best data. This "super" record is known as the
best of breed record. You define the rules to use in selecting records to process. When processing
completes, the best of breed record is retained by the system.

Options
The following table lists the options for Best of Breed.

96Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Specifies the field to use to create groups of records to merge into a single best of
breed record, creating one best of breed record from each group. In cases where
you have used a matching stage earlier in the dataflow, you should select the
CollectionNumber field to use the collections created by the matching stage as the
groups. However, if you want to group records by some other field, choose the field
here. For example, if you want to merge all records that have the same value in the
AccountNumber field into one best of breed record, you would select AccountNumber.

Group by

If you specify a field in the Group by field, check this box to sort the records by the
value in the field you chose. This option is enabled by default.

Sort

97Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Click this button to specify sort performance options. By default, the sort performance
options specified in Management Console, which are the default performance options
for your system, are in effect. If you want to override your system's default
performance options, check the Override sort performance options box then
specify the values you want in these fields:

Specifies the maximum number of data rows a sorter will hold in
memory before it starts paging to disk. By default, a sort of 10,000
records or less will be done in memory and a sort of more than
10,000 records will be performed as a disk sort. The maximum
limit is 100,000 records. Typically an in-memory sort is much faster
than a disk sort, so this value should be set high enough so that
most of the sorts will be in-memory sorts and only large sets will
be written to disk.

In memory
record limit

Note: Be careful in environments where there are jobs
running concurrently because increasing the In memory
record limit setting increases the likelihood of running
out of memory.

Specifies the maximum number of temporary files that may be
used by a sort process. Using a larger number of temporary files
can result in better performance. However, the optimal number is
highly dependent on the configuration of the server running
Spectrum Technology Platform. You should experiment with
different settings, observing the effect on performance of using
more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Maximum
number of
temporary
files

Note: The maximum number of temporary files cannot
be more than 1,000.

Specifies that temporary files are compressed when they are written
to disk.

Enable
compression

Note: The optimal sort performance settings depends on your server's
hardware configuration. You can use this equation as a general guideline
to produce good sort performance: (InMemoryRecordLimit ×
MaxNumberOfTempFiles ÷ 2) >= TotalNumberOfRecords

Advanced

Select this option to retain all records in the collection along with the best of breed
record. Clear the option if you want only the best of breed record.

Keep original records

Select this option if you want Best of Breed to automatically select the first record in
the collection as the template record. The template record is the record upon which
the best of breed record is based.

Use first record

98Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Select this option to define rules for selecting the template record. For more
information, see Defining Template Record Rules on page 99.

Define template record

Defining Template Record Rules

In Best of Breed processing, the template record is the record in a collection that is used to create
the best of breed record. The template record is used as the starting point for constructing the best
of breed record and is modified based on the best of breed settings you define. The Best of Breed
stage can select the template record automatically, or you can define rules for selecting the template
record. This topic describes how to define rules for selecting the template record.

Template rules are written by specifying the field name, an operator, a value type, and a value. Here
is an example of template record options:

Field Name: MatchScore
Field Type: Numeric
Operator: Equal
Value Type: String
Value: 100

This template rule selects the record in the collection where the Match Score is equal to the value
of 100.

The following procedure describes how to define a template record rule in the Best of Breed stage.

1. In the Best of Breed stage, under Template Record Settings, select the optionDefine template
record.

2. In the tree, click Rules.
3. Click Add Rule.
4. Complete the following fields.

DescriptionOption

Specifies the name of the dataflow field whose value you want to evaluate to determine
if the record should be the template record.

Field name

Specifies the type of data in the field. One of the following:

Choose this option if the field contains non-numeric data (for
example, string data).

Non-Numeric

Choose this option if the field contains numeric data (for
example, double, float, and so on).

Numeric

Field Type

99Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of comparison you want to use to evaluate the field. One of the
following:

Determines if the field contains the value specified. For example,
"sailboat" contains the value "boat".

Contains

Determines if the field contains the exact value specified.Equal

Determines if the field value is greater than the value specified.
This operation only works on numeric fields.

Greater Than

Determines if the field value is greater than or equal to the value
specified. This operation only works on numeric fields.

Greater Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the highest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 100 would be selected. This operation only
works on numeric fields. If multiple records are tied for the longest
value, one record is selected.

Highest

Determines if the field contains no value.Is Empty

Determines if the field contains any value.Is Not Empty

Determines if the field value is less than the value specified. This
operation only works on numeric fields.

Less Than

Determines if the field value is less than or equal to the value
specified. This operation only works on numeric fields.

Less Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the longest (in bytes) value in the field. For
example, if the group contains the values "Mike" and "Michael",
the record with the value "Michael" would be selected. If multiple
records are tied for the longest value, one record is selected.

Longest

Compares the field's value for all the records group and determines
which record has the lowest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 10 would be selected. This operation only
works on numeric fields. If multiple records are tied for the longest
value, one record is selected.

Lowest

Determines if the field value contains the value that occurs most
frequently in this field among the records in the group. If two or
more values are most common, no action is taken.

Most Common

Determines if the field value is not the same as the value specified.Not Equal

Operator

100Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of value you want to compare to the field's value. One of the following:

Note: This option is not available if you select the operator Highest, Lowest,
or Longest.

Choose this option if you want to compare another dataflow field's
value to the field.

Field

Choose this option if you want to compare the field to a specific
value.

String

Value type

Specifies the value to compare to the field's value. If you selected Field in the Field
type field, select a dataflow field. If you selected String in the Value type field, type
the value you want to use in the comparison.

Note: This option is not available if you select the operator Highest, Lowest,
or Longest.

Value

5. Click OK.
6. If you want to specify additional rules, click Add Rule.

If you add additional rules, you will have to select a logical operator to use between each rule.
Choose And if you want the new rule and the previous rule to both pass in order for it to be
selected as the template record. Select Or if you want either the previous rule or the new rule
to pass in order for the record to be selected as the template record.

You have now configured rules to use to select the template record. Configure the best of breed
settings to complete the configuration of the Best of Breed stage.

Defining Best of Breed Rules and Actions

Best of Breed rules and actions work together to determine which fields from duplicate records in a
collection to copy to the Best of Breed record. Rules test values in a record and if the record passes
the rules, the data is copied from the record to the template record. Actions define which data to
copy, and which field in the template record should receive the data. After all the rules and actions
are executed, the template record will be the best of breed record.

Rules and actions can be grouped together into conditions, and you can have multiple conditions.
This allows you

1. In the Best of Breed stage, under Best of Breed Settings, click the Rules node in the tree.
2. Click Add Rule.
3. Complete the following fields:

101Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the name of the dataflow field whose value you want to evaluate to determine
if the condition is met and the associated actions should be taken.

Field name

Specifies the type of data in the field. One of the following:

Choose this option if the field contains non-numeric data (for
example, string data).

Non-Numeric

Choose this option if the field contains numeric data (for
example, double, float, and so on).

Numeric

Field Type

102Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of comparison you want to use to evaluate the field. One of the
following:

Determines if the field contains the value specified. For example,
"sailboat" contains the value "boat".

Contains

Determines if the field contains the exact value specified.Equal

Determines if the field value is greater than the value specified.
This operation only works on numeric fields.

Greater Than

Determines if the field value is greater than or equal to the value
specified. This operation only works on numeric fields.

Greater Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the highest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 100 would be selected. This operation only
works on numeric fields. If multiple records are tied for the longest
value, one record is selected.

Highest

Determines if the field contains no value.Is Empty

Determines if the field contains any value.Is Not Empty

Determines if the field value is less than the value specified. This
operation only works on numeric fields.

Less Than

Determines if the field value is less than or equal to the value
specified. This operation only works on numeric fields.

Less Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the longest (in bytes) value in the field. For
example, if the group contains the values "Mike" and "Michael",
the record with the value "Michael" would be selected. If multiple
records are tied for the longest value, one record is selected.

Longest

Compares the field's value for all the records group and determines
which record has the lowest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 10 would be selected. This operation only
works on numeric fields. If multiple records are tied for the longest
value, one record is selected.

Lowest

Determines if the field value contains the value that occurs most
frequently in this field among the records in the group. If two or
more values are most common, no action is taken.

Most Common

Determines if the field value is not the same as the value specified.Not Equal

Operator

103Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of value you want to compare to the field's value. One of the following:

Note: This option is not available if you select the operator Highest, Lowest,
or Longest.

Choose this option if you want to compare another dataflow field's
value to the field.

Field

Choose this option if you want to compare the field to a specific
value.

String

Value type

Specifies the value to compare to the field's value. If you selected Field in the Field
type field, select a dataflow field. If you selected String in the Value type field, type
the value you want to use in the comparison.

Note: This option is not available if you select the operator Highest, Lowest,
or Longest.

Value

4. Click OK.
5. If you want to specify additional rules for this condition, click Add Rule.

If you add additional rules, you will have to select a logical operator to use between each rule.
Choose And if you want the new rule and the previous rule to both pass in order for the condition
to be met and the associated actions taken. Select Or if you want either the previous rule or the
new rule to pass in order for the condition to be met.

6. Click the Actions node in the tree.
7. Click Add Action.
8. Complete the following fields.

DescriptionOption

Specifies the type of data to copy to the best of breed record. One of the following.

Choose this option if you want to copy a value from a field to the
best of breed record.

Field

Choose this option if you want to copy a constant value to the best
of breed record.

String

Source type

Specifies the data to copy to the best of breed record. If the source type is Field, select
the field whose value you want to copy to the destination field. If the source type is
String, specify a constant value to copy to the destination field.

Source data

104Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the field in the best of breed record to which you want to copy the data
specified in the Source data field.

Destination

If the data in the Source data field is numeric data, you can enable this option to
combine the source data for all duplicate records and put the total value in the best of
breed record.

For example, if there were three duplicate records in the group and they contained
these values in the Deposits field:

100.00
20.00
5.00

Then all three values would be combined and the total value, 125.00, would be put in
the best of breed record's Deposits field.

Accumulate source data

9. Click OK.
10. If you want to specify additional actions to take for this condition, click Add Action and repeat

the above steps.
11. To add another condition, click the root condition in the tree then click Add Condition.

Example Best of Breed Rule and Action
This Best of Breed rule selects the record where the Match Score is equal to the
value of 100. The Account Number data that corresponds to the selected field is
then copied to the AccountNumber field on the Best of Breed record.

Rule
Field Name: MatchScore
Field Type: Numeric
Operator: Equal
Value Type: String
Value: 100

Action
Source Type: Field
Source Data: AccountNumber
Destination: AccountNumber

105Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output

Table 9: Best of Breed Output

Description / Valid ValuesFormatField Name

Identifies the template and Best of Breed records in a collection of duplicate records.
The possible values are:

The record is the selected template record in a collection.Primary

The record is not the selected template record in a
collection.

Secondary

The record is the newly created best of breed record in
the collection.

BestOfBreed

Note: The Primary and Secondary values are generated only when you
select the Define template record option in the Best of Breed Options
window.

StringCollectionRecordType

Candidate Finder
Candidate Finder obtains the candidate records that will form the set of potential matches. Database
searches work in conjunction with Transactional Match, and Search Index searches work
independently from Transactional Match. Depending on the format of your data, Candidate Finder
may also need to parse the name or address of the suspect record, the candidate records, or both.

Candidate Finder also enables full-text index searches and helps in defining both simple and complex
search criteria against characters and text using various search types (AnyWord StartsWith, Contains,
Contains All, Contains Any, Contains None, Fuzzy, Pattern, Proximity, Range,Wildcard) and conditions
(All True, Any True, None True).

Database Options
The Candidate Finder dialog enables you to define SQL statements that retrieve potential match
candidates from a database, as well as map the columns that you select from the database to the
field names that are defined in your dataflow.

106Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 10: Candidate Finder Database Options

Description / Valid ValuesOption Name

Select Database.Finder type

Select the database that contains the candidate records. You can select any
connection configured in Management Console. To connect to a database not listed,
configure a connection to that database in Management Console, then close and
reopen Candidate Finder to refresh the connection list.

Note: The Dataflow Options feature in Enterprise Designer enables the
connection name to be exposed for configuration at runtime.

Connection

Type a SQL statement in the text box as described in Defining the SQL Query on
page 107

SQL statement

Choose field mapping settings as described in Mapping Database Columns to
Stage Fields on page 108.

Field Map tab

Click this tab to enter a sample match key to test your SQL SELECT statement or
your index query.

Preview tab

Defining the SQL Query

You can type any valid SQL select statement into the text box on the Candidate Finder Options
dialog.

Note: Select * is not valid.

For example, assume you have a table in your database called Customer_Table that has the following
columns:

• Customer_Table
• Cust_Name
• Cust_Address
• Cust_City
• Cust_State
• Cust_Zip

107Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

To retrieve all the rows from the database, you might construct a query similar to the following:

SELECT Cust_Name, Cust_Address, Cust_City, Cust_State, Cust_Zip from
Customer_Table;

You will rarely want to match your transaction against all the rows in the database. To return only
relevant candidate records, add a WHERE clause using variable substitution. Variable substitution
refers to a special notation that you will use to cause the Candidate Selection engine to replace the
variable with the actual data from your suspect record.

To use variable substitution, enclose the field name in braces preceded by a dollar sign using the
form ${FieldName}. For example, the following query will return only those records that have a
value in Cust_Zip that matches the value in PostalCode on the suspect record.

SELECT Cust_Name, Cust_Address, Cust_City, Cust_State,Cust_Zip
FROM Customer_Table
WHERE Cust_Zip = ${PostalCode};

For SQL 2000, the data type needs to be identical to the data type for Candidate Finder. The JDBC
driver sets the Candidate Finder input variable (Ex: ${MatchKey}) that is used in the WHERE clause
to a data type of nVarChar(4000). If the data in the database is set to a data type of VarChar, SQL
Server will ignore the index on the database. If the index is ignored, then performance will be degraded.
Therefore, use the following query for SQL 2000:

SELECT Cust_Name, Cust_Address, Cust_City, Cust_State,Cust_Zip
FROM Customer_Table
WHERE Cust_Zip = CAST(${PostalCode} AS VARCHAR(255));

Mapping Database Columns to Stage Fields

If the column names in your database match the Component Field names exactly, they are
automatically mapped to the corresponding Stage Fields. If they are not named exactly the same,
you will need to use the Selected Fields (columns from the database) to map to the Stage Fields
(field names defined in the dataflow).

For example, consider a table named Customer_Table with the following columns:

• Cust_Name
• Cust_Address
• Cust_City
• Cust_State
• Cust_Zip

When you retrieve these records from the database, you need to map the column names to the field
names that are used by Transactional Match and other components in your dataflow. For example,
Cust_Address might be mapped to AddressLine1, and Cust_Zip would be mapped to PostalCode.

1. Select the drop-down list under Selected Fields in theCandidate Finder Options dialog. Then,
select the database column Cust_Zip.

108Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. Select the drop-down list under Stage Fields. Then, select the field to which you want to map.

For example, if you want to map Cust_Zip to Postal Code, first select Cust_Zip under Selected fields
and then select PostalCode on the corresponding Stage Field row.

Alternate Method for Mapping Fields

You can use special notation in your SQL query to perform the mapping. To do this, enclose the field
name you want to map to in braces after the column name in your query. When you do this, the
selected fields are automatically mapped to the corresponding stage fields.

For example,

select Cust_Name {Name}, Cust_Address {AddressLine1},
Cust_City {City}, Cust_State {StateProvince},
Cust_Zip {PostalCode}

from Customer
where Cust_Zip = ${PostalCode};

Configuring the Connection Name at Runtime

The Connection name can be configured and passed at runtime if it is exposed as a dataflow option.
This enables you to run your dataflow while using a different connection name.

1. In Enterprise Designer, open a dataflow that uses the Candidate Finder stage.
2. Save and expose that dataflow.
3. Go to Edit > Dataflow Options.
4. In the Map dataflow options to stages table, expand Candidate Finder and edit options as

necessary. Check the box for the option you want to edit, then change the value in the Default
value drop-down.

5. Optional: Change the name of the options in the Option label field.
6. Click OK twice.

Search Index Options
The Candidate Finder dialog enables you to conduct a simple search that matches input field values
within search indexes or an advanced search to build matching rules that retrieve potential match
candidates from search indexes.

Simple Search Index Options

Table 11: Candidate Finder Options

Description / Valid ValuesOption Name

Select Search Index.Finder type

109Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Select the appropriate index that was created using theWrite to Search Index on
page 152 stage under the AdvancedMatching deployed stages in Enterprise Designer.

Name

Enter the record number on which search results should begin. The default is 1.Starting record

Enter the maximum number of results you want the search index to return. Default
is 10.

Note: If the maximum results is arbitrarily large, process those in batches,
using the Fetch Batch Size field.

Maximum results

If the Maximum results is arbitrarily large, enter the size of batches in which you
want the results to be processed. This optimizes processing of large number of
records. Default is 10000.

The recommended Fetch Batch Size is a value lesser than Maximum results and
if the Fetch Batch Size is greater thanMaximum results, the records are processed
in a single batch.

Note: This field is applicable only to cluster supported search engine and
not to the legacy search engine.

Fetch Batch Size

Returns the total number of matches that were made. For example, if you use the
default of "10" for the Maximum results field above, only 10 results will be returned.
However, if you check this box, the TotalMatchCount output field will tell you how
many matches were made during processing.

Return match count

Determines the type of index search you want to conduct. Select Simple search.Index search type

Select the index field(s) you want to use for comparison in the simple search.Index Fields

Select the input field you want to use for comparison in the simple search.Input field

110Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Input analyzer

111Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Specify which analyzer to use to tokenize the input string. One of these:

• Standard—Provides a grammar-based tokenizer that contains a superset of the
Whitespace and Stop Word analyzers. Understands English punctuation for
breaking down words, knows words to ignore (via the Stop Word Analyzer), and
performs technically case-insensitive searching by conducting lowercase
comparisons. For example, the string “Precisely Software” would be returned as
two tokens: “Precisely” and “Software”.

• Whitespace—Separates tokens with whitespace. Somewhat of a subset of the
Standard Analyzer in that it understands word breaks in English text based on
spaces and line breaks.

• StopWord—Removes articles such as "the," "and," and "a" to shrink the index size
and increase performance.

• Keyword—Creates a single token from a stream of data. For example, the string
“Precisely Software” would be returned as just one token “Precisely Software”.

• Russian—Supports Russian-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "and," "I," and "you" to
shrink the index size and increase performance.

• German—Supports German-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "the" "and," and "a" to
shrink the index size and increase performance.

• Danish—Supports Danish-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "at" "and," and "a" to
shrink the index size and increase performance.

• Dutch—Supports Dutch-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "the" "and," and "a" to shrink the
index size and increase performance.

• Finnish—Supports Finnish-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "is" "and," and "of" to
shrink the index size and increase performance.

• French—Supports French-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "the" "and," and "a" to
shrink the index size and increase performance.

• Hungarian—Supports Hungarian-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "the" "and," and "a" to
shrink the index size and increase performance.

• Italian—Supports Italian-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "the" "and," and "a" to shrink the
index size and increase performance.

• Norwegian—Supports Norwegian-language indexes and type-ahead services.
Also supports many stop words and removes articles such as "the" "and," and "a"
to shrink the index size and increase performance.

• Portuguese—Supports Portuguese-language indexes and type-ahead services.
Also supports many stop words and removes articles such as "the" "and," and "a"
to shrink the index size and increase performance.

• Spanish—Supports Spanish-language indexes and type-ahead services. Also
supports many stop words and removes articles such as "the" "and," and "a" to
shrink the index size and increase performance.

• Swedish—Supports Swedish-language indexes and type-ahead services. Also

112Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

supports many stop words and removes articles such as "the" "and," and "a" to
shrink the index size and increase performance.

• Hindi—Supports Hindi-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "by" "and," and "a" to shrink the
index size and increase performance.

Check the Include box to select which stored fields should be included in the output.

Note: If the input field is from an earlier stage in the dataflow and it has the
same name as the store field name from the search index, the values from
the input field will overwrite the values in the output field.

Output Fields tab

Advanced Search Index Options

Table 12: Candidate Finder Options

Description / Valid ValuesOption Name

Select Search Index.Finder type

Select the appropriate index that was created using theWrite to Search Index on
page 152 stage under the AdvancedMatching deployed stages in Enterprise Designer.

Name

Enter the record number on which search results should begin. The default is 1.Starting record

Enter the maximum number of responses you want the index search to return. The
default is 10.

Note: If the maximum results is arbitrarily large, process those in batches,
using the Fetch Batch Size field.

Maximum results

113Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

If the Maximum results is arbitrarily large, enter the size of batches in which you
want the results to be processed. This optimizes processing of large number of
records. Default is 10000.

The recommended Fetch Batch Size is a value lesser than Maximum results and
if the Fetch Batch Size is greater thanMaximum results, the records are processed
in a single batch.

Note: This field is applicable only to cluster supported search engine and
not to the legacy search engine.

Fetch Batch Size

Sorts the candidate records on the basis of indexed fields while running a search
query.

Select the Sort check-box, the desired index field from the Sort by drop-down list,
and select Ascending or Descending from the Order by drop-down list.

Note: You can perform sorting only on String Fields with Keyword
Analyzer and Numeric fields.

Sort

Returns the total number of matches that were made. For example, if you use the
default of "10" for the Maximum results field above, only 10 results will be returned.
However, if you check this box, the TotalMatchCount output field will tell you how
many matches were made during processing.

Return match count

Controls the relevance of the Index Field.Relevance

Determines the type of index search you want to conduct. SelectAdvanced search.Index search type

Access Parent Options.Add Parent button

Enter a name for the parent.Parent options—Name

114Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Specify how to determine if a parent is a match or a non-match. One of these:

All true—A parent is considered a match if all children are determined to match. This
method creates an "AND" connector between children.

Any true—A parent is considered a match if at least one child is determined to match.
This method creates an "OR" connector between children.

None true—A parent is considered a match if none of the children is determined to
match. This method creates a "NOT" connector between children.

Parent options—Searchingmethod

Access Child Options.Add Child button

Select the index field you want to use for comparison in the advanced search.Child options—Index field

Specifies the searching/matching criteria that determines whether the input data is
searched/matched with the indexed data. All searches are case insensitive.

Child options—Search type

Select the input field you want to use for comparison in the advanced search.Child options—Input field

Determines whether the text contained in the search index field begins with the text
that is contained in the input field.

For example, text in the input field “tech” would be considered a match for search
index fields containing “Technical”, “Technology”, “Technologies”, “Technician” or
even "National University of Technical Sciences". Likewise, a phrase in the input
field “DEF Sof” would be considered amatch for search index fields containing “ABC
DEF Software”, “DEF Software”, and “DEF Software India” but it would not be a
match for search index fields containing “Software DEF” or “DEF ABC Software”.

Any Word/Phrase Starts With

Determines whether the search index field contains the data from the input field. This
search type considers the sequence of words in the input field while searching the
search index field. For example, input field data “Precisely” and “Precisely Software”
would be contained in a search index field of “Precisely Software Inc.”

Contains

Determines whether all alphanumeric words from the input field are contained in the
search index field. This search type does not consider the sequence of words in the
input field while searching the search index field.

Contains All

Determines whether any of the alphanumeric words from the input field is contained
in the search index field.

Contains Any

115Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Determines whether none of the alphanumeric words from the input field is contained
in the search index field.

Contains None

Determines the similarity between two alphanumeric words based on the number of
deletions, insertions, or substitutions required to transform one word into another.

Use the Maximum edits parameter to set a limit on the number of edits allowed to
be considered a successful match:

• 0—Allows for no deletions, insertions, or substitutions. The input field data and the
search index field data must be identical.

• 1—Allows for no more than one deletion, insertion, or substitution. For example,
an input field containing "Barton" will match a search index field containing "Carton".

• 2—Allows for no more than two deletions, insertions, or substitutions. For example,
an input field containing "Barton" will match a search index field containing "Martin".

The Fuzzy search type is used for single-word searches only. Click Ignore extra
words to have Candidate Finder consider only the first word in the field when
comparing the input field to the index field. For example, if the index field says "Xyz"
and the input field says "Xyz Abc", they would not be considered a match because
of "Abc". However, if you check this box, "Abc" would be ignored and with "Xyz"
being the first word, the two words would be considered a match.

Fuzzy

Determines whether numbers from the input field are contained in the search index
field.

The Numeric search type is used for single-word searches only.

Click Ignore extra words to have Candidate Finder consider only the first word in
the field when comparing the input field to the index field.

Numeric

Determines whether the text pattern of the input field matches the text pattern of the
search criteria. You can further refine the text pattern in the Pattern string field. For
example, if the input field contains “nlm” and the pattern defined is “a*b?c” then it
will match the following words “Neelam”, “nelam”, “neelum”, “nilam”, and so on.

The Pattern search type is used for single-word searches only. Click Ignore extra
words to have Candidate Finder consider only the first word in the field when
comparing the input field to the index field.

Pattern

116Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Determines whether words in the input fields are within a certain distance of each
other.

• Define the input First input field and Second input field you want to search for
in the index.

• Use theDistance parameter to determine the maximum allowed distance between
the words specified in the First field and Second field in order to be considered a
match.

For example, you could successfully use this search type to look for First field
"Spectrum" and Second field "Precisely" within ten words of each other in a search
index field containing the sentence “Spectrum Technology Platform is a product of
Precisely Software Inc.”

The Proximity search type is used for single-word searches only. Click Ignore extra
words to have Candidate Finder consider only the first word in the field when
comparing the input field to the index field.

Proximity

Performs an inclusive searches for terms within a range, which is specified using a
Lower bound field (starting term) and an Upper bound field (ending term). All
alphanumeric words are arranged lexicographically in the search index field.

• Use the Lower bound field parameter to select the field to be used as the starting
term.

• Use the Upper bound field parameter to select the field to be used as the ending
term.

For example, if you searched postal codes from 20001 (defined in the Lower bound
field) to 20009 (defined in the Upper bound field), the search would return all
addresses with postal codes within that range.

The Range search type is used for single-word searches only. Click Ignore extra
words to have Candidate Finder consider only the first word in the field when
comparing the input field to the index field.

Range

Searches using single or multipleWildcard characters.

Select the Position in your input file where you are inserting the wildcard character.

The Wildcard search type is used for single-word searches only. Click Ignore extra
words to have Candidate Finder consider only the first word in the field when
comparing the input field to the index field.

Wildcard

117Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Control the relevance of a child field by entering any positive number up to 100 here.
The number can be less than "1" also; for instance, ".05" would be valid.

The higher the boost factor, the more relevant the field will be. For example, if you
want results from the Firm Name field to be more relevant than the results from other
fields, select "Firm Name" from the Index field name and enter "5" here.

Note: By default, this option is disabled. Select the check box to enable it.

Child options—Relevance factor

Clear this check-box if you want the query to take into account the blank input file
fields.

Note: By default the query ignores the blank fields.

Ignore Blanks

Check the Include box to select which stored fields should be included in the output.

Note: If the input field is from an earlier stage in the dataflow and it has the
same name as the store field name from the search index, the values from
the input field will overwrite the values in the output field.

Output Fields tab

Configuring Options at Runtime

Some Candidate Finder options can be configured and passed at runtime if they are exposed as
dataflow options. This enables you to run your dataflow while using different configurations. These
are the available dataflow options for Candidate Finder:

• ConnectionName—The name of the database that contains the candidate records.
• SearchIndexName—The name of the search index used in the Candidate Finder dataflow.
• StartingRecord—The record number on which search results should begin.
• MaximumResults—The maximum number of responses you want the index search to return.
• ReturnMatchCount—The total number of matches that were made. This field is useful if you enter
a lower number in the MaximumResults field but want to know the total number of matches that
were made.

To define Candidate Finder options at runtime:

1. In Enterprise Designer, open a dataflow that uses the Candidate Finder stage.
2. Save and expose that dataflow.
3. Go to EditDataflow Options.
4. In the Map dataflow options to stages table, expand Candidate Finder and edit options as

necessary. Check the box for the option you want to edit, then change the value in the Default
value drop-down.

118Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. Optional: Change the name of the options in the Option label field.
6. Click OK twice.

Output

Table 13: Candidate Finder Outputs

Description / Valid ValuesFormatField Name

This field indicates the total number of candidates returned during
processing.

StringCandidateCount

This field identifies a grouping of a suspect record and its candidates.
Each suspect record is given a CandidateGroup number. The candidates
for that suspect are given the same CandidateGroup number. For
example, if John Smith is a suspect record and its candidate records are
John Smith and Jon Smth, then all three records would have the same
CandidateGroup value.

StringCandidateGroup

Identifies whether candidates are detected or not. The possible values
are:

Y- The record is suspect and has candidates

N- The record is suspect and doesn't have candidates

D- The record is a candidate record

StringHasDuplicates

This field indicates the total number of matches made during the
processing.

StringTotalMatchCount

One of the following:

A suspect record is used as input to a query.Suspect

A candidate record is a result returned from a
query.

Candidate

StringTransactionRecordType

Duplicate Synchronization
Duplicate Synchronization determines which fields from a collection of records to copy to the
corresponding fields of all records in the collection. You can specify the rules that records must satisfy
in order to copy the field data to the other records in the collection. When processing has been
completed, all records in the collection are retained.

119Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options
The table lists the options for the Duplicate Synchronization stage.

Description / Valid ValuesOption Name

Specifies the field to use to create groups of records to synchronize. In cases where
you have used a matching stage earlier in the dataflow, such as Interflow Match,
Intraflow Match, or Transactional Match, you should select the CollectionNumber
field to use the collections created by the matching stage as the groups. However,
if you want to group records by some other field, choose the field here. For example,
if you want to synchronize records that have the same value in the AccountNumber
field, you would select AccountNumber.

Group by

If you specify a field in the Group by field, check this box to sort the records by the
value in the field you chose. This option is enabled by default.

Sort

120Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Click this button to specify sort performance options. By default, the sort performance
options specified in Management Console, which are the default performance options
for your system, are in effect. If you want to override your system's default
performance options, check the Override sort performance options box then
specify the values you want in these fields:

Specifies the maximum number of data rows a sorter will hold in
memory before it starts paging to disk. By default, a sort of 10,000
records or less will be done in memory and a sort of more than
10,000 records will be performed as a disk sort. The maximum
limit is 100,000 records. Typically an in-memory sort is much faster
than a disk sort, so this value should be set high enough so that
most of the sorts will be in-memory sorts and only large sets will
be written to disk.

In memory
record limit

Note: Be careful in environments where there are jobs
running concurrently because increasing the In memory
record limit setting increases the likelihood of running
out of memory.

Specifies the maximum number of temporary files that may be
used by a sort process. Using a larger number of temporary files
can result in better performance. However, the optimal number is
highly dependent on the configuration of the server running
Spectrum Technology Platform. You should experiment with
different settings, observing the effect on performance of using
more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Maximum
number of
temporary
files

Note: The maximum number of temporary files cannot
be more than 1,000.

Specifies that temporary files are compressed when they are written
to disk.

Enable
compression

Note: The optimal sort performance settings depends on your server's
hardware configuration. You can use this equation as a general guideline
to produce good sort performance: (InMemoryRecordLimit ×
MaxNumberOfTempFiles ÷ 2) >= TotalNumberOfRecords

Advanced

Rules

Duplicate Synchronization rules determine which records should have their data copied to all other
records in the collection.

121Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

To add a rule, select Rules in the rule hierarchy and click Add Rule

If you specify multiple rules, you will have to select a logical operator to use between each rule.
Choose And if you want the new rule and the previous rule to both pass in order for the condition to
be met. SelectOr if you want either the previous rule or the new rule to pass in order for the condition
to be met.

DescriptionOption

Specifies the name of the dataflow field whose value you want to evaluate to determine
whether to filter the record.

Field name

Specifies the type of data in the field. One of the following:

Choose this option if the field contains non-numeric data (for
example, string data).

Non-Numeric

Choose this option if the field contains numeric data (for example,
double, float, and so on).

Numeric

Field Type

122Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of comparison you want to use to evaluate the field. One of the following:

Determines if the field contains the value specified. For example,
"sailboat" contains the value "boat".

Contains

Determines if the field contains the exact value specified.Equal

Determines if the field value is greater than the value specified. This
operation only works on numeric fields.

Greater Than

Determines if the field value is greater than or equal to the value
specified. This operation only works on numeric fields.

Greater Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the highest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 100 would be selected. This operation only works
on numeric fields. If multiple records are tied for the longest value,
one record is selected.

Highest

Determines if the field contains no value.Is Empty

Determines if the field contains any value.Is Not Empty

Determines if the field value is less than the value specified. This
operation only works on numeric fields.

Less Than

Determines if the field value is less than or equal to the value
specified. This operation only works on numeric fields.

Less Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the longest (in bytes) value in the field. For example,
if the group contains the values "Mike" and "Michael", the record with
the value "Michael" would be selected. If multiple records are tied for
the longest value, one record is selected.

Longest

Compares the field's value for all the records group and determines
which record has the lowest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 10 would be selected. This operation only works
on numeric fields. If multiple records are tied for the longest value,
one record is selected.

Lowest

Determines if the field value contains the value that occurs most
frequently in this field among the records in the group. If two or more
values are most common, no action is taken.

Most Common

Determines if the field value is not the same as the value specified.Not Equal

Operator

123Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of value you want to compare to the field's value. One of the following:

Note: This option is not available if you select the operator Highest, Lowest, or
Longest.

Choose this option if you want to compare another dataflow field's
value to the field.

Field

Choose this option if you want to compare the field to a specific value.String

Value type

Specifies the value to compare to the field's value. If you selected Field in the Field type
field, select a dataflow field. If you selected String in the Value type field, type the value
you want to use in the comparison.

Note: This option is not available if you select the operator Highest, Lowest, or
Longest.

Value

Actions

Actions determine which field to copy to other records in the group. To add an action, select Actions
in the Duplicate Synchronization condition tree then click the Add Action. Use the following options
to define the action.

DescriptionOption

Specifies the type of data to copy to other records in the group. One of the following.

Choose this option if you want to copy a value from a field to the other
records in the group.

Field

Choose this option if you want to copy a constant value to the other
records in the group.

String

Source type

Specifies the data to copy to the other records in the group. If the source type is Field,
select the field whose value you want to copy to the other records in the group. If the source
type is String, specify a constant value to copy to the other records in the group.

Note: In case the source data has null value it will not be copied to the other
records of the group. The other records will rather retain their original values.

Source data

124Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the field in the other records to which you want to copy the data specified in the
Source data field. For example, if you want to copy the data to the AccountBalance field
in all the other records in the group, you would specify AccountBalance.

Destination

Example of a Duplicate Synchronization Rule and Action
This Duplicate Synchronization rule and action selects the record where the match
score is 100 and copies the account number AccountNumber field in all the other
records in the group.

Rule
Field Name: MatchScore
Field Type: Numeric
Operator: Equal
Value Type: String
Value: 100

Action
Source Type: Field
Source Data: AccountNumber
Destination: NewAccountNumber

Filter
The Filter stage retains or removes records from a group of records based on the rules you specify.

Options
The following table lists the options for the Filter stage.

Description / Valid ValuesOption Name

Specifies the field to use to create groups of records to filter. The Filter stage will
retain one or more records from each group, depending on how you configure the
stage. In cases where you have used a matching stage earlier in the dataflow, such
as Interflow Match, Intraflow Match, or Transactional Match, you should select the
CollectionNumber field to use the collections created by the matching stage as the
groups. However, if you want to group records by some other field, choose the field
here. For example, if you want to filter out all but one record from records that have
the same value in the AccountNumber field, you would select AccountNumber.

Group by

125Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

If you specify a field in the Group by field, check this box to sort the records by the
value in the field you chose. This option is enabled by default.

Sort

Click this button to specify sort performance options. By default, the sort performance
options specified in Management Console, which are the default performance options
for your system, are in effect. If you want to override your system's default
performance options, check the Override sort performance options box then
specify the values you want in these fields:

Specifies the maximum number of data rows a sorter will hold in
memory before it starts paging to disk. By default, a sort of 10,000
records or less will be done in memory and a sort of more than
10,000 records will be performed as a disk sort. The maximum
limit is 100,000 records. Typically an in-memory sort is much faster
than a disk sort, so this value should be set high enough so that
most of the sorts will be in-memory sorts and only large sets will
be written to disk.

In memory
record limit

Note: Be careful in environments where there are jobs
running concurrently because increasing the In memory
record limit setting increases the likelihood of running
out of memory.

Specifies the maximum number of temporary files that may be
used by a sort process. Using a larger number of temporary files
can result in better performance. However, the optimal number is
highly dependent on the configuration of the server running
Spectrum Technology Platform. You should experiment with
different settings, observing the effect on performance of using
more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Maximum
number of
temporary
files

Note: The maximum number of temporary files cannot
be more than 1,000.

Specifies that temporary files are compressed when they are written
to disk.

Enable
compression

Note: The optimal sort performance settings depends on your server's
hardware configuration. You can use this equation as a general guideline
to produce good sort performance: (InMemoryRecordLimit ×
MaxNumberOfTempFiles ÷ 2) >= TotalNumberOfRecords

Advanced

126Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesOption Name

Specifies the maximum number of records that are returned from each group. If you
set this option to 1, you can define filter rules to determine which record in each
group should be returned. If no rules are defined, the first record in each collection
is returned and the rest are discarded. In this mode, the filter rules define which
record will be retained.

For example, if you define a rule where the record with the highest match score in
a group is retained, and you set this option to 1, then the record with the highest
match score in each group will survive and the other records in the group will be
discarded.

If you set this option to a value higher than one, you cannot specify filter rules.

Note: In the event no records in the collection meet the defined rule criteria,
then no records from the group are returned.

Limit number of returned duplicate
records

Specifies to use filter rules to determine which records are removed from the
collection. The remaining records in the collection are retained. When this option is
selected, you must define a rule.

Note: If a group contains only one record, the filter rules are ignored and
the record is retained.

Remove duplicates from collection

Rule Options

Filter rules determine which records in a group to retain or remove. If you select the option Limit
number of returned duplicate records then the rules determine which records survive the filter. If
you select the option Remove duplicates from collection then the rules determine which records
are removed from the dataflow.

To add a rule, select Rules in the rule hierarchy and click Add Rule

If you specify multiple rules, you will have to select a logical operator to use between each rule.
Choose And if you want the new rule and the previous rule to both pass in order for the condition to
be met. SelectOr if you want either the previous rule or the new rule to pass in order for the condition
to be met.

Note: You can only have one condition in a Filter stage. When you select Condition in the
rule hierarchy, the buttons are grayed out.

127Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the name of the dataflow field whose value you want to evaluate to determine
whether to filter the record.

Field name

Specifies the type of data in the field. One of the following:

Choose this option if the field contains non-numeric data (for
example, string data).

Non-Numeric

Choose this option if the field contains numeric data (for example,
double, float, and so on).

Numeric

Field Type

128Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of comparison you want to use to evaluate the field. One of the following:

Determines if the field contains the value specified. For example,
"sailboat" contains the value "boat".

Contains

Determines if the field contains the exact value specified.Equal

Determines if the field value is greater than the value specified. This
operation only works on numeric fields.

Greater Than

Determines if the field value is greater than or equal to the value
specified. This operation only works on numeric fields.

Greater Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the highest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 100 would be selected. This operation only works
on numeric fields. If multiple records are tied for the longest value,
one record is selected.

Highest

Determines if the field contains no value.Is Empty

Determines if the field contains any value.Is Not Empty

Determines if the field value is less than the value specified. This
operation only works on numeric fields.

Less Than

Determines if the field value is less than or equal to the value
specified. This operation only works on numeric fields.

Less Than Or
Equal To

Compares the field's value for all the records group and determines
which record has the longest (in bytes) value in the field. For example,
if the group contains the values "Mike" and "Michael", the record with
the value "Michael" would be selected. If multiple records are tied for
the longest value, one record is selected.

Longest

Compares the field's value for all the records group and determines
which record has the lowest value in the field. For example, if the
fields in the group contain values of 10, 20, 30, and 100, the record
with the field value 10 would be selected. This operation only works
on numeric fields. If multiple records are tied for the longest value,
one record is selected.

Lowest

Determines if the field value contains the value that occurs most
frequently in this field among the records in the group. If two or more
values are most common, no action is taken.

Most Common

Determines if the field value is not the same as the value specified.Not Equal

Operator

129Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of value you want to compare to the field's value. One of the following:

Note: This option is not available if you select the operator Highest, Lowest, or
Longest.

Choose this option if you want to compare another dataflow field's
value to the field.

Field

Choose this option if you want to compare the field to a specific value.String

Value type

Specifies the value to compare to the field's value. If you selected Field in the Field type
field, select a dataflow field. If you selected String in the Value type field, type the value
you want to use in the comparison.

Note: This option is not available if you select the operator Highest, Lowest, or
Longest.

Value

Example of a Filter Rule
This rule retains the record in each group with the highest value in the MatchScore
field. Note that Value and Value Type options do not apply when the Operator is
highest or lowest.

Field Name = MatchScore
Field Type = Numeric
Operator = Highest

This rule retains the record where the value in the AccountNumber is "12345".

Field Name = AccountNumber
Field Type = Numeric
Operator = Equals
Value Type = String
Value = 12345

Interflow Match
Interflow Match locates matches between similar data records across two input record streams. The
first record stream is a source for suspect records and the second stream is a source for candidate
records.

Using match group criteria (for example a match key), Interflow Match identifies a group of records
that are potentially duplicates of a particular suspect record.

Each candidate is separately matched to the Suspect and is scored according to your match rules.
If the candidate is a duplicate, it is assigned a collection number, the match record type is labeled a

130Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

duplicate, and written out; unmatched unique candidates may be written out at the user's option.
When Interflow Match has exhausted all candidate records in the current match group, the matched
suspect record is assigned a collection number that corresponds to its duplicate record. Or, if no
matches where identified, the suspect is assigned a collection number of 0 and is labeled a unique
record.

Note: InterflowMatch only matches suspect records to candidate records. It does not attempt
to match suspect records to other suspect records as is done in Intraflow Match.

The matching process for a particular suspect may terminate before matching all possible candidates
if you have set a limiter on duplicates and the limit has been exceeded for the current suspect.

The type of matching (Intraflow or Interflow) determines how express key match results translate to
Candidate Match Scores. In Interflow matching, a successful Express Key match always confers a
100MatchScore onto the Candidate. On the other hand, in Intraflowmatching, the score a Candidate
gains as a result of an Express Key match depends on whether the record to which that Candidate
matched was a match of some other Suspect—Express Key duplicates of a Suspect will always
have MatchScores of 100, whereas Express Key duplicates of another Candidate (which was a
duplicate of a Suspect) will inherit the MatchScore (not necessarily 100) of that Candidate

Options
1. In the Load match rule field, select one of the predefined match rules which you can either use

as-is or modify to suit your needs. If you want to create a new match rule without using one of
the predefined match rules as a starting point, click New. You can only have one custom rule in
a dataflow.

Note: The Dataflow Options feature in Enterprise Designer enables the match rule to be
exposed for configuration at runtime.

2. Click Group By to select a field to use for grouping records in the match queue. Intraflow Match
only attempts to match records against other records in the same match queue.

3. Select the Sort box to perform a pre-match sort of your input based on the field selected in the
Group By field.

4. Click Advanced to specify additional sort performance options.
Specifies the maximum number of data rows a sorter will hold in memory
before it starts paging to disk. By default, a sort of 10,000 records or less

In memory
record limit

will be done in memory and a sort of more than 10,000 records will be
performed as a disk sort. The maximum limit is 100,000 records. Typically
an in-memory sort is much faster than a disk sort, so this value should be
set high enough so that most of the sorts will be in-memory sorts and only
large sets will be written to disk.

Note: Be careful in environments where there are jobs running
concurrently because increasing the In memory record limit setting
increases the likelihood of running out of memory.

131Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Specifies the maximum number of temporary files that may be used by a
sort process. Using a larger number of temporary files can result in better

Maximum
number of
temporary files performance. However, the optimal number is highly dependent on the

configuration of the server running Spectrum Technology Platform. You
should experiment with different settings, observing the effect on performance
of using more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Note: Themaximum number of temporary files cannot be more than
1,000.

Specifies that temporary files are compressed when they are written to disk.Enable
compression

Note: The optimal sort performance settings depends on your server's hardware
configuration. You can use this equation as a general guideline to produce good sort
performance: (InMemoryRecordLimit × MaxNumberOfTempFiles ÷ 2) >=
TotalNumberOfRecords

5. Click Express Match On to perform an initial comparison of express key values to determine
whether two records are considered a match.

Express Key matching can be a useful tool for reducing the number of compares performed and
thereby improving execution speed. A loose express key results in many false positive matches.
You can generate an express key as part of generating a match key through MatchKeyGenerator.
See Match Key Generator on page 142 for more information.

If two records have an exact match on the express key, the candidate is considered a 100%
duplicate. If two records do not match on an express key value, they are compared using the
rules-based method.

To determine whether a candidate was matched using an express key, look at the value of the
ExpressKeyIdentified field, which is either Y for a match or N for no match. Note that suspect
records always have an ExpressKeyIdentified value of N.

6. In the Initial Collection Number text box, specify the starting number to assign to the collection
number field for duplicate records.

The collection number identifies each duplicate record in a match queue. Unique records are
assigned a collection number of 0. Each duplicate record is assigned a collection number starting
with the value specified in the Initial Collection Number text box.

7. Select one of the following:

132Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

This option matches the suspect to all candidates in the same match
group (group by option) even if a duplicate is already found within the
match group. For example:

Compare suspect to
all candidates

Suspect - John Smith
Candidate - Bill Jones
Candidate - John Smith
Candidate - John Smith

In the example, the suspect John Smith would be compared to both
John smith candidates.

Check the Return Unique Candidates box to return records within a
match group from the candidate port that have been identified as unique
records.

This option matches the suspect to all candidates in the same match
group (group by option) but stops comparing when the user defined

Stop comparing
suspect against

number of duplicates have been identified. For example, if you chosecandidates after
finding n duplicates to stop comparing candidates after finding one duplicate and you had

this data:

Suspect - John Smith
Candidate - Bill Jones
Candidate - John Smith
Candidate - John Smith

In the example, the suspect record John Smith would stop comparing
within the match group when the first John Smith candidate is identified
as a duplicate.

8. ClickGenerate Data for Analysis to generatematch results. For more information, seeAnalyzing
Match Results.

9. Assign collection number 0 to unique records, checked by default, will assign zeroes as
collection numbers to unique records. Uncheck this option to generate collection numbers other
than zero for unique records. The unique record collection numbers will be in sequence with any
other collection numbers. For example, if your matching dataflow finds five records and the first
three records are unique, the collection numbers would be assigned as shown in the first group
below. If your matching dataflow finds five records and the last two are unique, the collection
numbers would be assigned as shown in the second group below.

133Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Record TypeCollection Number

Unique1

Unique2

Unique3

Duplicate/Suspect4

Duplicate/Suspect4

Record TypeCollection Number

Duplicate/Suspect1

Duplicate/Suspect1

Unique2

Unique3

Unique4

If you leave this box checked, any unique records found in your dataflow will be assigned a
collection number of zero by default.

10. Select the Return match rule name option to include the selected match rule name in the stage
output.

11. SelectReturn detailedmatch information if you want detailed match information to be displayed
as an output for your match rule. For more information about the output fields, see Output on
page 135.

Note: If you enable this field, it will hinder the overall stage performance.

12. If you are creating a new custommatching rule, seeBuilding a Match Rule for more information.

134Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

13. Click Evaluate to evaluate how a suspect record scored against candidate records. For more
information, see Interflow Match on page 130.

Output

Table 14: Interflow Match Output Fields

Description / Valid ValuesField Name

Identifies a collection of duplicate records. The possible values are 1 or greater.CollectionNumber

Indicates whether the match was obtained using the express match key. The possible
values are Yes or No.

ExpressMatchIdentified

Identifies whether the record is a duplicate of another record. One of the following:

The record is a suspect record and has duplicates.Y

The record is a suspect record and has no duplicates.N

The record is a candidate record and is a duplicate of the suspect record.D

The record is a candidate record but is not a duplicate of the suspect
record.

U

HasDuplicates

The possible values are input_port_0 or input_port_1InterflowSourceType

Identifies the type of match record in a collection. The possible values are:

The original input record that was flagged as possibly
having duplicate records.

suspect

A record that is a duplicate of the input record.duplicate

A record that has no duplicates.unique

MatchRecordType

It displays the detailed information of each match record in JSON format, for example,
a match record's name, type, state as True or False, and score of the algorithm
between 0-100.

Note: This field is displayed only for a duplicate match record.

MatchInfo

135Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Displays the match state for the rule.

Note: This field is displayed only for a duplicate match record.
MatchInfo.RuleName.IsMatch

Displays the match score for the rule. The possible values are 0-100, with 0 indicating
a poor match and 100 indicating a perfect match.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.Score

Displays the match state for each node in the rule hierarchy, only if it has participated
in the matching process, else, a blank field is displayed.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.
RuleNodeName.IsMatch

Displays the match score for each node in the rule hierarchy, only if it has participated
in the matching process, else, a blank field is displayed.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.
RuleNodeName.Score

Displays the name of the match rule against which matching is performed.MatchRuleName

Identifies the overall score between two records. The possible values are 0-100, with
0 indicating a poor match and 100 indicating an exact match.

MatchScore

Note: The Validate Address and Advanced Matching stages both use the MatchScore field.
The MatchScore field value in the output of a dataflow is determined by the last stage to modify
the value before it is sent to an output stage. If you have a dataflow that contains Validate
Address and Advanced Matching stages and you want to see the MatchScore field output for
each stage, use a Transformer stage to copy the MatchScore value to another field. For
example, Validate Address produces an output field called MatchScore and then a Transformer
stage copies theMatchScore field from Validate Address to a field called AddressMatchScore.
When the matcher stage runs it populates the MatchScore field with the value from the matcher
and passes through the AddressMatchScore value from Validate Address.

136Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Intraflow Match
Intraflow Match locates matches between similar data records within a single input stream. You can
create hierarchical rules based on any fields that have been defined or created in other stages of
the dataflow.

Options
1. In the Load match rule field, select one of the predefined match rules which you can either use

as-is or modify to suit your needs. If you want to create a new match rule without using one of
the predefined match rules as a starting point, click New. You can only have one custom rule in
a dataflow.

Note: The Dataflow Options feature in Enterprise Designer enables the match rule to be
exposed for configuration at runtime.

2. Click Group By to select a field to use for grouping records in the match queue. Intraflow Match
only attempts to match records against other records in the same match queue.

3. Select the Sort box to perform a pre-match sort of your input based on the field selected in the
Group By field.

4. Click Advanced to specify additional sort performance options.
Specifies the maximum number of data rows a sorter will hold in memory
before it starts paging to disk. By default, a sort of 10,000 records or less

In memory
record limit

will be done in memory and a sort of more than 10,000 records will be
performed as a disk sort. The maximum limit is 100,000 records. Typically
an in-memory sort is much faster than a disk sort, so this value should be
set high enough so that most of the sorts will be in-memory sorts and only
large sets will be written to disk.

Note: Be careful in environments where there are jobs running
concurrently because increasing the In memory record limit setting
increases the likelihood of running out of memory.

Specifies the maximum number of temporary files that may be used by a
sort process. Using a larger number of temporary files can result in better

Maximum
number of
temporary files performance. However, the optimal number is highly dependent on the

configuration of the server running Spectrum Technology Platform. You
should experiment with different settings, observing the effect on performance
of using more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Note: Themaximum number of temporary files cannot be more than
1,000.

137Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Specifies that temporary files are compressed when they are written to disk.Enable
compression

Note: The optimal sort performance settings depends on your server's hardware
configuration. You can use this equation as a general guideline to produce good sort
performance: (InMemoryRecordLimit × MaxNumberOfTempFiles ÷ 2) >=
TotalNumberOfRecords

5. Click Express Match On to perform an initial comparison of express key values to determine
whether two records are considered a match.
You can generate an express key as part of generating a match key through MatchKeyGenerator.
See Match Key Generator on page 142 for more information.

6. In the Initial Collection Number text box, specify the starting number to assign to the collection
number field for duplicate records.

The collection number identifies each duplicate record in a match queue. Unique records are
assigned a collection number of 0. Each duplicate record is assigned a collection number starting
with the value specified in the Initial Collection Number text box.

7. Click Sliding Window to enable this matching method. For more information about Sliding
Window, see Sliding Window Matching Method on page 140

8. ClickGenerate Data for Analysis to generatematch results. For more information, seeAnalyzing
Match Results.

9. Assign collection number 0 to unique records, checked by default, will assign zeroes as
collection numbers to unique records. Uncheck this option to generate collection numbers other
than zero for unique records. The unique record collection numbers will be in sequence with any
other collection numbers. For example, if your matching dataflow finds five records and the first
three records are unique, the collection numbers would be assigned as shown in the first group
below. If your matching dataflow finds five records and the last two are unique, the collection
numbers would be assigned as shown in the second group below.

DescriptionOption

Record TypeCollection Number

Unique1

Unique2

Unique3

Duplicate/Suspect4

138Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Duplicate/Suspect4

Record TypeCollection Number

Duplicate/Suspect1

Duplicate/Suspect1

Unique2

Unique3

Unique4

If you leave this box checked, any unique records found in your dataflow will be assigned a
collection number of zero by default.

10. Select the Return match rule name option to include the selected match rule name in the stage
output.

11. SelectReturn detailedmatch information if you want detailed match information to be displayed
as an output for your match rule. For more information about the output fields, see Output on
page 140.

Note: If you enable this field, it will hinder the overall stage performance.

12. For information about modifying the other options, see Building a Match Rule.
13. Click Evaluate to evaluate how a suspect record scored against candidate records. For more

information, see Interflow Match on page 130.

Default Matching Method
Using group by (match group) set by the user, the matcher identifies groups of records that might
potentially be duplicates of one another. The matcher then proceeds through each record in the
group; if the record matches an existing Suspect, the record is considered a Duplicate of that suspect,
assigned a Score, CollectionNumber, and MatchRecordType (Duplicate), and eliminated from the
match. If, on the other hand, the record matches no existing Suspect within the match group, the
record becomes a new Suspect, in that it is added to the current Match group so that it can be
matched against by subsequent records. When the matcher has exhausted all records in the current
Match group, it eliminates all Suspects from the match, labeling the Match Record type as Unique
and assigning a collection number of 0. Those Suspects with a least one duplicate will retain a Match

139Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Record Type of Suspect and is assigned the same collection number as its matched duplicate record.
Finally, when all records within a match group have been written to the output. A new match group
is compared.

Note: The Default Matching Method will only compare records that are within the samematch
group.

The type of matching (Intraflow or Interflow) determines how express key match results translate to
Candidate Match Scores. In Interflow matching, a successful Express Key match always confers a
100MatchScore onto the Candidate. On the other hand, in Intraflowmatching, the score a Candidate
gains as a result of an Express Key match depends on whether the record to which that Candidate
matched was a match of some other Suspect—Express Key duplicates of a Suspect will always
have MatchScores of 100, whereas Express Key duplicates of another Candidate (which was a
duplicate of a Suspect) will inherit the MatchScore (not necessarily 100) of that Candidate

Sliding Window Matching Method
The sliding window algorithm is an algorithm which sequentially fills a pre determined buffer size
called a window with the corresponding amount of data rows. As each row is added to the window
it's compared to each item already contained in the window. If a match with an item is determined
then both the driver record (the new item to add to the window) and the candidates (items already
in the window) is given the same group ID. This comparison is continued until the driver record has
been compared to all items contained within the window.

As new drivers are added the window will eventually reach its predetermined capacity. At this point
the window will slide, hence the term Sliding Window. Sliding simply means that the window buffer
will remove and write the oldest item in the window as it adds the newest driver record to the window.

Output

Table 15: Intraflow Match Output

Description / Valid ValuesField Name

Identifies a collection of duplicate records. The possible values are 1 or greater.CollectionNumber

Indicates whether the match was obtained using the express match key. The
possible values are Yes or No.

ExpressMatchIdentified

140Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Identifies the type of match record in a collection. The possible values are:

A record that other records are compared to in order to
determine if they are duplicates of each other. Each collection
has one and only one suspect record.

Suspect

A record that is a duplicate of the suspect record.Duplicate

A record that has no duplicates.Unique

MatchRecordType

It displays the detailed information of each match record in JSON format, for
example, a match record's name, type, state as True or False, and score of the
algorithm between 0-100.

Note: This field is displayed only for a duplicate match record.

MatchInfo

Displays the match state for the rule.

Note: This field is displayed only for a duplicate match record.
MatchInfo.RuleName.IsMatch

Displays the match score for the rule. The possible values are 0-100, with 0
indicating a poor match and 100 indicating a perfect match.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.Score

Displays the match state for each node in the rule hierarchy, only if it has participated
in the matching process, else, a blank field is displayed.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.
RuleNodeName.IsMatch

Displays the match score for each node in the rule hierarchy, only if it has
participated in the matching process, else, a blank field is displayed.

Note: This field is displayed only for a duplicate match record.

MatchInfo.RuleName.
RuleNodeName.Score

Displays the name of the match rule against which matching is performed.MatchRuleName

Identifies the overall score between two records. The possible values are 0-100,
with 0 indicating a poor match and 100 indicating an exact match.

MatchScore

141Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The Validate Address and Advanced Matching stages both use the MatchScore field.
The MatchScore field value in the output of a dataflow is determined by the last stage to modify
the value before it is sent to an output stage. If you have a dataflow that contains Validate
Address and Advanced Matching stages and you want to see the MatchScore field output for
each stage, use a Transformer stage to copy the MatchScore value to another field. For
example, Validate Address produces an output field called MatchScore and then a Transformer
stage copies theMatchScore field from Validate Address to a field called AddressMatchScore.
When the matcher stage runs it populates the MatchScore field with the value from the matcher
and passes through the AddressMatchScore value from Validate Address.

Match Key Generator
Match Key Generator creates a non-unique key for each record, which can then be used bymatching
stages to identify groups of potentially duplicate records. Match keys facilitate the matching process
by allowing you to group records by match key and then only comparing records within these groups.

The match key is created using rules you define and is comprised of input fields. Each input field
specified has a selected algorithm that is performed on it. The result of each algorithm is then
concatenated to create a single match key field.

In addition to creating match keys, you can also create express match keys to be used later in the
dataflow by an Intraflow Match stage or an Interflow Match stage.

You can create multiple match keys and express match keys.

For example, if the incoming record is:

First Name - Fred
Last Name - Mertz
Postal Code - 21114-1687
Gender Code - M

And you define a match key rule that generates a match key by combining data from the record like
this:

LengthStart PositionInput Field

51Postal Code

47Postal Code

51Last Name

51First Name

142Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

LengthStart PositionInput Field

11Gender Code

Then the key would be:

211141687MertzFredM

Input
The input is any field in the source data.

Options
To define Match Key Generator options click the Add button. The Match Key Field dialog displays.

Note: The Dataflow Options feature in Enterprise Designer enables Match Key Generator to
be exposed for configuration at runtime.

143Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 16: Match Key Generator Options

Description and Valid ValuesOption Name

Algorithm

144Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description and Valid ValuesOption Name

Specifies one of these algorithms to use to generate the match key:

Returns specified fields with consonants removed.Consonant

Returns a code based on a phonetic representation of their
characters. Double Metaphone is an improved version of the

Double
Metaphone

Metaphone algorithm, and attempts to account for the many
irregularities found in different languages.

Indexes names by sound as they are pronounced in German.
Allows names with the same pronunciation to be encoded to

Koeln

the same representation so that they can bematched, despite
minor differences in spelling. The result is always a sequence
of numbers; special characters and white spaces are ignored.
This option was developed to respond to limitations of
Soundex.

A message digest algorithm that produces a 128-bit hash
value. This algorithm is commonly used to check data integrity.

MD5

Returns aMetaphone coded key of selected fields. Metaphone
is an algorithm for coding words using their English
pronunciation.

Metaphone

Returns a Metaphone coded key of selected fields for the
Spanish language. This metaphone algorithm codes words
using their Spanish pronunciation.

SpanishMetaphone

Improves upon the Metaphone and Double Metaphone
algorithms with more exact consonant and internal vowel

Metaphone 3

settings that allow you to produce words or names more or
less closely matched to search terms on a phonetic basis.
Metaphone 3 increases the accuracy of phonetic encoding to
98%. This option was developed to respond to limitations of
Soundex.

Phonetic code algorithm that matches an approximate pronunciation to an
exact spelling and indexes words that are pronounced similarly. Part of

Nysiis

the New York State Identification and Intelligence System. Say, for example,
that you are looking for someone's information in a database of people. You
believe that the person's name sounds like "John Smith", but it is in fact
spelled "Jon Smyth". If you conducted a search looking for an exact match
for "John Smith" no results would be returned. However, if you index the
database using the NYSIIS algorithm and search using the NYSIIS algorithm
again, the correct match will be returned because both "John Smith" and
"Jon Smyth" are indexed as "JAN SNATH" by the algorithm.

Preprocesses name strings by applying more than 100 transformation rules
to single characters or to sequences of several characters. 19 of those

Phonix

rules are applied only if the characters are at the beginning of the string,
while 12 of the rules are applied only if they are at the middle of the string,
and 28 of the rules are applied only if they are at the end of the string. The

145Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description and Valid ValuesOption Name

transformed name string is encoded into a code that is comprised by a
starting letter followed by three digits (removing zeros and duplicate
numbers). This option was developed to respond to limitations of Soundex;
it is more complex and therefore slower than Soundex.

This algorithm determines the similarity between two
French-language strings based on the phonetic representation
of their characters.
It returns a Sonnex coded key of the selected fields.

Sonnex

Returns a Soundex code of selected fields. Soundex produces
a fixed-length code based on the English pronunciation of a word.

Soundex

Returns a specified portion of the selected field.Substring

Specifies the field to which you want to apply the selected algorithm to generate the
match key. For example, if you select a field called LastName and you choose the
Soundex algorithm, the Soundex algorithm would be applied to the data in the
LastName field to produce a match key.

Field name

Specifies the starting position within the specified field. Not all algorithms allow you
to specify a start position.

Start position

Specifies the length of characters to include from the starting position. Not all
algorithms allow you to specify a length.

Length

Removes all non-numeric and non-alpha characters such as hyphens, white space,
and other special characters from an input field.

Remove noise characters

Sorts all characters in an input field or all terms in an input field in alphabetical order.

Sorts the characters values from an input field prior to creating
a unique ID.

Characters

Sorts each term value from an input field prior to creating a
unique ID.

Terms

Sort input

If you add multiple match key generation algorithms, you can use the Move Up and Move Down
buttons to change the order in which the algorithms are applied.

146Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Generating an Express Match Key

Enable the Generate Express Match Key option and click Add to define an express match key to
be used later in the dataflow by an Intraflow Match stage or an Interflow Match stage.

If the Generate Express Match Key option is enabled and the Express match key on option is
selected in a downstream Interflow Match stage or Intraflow Match stage, the match attempt is first
made using the express match key created here. If two records' express match keys match, then
the record is considered a match and no further processing is attempted. If the records' express
match keys do not match, then the match rules defined in Interflow Match or Intraflow Match are
used to determine if the records match.

Output

Table 17: Match Key Generator Output

Description / Valid ValuesField Name

A value indicating the match level. If the express match key is a match, the score is
100. If the express match key does not match, then a score of 0 is returned.

ExpressMatchKey

The key generated to identify records.MatchKey

Private Match
Private Match enables two entities to compare datasets and identify common records without
compromising sensitive information. For example, two companies could be interested in launching
a joint marketing campaign. Each company has its own database containing customer information,
and the companies want to determine which customers shop at both companies to use a more
targeted approach in the campaign. However, to ensure data security and comply with privacy
regulations, the companies do not wish to share these databases with each other or to give them to
a third party to conduct a match. The private match feature makes it possible for the two databases
to be matched against each other without breaching security or breaking privacy laws.

Private Match is used in one of three modes:

• Encrypt mode—The first user inputs his data, and an index field and match field are extracted and
encrypted. A public key and a displacement table containing the first user's data are generated for
the second user, and a private key is generated for the first user to use later.

• Private Match mode—The second user inputs his data and the first user's encrypted data, provides
the public key and displacement table, and performs a match. A file containing the matched data
is generated to be sent to the first user.

147Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Decrypt mode—The first user inputs the second user's encrypted data, provides the private key,
and generates output containing a matched index of both user's data.

By using the encrypt function (Encrypt mode) the security is retained while a match function is
performed (Private Match mode), and then a decrypt function shows the output of the matched data
(Decrypt mode). All files generated and shared between users are encrypted and unreadable.

Input
Input requirements for the Private Match stage vary depending on the task you are performing:

• Encrypt mode—A file containing the first user's data must be attached to the input port. This can
be a text file, database, or almost any kind of source file.

• Private Match mode—A file containing the second user's data must be attached to the first input
port; this can also be a text file, database, or almost any kind of source file. The encrypted data
generated by the first user must be attached to the second input port.

• Decrypt mode—The output file generated by the second user.

Options
Options for the Private Match stage vary depending on the task you are performing.

Note: If you upgrade to version 11.0 or later from version 10.x and you produced private
keys, you will need to regenerate those keys because keys generated in version 10.x are not
compatible with versions 11.0 and later.

Encrypt Mode

1. Select the Encrypt operation.
2. Select the index field that provides a unique ID for each record in the file. The unique ID must

be a numeric value.
3. Select the match field that should be used to match against the second user's data.
4. Specify the path to and name of the Public key file that will be created when you run the job.
5. Specify the path to and name of the Key Store file that will be created when you run the job.
6. Specify the path to and name of the Displacement table file that will be created when you run

the job.
7. Enter a name for the output column that will contain the encrypted data in the output file that

is sent to the second user.
8. Press OK.

Private Match Mode

1. Select the Private Match operation.
2. Select the index field that provides a unique ID for each record in the file. The unique ID must

be a numeric value.

148Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Select the match field that should be used to match against the first user's data.
4. Enter the name of the encrypted data field that the first user entered in step 7 of the Encrypt

Mode instructions.
5. Navigate to the Public key file.
6. Navigate to the Displacement table file.
7. Enter a name for the output column that will contain the encrypted data in the output file that

is sent to the first user.

Decrypt Mode

1. Select the Decrypt operation.
2. Select the encrypted data field entered in step 7 of the Private Match Mode instructions.
3. Navigate to the Key Store file.
4. Select the output column that will contain the decrypted data in the output file. The format of

the data in this field is the matched index of the first user's data and the matched index of the
second users' data, separated by a comma character (,), as in the following:

User1Data,User2Data

Output
Output requirements for the Private Match stage vary depending on the task you are performing:

• Encrypt mode—A file generated by the Write to File stage that contains the first user's encrypted
data.

• Private Match mode—A file generated by theWrite to File stage that contains encrypted information
about the match results.

• Decrypt mode—A file generated by the Write to File stage that contains the matched index of both
users' data.

Transactional Match
Transactional Match matches suspect records against candidate records that are returned from the
Candidate Finder stage. Transactional Match uses matching rules to compare the suspect record
to all candidate records with the same candidate group number (assigned in Candidate Finder) to
identify duplicates. If the candidate record is a duplicate, it is assigned a collection number, the match
record type is labeled a Duplicate, and the record is then written out. Any unmatched candidates in
the group are assigned a collection number of 0, labeled as Unique and then written out as well.

Note: Transactional Match only matches suspect records to candidates. It does not attempt
to match suspect records to other suspect records as is done in Intraflow Match.

149Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options
1. In the Load match rule field, select one of the predefined match rules which you can either use

as-is or modify to suit your needs. If you want to create a new match rule without using one of
the predefined match rules as a starting point, click New. You can only have one custom rule in
a dataflow.

Note: The Dataflow Options feature in Enterprise Designer enables the match rule to be
exposed for configuration at runtime.

2. Select Return unique candidates if you want unique candidate records to be included in the
output from the stage.

3. Select Generate data for analysis if you want to use the Match Analysis tool to analyze the
results of the dataflow. For more information, see Analyzing Match Results.

4. SelectReturn detailedmatch information if you want detailed match information to be displayed
as an output for your match rule.

Note: For detailed information about the output fields, see Output on page 150.

5. For information about modifying the other options, see Building a Match Rule.
6. Click Evaluate to evaluate how a suspect record scored against candidate records. For more

information, see Interflow Match on page 130.

Output

Table 18: Transactional Match Output

Description / Valid ValuesField Name

Identifies whether the record is a duplicate of another record. One
of the following:

The record is a suspect record and has duplicates.Y

The record is a suspect record and has no duplicates.N

The record is a candidate record and is a duplicate of
the suspect record.

D

The record is a candidate record but is not a duplicate
of the suspect record.

U

HasDuplicates

It displays the number of duplicates within a match group.DuplicateCount

150Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

It determines the size and displays the number of records in a
match group.

MatchGroupSize

Identifies the type of match record in a collection. The possible
values are:

The original input record that was flagged as
possibly having duplicate records.

Suspect

A record that is a duplicate of the input record.Duplicate

A record that has no duplicates.Unique

MatchRecordType

It displays the detailed information of each match record in JSON
format, for example, a match record's name, type, state as True
or False, and score between 0-100.

MatchInfo

Identifies the overall score between two records. The possible
values are 0-100, with 0 indicating a poor match and 100 indicating
an exact match.

MatchScore

Displays the match state for the rule as True or False, with True
representing a match and False indicating no matches. This
information is displayed if you select the Return detailed match
information option in the Transactional Match Options screen.

Note: The value in this field is derived from the match
state of the child nodes based on the defined parent rule
configuration.

MatchInfo.RuleName.IsMatch

Displays the match score for the rule. The possible values are
0-100, with 0 indicating a poor match and 100 indicating a perfect
match. This information is displayed if you select the Return
detailed match information option in the Transactional Match
Options screen.

Note: The score in this field is derived from the scores
of the child nodes on the basis of the defined parent rule
configuration.

MatchInfo.RuleName.Score

151Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Displays the match state for each node in the rule hierarchy as
True or False, with True representing a match and False
indicating no matches. RuleNodeName is a variable, which is
replaced by the hierarchical node names in your match rules.

Each node in the rule hierarchy outputs this field, if you have
selected the Return detailed match information option in the
Transactional Match Options screen.

MatchInfo.RuleName.RuleNodeName.IsMatch

Displays the match score for each node in the rule hierarchy.
RuleNodeName is a variable, which is replaced by the hierarchical
node names in your match rules.

Each node in the rule hierarchy outputs this field, if you have
selected the Return detailed match information option in the
Transactional Match Options screen.

The possible values are 0-100, with 0 indicating a poor match and
100 indicating a perfect match.

MatchInfo.RuleName.RuleNodeName.Score

Note: The Validate Address and Advanced Matching stages both use the MatchScore field.
The MatchScore field value in the output of a dataflow is determined by the last stage to modify
the value before it is sent to an output stage. If you have a dataflow that contains Validate
Address and Advanced Matching stages and you want to see the MatchScore field output for
each stage, use a Transformer stage to copy the MatchScore value to another field. For
example, Validate Address produces an output field called MatchScore and then a Transformer
stage copies theMatchScore field from Validate Address to a field called AddressMatchScore.
When the matcher stage runs it populates the MatchScore field with the value from the matcher
and passes through the AddressMatchScore value from Validate Address.

Write to Search Index
Write to Search Index enables you to create a full-text index based on the data coming in to the
stage. Having this data in a dedicated search index results in quicker response time when you conduct
searches against the index from other Spectrum Technology Platform stages. Full-text-search indexes
are preferable to relational databases when you have a great deal of free-form text data that needs
to be searched or categorized or if you support a high volume of interactive, text-based queries.

Write to Search Index uses an analyzer to break input text into small indexing elements called tokens.
It then extracts search index terms from those tokens. The type of analyzer used—the manner in
which input text is broken into tokens—determines how you will then be able to search for that text.
For example, the Keyword analyzer always does an exact match and tokenizes the whole string as
single token, while the Standard analyzer breaks the string to create tokens. The StopWord analyzer

152Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

is all the more sophisticated and removes articles, such as "a" or "the" from the string before
tokenizing, thus shrinking the index size.

Search indexes support the near real time feature, allowing indexes to be updated almost immediately,
without the need to close and rebuild the stage using the search index.

For information about the search index tasks you can perform through the command line, see Search
Indexes in Administration Utility section of the Administration Guide.

Options
1. In Enterprise Designer, double-click the Write to Search Index stage on the canvas.
2. Enter a Name for the index.
3. Select aWrite mode. When you regenerate an index, you have options related to how the new

data should affect the existing data.

• Create or Overwrite—New data will overwrite the existing data and the existing data will no
longer be in the index.

• Update or Append—New data will overwrite existing data, and any new data that did not
previously exist will be added to the index.

• Append—New data will be added to the existing data and the existing data will remain in tact.
• Delete—Data for the selected field will be deleted from the search index.

4. Select theKey field on the basis of which you want toUpdate or Append or Delete the records.

• In case of Create or Overwrite mode, the Key field needs to be unique for Elastic search
indexes (used in a distributed environment). If you leave the field blank, all the records get
stored in the index irrespective of any duplication. However, you will not be able to perform
any write operation, such as update, append, and delete on this index. The following table
explains the indexing behavior if the Key field is non-unique for Lucene and Elastic search
indexes.

Elastic search indexLucene search indexKey fieldWrite mode

All duplicate records with the same
Key field are overwritten.

All the records are stored.

Note: The duplicate
records with same key field
get overwritten as soon as
you run the update
operation.

Duplicate
records with
same Key field

Create or
Overwrite

Duplicates are overwritten.Duplicates are overwritten.Duplicate
records with
same Key field

Update or Append

153Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. Check the Batch commit box if you want to specify the number of records to commit in a batch
while creating the search index. Then enter that number in the Batch size field. Default is 5000.

6. Select an Analyzer to build:

• Standard—Provides a grammar-based tokenizer that contains a superset of the Whitespace
and Stop Word analyzers. Understands English punctuation for breaking down words, knows
words to ignore (via the Stop Word Analyzer), and performs technically case-insensitive
searching by conducting lowercase comparisons. For example, the string “Precisely Software”
would be returned as two tokens: “precisely” and “software”. For a comparison of Standard
and Keyword analyzers, see Standard and Keyword Analyzer on page 156.

• Whitespace—Separates tokens with whitespace. Somewhat of a subset of the Standard
Analyzer in that it understands word breaks in English text based on spaces and line breaks.

• StopWord—Removes articles such as "the," "and," and "a" to shrink the index size and increase
performance.

• Keyword—Creates a single token from a stream of data and keeps is as is. For example, the
string “Precisely Software” would be returned as just one token “Precisely Software”. For a
comparison of Standard and Keyword analyzers, see Standard and Keyword Analyzer on
page 156.

• Russian—Supports Russian-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "and," "I," and "you" to shrink the index size and
increase performance.

• German—Supports German-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "the" "and," and "a" to shrink the index size and
increase performance.

• Danish—Supports Danish-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "at" "and," and "a" to shrink the index size and increase
performance.

• Dutch—Supports Dutch-language indexes and type-ahead services. Also supports many stop
words and removes articles such as "the" "and," and "a" to shrink the index size and increase
performance.

• Finnish—Supports Finnish-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "is" "and," and "of" to shrink the index size and
increase performance.

• French—Supports French-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "the" "and," and "a" to shrink the index size and
increase performance.

• Hungarian—Supports Hungarian-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "the" "and," and "a" to shrink the index size
and increase performance.

• Italian—Supports Italian-language indexes and type-ahead services. Also supports many stop
words and removes articles such as "the" "and," and "a" to shrink the index size and increase
performance.

154Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Norwegian—Supports Norwegian-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "the" "and," and "a" to shrink the index size
and increase performance.

• Portuguese—Supports Portuguese-language indexes and type-ahead services. Also supports
many stop words and removes articles such as "the" "and," and "a" to shrink the index size
and increase performance.

• Spanish—Supports Spanish-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "the" "and," and "a" to shrink the index size and
increase performance.

• Swedish—Supports Swedish-language indexes and type-ahead services. Also supports many
stop words and removes articles such as "the" "and," and "a" to shrink the index size and
increase performance.

• Hindi—Supports Hindi-language indexes and type-ahead services. Also supports many stop
words and removes articles such as "by" "and," and "a" to shrink the index size and increase
performance.

7. To update the analyzer of all fields present in the list, Select an analyzer from update Analyzers
to... drop down.

8. To reload the schema from the server, click Reload Schema.

Note: You can change the field name by typing the new name directly in the Fields
column. However, you cannot change the Stage Fields name or the Type.

9. To selectively add/remove fields from your input source, clickQuick Add. TheQuick Add pop-up
window displays a list of all the fields from the input source. Select the fields that you want to
add and click OK.

10. Select the field(s) whose data you want to store. For example, using an input file of addresses,
you could index just the Postal Code field but choose to store the remaining fields (such as
Address Line 1, City, State) so the entire address is returned when a match is found using the
index search.

11. Select the field(s) whose data you want to be added to the index for a search query.

Note: If you want to delete certain fields, select those and click Delete.

12. If necessary, change the analyzer for any field that should use something other than what you
selected in the Analyzer field.

13. Click OK.

Output
Write to Search Index has one output port, called Error Port, which collects data for records that
could not be processed and added to the search index. Records that pass through the error port into
the sink are considered malformed.

155Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Records are forwarded to the error port if the value of the KeyField in the input record is blank or
null. For the search index engines that support standalone searches (the legacy index engine), the
error port functions only for the Update and Delete operations. However, for distributed support index
engine, it collects malformed records for all the four operations: Create, Update, Delete, and Append.

Search Index Management
The Search Index Management tool enables you to perform the following tasks:

• Add/remove fields in an existing search index
• Delete one or more search indexes

To add/remove fields to an existing search index:

1. Select Tools > Search Index Management. The Search Index Management pop-up window
is displayed showing the existing search indexes.

2. Select the index to be modified, and clickModify. TheModify Index page is displayed showing
a list of all the fields in the search index with their details.

3. To delete a field, select it from the list, and click Remove field.
4. To add a new field to the list, click Add field. The Add Field pop-up window is displayed, which

allows you to add the following details:

• Field name: Enter the name of the field.
• Type: Select the field type. The options are: string, integer, long, float, and double.
• Index: Select the check-box to add it to the index for search query.
• Store: Select the check-box to store the field.
• Analyzer: From the list of options, select the analyzer you want to use for indexing the field.

Note: This option will be enabled only if you have selected to index this field.

To delete an existing search index:

1. Select Tools > Search Index Management.
2. Select the search indexes you want to delete.
3. Click Delete.
4. Click Close.

Note: You can also delete a search index by using the Administration Utility. The command
is index delete --d IndexName, where IndexName is the name of the index you want
to delete.

Standard and Keyword Analyzer
Before choosing between the Standard and Keyword analyzers you should be aware of the following
difference in the behavior of these two analyzers:

• Standard analyzer: It breaks the string to tokenize it and also converts all its tokens to lower case.

156Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Keyword analyzer: It tokenizes the whole string and keeps it as is (does not change the case).

Example:

Let us take an example of contains any algorithm and assume the input is P O. In this case, the
Standard analyzer will return both P O and P records, while the Keyword analyzer will return only
the P O records (shown below).

Search result with Standard analyzer:

Search result with Keyword analyzer:

Analytics Scoring stages

Binning Lookup

Introduction to Binning Lookup
Binning Lookup applies previously defined binning to new data using existing bins created in dataflows
using the Machine Learning Binning stage.

Defining Binning Properties
1. Under Primary Stages > Deployed Stages > Analytics Scoring, click the Binning Lookup

stage and drag it onto the canvas, placing it where you want on the dataflow and connecting it
to other stages.

Note: The input stage must contain the data that you want binned. One output stage is
required for the binned output; you may optionally connect a second output stage to
capture the binning summary.

2. Select the appropriate Binning name from the drop-down.
These are names of existing bins that were created by a dataflow that uses the Machine Learning
Binning stage.
The Binning type and Description fields are imported with the bins from the selected Binning
name and are therefore noneditable.

157Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. The Inputs grid shows each field that was included for binning in the Binning stage along with
the data type.

4. Click OK to save your settings.

Binning Output
This tab shows the fields and data types that are being binned by the Binning Lookup stage. You
can edit entries in the Spectrum Binned Fields column to enter a new name for a binned field. In
the Include column, you can select or clear check boxes to include or exclude binned fields. For
more information about output generated by a binning stage, see Binning Output (Binning Stage)
in the Machine Learning Guide.

Java Model Scoring

Introduction to Model Scoring
Model Scoring enables you to score new data using the formula created when you fit a machine
learning model.

Note: Models must first be exposed through the web interface before they will appear in the
Model Scoring stage.

To score your data, you must complete two tabs of the Model Scoring Options dialog. First identify
the model and its type, and then ensure the model's fields are correctly mapped to Spectrum
Technology Platform fields. Following that, you configure the output by selecting which fields you
want to include and running your job. The output will appear on the Model Output tab.

After running your job, you will need to send the scores to an output table and then run the dataflow
or web service.

Defining Model Properties
1. Under Primary Stages / Deployed Stages / Analytics Scoring, click theModel Scoring stage

and drag it onto the canvas, placing it where you want on the dataflow and connecting it to input
and output stages.

2. Double-click the Model Scoring stage to show the Model Scoring Options dialog box.
3. Optional: Select the type of a model you are scoring in the Type filter drop-down.
4. Select the Type filter being used to score the model.
5. Select the Model name from the drop-down.
6. Enter the type of model you are scoring in the Model type field.
7. Optional: Enter a Description of the model.
8. The Inputs table shows information for the model's input fields. These fields and their data types

automatically map to Spectrum fields and data types, but if necessary you can manually change
the mappings.

9. Click OK to save these options or continue to the next tab.

158Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Configuring Model Output
The Outputs table shows information for the model's output fields. These fields and their data types
automatically map to Spectrum fields and data types, but if necessary you can manually change the
mappings.

1. Click Include for each field whose data you want included in the model's output.
2. Click OK to save the model.

PMML Model Scoring

Introduction to PMML Model Scoring
The PMMLModel Scoring stage is capable of evaluating analytical models which have been published
to the Analytics Scoring Repository in the context of a dataflow. The evaluator operates on single
data rows using the fields from each row as the inputs to the model. User selected outputs from the
model are written to the output channel.

Note: For details of the supported model types and type mappings see Supported Model
Formats on page 162

Deploying a Model
This procedure describes how to configure the PMML Model Scoring stage to deploy an analytics
model as part of a dataflow.

1. UnderPrimary Stages >Deployed Stages >Analytics Scoring, click thePMMLModel Scoring
stage and drag it onto the canvas, placing it where you want on the dataflow and connecting it
to input and output stages.

2. Double click the PMML Model Scoring stage to show the PMML Model Scoring Options dialog
box.
By default the options dialog shows the details of the first model in the list of available models.

3. Click the Type Filter drop-down and select the model type to filter by.
Only model types which are associated with at least one model in the Analytics Scoring
Repository are listed.

4. Click the Model drop-down and select the model to deploy.
The details of the chosen model are displayed in the dialog.

The type of the selected model as described in Supported Model Formats on
page 162.

Model type

A short text about the purpose of the model.Description

A table containing information about all the required input fields for the model.
Each row contains information about an input field. The model input field name

Inputs

will automatically be mapped to a valid Spectrum field name on publish (see

159Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Add a Model in a Web Browser Client or Add a Model via Spectrum Miner
Spectrum Connector).

The name of the field as specified in the model
definition.

Model Field Name

The name of the field as used in the Spectrum
platform.

Spectrum Field Name

the type of the field as specified in the model
definition.

Model Field Type

The Spectrum field type that is mapped to the
model field type as described in QMML on page
163 and PMML on page 164.

Spectrum Field Type

5. Select the Configuration tab.
Details about the model's Outputs are displayed in a table. It contains information about all the
output fields for the model. Each row has information about an output field. The model output
field name will automatically be mapped to a valid Spectrum field name on publish (see Add a
Model in a Web Browser Client or Add a Model via Spectrum Miner Spectrum Connector).

The name of the field as specified in the model definition.Model Field Name

The name of the field as used in the Spectrum platform.Spectrum Field Name

The type of the field as specified in the model definition.Model Field Type

The Spectrum field type that is mapped to the model field type
as described in QMML on page 163 and PMML on page 164.

Spectrum Field Type

A check box to specify whether to use this output.Include

6. Optional: Uncheck the Included column of any row in the Outputs table to exclude the output
(stop it from being written to the output channel).
At least one output must remain selected. If all outputs are excluded then a validation error
symbol will appear beside the Outputs table. This means the current model configuration is
invalid and the model cannot be deployed. The validation error symbol will remain visible until
the error is corrected.

7. Optional: Click the Spectrum Field Name column of any row in the Outputs table to rename
the fields as required.
No two outputs can share the same Spectrum Field Name and Spectrum Field Names must
follow the standard Spectrum Technology Platform field naming conventions. If any validation
errors are detected then a validation error symbol is displayed beside theOutputs table; hovering
the mouse cursor over a validation error symbol shows the error details.

Note: Renaming an output's Spectrum Field Name only affects the specific instance of
the stage, it does not update the Analytics Scoring Repository .

160Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: Spectrum Technology Platform field names must:

• Be unique.
• Be non-empty.
• Contain only alphanumeric, period or underscore characters.
• Cannot start with a period.

8. Finally click OK to save the chosen model and configuration.

Reconfigure PMML Model Scoring Settings
This procedure describes how to re-configure the PMML Model Scoring stage to rename or change
the outputs that are generated from the PMMLModel Scoring stage or to change the deployedmodel
to be evaluated by the stage.

1. Double click the PMML Model Scoring stage to show the PMML Model Scoring Options dialog
box.
The options dialog shows the model which was previously selected, configured and deployed.

Note: If the selected model has been deleted from the Analytics Scoring Repository prior
to opening thePMMLModel ScoringOptions dialog, a validation error symbol is displayed
beside the Model drop-down list. This means any new changes made to the model’s
configuration cannot be deployed. Clicking Cancel will exit the PMML Model Scoring
Options and allow the deleted model to be used within the dataflow as previously
configured. In order to apply any new changes to the stage configuration, select a different
(non-deleted) model from the Model drop-down list. After applying a change of model,
further re-configuration of the stage will no longer have the deleted model available in the
Model drop-down list.

2. Optional: From the Model tab select a different model from the Model drop-down list to change
which model is used within the dataflow.

Note: On changing the selected model in the Model drop-down list, all configuration
changes for the previously chosen model will be discarded. Re-selecting the model will
result in the default output configuration for the model. Clicking Cancel will undo any
changes made since opening the PMML Model Scoring Options allowing any pending
changes to be reverted.

Note: On selecting a model, if the model has been deleted since the PMML Model
Scoring Options dialog was opened then a validation error symbol will be displayed
beside the Model drop-down list. In this scenario the Inputs and Outputs will not be
available and re-configuration of the model settings will not be able to be applied until a
non-deleted model has been selected.

3. Select the Configuration tab
4. Make any desired changes to the selected model's outputs configuration.

161Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For example, rename a Spectrum Field Name, or change its Include check box status to be
included/excluded from the dataflow.
Any changes to the outputs must adhere to the following validation rules: At least one output
must be included. Output's Spectrum Field Namemust be unique and must follow the standard
Spectrum Technology Platform field naming conventions. If any validation errors are detected
then a validation error symbol will be displayed beside the table; hovering the mouse cursor over
a validation error symbol will show the error details.

Note: Spectrum Technology Platform field names must:

• Be unique.
• Be non-empty.
• Contain only alphanumeric, period or underscore characters.
• Cannot start with a period.

5. Once all desired changes have been made click the OK button to apply the changes.

Output
The PMML Model Scoring stage returns the selected model output fields. Additionally, if the PMML
Model Scoring stage fails to process a record, it returns the fields Status, Status.Code, and
Status.Description. These fields provide information on why the stage failed to process the record
as detailed below.

DescriptionField Name

Reports the success or failure of the evaluation attempt:

Successnull

FailureF

Status

Reason for failure or error:

Failed to convert Spectrum input field types to the
required model field types.

InputConversionFailed

Model evaluation failed for the given record.ModelEvaluationFailed

Status.Code

Description of the problem.Status.Description

Supported Model Formats
The PMML Model Scoring supports the deployment of analytical models saved in both QMML on
page 163 and PMML on page 164 file formats.

162Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

QMML on page 163 models can be created and exported from SpectrumMiner. All types of analytical
models and segmentations exported from SpectrumMiner are supported by the PMMLModel Scoring
stage and can be deployed within a Spectrum Technology Platform dataflow.

PMML on page 164 models can be created and exported from many commercial and open source
modeling tools.

Note: Models may only be published in UTF-8 encoding.

QMML

QMML is a proprietary XML based file format used to represent model results generated from
Spectrum Miner.

All types of analytical models and segmentations exported from Spectrum Miner are supported by
the PMMLModel Scoring stage and can be deployed within a Spectrum Technology Platform dataflow.

Type Mapping

QMML model inputs and outputs are automatically mapped to Spectrum Technology Platform field
types.

Spectrum Technology Platform Field TypeQMML Field Type

integerinteger

doublereal

stringstring

datetimedate

Supported Models

All model types constructed within SpectrumMiner (including decision tree, scorecard, cluster analysis
and naive Bayes models) are interpreted by Analytics Scoring as a Miner Model.

Miner Model

A Miner Model is any type of QMML on page 163 model exported from Spectrum Miner, such as
those generated from the decision tree, scorecard, cluster analysis or naive Bayes modeling tools.

163Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Unsupported Features

All compiled QMML on page 163 exported from Spectrum Miner is supported.

Model Outputs

DescriptionField

A field is output for each QMML on page 163 model output.dynamic fields

PMML

Predictive Model Markup Language (PMML) is an XML-based file format developed by the Data
Mining Group to provide a way for applications to describe and exchange models produced by data
mining and machine learning algorithms. PMML files can be created and exported from many
commercial and open source modeling tools.

Type Mapping

PMML model inputs and outputs are automatically mapped to Spectrum Technology Platform field
types. All PMML models inputs and outputs must be of supported types.

Spectrum Technology Platform Field TypePMML Field Type

stringstring

integerinteger

floatfloat

doubledouble

booleanboolean

datedate

datedateDaysSince[1960]

datedateDaysSince[1970]

164Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Spectrum Technology Platform Field TypePMML Field Type

datedateDaysSince[1980]

not supporteddateDaysSince[0]

timetime

timetimeSeconds

datetimedateTime

datetimedateTimeSecondsSince[1960]

datetimedateTimeSecondsSince[1970]

datetimedateTimeSecondsSince[1980]

not supporteddateTimeSecondsSince[0]

Supported Models

Analytics Scoring currently supports the PMML model types detailed in the following sections.

Association Rule

A PMML on page 164 association rule model represents rules where some set of items is associated
to another set of items. For example a rule can express that a certain product or set of products is
often bought in combination with a certain set of other products, also known as Market Basket
Analysis. An Association Rule model typically has two variables: one for grouping records together
into transactions and another that uniquely identifies each record.

Model Element

<AssociationModel functionName="associationRules" ...

Unsupported Features

Non-string field types for the field(s) identifying the item are not supported.

Having more than one field for grouping records is not supported.

165Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Association Rulemodels with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

DescriptionSupported Model
Output Features

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

The id of the winning rule (default), or the rule specified by the rank value. If the selected rule
does not provide an id, a 1-based index is returned.entityId

This is identical to the entityId option and has been deprecated as of PMML 4.2. Although its use
is currently supported it is recommended to use entityId.ruleId

The affinity of the winning rule (default), or the rule specified by the rank value.affinity

The antecedent of the winning rule (default), or the rule specified by the rank value. This output
will be formatted as a comma separated string of values.antecedent

The consequent of the winning rule (default), or the rule specified by the rank value. This output
will be formatted as a comma separated string of values.consequent

The winning rule (default), or the rule specified by the rank value. This output will return a
description of the rule, formatted in the following way: {antecedent}->{consequent}.rule

The confidence of the winning rule (default), or the rule specified by the rank value.confidence

The support of the winning rule (default), or the rule specified by the rank value.support

The lift of the winning rule (default), or the rule specified by the rank value.lift

The leverage of the winning rule (default), or the rule specified by the rank value.leverage

166Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Clustering

A PMML on page 164 clustering model determines the best matching cluster for a given record based
on the distance or similarity measure used for clustering. A cluster is a subset of similar data.
Clustering (also called unsupervised learning) is the process of dividing a dataset into groups such
that the members of each group are as similar to each other as possible and different groups are as
dissimilar from each other as possible.

Model Element

<ClusteringModel functionName="clustering" ...

Unsupported Features

Clustering models with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

DescriptionSupported Model
Output Features

The best matching cluster based on the distance or similarity measure used for clustering.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

The human readable value used to represent the predicted value from the model.predictedDisplayValue

If present, the 1-based index (implicit identifier) of the winning/predicted cluster.entityId

The value of the distance or the similarity of the provided record to the predicted cluster as defined
in the model.affinity

167Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Classification Tree

A PMML on page 164 classification tree model predicts membership of a categorical dependent
variable from one or more independent variables.

Model Element

<TreeModel functionName="classification" ...

Unsupported Features

Classification trees with a missing value strategy of "aggregateNodes" or "weightedConfidence" are
not supported.

Classification Tree models with the <MiningSchema> element containing a reference to a
<DerivedField> element are not supported.

Model Outputs

By default the target field will be available as an output field - this is a synonym for the predictedValue
feature.

DescriptionSupported Model
Output Features

The categorical dependent variable that we are predicting membership of.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

The human readable value used to represent the predicted value from the model.predictedDisplayValue

The statistical probability of the predicted value. Multiple probability outputs can be specified in
the model, one for each predicted category or by rank.probability

The residual of the probability output value (1 - probability) for the predicted category or rank.
Multiple residual outputs can be specified in the model, one for each predicted category or by
rank.

residual

168Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionSupported Model
Output Features

If present, the ID of the tree node of the predicted result.entityId

Regression Tree

A PMML regression tree model predicts the value of a numeric-dependent variable (such as the
price of a house) from one or more independent variables. It does this by building a decision tree
model that is based on one or more predictors.

Model Element

<TreeModel functionName="regression" ...

Unsupported Features

Regression trees with integer or float target fields are not supported unless a <Targets> element is
specified with the appropriate castInteger attribute.

Regression treemodels with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

By default the target field will be available as an output field. This is a synonym for the predictedValue
feature. Float target fields will always be cast to integer.

DescriptionSupported Model
Output Features

The numeric dependent variable that we are predicting.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

If present, the ID of the tree node of the predicted result.entityId

169Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Naive Bayes

A PMML on page 164 Naive Bayes model predicts the value of a target from evidence given by one
or more predictor fields using Bayes' Theorem. Naive Bayes models require the target field to be
discretized so that a finite number of values are considered by the model. Predictor fields may be
either discrete or continuous.

Model Element

<NaiveBayesModel functionName="classification" ...

Unsupported Features

Naive Bayes models with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

By default the target field will be available as an output field - this is a synonym for the predictedValue
feature.

DescriptionSupported Model
Output Features

The categorical variable that we are predicting membership of.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

The human readable value used to represent the predicted value from the model.predictedDisplayValue

The statistical probability of the predicted value.probability

The residual of the probability output value (1 - probability) for the predicted value.residual

170Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Regression

A PMML on page 164 regression model predicts the value of a numeric dependent variable from one
or more independent variables.

Model Element

<RegressionModel functionName="regression" ...

Unsupported Features

Regression models with a "normalizationMethod" attribute set to the value "simplemax", "probit",
"cloglog" or "loglog" are not supported.

Regression models with integer or float target field are not supported unless <Targets> element is
specified with appropriate castInteger attribute.

Regression models with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

By default the target field will be available as an output field - this is a synonym for the predictedValue
feature. Float target fields will always be cast to integer.

DescriptionSupported Model
Output Features

The numeric dependent variable that we are predicting.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

Regression Classifier

A PMML on page 164 regression classifier combines the output from multiple regression equations
to predict a categorical value.

171Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Model Element

<RegressionModel functionName="classification" ...

Unsupported Features

Regression models with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

By default the target field will be available as an output field - this is a synonym for the predictedValue
feature.

DescriptionSupported Model
Output Features

The categorical dependent variable that we are predicting membership of.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

The human readable value used to represent the predicted value from the model.predictedDisplayValue

The statistical probability of the predicted value. Multiple probability outputs can be specified in
the model, one for each predicted category or by rank.probability

The residual of the probability output value (1 - probability) for the predicted value. Multiple
residual outputs can be specified in the model, one for each predicted category or by rank.residual

Scorecard

A PMML on page 164 scorecard model is a regression based modeling technique mainly used to
calculate risk or default probability.

172Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Model Element

<Scorecard functionName="regression" ...

Unsupported Features

Scorecard models with the <MiningSchema> element containing a reference to a <DerivedField>
element are not supported.

Model Outputs

By default the target field will be available as an output field - this is a synonym for the predictedValue
feature and will always be of type 'double'.

DescriptionSupported Model
Output Features

The calculated score.predictedValue

A value generated via a transformation expression applied to the predicted model output.transformedValue

A value generated via an expression applied to the predicted model output resulting in a
categorized value.decision

If specified the reason codes associated with the characteristics used to determine the score in
order of their contribution to the final score. The rank of the request reason code can be specified
otherwise the highest ranked reason code will be returned by default.

reasonCode

Read from Miner Dataset

Introduction to the Read from Miner Dataset
The Read from Miner Dataset stage is capable of extracting field information and data from a Miner
dataset.

Reading from a Miner Dataset
This procedure describes how to read field information and data from a Miner Dataset.

1. Under Primary Stages / Deployed Stages / Analytics Scoring, drag the Read from Miner
Dataset stage onto the canvas and connect it to the dataflow.

173Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. Double click theRead fromMiner Dataset stage to show theRead fromMiner Dataset Options
dialog.

3. Click the ... button inside the File Name field to show the Open File dialog.
4. Using the Open File dialog, locate and select the focus file containing the Miner Dataset.

Focus files have .ftr extension.

5. Click the Fields tab in the Read from Miner Dataset Options dialog to show the fields table.
The fields table will be empty when configuring the Read from Miner Dataset stage for the first
time and anytime a new focus file is selected (step 4 on page 174).

6. Click the Regenerate button.
The fields table will list all the fields that the Read from Miner Dataset stage will read from the
Miner Dataset.

Note: The Regenerate button will be disabled if no focus has been selected (steps 3 on
page 174 and 4 on page 174).

Note: If the stage fails to retrieve fields from the Miner dataset then an error dialog will
be displayed. Select a valid focus file and try again.

7. If required, modify the fields list using the available options (see Fields Tab on page 174).
8. Finally, click the OK button to apply the configuration.

If any validation errors are detected then a validation error message will be displayed. Correct
the validation errors before clicking the OK button again. If no validation errors are found, the
Read from Miner Dataset Options dialog will close.

Note: To re-configure the stage, double click the Read from Miner Dataset stage to
re-display the Read from Miner Dataset Options dialog.

Fields Tab
The Fields tab contains a table listing all the fields that the Read fromMiner Dataset stage will read
from the Miner Dataset. The following table describes the options on the field that can be used to
modify the table contents.

DescriptionOption Name

Replaces the fields currently defined with those read from
the Miner dataset.

Regenerate

The following table describes the properties listed for all fields.

174Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

EditableDescriptionColumn Name

NoThe name of the field as specified in the Miner Dataset.Miner Field Name

YesThe name of the field that will created on the dataflow
channel. If the Miner Field Name is not compatible
with the Spectrum Technology Platform naming rules
then the Spectrum Field Name will be different. Edit
the text within the cell to specify the desired field name
for the dataflow channel. Spectrum Technology
Platform field names must:

• Be unique.
• Be non-empty.
• Contain only alphanumeric, period or underscore
characters.

• Cannot start with a period.

Spectrum Field Name

NoThe data type of the field that will be created on the
dataflow channel (see Output on page 175).

Spectrum Field Type

YesA check box to specify whether to include this field in
the dataflow channel.

Include

Note: By clicking the table column headers the fields can be sorted by Miner Field Name,
Spectrum Field Name or Spectrum Field Type.

Output
The following type mapping betweenMiner Field Type and Spectrum Field Type is done automatically

Table 19: Field Mappings

Spectrum TypeMiner Type

integerinteger

stringstring

doublereal

datetimedate

175Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

If a field has a name that contains symbols which are invalid in Spectrum, the invalid symbols will
automatically be replaced with an _ . If two or more fields have the same transformed name an
additional index will be appended to the name, for example:

{x}Field{x}

{y}Field{y}

where {x} and {y} are characters not supported in a Spectrum field name, would
end up as

_Field_1

_Field_2

in the output channel.

Write to Miner Dataset

Introduction to the Write to Miner Dataset
The Write to Miner Dataset stage is capable of creating a Miner Dataset to hold the specified fields
and data from a Spectrum dataflow.

Writing to a Miner Dataset
This procedure describes how to write field information and data to a Miner Dataset.

1. Under Primary Stages > Deployed Stages > Analytics Scoring, drag theWrite to Miner
Dataset stage onto the canvas and connect it to the dataflow.

2. Double click theWrite to Miner Dataset stage to show theWrite to Miner Dataset Options
dialog.

3. Click the ... button inside the File Name field to show the Save File dialog.
4. Using the Save File dialog, choose where the new focus file will be saved and provide an

appropriate file name.
Focus files must have .ftr extension. The .ftr extension will automatically be appended to
the file name if it's missing.

5. Optional: Uncheck the Overwrite check box.
If a focus file with the same name already exists in the directory specified (step 4 on page 176),
unchecking the Overwrite check box will prevent the existing focus file from being overwritten
each time the stage is executed within a dataflow (the stage will fail to execute). However, this
will mean that when theWrite To Miner Dataset stage has been executed successfully within
dataflow, the file path must be re-configured (step 4 on page 176) or the existing focus file will
have to be manually moved or deleted.

6. Optional: Apply a metadata file for the new focus (see Applying Metadata on page 177).
7. Click the Fields tab in theWrite to Miner Dataset Options dialog to show the fields table.

176Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The fields table will list all the fields that theWrite to Miner Dataset stage will write to the Miner
Dataset.

8. Optional: Click the Quick Add button.
Clicking the Quick Add button launches the Quick Add dialog, the dialog lists all fields from the
input channel and the current fields list. Select/deselect the checkboxes beside each field to
add/remove the field from the fields list.

9. If required, modify the fields list using the available options (see Fields Tab on page 178).
At least one field must be specified or a validation error indicator will be displayed.

10. Finally, click the OK button to apply the configuration.
If any validation errors are detected then a validation error message will be displayed. Correct
the validation errors before clicking the OK button again. If no validation errors are found, the
Write to Miner Dataset Options dialog will close.

Note: To re-configure the stage, double click theWrite to Miner Dataset stage to
re-display theWrite to Miner Dataset Options dialog.

Applying Metadata
A .qsfm metadata file contains additional information that can be applied to a focus file such as
derived field definitions, field interpretations, binnings, record selections, field and focus comments
and focus history. This procedure describes how to apply this kind of metadata to a focus file produced
using theWrite to Miner Dataset stage.
1. Obtain a valid Miner focus metadata file (either export from an existing focus in Spectrum Miner

or acquire from a third party).
Metadata files must have a .qsfm extension.

2. Ensure that theWrite to Miner Dataset Options dialog is currently displayed (seeWriting to
a Miner Dataset on page 176).

3. From theWrite to Miner Dataset Options dialog, check the Apply Metadata check box.
4. Below the Apply Metadata check box, click the ... button inside the File Name field to show the

Open File dialog.
The metadata file picker will be disabled when the Apply Metadata check box is not checked.

5. Using the Open File dialog, locate and open the .qsfm file obtained in step 1 on page 177.

Note: When theApply Metadata check box is checked, a metadata file must be selected
before the stage's configuration can be applied.

Note: Unchecking the Apply Metadata check box after selecting a metadata file will
disable the metadata file chooser and will not apply the metadata file on stage execution,
but for convenience the file chooser will not remove the selected file until theWrite to
Miner Dataset Options dialog is closed.

177Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. Optional: Check the Ignore warnings check box if you do not want the dataflow to fail if a piece
of metadata cannot be applied.

Fields Tab
The Fields tab contains a table listing all the fields that theWrite to Miner Dataset stage will write
to the Miner Dataset. The following table describes the options on the field that can be used to modify
the table contents.

DescriptionOption Name

Clicking the Add button launches the Add dialog for adding
a new field to the fields list. TheAdd dialog requires the new
field's name, Miner type and length (if Miner type is 'string')
to be specified.

Add

Deletes the currently selected fields from the fields list.Remove

Clicking theRegenerate button launches a dialog prompting
for confirmation of the field regeneration. If the action is
confirmed all existing fields are replaced with the fields found
in the selected focus file.

Note: The Regenerate button will be disabled
when there is no focus file selected.

Note: Regenerating from an invalid focus will not
clear or change the existing fields list.

Regenerate

Clicking the Quick Add button launches the Quick Add
dialog, the dialog lists all fields from the input channel and
the current fields list. Select/deselect the check boxes beside
each field to add/remove the field from the fields list.

Note: TheQuick Add button will be disabled when
a field's Miner field name is invalid.

Quick Add

The field properties can also be updated by modifying cells in the following table columns directly.

178Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionColumn Name

The name of the field as it will appear in the new Miner
dataset. Edit the text within the cell to specify the desired
field name. Field names must:

• Be unique.
• Be non-empty.
• Start with a letter.
• Contain only alphanumeric or underscore characters.
• Not be longer than 128 characters.

If a field name is changed to an invalid name then a
validation error symbol will be displayed beside the fields
table. Correct the validation error before clicking the OK
button.

Miner Field Name

The Miner data type the field will use in the new Miner
dataset (see Output on page 179). Change the field's data
type by selecting from the drop down list.

Miner Field Type

If the chosen Miner field type in the table row is 'string' then
the user will be able to specify an integer value between 1
and 4000 to set the length for the string field in the Miner
focus. Any strings values for the field that are longer than
the specified string length will be truncated to this length in
the resulting focus.

String Length

Output
The following type mapping between Spectrum Field Type and Miner Field Type is done automatically

Table 20: Field Mappings

Miner TypeSpectrum Type

integerinteger

stringstring

realdouble

datedatetime

All other Spectrum types map to Miner type 'String'.

179Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Context Graph stages

Delete from Model
The Delete from Model stage deletes entities and relationships from a Context Graph model.

A dataflow that uses a Delete from Model stage requires an input stage that contains data from or
queries the same model whose elements you are deleting. It also has two optional output ports: one
contains data for the deleted entities and relationships and the other contains data for the records
that were not deleted.

To configure a Delete from Model stage, you need to select the model you want to modify and then
complete the Options tab and possibly the Runtime tab, depending on which write mode you want
to use.

Input
The Delete from Model stage requires that your dataflow include an input stage that contains data
from or queries the same model whose elements you are deleting. This requirement could be met
by a Read from Model stage, a Query Model stage, a source stage of some kind, or even a control
stage that combines multiple other input stages.

Options

The Options Tab

The Options tab enables you to configure the elements that will be removed from your model.

1. Select the name of the model whose elements you want to remove in the Model field.
2. Check Delete entities if you want to remove entities from the model.

• Click the ID drop-down and select the field that contains the entities you want to remove from
your model. This is often, but not always, the _stp_id field if the ID and type are together, or
the _stp_label field if the ID and type are separate.

• If the input data stores the entity type with the ID, such as with _stp_id, check the In ID field
box.

• If the input data stores the entity type separately, such as with _stp_label, check the In separate
field box and select the appropriate field in the Type drop-down. This is often, but not always,
the _stp_type field.

• To select a specific entity type, check the Literal box and select the appropriate field in the
Type drop-down.

3. Check Delete relationships if you want to remove relationships from the model.

• Select the field that contains the source entities in the Source ID field. This is often _stp_id or
_stp_label.

180Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• If the input data stores the source entity type with the ID, such as with _stp_id, check the In
ID field box.

• If the input data stores the source entity type separately, such as with _stp_label, check the
In separate field box and select the appropriate field in the Type drop-down. This is often, but
not always, the _stp_type field.

• To select a specific source entity type, check the Literal box and select the appropriate field
in the Type drop-down.

• Select the field that contains the relationship between the source and target entities in the
Label drop-down.

• If there are multiple relationships with the same label between the source and target entities,
click the Unique ID in separate field box and select the name of the Unique ID.

• Select the field that contains the target entities in the Target ID field. This is often _stp_id or
_stp_label.

• If the input data stores the target entity type with the ID, such as with _stp_id, check the In ID
field box.

• If the input data stores the target entity type separately, such as with _stp_label, check the In
separate field box and select the appropriate field in the Type drop-down. This is often, but
not always, the _stp_type field.

• To select a specific target entity type, check the Literal box and select the appropriate field in
the Type drop-down.

4. Click OK.

The Runtime Tab

The Runtime tab allows you to control processing options.

1. ClickConcurrent writes if you want to allow the model to be written to by multiple Context Graph
stages at the same time. Click Exclusive lock (default) if you do not want to allow the model to
be written to by multiple Context Graph stages. When this mode is checked, properties can be
updated after they are created.

2. Click OK.

Output
The Delete from Model stage has two optional outgoing ports to which you can attach various sink
stages. One sink captures data for the successfully deleted entities and relationships, while the other
collects any records that the dataflow did not process correctly. This is called the Error Port, and
records that pass through this port into the sink are considered malformed.

Capturing malformed records can help you identify the problem with those records. When you attach
a sink to the Error Port, the resulting output file will contain all the fields from the malformed records.
It will also contain a Reason field that specifies why the record failed.

181Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Import to Model
The Import to Model stage populates data in a new or existing Context Graphmodel from two incoming
channels.

The Import to Model stage is used to create a complex network of relationships called a Context
Graph model, which can be displayed in a model. It can also be used to populate an existing model.
Once a model is created, it can be queried against in a Read from Model stage or a Query Model
stage, and it can be visualized in Discovery or the Relationship Analysis Client.

A dataflow that uses an Import to Model stage requires two incoming channels of data: one for entities
and one for relationships. You'll then need to complete the Entities tab and the Relationships tab in
the Import to Model stage to complete your dataflow and create or update your model.

Input
The Import to Model stage requires that your dataflow contain two channels: one that provides data
for entities going into the Entity Port (the top port) and one that provides data for relationships going
into the Relationship port (the bottom port). This requirement could be met by two source stages
(each containing one input file), or it could come from multiple source stages that feed into Record
Combiners and ultimately become two streams, or it could come from one source file whose data
goes through a Conditional Router or a Splitter that outputs the data into two streams. It doesn't
matter which method you use as long as the end result is a channel of entity data and a channel of
relationship data that go into the Import to Model stage.

Entity Data

Data going into the Entity Port needs to include both type and ID information for your entities. You
can have a Type field ("Person") and an ID field ("Bob"), or you can have just an ID field that combines
both type and ID information, separated by a colon ("Person:Bob"). For instance, your file could look
something like the comma-delimited data below. The Type field tells us that the entities are people
and places, and the ID field provides the names of the people and places.

Alternatively, your input file could contain a single field that combines both type and ID:

182Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The fields that contain type and ID data do not actually need to be named "Type" and
"ID"; any field name is acceptable.

Relationship Data

Data going into the Relationship Port needs to include fields that identify source types, source IDs,
target types, target IDs, and labels that identify the relationships between the sources and targets.
Note that all source and target entity information must reference entities that are provided on the
Entity Port. Your relationship data may also include properties about those relationships. For instance,
your file could look something like the data below. In this case, the SourceType field tells us that all
sources are people, and the TargetType field tells us that the targets are people and places. The
SourceID field provides names of all the sources, and the TargetID field provides names of the people
and places. The Label field identifies the relationships, in this case "Works_With", "Works_At", or
"Lives_At".

Options

The Entities Tab

The Entities tab enables you to configure the entities that will be included in your model. These
entities represent objects or events, which may have properties associated with them, and these
properties can be stored in your model as well if you choose to include it. Entities are linked to each
other via relationships, which you will establish on the Relationships tab.

1. Enter the name of your model in the Model field.
2. Click the ID drop-down and select the field whose data you want to use to generate the entities

for your model.
3. If the entity's type is contained in its own field, check the Type in separate field box and select

the appropriate field in the Type drop-down.
4. The Internal Index grid includes a list of fields that are generated by the Import to Model stage.

The _stp_id field is always indexed; the _stp_label and _stp_type fields are optional. These fields
can be indexed with or without case sensitivity.

5. The Field Name grid includes all the fields from your entity input file. Select the fields whose
data you want included in the model by clicking the Include box for those fields.

183Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. Select which fields you want to be indexed in your model by clicking the Index box for those
fields. Selecting which fields to index, rather than indexing all fields in your model, results in
faster performance when writing to a model. However, if you later attempt to query fields in your
model that were not indexed, the response time will be slower. For example, the Specify starting
entity option in the query tool for the Relationship Analysis Client works only on indexed
properties. You can query non-indexed properties using conditions, but the performance will be
slower.

7. In the Index Type column, you can choose whether the data should be indexed with or without
case sensitivity. Selecting Case Insensitivity typically results in greater response to a search.
You cannot change the Index Type for an existing property unless it has zero counts within the
model. In other words, if your model contains a property but none of the records that make up
the model uses that property, you can change the index type. If one or more records uses the
property, you cannot change the index type.

Note: The _stp_id, _stp_type, and _stp_label properties are internal properties and will
always appear in the list of indexed fields. You can deselect _stp_type and _stp_label,
but _stp_id must be indexed; however, you are able to designate whether its index type
should be exact or with case insensitivity.

8. Click the Relationships tab to continue creating your model.

The Relationships Tab

After determining the entities for your model, you need to establish the relationships between source
and target entities on the Relationships tab. These relationships represent the connection between
two entities (for example, John Smith is a customer of ABC Enterprises, Inc.). As with entities,
relationships may also contain properties, which you may or may not choose to include in your model.

1. Select the field that contains the source entity ID in the Source ID field.
2. If the source entity type is contained in its own field, check the Type in separate field box and

select the appropriate field in the Type drop-down.
3. Select the field that contains the relationship between the source and target in the Label

drop-down.
4. If you want to allow a relationship to be created more than once between a source and target

entity, click the Allowmore than one relationship based on unique ID box and select the field
on which to base the relationship in the Unique ID drop-down.

5. Select the field that contains the target entity ID in the Target ID field.
6. If the target entity type is contained in its own field, check the Type in separate field box and

select the appropriate field in the Type drop-down.
7. The Field Name grid includes all the fields from your entity input file. Select the fields whose

data you want included in the model by clicking the Include box for those fields.
8. Click OK.

184Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The Options Tab

The Update existing model field designates whether to update, append, remove, or retain data
when an Import to Model job is run and the model already exists. If this box is unchecked and you
run a job that writes new data to the model, the existing data will first be deleted; if the new job results
in blanks for a property, that property's existing data will be removed.

Note: Import to Model has no error recovery capability; if you use this option, be sure to back
up your existing model before updating the model with this option selected.

If this box is checked, you must specify how Import to Model should handle existing data for both
entities and relationships:

• Always update properties—Overwrite existing data with input data regardless of contents. If the
input properties are empty or if properties are in the existing data but not the input data, those
properties will be removed from the record.

• Update properties unless all input is null—Overwrite existing data with input data unless all of the
input properties are empty, in which case the record will be written to the error port.

• Never overwrite non-empty properties—Do not overwrite or remove existing data with input data
unless the existing properties are empty. Input data will be appended to the record.

• Never overwrite properties with empty input data—Overwrite existing data with input data but do
not remove existing properties when input properties are empty.

Output
The Import to Model stage has an optional outgoing port to which you can attach a sink stage that
collects any records that the dataflow did not process correctly. This is called the Error Port, and
records that pass through this port into the sink are considered malformed.

Capturing malformed records can help you identify the problem with those records. When you attach
a sink to the Error Port, the resulting output file will contain a superset of the fields from both input
files. It will also contain a Reason field that specifies why the record failed. So, for example, if your
entities input file contains Type, ID, and Location fields, and your relationships input file contains
Type, ID, and Label fields, your output file would contain Reason, Type, ID, Location, and Label
fields.

Causes for record failure include, but are not limited to, the following:

• In the relationship configuration, the source entity equals the target entity.
• Relationships reference an entity that has not been defined.
• Duplicate entities or relationships exist.
• Input fields are out of order.

185Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Type, ID, or label fields are empty.

Merge Entities
The Merge Entities stage merges two or more entities into a single entity.

A dataflow that uses a Merge Entities stage requires one or more inputs that identify the entities you
are merging. It also has two optional output ports: one contains data for the merged entity and its
properties and the other contains data for the records that could not be merged.

To configure a Merge Entities stage, you need to select the model you want to modify and then
complete the Options tab and possibly the Runtime tab, depending on which write mode you want
to use.

Input
The Merge Entities stage requires that your dataflow include an input stage that contains data from
or queries the same model whose elements you are merging. This requirement could be met by a
Read from Model stage, a Query Model stage, a source stage of some kind, or even a control stage
that combines multiple other input stages.

Options

The Options Tab

The Options tab enables you to configure the elements that will be merged in your model.

1. Select the model whose entities you want to merge in the Model drop-down list box.
2. Select or enter the type of entities you are merging in the Type drop-down list box.
3. SelectMergemultiple sources on a single record if you want to spread the source information

across multiple fields in a single record. Select Merge a single source on multiple records if
you want the source information to be in a single field across multiple records.

4. If you are merging multiple sources on a single record:

a. Select the field that contains the source entities in the ID field. This is often, but not always,
the _stp_id field if the ID and type are together, or the _stp_label field if the ID and type are
separate.

b. If the input data stores the entity type with the ID, such as with _stp_id, check the In ID field
box.

c. If the input data stores the entity type separately, such as with _stp_label, check the In
separate field box and select the appropriate field in the Type drop-down list box. This is
often, but not always, the _stp_type field.

d. To select a specific entity type, check the Literal box and select the appropriate field in the
Type drop-down list box.

e. Repeat steps a and b to define at least one more source ID for the merge. You can add as
many sources as you like. You can also delete any source by clicking the red "X" that is to
the right of the source ID.

186Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: By default, the first source will be considered the master source, but you can
designate any of the sources to be the master. Properties for the master source will not
be overwritten by properties for the other sources.

5. If you are merging a single source on multiple records:

a. Select the appropriate field in the Group by drop-down list box.
b. Select the field that contains the source entities in the ID field.
c. If the input data stores the entity type with the ID, such as with _stp_id, check the In ID field

box.
d. If the input data stores the entity type separately, such as with _stp_label, check the In

separate field box and select the appropriate field in the Type drop-down. This is often, but
not always, the _stp_type field.

e. To select a specific entity type, check the Literal box and select the appropriate field in the
Type drop-down list box.

Note: The entity in the first record of each group is considered the master. Properties for
the master source will not be overwritten by properties of other records.

6. Click OK.

The Runtime Tab

The Runtime tab allows you to control processing options.

1. ClickConcurrent writes if you want to allow the model to be written to by multiple Context Graph
stages at the same time. Click Exclusive lock (default) if you do not want to allow the model to
be written to by multiple Context Graph stages. When this mode is checked, properties can be
updated after they are created.

2. Click OK.

Output
TheMerge Entities stage has two optional outgoing ports to which you can attach various sink stages.
One sink captures data for the successfully merged entity and its properties, while the other is used
to collect data for the records that could not be merged. This is called the Error Port, and records
that pass through this port into the sink are considered malformed.

Capturing malformed records can help you identify the problem with those records. When you attach
a sink to the Error Port, the resulting output file will contain a superset of the fields from all records.
It will also contain a Reason field that specifies why the record failed. So, for example, if one record

187Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

contains Type, ID, and Location fields, and a second record contains Type, ID, and Label fields, your
output file would contain Reason, Type, ID, Location, and Label fields.

Causes for record failure include, but are not limited to, the following:

• The ID field value is empty.
• The ID entered does not return any entities from the selected model.
• The ID and Type combination entered does not return any entities from the selected model.
• The ID and Type combination does not use a valid format (the required format is
TYPE_VALUE:ID_VALUE).

Read from Model
The Read From Model stage executes a query to read data from an existing model.

A source stage that uses a saved or new query to read the data inside an existing Context Graph
model. It then returns that data as fields in the dataflow output stage and makes it available for use
with other stages or processes.

The Query Tab
The Query tab allows you to provide a query that returns data from the model you select. The model
data is returned as data rows in the dataflow output. You can use the query builder provided, or you
can create a custom query.
You can also select from or modify existing queries that are listed in the Query drop-down. If you
modify existing queries and want to save those changes but also retain the original query, be sure
to save the modified query under a new name; otherwise, you will overwrite the existing query. If
you apply a different query to the model or cancel out of the application, changes to the query will
be lost.
Follow these instructions to use the query builder:

1. Choose whether you want to Select elements included in the query results, Add elements
included in the query results, or Show result by highlighting the results on the canvas.

2. Check the Include results from partial traversals box to include the results from each step in
the query. Leave the box unchecked to include only the results that meet the requirements of
the last step. For example, let's say that you are looking at a model that depicts world-wide
terrorist activity for the events leading up to September 11, 2001, and you want to return data
for any meetings that both Osama bin Laden and Mohamed Atta attended. Your query might
include the following steps:

• An initial step that includes an exact search type for entities with an _stp_id property that has
a literal value of "Person:Osama bin Laden"

• An Entity to Relationship step of connected with a relationship label of "Meeting"
• A Relationship to Entity step of connected with a condition of an _stp_id property that contains
"Atta"

If you leave the Include results from partial traversals box unchecked, the query would return
a single meeting between Osama bin Laden and Mohamed Atta. If you check the box, the query
would return all meetings betweenOsama bin Laden and anyone else in themodel. The additional

188Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

records would be returned because the second step looks for meetings attended by Osama bin
Laden and checking the box returns results from each step in the query.

3. Leave the Include results from circular traversals box checked to include elements that occur
more than once in each traversal. Uncheck the box to include those elements just once in each
traversal. For example, let's say you are using the same model mentioned in step 1, and you
initially want to return data for any meetings that Mohamed Atta attended but once you have
those results, you want to see all attendees of a particular meeting. Your query might include
the following steps:

• An initial step that includes an exact search type for entities with an _stp_id property that has
a literal value of Person:Mohamed Atta, which will return his entity

• An Entity to Relationship step of connected with a relationship label of "Attended", which will
return all events that he attended, including a meeting in Kandahar

• A Relationship to Entity step of connected with a condition of an Event property that contains
"Kandahar", which will return just the Kandahar meeting

• An Entity to Relationship step of connected with a relationship label of "Attended", which will
return relationships that connect to three other entities who attended the meeting in Kandahar
and may or may not return the (already traversed) relationship that connects to Mohamed Atta,
depending on whether you use this option.

If you leave the Include results from circular traversals box checked, Mohamed Atta's
relationship will be returned in addition to those for the other three attendees. If you uncheck the
box, Mohamed Atta's relationship will not be returned because that relationship (Person:Mohamed
Atta->Attended->Meeting:Kandahar) was already traversed in the first step of the query.

4. Leave the Limit results to box checked and enter a number to specify the total maximum number
of entities and relationships to return from the query. The default is 5000. The number entered
here applies to unique elements, so if the same element appears in multiple results, they will
count as one result. To avoid this scenario, use the dedup function discussed at the end of this
topic; it will remove duplicate results in the output. If your root step returns a list and you are
querying a large model, we strongly suggest entering a limit in this field to prevent the server
from becoming unresponsive.

Note: Limits can be set here or as Query Result Limits set in Relationship Analysis Client
General Settings; if the limits are not the same, the lower limit will prevail.

5. Complete the Selection tab.

• Click All entities, All relationships, or Specify starting entities to identify what you want to
query against. The Specify starting entities selection allows you to determine at what point in
the model you want to begin your search. For instance, if you are looking at a model that depicts
world-wide terrorist activity during specific years, you might have country names for entities.
Rather than query against the entire model, you might want to look at activity just in Afghanistan.
In this case you could select "All" as the Search type and "Country" as the Property name,
leave Literal selected, and enter "Afghanistan" as the Property value.

189Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The value in the Property value field is case sensitive if that field was indexed
with the Exact type selected (versus Case insensitive). For more information on selecting
types when indexing fields, see The Entities Tab on page 211.

You could also click Field and select "Location" as the Property value, for example, rather than
entering a specific value. If you select Field, an Input Data grid containing the name of the
field you just selected will appear under the query name along with a cell where you can enter
the default value. If you reuse this query elsewhere, you can use the default value you provided
in this step, or you can override the default at that time.

• If you clicked All entities or Specify starting entities, select the Entity types for your query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types. In addition to returning a more focused set of results, selecting entity types will affect
other factors such as which properties and fields are available in the first step of the query,
which directions, entity types, and relationship labels are available in subsequent steps of the
query, and so on.

• If you clicked Specify starting entities, select the Search type:

Searches the index for data that matches exactly what
you enter on the Selection tab, including casing. As with
property values, the value here is case sensitive if that
field was indexed with the Exact type selected; if case
sensitivity was used and you search for "texas" while
your data includes entries of "Texas", they will not be
returned.

Exact

Searches the index for data that contains text beginning
with what you enter on the Selection tab. The search
does not need to be a complete word. For example, a
literal property value of “tech” or "tec" would be
considered a match for a property value containing
“Technical”, “Technology”, “Technologies”, or
“Technician”.

Starts with

Searches the index for data that contains text ending
with what you enter on the Selection tab. The search
does not need to be a complete word. For example, a
literal property value of "Emirates" or "tes" would be
considered a match for a property value containing
"United Arab Emirates".

Ends with

Searches the index for data that contains the text that
you enter on the Selection tab. The search string can
incorporate any portion of an expected match. For
example, a literal property value of “Light” and “Light
Amplification” would be considered amatch for a property
value containing “Light Amplification by Stimulated
Emission of Radiation”.

Contains

190Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches the index for data that contains any of the text
that you enter on the Selection tab. For example, a literal
property value of “Austin Tex” would be considered a
match for a property value containing “Texarkana” or
"Stephen F. Austin University".

Any

Searches the index for data that contains all of the text
that you enter on the Selection tab. For example, a literal
property value of “Allstate claim 2013” would be
considered a match for a property value containing “filed
claim with Allstate June 2013”, as would literal property
values of "all state" or "all 13".

All

Searches the index for data that falls within a range that
you specify on the Selection tab. When you use this
search type, you must select a Property name that
contains date, time, date/time, or numeric data. All
numeric data types are supported with the exception of
BigDecimal. For example, the following specifications
would return all entities with StartDate values occurring
in the year 2000:

• A Property name of "StartDate" that is a Date type
• A literal Start value of “1/1/2000"
• A literal End value of "12/31/2000"

Between

Searches the index for the text you enter on the Selection
tab but allows for some differentiation (missing letters,
extra letters, or substitutions of letters). The amount of
differentiation that is acceptable to still be considered a
match depends on what you enter in the Metric field.
This figure must be greater than zero and less than one;
in other words, it must range from ".1" to ".9". For
example, if you search for "Barton" and enter ".9" as the
metric, the search will return records with "Carton"
(replaces B with C), "Bartons" (adds s), and "Baton"
(removes r), because all of these words are one
character different from the search word "Barton".

Fuzzy

191Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches the index for the text you enter on the Selection
tab but allows for a single wildcard character or a
wildcard character sequence. Supported wildcard
characters include the question mark (?), which matches
any single character, and the asterisk (*), which matches
any character sequence (including blanks). For example,
if you search cities in Texas for "Aus*", the search will
return records with "Austin", "Austonio" and "Austwell".
If you conduct a similar search for "Aust??", only "Austin"
will be returned because each question mark represents
a single character and the other two city names have
more characters in their name.

Note: A query that includes an asterisk wildcard
as the first character in the search string may
result in a lengthy response time.

Wildcard

• If you clicked Specify starting entities, select the Property name from the drop-down list.
This list contains all properties associated with the entities and relationships that make up the
model.

Note: You can only query properties that have been indexed; non-indexed properties
will not appear in the Property name drop-down.

• If you clicked Specify starting entities, and selected a search type other than "Between",
select the Property value. You can click Literal and enter a text string to be used in the search.
Alternatively, you can click Field and select the field whose data should be searched; if you
choose this option you will also need to enter a value in the Input Data grid.

• If you clicked Specify starting entities, and selected the "Between" search type, select the
Start value and End value to enter the range. You can click Literal and enter a value to be
used in the search. Alternatively, you can click Field and select the field whose data should
be searched; if you choose this option you will also need to enter a value in the Input Data grid.

6. Complete the Conditions tab if you want to place additional constraints on the query. The
Conditions tab has four entry fields:

a. If you are creating the first condition, the Logical operator field will remain empty. If you
are creating a subsequent condition, specify whether this condition should be used in
conjunction with previous conditions ("And") or if it should be used instead of previous
conditions ("Or").

b. Select the property on which the condition will be based in Data source field.
c. Select an operator for the condition that is appropriate for the data type in theOperator field:

192Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Equals Searches model elements for properties with values that match exactly
what you enter in the Value field. This can be a numeric value or a text
value.

Searches model elements for properties with values that have any value
other than what you enter in the Value field. This can be a numeric value
or a text value.

Not Equals

Searches the model elements for the existence of the property that you
select in the Data Source field.

Exists

Searches the model for elements that do not contain properties that you
select in the Data Source field

Does not Exist

Searches model elements for properties that contain no data. If a
property value is blank, that element will be returned. This can be a
numeric value or a text value.

Is Blank

Searches model elements for properties that contain any data. If a
property value is not blank, that element will be returned. This can be a
numeric value or a text value.

Is Not Blank

Searches model elements for properties whose values are greater than
the value you specify. This can be a numeric, date, date/time, or time
value.

Greater Than

Searches model elements for properties with numeric values that are
greater than or equal to the value you specify. This can be a numeric,
date, date/time, or time value.

Greater Than or
Equals

Searches model elements for properties with numeric values that are
less than the value you specify. This can be a numeric, date, date/time,
or time value.

Less Than

Searches model elements for properties with numeric values that are
less than or equal to the value you specify. This can be a numeric, date,
date/time, or time value.

Less Than or
Equals

Searches model elements for properties with values that contain what
you enter in the Data Source field. The search does not need to be a

Contains

complete word. For example, a literal property value of “Light” or “Light
Amplification” would be considered a match for a property value
containing “Light Amplification by Stimulated Emission of Radiation”, so
it would be returned. This can be a numeric value or a text value.

Searches model elements for properties that do not contain what you
enter in the Data Source field. The search does not need to be a

Does not
Contain

complete word. For example, a literal property value of “Light” or “Light
Amplification” would be considered a match for a property value
containing “Light Amplification by Stimulated Emission of Radiation”, so
it would not be returned. This can be a numeric value or a text value.

193Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches model elements for properties whose values start with the
text you enter in the Data Source field. For example, if you enter "Van"

Starts With

for the LastName field it would return results with "Van Buren",
Vandenburg", or "Van Dyck".

Searches model elements for properties whose values do not start with
the text you enter in the Data Source field. For example, if you enter

Does Not Start
With

"Van" for the LastName field it would not return results with "Van Buren",
Vandenburg", or "Van Dyck" but would return results with "Eddie Van
Halen".

Searches model elements for properties whose values end with the text
you enter in the Data Source field. For example, if you filter for records

Ends With

that end with "burg" in the City field, it would return results with
"Gettysburg", "Fredricksburg", and "Blacksburg".

Searches model elements for properties whose values do not end with
the text you enter in the Data Source field. For example, if you filter for

Does Not End
With

records that end with "burg" in the City field it would not return results
with "Gettysburg", "Fredricksburg", and "Blacksburg" but would return
results with "Burgess".

Searches the model elements for properties having a regular expression
match for what you enter in the Data Source field. Regular expression

Match Regular
Expression

matches identify strings of text of interest, such as particular characters,
words, or patterns of characters. The value field should contain a valid
regular expression pattern.

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Roughly
Similar To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with search metric of .5.

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Similar To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with search metric of .6.

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Very Similar
To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with Search Metric of .7.

d. In the drop-down box following the list of operators:

• Select Literal and enter a text string the fourth box (called the Value field) to be used in
the query.

• Select Field and then select the field whose data should be searched in the Value field.
• Select a previous step (such as "Root" or "Step1") and then a property in the Value field
to compare property values for the current step against values returned in a previous step.

194Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

(Note that if you named the output on the Output tab of previous steps, those names will
appear in the drop-down rather than "Root" or "Step1".) In this case, the properties shown
in the Value field are based on properties for the previous step. For example, if you knew
the name of one person (Mohamed Atta) who attended a particular event (a meeting in
Kandahar) but wanted to know the names of the other attendees, you could create the
following query that includes a property value comparison:

• A root step that looks for an entity type Person with an _stp_id of that contains "Mohamed"
• An Entity to Relationship step with a relationship label of "Attended"
• A Relationship to Entity step with a condition that includes an Event that contains
"Kandahar"

• An Entity to Relationship step with a relationship label of "Attended" plus a condition that
this step's _stp_id does not contain the same _stp_id value that was found in the root
step.

This query will find that Mohamed Atta attended an event in Kandahar and that it was also
attended by three other people whose _stp_id value is not "Mohamed".

e. Click Ignore Case if the query results can be either upper or lower cased.
f. Repeat steps a through e to add additional conditions.
g. Click OK.

If, for example, you want to target terrorist activity in Afghanistan between 2001 and 2010, you
would create two conditions. First, you would select "date" for the Property name, then "Greater
Than or Equals", leave Literal selected, and then enter "2001". You would follow this with a
second condition set to "And" that also uses "date," then "Less Than or Equals", then "2010".
Alternatively, you could click Field and select "Date" rather than entering a specific value. Add,
delete, or change the order of conditions by using the icons on either side of the conditions. Click
Ignore Case if the query results can be either upper or lower cased.

7. Complete the Output tab to define how you want your output to appear.

• Click the Include in results box if you want the results from this step to be included in the
output.

Note: This box must be checked for the last step in any series; therefore, if there is
only one step you cannot uncheck this box.

• Click Specify name and enter text in the Name field to provide a name for this step in the
output. Click List to use this entry as the name and type of the field in hierarchical output; leave
it unchecked to have this entry added as a prefix for all output fields. Using the example from
step 3, you might call this step "Afghanistan". Output fields from this step may be named
"Afghanistan.Latitude" or "Afghanistan.Date".

• Click Use type name to use the field type as the name for this step in the output. Entities will
use entity types and relationships will use relationship labels. Continuing with the same example,
output fields with this selection may be named "Person.Latitude" or "Person.Date". If you select
this option and enter a name in the Name field, that name will also be added as a prefix for all
output fields in addition to the field type. Continuing with the same example, output fields with
this selection may be named "Afghanistan.Person.Latitude" or "Afghanistan.Person.Date".

195Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

8. Specify the steps you want the query to take by selecting the appropriate option in the Add
Operations drop-down. You can complete this step for the Flow, Conditions, or Output tab. Note
that your options vary by whether the root element is an entity or a relationship.

• If you choose Entity to Entity (valid for All entities and Specify starting entities), you can then
refine your search to return data based on relationship labels between two entities (Connected),
before entities (Predecessors), or after entities (Successors). For example, if you are querying
a model of family members, and you choose a Relationship label of "Father," a Connected
query will return all entities that have a Father label between them (in other words, fathers,
sons, and daughters). A Predecessors query will return all entities who are a source entity of
a Father relationship connected to another entity (in other words, fathers). A Successors query
will return all entities who are the target entity of a Father relationship connected to another
entity (in other words, sons and daughters).

As in the root step of your query, you can also select Entity types for this step of the query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types.

• If you choose Entity to Relationship (valid for All entities and Specify starting entities), your
options are very similar to those for Entity to Entity. You can refine your search to return data
based on relationship labels that attach two entities (Connected), occur before entities
(Predecessors), or occur after entities (Successors). You can also add conditions to and define
output for the query.

• If you choose Relationship to Entity (valid for All relationships), you can refine your search
to return data based on conditions you set. You can return data when a condition is in place
for an entity that is connected to another entity (Connected), an entity that is a source to a
relationship (Predecessors), and for when an entity is a target of a relationship (Successors).
As in the root step of your query, you can also select Entity types for this step of the query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types.

Regardless of the type of operation you add, you can create Conditions for that operation. You
can also define how you want the output from this step to appear. You will notice that steps
subsequent to the root step are given a path for output. The path and the step name define the
hierarchy of your output data. If you checked the List box in the root step, this path will default
to being part of the path in the step before it; however, you can remove the name of the root
step. For example, if you named the root step "Locations" and clicked the List box, the first step
would by default show "/Locations" in the Path field. (Alternatively, you could remove "Locations"
and leave just the slash to have this step originate at the root.) If you called the first step
"CountryName", the second step would by default show "/Locations/CountryName" in the Path
field and the Locations field output would contain a list of CountryName results. Click the Include
in results box if you want the results from this step to be included in the output. Click Dedup if
you want the query to remove duplicate results from the output.

9. Click OK.

196Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The Fields Tab
The Fields tab allows you to designate fields to be returned in the output of your dataflow.

Note: The Query tab must be completed before the Fields tab is completed unless you are
creating a custom query.

If you are using the query builder and have a field with a Dynamic Model Fields type, you can change
the names of the fields that are returned for that step by selecting the step and clickingModify. This
will access the Modify Field dialog box, which contains a grid that is populated with fields and
properties that map to the results of the step you selected. Similarly, the structure of this data is
determined by whether you chose list output as well as the paths and names of the steps you entered
on the Query tab.

If you are building a custom query, you can add, modify, or remove fields from your query.

Follow these steps to add fields to a custom query.

1. Click Add to open the Add Field dialog box.
2. Select the type of output field you want to add from the Field type drop-down box. The following

data types are supported:
A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

A data type that contains a month, day, and year. For example, 2012-01-30
or January 30, 2012. You can specify a default date format in Management
Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values

double

is 4.9E-324 to 1.7976931348623157E308. For information on E notation, see
en.wikipedia.org/wiki/Scientific_notation#E_notation.

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values is

float

1.4E-45 to 3.4028235E38. For information on E notation, see
en.wikipedia.org/wiki/Scientific_notation#E_notation.

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

197Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://en.wikipedia.org/wiki/Scientific_notation#E_notation
http://en.wikipedia.org/wiki/Scientific_notation#E_notation

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59
PM.

time

If you want to add a field from your model, select Dynamic Model Fields and the tab will be
populated with fields and properties from your model. The structure of this data is determined
by whether you choose list output as well as the paths and names entered on Add Field dialog
box.

You can also add a new, user-defined, custom data type if necessary. Among other types of
data, a new type can be a list of any defined data type (though you could select most types from
the drop-down options and click the List check box).

3. Enter the Field name for the field you want to query in the model.
4. Click List to return output in a hierarchical format; leave it unchecked to add prefixes to output

fields.
5. Click Cancel when you're done adding fields.
6. Click OK.

Output
The Read From Model stage requires that your dataflow contain an output stage that has defined,
at minimum, the field or fields that you are querying. Otherwise, that data will not appear in your
output. For example, if your Read From Model stage queries the _stp_id field in your graph
database, your output stage must contain a field that captures that data.

Query Model
The Query Model stage is an intermediate stage that uses incoming data rows to execute queries
that extract specific entities and relationships from a model.

For example, Query Model can be used as part of a service to understand a customer's influence
score within the network or determine if a customer record already exists in the graph database.

The Query Tab
The Query tab allows you to provide a query that returns data from the model you select. The model
data is returned as data rows in the dataflow output. You can use the query builder provided, or you
can create a custom query.
You can also select from or modify existing queries that are listed in the Query drop-down. If you
modify existing queries and want to save those changes but also retain the original query, be sure
to save the modified query under a new name; otherwise, you will overwrite the existing query. If
you apply a different query to the model or cancel out of the application, changes to the query will
be lost.
Follow these instructions to use the query builder:

1. Choose whether you want to Select elements included in the query results, Add elements
included in the query results, or Show result by highlighting the results on the canvas.

198Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. Check the Include results from partial traversals box to include the results from each step in
the query. Leave the box unchecked to include only the results that meet the requirements of
the last step. For example, let's say that you are looking at a model that depicts world-wide
terrorist activity for the events leading up to September 11, 2001, and you want to return data
for any meetings that both Osama bin Laden and Mohamed Atta attended. Your query might
include the following steps:

• An initial step that includes an exact search type for entities with an _stp_id property that has
a literal value of "Person:Osama bin Laden"

• An Entity to Relationship step of connected with a relationship label of "Meeting"
• A Relationship to Entity step of connected with a condition of an _stp_id property that contains
"Atta"

If you leave the Include results from partial traversals box unchecked, the query would return
a single meeting between Osama bin Laden and Mohamed Atta. If you check the box, the query
would return all meetings betweenOsama bin Laden and anyone else in themodel. The additional
records would be returned because the second step looks for meetings attended by Osama bin
Laden and checking the box returns results from each step in the query.

3. Leave the Include results from circular traversals box checked to include elements that occur
more than once in each traversal. Uncheck the box to include those elements just once in each
traversal. For example, let's say you are using the same model mentioned in step 1, and you
initially want to return data for any meetings that Mohamed Atta attended but once you have
those results, you want to see all attendees of a particular meeting. Your query might include
the following steps:

• An initial step that includes an exact search type for entities with an _stp_id property that has
a literal value of Person:Mohamed Atta, which will return his entity

• An Entity to Relationship step of connected with a relationship label of "Attended", which will
return all events that he attended, including a meeting in Kandahar

• A Relationship to Entity step of connected with a condition of an Event property that contains
"Kandahar", which will return just the Kandahar meeting

• An Entity to Relationship step of connected with a relationship label of "Attended", which will
return relationships that connect to three other entities who attended the meeting in Kandahar
and may or may not return the (already traversed) relationship that connects to Mohamed Atta,
depending on whether you use this option.

If you leave the Include results from circular traversals box checked, Mohamed Atta's
relationship will be returned in addition to those for the other three attendees. If you uncheck the
box, Mohamed Atta's relationship will not be returned because that relationship (Person:Mohamed
Atta->Attended->Meeting:Kandahar) was already traversed in the first step of the query.

4. Leave the Limit results to box checked and enter a number to specify the total maximum number
of entities and relationships to return from the query. The default is 5000. The number entered
here applies to unique elements, so if the same element appears in multiple results, they will
count as one result. To avoid this scenario, use the dedup function discussed at the end of this
topic; it will remove duplicate results in the output. If your root step returns a list and you are
querying a large model, we strongly suggest entering a limit in this field to prevent the server
from becoming unresponsive.

199Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: Limits can be set here or as Query Result Limits set in Relationship Analysis Client
General Settings; if the limits are not the same, the lower limit will prevail.

5. Complete the Selection tab.

• Click All entities, All relationships, or Specify starting entities to identify what you want to
query against. The Specify starting entities selection allows you to determine at what point in
the model you want to begin your search. For instance, if you are looking at a model that depicts
world-wide terrorist activity during specific years, you might have country names for entities.
Rather than query against the entire model, you might want to look at activity just in Afghanistan.
In this case you could select "All" as the Search type and "Country" as the Property name,
leave Literal selected, and enter "Afghanistan" as the Property value.

Note: The value in the Property value field is case sensitive if that field was indexed
with the Exact type selected (versus Case insensitive). For more information on selecting
types when indexing fields, see The Entities Tab on page 211.

You could also click Field and select "Location" as the Property value, for example, rather than
entering a specific value. If you select Field, an Input Data grid containing the name of the
field you just selected will appear under the query name along with a cell where you can enter
the default value. If you reuse this query elsewhere, you can use the default value you provided
in this step, or you can override the default at that time.

• If you clicked All entities or Specify starting entities, select the Entity types for your query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types. In addition to returning a more focused set of results, selecting entity types will affect
other factors such as which properties and fields are available in the first step of the query,
which directions, entity types, and relationship labels are available in subsequent steps of the
query, and so on.

• If you clicked Specify starting entities, select the Search type:

Searches the index for data that matches exactly what
you enter on the Selection tab, including casing. As with
property values, the value here is case sensitive if that
field was indexed with the Exact type selected; if case
sensitivity was used and you search for "texas" while
your data includes entries of "Texas", they will not be
returned.

Exact

Searches the index for data that contains text beginning
with what you enter on the Selection tab. The search
does not need to be a complete word. For example, a
literal property value of “tech” or "tec" would be
considered a match for a property value containing
“Technical”, “Technology”, “Technologies”, or
“Technician”.

Starts with

200Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches the index for data that contains text ending
with what you enter on the Selection tab. The search
does not need to be a complete word. For example, a
literal property value of "Emirates" or "tes" would be
considered a match for a property value containing
"United Arab Emirates".

Ends with

Searches the index for data that contains the text that
you enter on the Selection tab. The search string can
incorporate any portion of an expected match. For
example, a literal property value of “Light” and “Light
Amplification” would be considered amatch for a property
value containing “Light Amplification by Stimulated
Emission of Radiation”.

Contains

Searches the index for data that contains any of the text
that you enter on the Selection tab. For example, a literal
property value of “Austin Tex” would be considered a
match for a property value containing “Texarkana” or
"Stephen F. Austin University".

Any

Searches the index for data that contains all of the text
that you enter on the Selection tab. For example, a literal
property value of “Allstate claim 2013” would be
considered a match for a property value containing “filed
claim with Allstate June 2013”, as would literal property
values of "all state" or "all 13".

All

Searches the index for data that falls within a range that
you specify on the Selection tab. When you use this
search type, you must select a Property name that
contains date, time, date/time, or numeric data. All
numeric data types are supported with the exception of
BigDecimal. For example, the following specifications
would return all entities with StartDate values occurring
in the year 2000:

• A Property name of "StartDate" that is a Date type
• A literal Start value of “1/1/2000"
• A literal End value of "12/31/2000"

Between

201Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches the index for the text you enter on the Selection
tab but allows for some differentiation (missing letters,
extra letters, or substitutions of letters). The amount of
differentiation that is acceptable to still be considered a
match depends on what you enter in the Metric field.
This figure must be greater than zero and less than one;
in other words, it must range from ".1" to ".9". For
example, if you search for "Barton" and enter ".9" as the
metric, the search will return records with "Carton"
(replaces B with C), "Bartons" (adds s), and "Baton"
(removes r), because all of these words are one
character different from the search word "Barton".

Fuzzy

Searches the index for the text you enter on the Selection
tab but allows for a single wildcard character or a
wildcard character sequence. Supported wildcard
characters include the question mark (?), which matches
any single character, and the asterisk (*), which matches
any character sequence (including blanks). For example,
if you search cities in Texas for "Aus*", the search will
return records with "Austin", "Austonio" and "Austwell".
If you conduct a similar search for "Aust??", only "Austin"
will be returned because each question mark represents
a single character and the other two city names have
more characters in their name.

Note: A query that includes an asterisk wildcard
as the first character in the search string may
result in a lengthy response time.

Wildcard

• If you clicked Specify starting entities, select the Property name from the drop-down list.
This list contains all properties associated with the entities and relationships that make up the
model.

Note: You can only query properties that have been indexed; non-indexed properties
will not appear in the Property name drop-down.

• If you clicked Specify starting entities, and selected a search type other than "Between",
select the Property value. You can click Literal and enter a text string to be used in the search.
Alternatively, you can click Field and select the field whose data should be searched; if you
choose this option you will also need to enter a value in the Input Data grid.

• If you clicked Specify starting entities, and selected the "Between" search type, select the
Start value and End value to enter the range. You can click Literal and enter a value to be
used in the search. Alternatively, you can click Field and select the field whose data should
be searched; if you choose this option you will also need to enter a value in the Input Data grid.

6. Complete the Conditions tab if you want to place additional constraints on the query. The
Conditions tab has four entry fields:

202Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

a. If you are creating the first condition, the Logical operator field will remain empty. If you
are creating a subsequent condition, specify whether this condition should be used in
conjunction with previous conditions ("And") or if it should be used instead of previous
conditions ("Or").

b. Select the property on which the condition will be based in Data source field.
c. Select an operator for the condition that is appropriate for the data type in theOperator field:

Searches model elements for properties with values that match exactly
what you enter in the Value field. This can be a numeric value or a text
value.

Equals

Searches model elements for properties with values that have any value
other than what you enter in the Value field. This can be a numeric value
or a text value.

Not Equals

Searches the model elements for the existence of the property that you
select in the Data Source field.

Exists

Searches the model for elements that do not contain properties that you
select in the Data Source field

Does not Exist

Searches model elements for properties that contain no data. If a
property value is blank, that element will be returned. This can be a
numeric value or a text value.

Is Blank

Searches model elements for properties that contain any data. If a
property value is not blank, that element will be returned. This can be a
numeric value or a text value.

Is Not Blank

Searches model elements for properties whose values are greater than
the value you specify. This can be a numeric, date, date/time, or time
value.

Greater Than

Searches model elements for properties with numeric values that are
greater than or equal to the value you specify. This can be a numeric,
date, date/time, or time value.

Greater Than or
Equals

Searches model elements for properties with numeric values that are
less than the value you specify. This can be a numeric, date, date/time,
or time value.

Less Than

Searches model elements for properties with numeric values that are
less than or equal to the value you specify. This can be a numeric, date,
date/time, or time value.

Less Than or
Equals

Searches model elements for properties with values that contain what
you enter in the Data Source field. The search does not need to be a

Contains

203Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

complete word. For example, a literal property value of “Light” or “Light
Amplification” would be considered a match for a property value
containing “Light Amplification by Stimulated Emission of Radiation”, so
it would be returned. This can be a numeric value or a text value.

Searches model elements for properties that do not contain what you
enter in the Data Source field. The search does not need to be a

Does not
Contain

complete word. For example, a literal property value of “Light” or “Light
Amplification” would be considered a match for a property value
containing “Light Amplification by Stimulated Emission of Radiation”, so
it would not be returned. This can be a numeric value or a text value.

Searches model elements for properties whose values start with the
text you enter in the Data Source field. For example, if you enter "Van"

Starts With

for the LastName field it would return results with "Van Buren",
Vandenburg", or "Van Dyck".

Searches model elements for properties whose values do not start with
the text you enter in the Data Source field. For example, if you enter

Does Not Start
With

"Van" for the LastName field it would not return results with "Van Buren",
Vandenburg", or "Van Dyck" but would return results with "Eddie Van
Halen".

Searches model elements for properties whose values end with the text
you enter in the Data Source field. For example, if you filter for records

Ends With

that end with "burg" in the City field, it would return results with
"Gettysburg", "Fredricksburg", and "Blacksburg".

Searches model elements for properties whose values do not end with
the text you enter in the Data Source field. For example, if you filter for

Does Not End
With

records that end with "burg" in the City field it would not return results
with "Gettysburg", "Fredricksburg", and "Blacksburg" but would return
results with "Burgess".

Searches the model elements for properties having a regular expression
match for what you enter in the Data Source field. Regular expression

Match Regular
Expression

matches identify strings of text of interest, such as particular characters,
words, or patterns of characters. The value field should contain a valid
regular expression pattern.

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Roughly
Similar To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with search metric of .5.

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Similar To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with search metric of .6.

204Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Searches model elements for properties with values close to what you
enter in the Data Source field but allows for some differentiation (missing

Is Very Similar
To

letters, extra letters, or substitutions of letters). This operator is equivalent
to the Fuzzy search type with Search Metric of .7.

d. In the drop-down box following the list of operators:

• Select Literal and enter a text string the fourth box (called the Value field) to be used in
the query.

• Select Field and then select the field whose data should be searched in the Value field.
• Select a previous step (such as "Root" or "Step1") and then a property in the Value field
to compare property values for the current step against values returned in a previous step.
(Note that if you named the output on the Output tab of previous steps, those names will
appear in the drop-down rather than "Root" or "Step1".) In this case, the properties shown
in the Value field are based on properties for the previous step. For example, if you knew
the name of one person (Mohamed Atta) who attended a particular event (a meeting in
Kandahar) but wanted to know the names of the other attendees, you could create the
following query that includes a property value comparison:

• A root step that looks for an entity type Person with an _stp_id of that contains "Mohamed"
• An Entity to Relationship step with a relationship label of "Attended"
• A Relationship to Entity step with a condition that includes an Event that contains
"Kandahar"

• An Entity to Relationship step with a relationship label of "Attended" plus a condition that
this step's _stp_id does not contain the same _stp_id value that was found in the root
step.

This query will find that Mohamed Atta attended an event in Kandahar and that it was also
attended by three other people whose _stp_id value is not "Mohamed".

e. Click Ignore Case if the query results can be either upper or lower cased.
f. Repeat steps a through e to add additional conditions.
g. Click OK.

If, for example, you want to target terrorist activity in Afghanistan between 2001 and 2010, you
would create two conditions. First, you would select "date" for the Property name, then "Greater
Than or Equals", leave Literal selected, and then enter "2001". You would follow this with a
second condition set to "And" that also uses "date," then "Less Than or Equals", then "2010".
Alternatively, you could click Field and select "Date" rather than entering a specific value. Add,
delete, or change the order of conditions by using the icons on either side of the conditions. Click
Ignore Case if the query results can be either upper or lower cased.

7. Complete the Output tab to define how you want your output to appear.

• Click the Include in results box if you want the results from this step to be included in the
output.

Note: This box must be checked for the last step in any series; therefore, if there is
only one step you cannot uncheck this box.

205Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Click Specify name and enter text in the Name field to provide a name for this step in the
output. Click List to use this entry as the name and type of the field in hierarchical output; leave
it unchecked to have this entry added as a prefix for all output fields. Using the example from
step 3, you might call this step "Afghanistan". Output fields from this step may be named
"Afghanistan.Latitude" or "Afghanistan.Date".

• Click Use type name to use the field type as the name for this step in the output. Entities will
use entity types and relationships will use relationship labels. Continuing with the same example,
output fields with this selection may be named "Person.Latitude" or "Person.Date". If you select
this option and enter a name in the Name field, that name will also be added as a prefix for all
output fields in addition to the field type. Continuing with the same example, output fields with
this selection may be named "Afghanistan.Person.Latitude" or "Afghanistan.Person.Date".

8. Specify the steps you want the query to take by selecting the appropriate option in the Add
Operations drop-down. You can complete this step for the Flow, Conditions, or Output tab. Note
that your options vary by whether the root element is an entity or a relationship.

• If you choose Entity to Entity (valid for All entities and Specify starting entities), you can then
refine your search to return data based on relationship labels between two entities (Connected),
before entities (Predecessors), or after entities (Successors). For example, if you are querying
a model of family members, and you choose a Relationship label of "Father," a Connected
query will return all entities that have a Father label between them (in other words, fathers,
sons, and daughters). A Predecessors query will return all entities who are a source entity of
a Father relationship connected to another entity (in other words, fathers). A Successors query
will return all entities who are the target entity of a Father relationship connected to another
entity (in other words, sons and daughters).

As in the root step of your query, you can also select Entity types for this step of the query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types.

• If you choose Entity to Relationship (valid for All entities and Specify starting entities), your
options are very similar to those for Entity to Entity. You can refine your search to return data
based on relationship labels that attach two entities (Connected), occur before entities
(Predecessors), or occur after entities (Successors). You can also add conditions to and define
output for the query.

• If you choose Relationship to Entity (valid for All relationships), you can refine your search
to return data based on conditions you set. You can return data when a condition is in place
for an entity that is connected to another entity (Connected), an entity that is a source to a
relationship (Predecessors), and for when an entity is a target of a relationship (Successors).
As in the root step of your query, you can also select Entity types for this step of the query.
You can choose to query selected types or all types. Click Select None to deselect any selected
types.

Regardless of the type of operation you add, you can create Conditions for that operation. You
can also define how you want the output from this step to appear. You will notice that steps
subsequent to the root step are given a path for output. The path and the step name define the
hierarchy of your output data. If you checked the List box in the root step, this path will default

206Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

to being part of the path in the step before it; however, you can remove the name of the root
step. For example, if you named the root step "Locations" and clicked the List box, the first step
would by default show "/Locations" in the Path field. (Alternatively, you could remove "Locations"
and leave just the slash to have this step originate at the root.) If you called the first step
"CountryName", the second step would by default show "/Locations/CountryName" in the Path
field and the Locations field output would contain a list of CountryName results. Click the Include
in results box if you want the results from this step to be included in the output. Click Dedup if
you want the query to remove duplicate results from the output.

9. Click OK.

The Fields Tab
The Fields tab allows you to designate fields to be returned and put into the output of your dataflow.
If you are building a custom script, you may add, modify, or remove fields. If you are using the query
builder the fields are populated for you, but you can change the name and properties of the entities
and relationships that were auto-populated.

1. Create your query on the Query tab.

Note: This step can be completed before or after the Fields tab is complete.

2. Click the Fields tab.
3. Click Add to open the Add Input Field dialog box.
4. Use the Fields drop-down and theAdd button to select the fields you want to query in the model.

The fields available for selection depend on the fields assigned in the dataflow input stage.
Spectrum supports both simple and complex data types; you can use fields deep within the
hierarchical structure of your input file in your query.

5. Click Close when you're done adding input fields.
6. Click Add to open the Add Output Field dialog box.
7. Select the type of output field you want to add from the Type drop-down box. The following data

types are supported:

DescriptionData Type

A logical type with two values: true and false.boolean

A numeric data type that contains both negative and positive double precision numbers
between 2-1074 and (2-2-52)×21023. In E notation, the range of values is 4.9E-324 to
1.7976931348623157E308. For information on E notation, see:

http://en.wikipedia.org/wiki/Scientific_notation#E_notation

double

207Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://en.wikipedia.org/wiki/Scientific_notation#E_notation

DescriptionData Type

The links between entities; the factor they share with other entities. If you choose this
type of output field, you can change field names and determine which relationships to
include upon output. You will need to include in your Gremlin script a command to
retrieve a list of relationships and assign them to that data type, as shown in this
example:

data["Variants"]=g.idx('entities')[['Name':name]].bothE

Note: If you create an output field this way, Query Model will auto-populate
the schema for you.

relationships

A numeric data type that contains both negative and positive single precision numbers
between 2-149 and (2-223)×2127. In E notation, the range of values is 1.4E-45 to
3.4028235E38. For information on E notation, see:

http://en.wikipedia.org/wiki/Scientific_notation#E_notation

float

A numeric data type that contains both negative and positive whole numbers between
-231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers between
-263 (-9,223,372,036,854,775,808) and 263-1 (9,223,372,036,854,775,807)

long

The individual entities that have the relationships you are identifying. If you choose this
type of output field, you can change field names and determine which entities to include
upon output. You will need to include in your Gremlin script a command to retrieve a
list of entities (or vertices) and assign them to that data type, as shown in this example:

data["Variants"]=g.idx('entities')[['Name':name]].both

Note: If you create an output field this way, Query Model will auto-populate
the schema for you.

entities

A sequence of characters.string

You can also add a new, user-defined, custom data type if necessary. Among other types of
data, a new type can be a list of any defined data type (though for string, double, integer, long,
float, or Boolean types you would select that type from the drop-down options and click the List
check box). You can also select an output field based on entities and relationships in your model.
If you create an output field this way, Query Model will auto-populate the schema for you.
Additionally, you would need to retrieve the entities and/or relationships from Gremlin and then
iterate over them, creating a loop. This would result in you building up the fields' child rows and
assigning data as you go.

208Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://en.wikipedia.org/wiki/Scientific_notation#E_notation

8. Specify a name for the output field you want to add in the Name field.
9. Click the List check box if you created a custom data type in the form of a list.
10. When you are done adding output fields, click Close.
11. Click OK.

Input/Output Requirements
The Query Model stage requires that the input stage of your dataflow has defined the input fields
that are accessed using data ("input"). Furthermore, any input fields or output fields accessed using
the data command need to be defined in the Fields tab in the input and output stages. Otherwise,
they will not appear as input and output fields in other stages in your dataflow.

Split Entity
The Split Entity stage splits one entity into two or more new entities.

A dataflow that uses a Split Entity stage requires an input that identifies the entity you are splitting.
It also has two optional output ports: one contains data for the split entities and the other contains
data for the records that were not split.

To configure the Split Entity stage, you need to select the Context Graph model you want to modify
and then complete the Options tab and possibly the Runtime tab, depending on which write mode
you want to use.

Input
The Split Entity stage requires that your dataflow include an input stage that contains data from or
queries the same model whose element you are splitting. This requirement could be met by a Read
from Model stage, a Query Model stage, a source stage of some kind, or even a control stage that
combines multiple other input stages.

Options

The Options Tab

The Options tab enables you to configure the element that will be split in your model.

1. Select the model whose entities you want to split in the Model drop-down box.
2. Select the field that contains the entities you want to split in the Source ID field. This is often,

but not always, the _stp_id field if the ID and type are together, or the _stp_label field if the ID
and type are separate.

3. Select the type of entity you want to split in the Source Type drop-down.
4. Select or enter the type for the newly created entities in the Target Type drop-down.
5. Check Replace label with data from input field and select the appropriate field if you want to

change the label of the newly created entities.
6. Select the relationships you want to be included with the split entities.
7. Repeat steps 4 through 6 if you want to create additional entities from the source entities.
8. Click OK.

209Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The Runtime Tab

The Runtime tab allows you to control processing options.

1. ClickConcurrent writes if you want to allow the model to be written to by multiple Context Graph
stages at the same time. Click Exclusive lock (default) if you do not want to allow the model to
be written to by multiple Context Graph stages. When this mode is checked, properties can be
updated after they are created.

2. Check the Remove orphans box to have entities with no relationships after the split removed
from the model.

3. Click OK.

Output
The Split Entity stage has two optional outgoing ports to which you can attach various sink stages.
One sink captures data for successfully split entities and their properties, while the other is used to
collect data for the records that were not split. This is called the Error Port, and records that pass
through this port into the sink are considered malformed.

Capturing malformed records can help you identify the problem with those records. When you attach
a sink to the Error Port, the resulting output file will contain a superset of the fields from both input
files. It will also contain a Reason field that specifies why the record failed. So, for example, if your
entities input file contains Type, ID, and Location fields, and your relationships input file contains
Type, ID, and Label fields, your output file would contain Reason, Type, ID, Location, and Label
fields.

Causes for record failure include, but are not limited to, the following:

• The ID field value is empty.
• The ID entered does not return any entities from the selected model.
• The ID and Type combination entered does not return any entities from the selected model.
• The ID and Type combination does not use a valid format (the required format is
TYPE_VALUE:ID_VALUE).

Write to Model
The Write to Model stage uses input data to create or update a Context Graph model that contains
entities, relationships, and properties.

The Write to Model stage can be used to link data together, resulting in a complex network of
relationships called a graph, which can be displayed in a Context Graph model. Once that model is
created, it can be queried against in a Read From Model stage or a Query Model stage, or it can be

210Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

visualized in Context Graph Visualization workspaces or in the Relationship Analysis Client to identify
relationships and trends that may otherwise be hard to find.

To configure a Write to Model stage, you need to complete the Entities tab and the Relationships
tab. You can also use the Options tab to set processing preferences and determine how you want
data to be written to the graph database.

For more information, see Sample Model to Context Graph Dataflow on page 216 for examples of
configuring Write to Model in a dataflow from start to finish using a flat file and an XML file.

Input
The Write to Model stage requires that your dataflow contain an input stage with defined fields that
you can use to create a Context Graph model.

The Entities Tab
The Entities tab allows you to configure how entities are created and updated. These entities can
represent objects or events and will be stored in your model. You can use the Relationships tab to
link them to other entities and create relationships. To create entities for your model, you will need
to complete the following information:

1. Enter the name of your model in the Model field.
2. Click Add... to create a new entity. The Add Entity dialog box will appear.
3. Select the field name to be used to generate the Entity ID in the Input field field.
4. If you want the entity to have a name other than what is automatically provided, change the

contents of the Type field to the desired name.
5. On the Properties tab, you define which properties you want to be included with the entity type

you are creating.
For example, if you are creating an entity type that represents places, you might want to choose
latitude and longitude as properties. You can select Input or Metadata, depending on what you
want to use to define the properties. If your model does not contain metadata, that option will be
disabled.

DescriptionOption

The grid is populated with input fields, which are shown in the Field column; there
is one row for each input field. Select the fields you want to be included as properties

Input

for the entity type by checking the Include box for that field. The Name column
represents the name you want to property to have in the model; it defaults to the
input field name, but you can select from any property in the Name drop-down or
manually enter a name.

Note: Spectrum supports both simple and complex data types; you can use
fields deep within the hierarchical structure of your input file as an entity. If
you are using hierarchical data, you will also see a Filter control that allows
you to filter out data on the Property list based on the path of the field.
Likewise, you will see a control that allows you to hide non-primitive fields.

211Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

The grid is populated with properties from the metadata, which are shown in the
Name column; there is one row for each property. The properties shown are

Metadata

determined by whether you are defining a known entity type. If it is a known type, the
Name column will include properties specific to that type; if it is not a known type,
the Name column will include a list of all properties in the model. Select the properties
you want to populate for the entity type by checking the Include box for that property.
The Field column contains names of input fields you can map properties to and
whose data can be used to populate properties. If an input field matches the property
name, it will automatically be mapped and the Include box will be checked.

6. Click the Updates tab and select how you want Write to Model to manage updates.
After an entity is created it can be updated over time when data with the same ID is input into
the Write to Model stage.

DescriptionOption

Properties are always updated with the most recent
information. This includes updating with null or empty
strings.

Always update properties

Properties are always updated unless all input fields
associated with the selected properties are null.

Update properties unless all input
is null

Properties are always updated unless the input is a null
or empty string.

Never overwrite properties with
empty data

Properties are never updated once populated with
non-empty data.

Never overwrite non-empty
properties

7. Repeat steps 4 on page 211 through 6 on page 212 to add additional entities. When you are done
adding entities, click Close.

8. Select which fields you want to be indexed in your model by clicking the Indexes... button and
checking the box for those fields.
In the Type column, you can choose whether the data should be indexed exactly as-is, with case
sensitivity, or if it should be indexed without case sensitivity, which typically results in greater
response to a search.

Note: The _stp_id, _stp_type, and _stp_label properties are internal properties and will
always appear in the list of indexed fields. You can deselect _stp_type and _stp_label,
but _stp_id must be indexed; however, you are able to designate whether its index type
should be exact or with case insensitivity.

212Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Selecting which fields to index, rather than indexing all fields in your model, results in faster
performance when writing to a model. However, if you later attempt to query fields in your model
that were not indexed, the response time will be slower.
For example, the Specify starting entity option in the query tool for the Relationship Analysis
Client works only on indexed properties. You can query non-indexed properties using conditions,
but the performance will be slower.

The Relationships Tab
Provide information described in this procedure to create relationships for your model.

The Relationships tab allows you to configure how relationships are created between source and
target entities. These relationships represent the connection between two entities (for example, John
knows Mary).

1. Click Add
2. Select the entity to act as a source for your relationship in the Source field.
3. Click the appropriate label type for your relationship: String or Field. If string, enter the string in

the text box underneath. If field, select the field you want to use to generate the label for this
relationship in the drop-down box.

4. Optional: To allow a relationship to be created more than once between a source and target
entity, click the Allowmore than one relationship based on unique ID box and select the field
on which to base the relationship in the drop-down box.

5. Select the entity to act as a target for your relationship in the Target field.
6. On the Properties tab, define which properties you want to be included with the relationship you

are creating.
For example, if you are creating a relationship called "treated" between an entity type of "doctor"
and an entity type of "patient," you might want to choose date and diagnosis as properties. You
can select Input or Metadata, depending on what you want to use to define the properties. If
your model does not contain metadata, that option will be disabled.

DescriptionOption

The grid is populated with input fields, which are shown in the Field column; there
is one row for each input field. Select the fields you want to be included as properties

Input

for the relationship by checking the Include box for that field. The Name column
represents the name you want to property to have in the model; it defaults to the
input field name, but you can select from any property in the Name drop-down or
manually enter a name.

The grid is populated with properties from the metadata, which are shown in the
Name column; there is one row for each property. The properties shown are

Metadata

determined by whether you are defining a known relationship. If it is a known
relationship, the Name column will include properties specific to that relationship;
if it is not known, the Name column will include a list of all properties in the model.

213Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Select the properties you want to populate for the relationship by checking the
Include box for that property. The Field column contains names of input fields you
can map properties to and whose data can be used to populate properties. If an
input field matches the property name, it will automatically be mapped and the
Include box will be checked.

7. Optional: Click Add to a add a new condition.
On the Conditions tab, specify conditions that control when a relationship is created between
a source and target entity.
a) If you are creating the first condition, the Logical operator field will be grayed out. If you

are creating a subsequent condition, specify whether this condition should be used in
conjunction with previous conditions or if it should be used instead of previous conditions.

b) Select the element on which the condition will be based in the Data source field.
c) Select the field that the condition will be based in the Field name field.
d) Select the operator for the condition in the Operator field.
e) Enter the value for the condition in the Value field and click Add.
f) Repeat steps 7.a on page 214 through 7.e on page 214 to add additional conditions.
g) When you are done adding conditions, click Close.
Completing this step displays the Add Condition dialog.

8. Click the Updates tab.
9. Select the appropriate action for updating and overwriting properties.

After an relationship is created it can be updated over time when data with the same source and
target ID is input into the Write to Model stage. This selection determines how Write to Model to
manages updates.

DescriptionOption

Properties are always updated with the most recent
information. This includes updating with null or empty
strings.

Always update properties

Properties are always updated unless all input fields
associated with the selected properties are null.

Update properties unless all input
is null

Properties are always updated unless the input is a null
or empty string.

Never overwrite properties with
empty data

Properties are never updated once populated with
non-empty data.

Never overwrite non-empty
properties

214Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

10. Click Add.
11. Repeat steps 1 on page 213 through 10 on page 215 to add additional relationships.
12. When you are done adding relationships, click Close.

The Options Tab
Write mode • Click Initial load if you are loading the model for the first time. The model will

be locked and unable to be written to by other Write to Model stages. When
this mode is checked, the only available option on the Updates tab in the Add
Entity dialog box will be Never overwrite non-empty properties. Therefore,
if you have multiple input files in your dataflow, they can all create properties,
but none of them can update existing properties with new values. This mode
provides better performance when initially loading a model. Existing data, if
there is any, will be cleared prior to writing.

• Click Concurrent writes if you want to allow the model to be written to by
multiple Write to Model stages at the same time. When this mode is checked,
the Clear model before processing option is disabled and the model is
created prior to running the job. If the model does not already exist, it will be
created when the stage is closed.

• Click Exclusive lock (default) if you do not want to allow the model to be
written to by multiple Write to Model stages. When this mode is checked,
properties can be updated after they are created.

Check this check box if you wish to remove all existing entities and relationships
before processing new data. If this is not selected, new information will be used
to update any existing entities and relationships.

Clear model
before
processing

Note: Using this option does not alter security settings for Context Graph.
The model will be recreated, but the security settings will remain the
same.

Check this check box if you wish to remove entities that have no relationships.Remove
orphaned entities
after processing

Setting Exclusive Lock Timeout Duration

If you select the Exclusive lock write mode on the Write to Model Options tab, or if you apply a
centrality algorithm (degree, betweenness, closeness, or influence) to a model, that model will be
locked while those processes are running and any action you attempt on that model that requires
write access will result in a timeout until those processes are complete.

You can specify how long a process should wait before timing out by modifying the neo4j properties
file. The default is 10 seconds, or 10,000 milliseconds.

1. Edit the SpectrumFolder\server\modules\hub\db\neo4j.properties file.
2. Navigate to the ha.wait.for.exclusive.lock.timeout entry.

215Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Enter the duration, in milliseconds, that you want to wait for the lock to be released or the process
to time out.
A value of 0 milliseconds will cause an immediate timeout. Leaving this property blank will cause
the server to wait indefinitely.

Note: If a model is currently in use with the Concurrent writes write mode selected, and a
subsequent process is attempted with the Exclusive lock write mode selected, the model will
be locked and the latter process will time out according to the settings made here.

Output
The Write to Model stage has one optional outgoing port that collects any records that the dataflow
did not process correctly. This is called the Error Port, and records that pass through this port into
the sink are considered malformed.

Sample Model to Context Graph Dataflow
This section describes how to configure a simple dataflow that includes a Write to Model stage.

The first example uses a flat file for input, and the second example uses an XML file for input; both
files include names of employees and their managers, along with other information described in more
detail in the following sections. The end result is the same for both dataflows: a model that depicts
the reporting structure of a small organization.

Flat Sample

The Write to Model dataflow that uses a flat file for input looks like this:

Configuring Read from File

The Read from File stage uses a comma-delimited file that includes records with the following fields:

• Employee ID
• Name
• Title
• Manager ID

The input file itself looks like this:

216Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Notice that two employees do not have manager IDs. These employees (Tom Smith and Mary
Hansen) are both directors and therefore have no manager in this exercise. All other employees
have a number in the ManagerID field that refers to the employee who is their manager. For example,
Paula Sheen's record has "1" in the ManagerID field, indicating that Tom Smith is her manager.

The Read from File stage appears as follows when it is configured to work with this input file:

217Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Configuring Write to Model

Next we configure the Write to Model stage. After naming the model "Employees" we configure the
stage to include the entities and relationships that will comprise the model.

Because we are creating a model that is similar to an organization chart, our entities are employees
who are assigned numeric IDs. The first thing we do on the Add Entity dialog box is click the browse
button to access the Field Schema dialog box, and then select "EmployeeId" from the list of available
fields. This is the first group of entities in our model.

Next, we set the Type field to "Employee" and check the boxes for "name" and "title" because we
want the information from those fields to be brought in as properties for the EmployeeID entities in
the model.

After setting properties for the Employee entity, we configure the processing options. The Updates
tab enables you to specify whether properties can be updated in the model once they are in place
and if they should overwrite existing data. For instance, in our example, Mary Hansen would be
encountered twice because on record 4, she is referred to as an employee, but on record 3, she is
referred to as amanager. WhenWrite to Model processes Mary for the second time, it could potentially
overwrite or remove data that was populated as a result of the first time it processed Mary. By
selecting Never overwrite properties with empty data (which is the default), any updates that
occur will create new properties and overwrite existing properties, but they will not blank out properties
that were set by the first encounter but missing in the second encounter. This also ensures that the
order in which these records are read has no impact on the model.

218Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

If we selected Always update properties, data would always be overwritten and only the last set
of property data would be reflected in the model. If we selected Update properties unless all input
is null, data would always be overwritten unless every field in the new record were blank. Finally, if
we selected Never overwrite non-empty properties, the first set of data for any given field would
be retained, unless that field were blank. In that case, the first set of non-blank data would be retained.

We repeat these steps to add "ManagerId" as the second group of entities in our model. Although
ManagerID and EmployeeID are different fields in the input file, both entities' types are set to
“Employee.” If we set ManagerID to a different type, the model would contain two entities for mid-level
managers. For example, Jim Waterman would have an entity as an employee and an entity as a
manager. With both entities being set to "Employee" as the type, mid-level managers such as Jim
will have just one entity in the model. That entity will have other entities coming into it (from employees)
and another entity going out of it (to their respective manager). Note that we do not add properties
to the ManagerID entities because the values in those fields (name, title) apply to the employees,
not the managers. Also, we accept theNever overwrite properties with empty data default selection
on the Updates tab.

The completed Entities tab for this example appears as follows:

219Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Now we configure the Relationships tab. The first thing we do on the Add Relationship dialog box
is select the source of the relationship from the list of entities created on the Entities tab. The
relationship between our entities reflects the reporting structure (employee to manager); therefore,
we select the "Employee:EmployeeID" entity as the source. Next, we select "String" as name of the
relationship, and we enter the text "reports_to." After that, we select the target of the relationship
from the list of the entities created on the Entities tab; for our example, we select
"Employee:ManagerID." If we were using a "manages" relationship instead of a "reports_to"
relationship, we would reverse the selections in the source and target fields.

The completed Relationships tab for this example appears as follows:

The configuration of this dataflow is complete and results in the following model, as depicted in the
Relationship Analysis Client. This example uses theHierarchic layout with default settings for entities.

Another way to view this same data is with Panel style, as shown below. The benefit of using Panel
style is that you can see the properties associated with each entity.

220Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

XML Sample

The Write to Model dataflow that uses an XML file for input looks like this:

Configuring Read from XML

The Read from XML stage uses a hierarchical file that contains the following:

The Read from XML stage appears as follows when it is configured to work with this input file:

221Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Configuring Write to Model

Next we configure the Write to Model stage. After naming the model "Employees" we configure the
stage to include the entities and relationships that will comprise the model.

Because we are creating a model that is similar to an organization chart, our entities are employees
who are assigned numeric IDs. The first thing we do on the Add Entity dialog box is click the browse
button to access the Field Schema dialog box, and then select "id." This is the first group of entities
in our model.

222Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Next, we set the Type field to "Employee" and check the boxes for "name" and "title" because we
want the information from those fields to be brought in as properties for the ID entities in the model.

After setting properties for the ID entity, we configure the processing options. The Updates tab
enables you to specify whether properties can be updated in the model once they are in place and
if they should overwrite existing data. For instance, in our example, Mary Hansen would be
encountered twice because for ID 2, she is an employee, but for ID 11, she is a manager. When
Write to Model processes Mary for the second time, it could potentially overwrite or remove data that
was populated as a result of the first time it processed Mary. By selectingNever overwrite properties
with empty data (which is the default), any updates that occur will create new properties and overwrite
existing properties, but they will not blank out properties that were set by the first encounter but
missing in the second encounter. This also ensures that the order in which these records are read
has no impact on the model.

223Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

If we selected Always update properties, data would always be overwritten and only the last set
of property data would be reflected in the model. If we selected Update properties unless all input
is null, data would always be overwritten unless every field in the new record were blank. Finally, if
we selected Never overwrite non-empty properties, the first set of data for any given field would
be retained, unless that field were blank. In that case, the first set of non-blank data would be retained.

We repeat these steps to add "ManagerId" as the second group of entities in our model. Although
ManagerID and EmployeeID are different fields in the input file, both entities' types are set to
“Employee.” If we set ManagerID to a different type, the model would contain two entities for mid-level
managers. For example, Jim Waterman would have an entity as an employee and an entity as a
manager. With both entities being set to "Employee" as the type, mid-level managers such as Jim
will have just one entity in the model. That entity will have other entities coming into it (from employees)
and another entity going out of it (to their respective manager). Note that we do not add properties
to the ManagerID entities because the values in those fields (name, title) apply to the employees,
not the managers. Also, we accept theNever overwrite properties with empty data default selection
on the Updates tab.

The completed Entities tab for this example appears as follows:

Now we configure the Relationships tab. The first thing we do on the Add Relationship dialog box
is select the source of the relationship from the list of entities created on the Entities tab. The
relationship between our entities reflects the reporting structure (employee to manager); therefore,
we select the "Employee:Staff/Employee/Staff-id" entity as the source. Next, we select "String" as
name of the relationship, and we enter the text "Reports to." After that, we select the target of the
relationship from the list of the entities created on the Entities tab; for our example, we select
"Employee:id." If we were using a "manages" relationship instead of a "reports to" relationship, we
would reverse the selections in the source and target fields.

The completed Relationships tab for this example appears as follows:

224Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The configuration of this dataflow is complete and results in the following model, as depicted in the
Relationship Analysis Client:

As with the flat sample, this model can also be viewed in Panel style, as shown below.

225Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Data Normalization stages

Advanced Transformer
The Advanced Transformer job scans and splits strings of data into multiple fields using tables or
regular expressions. It extracts a specific term or a specified number of words to the right or left of
a term. Extracted and non-extracted data can be placed into an existing field or a new field.

For example, want to extract the suite information from this address field and place it in a separate
field.

2300 BIRCH RD STE 100

To accomplish this, you could create an Advanced Transformer that extracts the term STE and all
words to the right of the term STE, leaving the field as:

2300 BIRCH RD

Input
Advanced Transformer uses any defined input field in the data flow.

Options
Advanced Transformer options can be configured at the stage level, through any of the Spectrum
Technology Platform clients, or at runtime, using dataflow options.

Configuring Options

To specify the options for Advanced Transformer you create a rule. You can create multiple rules
then specify the order in which you want to apply the rules. To create a rule:

1. Double-click the instance of Advanced Transformer on the canvas. The Advanced Transformer
Optionsdialog displays.

2. Select the number of runtime instances and click OK. Use the Runtime Instances option to
configure a dataflow to run multiple, parallel instances of a stage to potentially increase
performance.

3. Click the Add button. The Advanced Transformer Rule Options dialog displays.

Note: If you add multiple transformer rules, you can use the Move Up and Move Down
buttons to change the order in which the rules are applied.

4. Select the type of transform action you wish to perform and click OK. The options are listed in
the table below.

226Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 21: Advanced Transformer Options

DescriptionOption

Specifies the source input field to evaluate for scan and split.Source

Select Table Data or Regular Expressions.

Select Table Data if you want to scan and split using the XML tables located at
<Drive>:\Program
Files\Precisely\Spectrum\server\modules\advancedtransformer\data.See
Table Data Options below for more information about each option.

SelectRegular Expressions if you want to scan and split using regular expressions.
Regular expressions provide many additional options for splitting data. You can use
the prepackaged regular expressions by selecting one from the list or you can
construct your own using RegEx syntax.

For example, you could split data when the first numeric value is found, as in "John
Smith 123 Main St." where "John Smith" would go in one field an "123 Main St."
would go in another. See Regular Expression options below for more information
about each option.

Extract using

Table Data Options

Specifies the output field that you want to contain the transformed data. If you want
to replace the original value specify the same field in the Destination field as you did
in the Source drop-down box.

You may also type in a new field name in the Destination field. If you type in a new
field name, that field name will be available in stages in your dataflow that are
downstream of Advanced Transformer.

Non-extracted Data

Specifies the output field where you want to put the extracted data.

You may type in a new field name in the Extracted Data field. If you type in a new
field name, that field name will be available in stages in your dataflow that are
downstream of Advanced Transformer.

Extracted Data

227Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies any special characters that you want to tokenize. Tokenization is the process
of separating terms. For example, if you have a field with the data "Smith, John" you
would want to tokenize the comma. This would result in terms:

• Smith
• ,
• John

Now that the terms are separated, the data can be split by scanning and extracting
on the comma so that "Smith" and "John" are cleanly identified as the data to
standardize.

Tokenization Characters

Specifies the table that contains the terms on which to base the splitting of the field.
For a list of tables, see Advanced Transformer Tables. For information about
creating or modifying tables, see Introduction to Lookup Tables.

Table

Select this check box to enable multiple word searches within a given string. For
example:

Input String = "Cedar Rapids 52401" Business Rule = Identify "Cedar Rapids" in
string based on a table that contains the entry; Cedar Rapids = USOutput = Identifies
presence of "Cedar Rapids" and places the terms into a new field, for example City.

For multiple word searches, the search stops at the first occurrence of a match.

Note: Selecting this option may adversely affect performance.

Lookup multiple word terms

228Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of extraction to perform. Select from one of these:

Extracts the term identified by the selected table.Extract term

Extracts words to the right of the term. You specify the
number of words to extract. For example, if you want
to extract the two words to the right of the identified
term, specify 2.

Extract N words to the
right of the term

Extracts words to the left of the term. You specify the
number of words to extract. For example, if you want
to extract the two words to the left of the identified term,
specify 2.

Extract N words to the
left of the term

If you choose to extract words to the right or left of the term, you can specify if you
want to include the term itself in the destination data or the extracted data. For
example, if you have this field:

2300 BIRCH RD STE 100

and you want to extract "STE 100" and place it in the field specified in extracted data,
you would choose to include the term in the extracted data field, thus including the
abbreviation "STE" and the word "100".

If you select neither Destination nor Extracted data, the term will not be included and
is discarded.

Extract

Regular Expressions Options

Select a prepackaged regular expressions from the list or construct your own in the
text box. Advanced Transformer supports standard RegEx syntax.

The Java 2 Platform contains a package called java.util.regex, enabling the use of
regular expressions. For more information, go to:
java.sun.com/docs/books/tutorial/essential/regex/index.html.

Regular Expressions

Click this button to add or remove a new regular expression.Ellipsis Button

After you have selected a predefined or typed a newRegex expression, clickPopulate
Group to extract any Regex groups and place the complete expression, as well as
any Regex groups found, into the Groups list.

Populate Group

229Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://java.sun.com/docs/books/tutorial/essential/regex/index.html
http://java.sun.com/docs/books/tutorial/essential/regex/index.html

DescriptionOption

This column shows the regular expressions for the selected Regular Expressions
group.

For example, if you select the Date Regex expression, the following expression
displays in the text box:
(1[012]{1,2}|0?[1-9])[-/.]([12][0-9]|3[01]{1,2}|0?[1-9])[-/.](([0-9]{4})). This Regex
expression has three parts to it and the whole expression and each of the parts can
be sent to a different output field. The entire expression is looked for in the source
field and if a match is found in the source field, then the associated parts are moved
to the assigned output field. If the source field is "On 12/14/2006" and you apply the
Date expression to it, and assign the entire date (such as, "12/14/2006) to be placed
in the DATE field, the "12" to be placed in MONTH field, the "14" to be placed in the
DAY field and "2006" to be placed in YEAR field. It will look for the date and if it finds
it will move the appropriate information to the appropriate output field.

Source Field: "On 12/14/2006" DATE: "12/14/2006" MONTH: "12" DAY: "14" YEAR:
"2006"

Groups

Pull-down menu to select an output field.Output Field

Configuring Options at Runtime

Advanced Transformer rules can be configured and passed at runtime if they are exposed as dataflow
options. This enables you to override the existing configuration with JSON-formatted strings. You
can also set stage options when calling the job through a process flow or through the job executor
command-line tool.

You can find schemas for AdvancedTransformerRules in the following folder:

<Spectrum Location>\server\modules\jsonSchemas\advancedTransformer

To define Advanced Transformer rules at runtime:

1. In Enterprise Designer, open a dataflow that uses the Advanced Transformer stage.
2. Save and expose that dataflow.
3. Go to Edit > Dataflow Options.
4. In the Map dataflow options to stages table, expand Advanced Transformer. Check the box

for AdvancedTransformerRules.
5. Optional: Change the name of the options in the Option label field.
6. Click OK twice.

Output
Advanced Transformer does not create any new output fields. Only the fields you define are written
to the output.

230Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Open Parser
Open Parser parses your input data from many cultures of the world using a simple but powerful
parsing grammar. Using this grammar, you can define a sequence of expressions that represent
domain patterns for parsing your input data. Open Parser also collects statistical data and scores
the parsing matches to help you determine the effectiveness of your parsing grammars.

Use Open Parser to:

• Parse input data using domain-specific and culture-specific parsing grammars that you define in
Domain Editor.

• Parse input data using domain-independent parsing grammars that you define in Open Parser
using the same simple but powerful parsing grammar available in Domain Editor.

• Parse input data using domain-independent parsing grammars at runtime that you define in Dataflow
Options.

• Preview parsing grammars to test how sample input data parses before running the job using the
target input data file.

• Trace parsing grammar results to view how tokens matched or did not match the expressions you
defined and to better understand the matching process.

Input
Open Parser accepts the input fields that you define in your parser grammar. For more information,
see Header Section Commands.

If you are performing culture-specific parsing, you can optionally include a CultureCode field in the
input data to use a specific culture's parsing grammar for a record. If you omit the CultureCode field,
or if it is empty, then each culture listed in the Open Parser stage is applied, in the order specified.
The result from the culture with the highest parser score, or the first culture to have a score of 100,
is returned. For more information about the CultureCode field, see Assigning a Parsing Culture
to a Record.

Options
The following tables list the options for the Open Parser stage.

231Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Rules Tab

DescriptionOption

Specifies to use a language and domain specific parsing grammar which has already
been defined in the Open Parser Domain Editor tool in Enterprise Designer. For more
information about defining domains, see Defining a Culture-Specific Parsing
Grammar.

If you choose this option you will also see these options:

Specifies the parsing grammar to use.Domain

Specifies the language or culture of the data you want to parse.
Click the Add button to add a culture. You can change the order
in which Open Parser attempts to parse the data with each culture
by using the Move Up and Move Down buttons. For more
information about cultures, see Defining a Culture-Specific
Parsing Grammar.

Cultures

Enable this option to have Open Parser return records for each
culture that successfully parses the input. If you do not check this
box, Open Parser will return the results for the first record that
achieves a parser score of 100, regardless of culture. If all cultures
run without hitting a record that has parser score of 100, Open
Parser will return the record with the score closest to 100. If multiple
cultures return records with the same high score under 100, the
order set in Step 4 will determine which culture's record is returned.

Return
multiple
parsed
records

Use culture-specific domain
grammar

Choose this option if you want to define a parsing grammar that should be applied
without consideration of the language or domain of the input data. If you choose this
option, the grammar editor will appear and you can define the parsing grammar
directly in the Open Parser stage rather than using the Open Parser Domain Editor
tool in Enterprise Designer.

Note: You can also define domain-independent grammar at runtime. For
more information, seeDefining Domain-Independent Parsing Grammars
at Runtime.

Define domain-independent
grammar

Preview Tab

Creating a working parsing grammar is an iterative process. Preview is useful in testing out variations
on your input to make sure that the parsing grammar produces the expected results.

Type test values in the input field and then click Preview.

232Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The parsed output fields display in the Results grid. For information about the output fields, see
Output on page 233. For information about trace, see Tracing Final Parsing Results. If your results
are not what you expected, click the Rules tab and continue editing the parsing grammar and testing
input data until it produces the expected results.

Output

Table 22: Open Parser Output

Description / Valid ValuesField Name

The original input field defined in the parsing grammar.<Input Field>

The output fields defined in the parsing grammar.<Output Fields...>

The culture codes contained in the input data. For a complete list of supported culture
codes, see Assigning a Parsing Culture to a Record.

CultureCode

The culture code value used to parse each output record. This value is based on
matches to a culture-specific parsing grammar.

CultureUsedtoParseSelect a match
results in theMatch Results List and
then click Remove.

233Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Indicates whether an output record was parsed. The possible values are Yes or No.IsParsed

Indicates the total average score. The value of ParserScore will be between 0 and
100, as defined in the parsing grammar. 0 is returned when nomatches are returned.

For more information, see Scoring.

ParserScoreSelect a match results
in the Match Results List and then
click Remove.

Click this control to see a graphical view of how each token in the parsing grammar
was parsed to an output field for the selected row in the Results grid.

Trace

Table Lookup
The Table Lookup stage standardizes terms against a previously validated form of that term and
applies the standard version. This evaluation is done by searching a table for the term to standardize.

For example:

Last NameFirst Name

SmithBillSource Input:

SmithWilliamStandardized Output:

There are three types of action you can perform: standardize, identify, and categorize.

If the term is found when performing the standardize action, Table Lookup replaces either the entire
field or individual terms within the field with the standardized term, even if the field contains multiple
words. Table Lookup can include changing full words to abbreviations, changing abbreviations to
full words, changing nicknames to full names or misspellings to corrected spellings.

If the term is found when performing the identify action, Table Lookup flags the record as containing
a term that can be standardized, but performs no action.

If the term is found when performing the categorize action, Table Lookup uses the source value as
a key and copies the corresponding value from the table entry into the selected field. If none of the
source terms match, Categorize uses the default value specified.

234Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input

Table 23: Table Lookup Input Fields

Description / Valid ValuesField Name

Specifies the source input field to evaluate for scan and split.Source

One of the tables listed in Table Lookup Tables.StandardizationTable

Options
Table Lookup options can be configured at the stage level, through any of the Spectrum Technology
Platform clients, or at runtime, using dataflow options.

Configuring Options

To specify the options for Table Lookup you create a rule. You can create multiple rules then specify
the order in which you want to apply the rules. To create a rule, open the Table Lookup stage and
click Add then complete the following fields.

Note: If you add multiple Table Lookup rules, you can use the Move Up and Move Down
buttons to change the order in which the rules are applied.

DescriptionOption

Specifies the type of action to take on the source field. One of the following:

Changes the data in a field to match the standardized term found in
the lookup table. If the field contains multiple terms, only the terms
that are found in the lookup table are replaced with the standardized
term. The other data in the field is not changed.

Standardize

Flags the record as containing a term that can be standardized, but
performs no action on the data in the field. The output field
StandardizedTermIdentified is added to the record with a value of
Yes if the field can be standardized and No if it cannot.

Identify

Uses the Source value as a key and copies the corresponding value
from the table into the field selected in the Destination list. This
creates a new field in your data that can be used to categorize
records.

Categorize

Action

235Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies whether to use the entire field as the lookup term or to search the lookup
table for each term in the field. One of the following:

Treats the entire field as one term, resulting in the following:Complete
field

• If you selected the action Standardize, Table Lookup treats the
entire field as one string and attempts to standardize the field using
the string as a whole. For example, "International Business
Machines" would be changed to "IBM".

• If you selected the action Identify, Table Lookup treats the entire
field as one string and flags the record if the string as a whole can
be standardized.

• If you selected the actionCategorize, Table Lookup treats the entire
field as one string and flags the record if the string as a whole can
be categorized.

Treats each word in the field as its own term, resulting in the following:Individual
terms
within
field

• If you selected the action Standardize, Table Lookup parses the
field and attempts to standardize the individual terms within the field.
For example, "Bill Mike Smith" would be changed to "WilliamMichael
Smith."

• If you selected the action Identify, Table Lookup parses the field
and flags the record if any single term within the field can be
standardized.

• If you selected the action Categorize, Unlike Standardize,
Categorize does not copy the source term if there isn't a table match.
If none of the source termsmatch,Categorize uses the default value
specified. Unlike Standardize, Categorize only returns that table
value and nothing from Source. If none of the source terms match,
Categorize uses the default value specified.

On

Specifies the field you want to containing the term you want to look up.Source

Specifies the field to which the terms returned by the table lookup should be written.

If you want to replace the value, specify the same field in the Destination field as
you did in the Source field. You can also create a new field by typing the name of
the field you want to create.

The Destination field is not available if you select the action Identify.

Destination

Specifies the table you want to use to find terms that match the data in your dataflow.

For a list of tables that you can edit, see Table Lookup Tables. For information
about creating or modifying tables, see Introduction to Lookup Tables.

Table

236Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Enables multiple word searches within a given string. For example:

Input String: "Major General John Smith"
Business Rule: Identify "Major General" in a string based on a table that contains
the entry
Output: Replace "Major General" with "Maj. Gen."

For multiple word searches, the search stops at the first occurrence of a match.

This option is disabled when On is set to Complete field.

Note: Selecting this option may adversely affect performance.

Lookup multiple word terms

Specifies the value to put in the destination field if a matching term cannot be found
in the lookup table. One of the following:

Put the value from the source field into the destination
field.

Source's value

Put a specific value into the destination field.Other

When table entry not found, set
Destination's value to

Configuring Options at Runtime

Table Lookup options can be configured and passed at runtime if they are exposed as dataflow
options. This enables you to override the existing configuration with JSON-formatted strings. You
can also set stage options when calling the job through a process flow or through the job executor
command-line tool.

You can find a schema for LookupRule in the following folder:

<Spectrum Location>\server\modules\jsonSchemas\tableLookup

To define Table Lookup rules at runtime:

1. In Enterprise Designer, open a dataflow that uses the Table Lookup stage.
2. Save and expose that dataflow.
3. Go to Edit > Dataflow Options.
4. In the Map dataflow options to stages table, expand Table Lookup. Check the box for

LookupRule.
5. Optional: Change the name of the options in the Option label field.
6. Click OK twice.

237Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output

Table 24: Table Lookup Outputs

Description / Valid ValuesField Name

Indicates whether or not the field contains a term that can be standardized. Only
output if you select Complete field or Individual terms in field options.

The record contains a term that can be standardized.Yes

The record does not contain a term that can be standardized.No

StandardizedTermIdentified

Transliterator
Transliterator converts a string between Latin and other scripts. For example:

TransliterationSource

kyanpasu

Αλφαβητικός Κατάλογος

biologichyeskomбиологическом

It is important to note that transliteration is not translation. Rather, transliteration is the conversion
of letters from one script to another without translating the underlying words.

Note: Standard transliteration methods often do not follow the pronunciation rules of any
particular language in the target script.

The Transliterator stage supports these scripts. In general, the Transliterator stage follows the
UNGEGN Working Group on Romanization Systems guidelines. For more information, see
www.eki.ee/wgrs.

The script used by several Asian and African languages, including Arabic,
Persian, and Urdu.

Arabic

238Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.eki.ee/wgrs/

The script used by Eastern European and Asian languages, including Slavic
languages such as Russian. The Transliterator stage generally follows ISO
9 for the base Cyrillic set.

Cyrillic

The script used by several Indian languages, including Hindi and Sanskrit.
This script is a descendent of the Brahmi script which is one of the oldest
writing systems used in Ancient India and present South and Central Asia.

Devanagari

The script used by the Greek language. This script belongs to the Hellenic
branch of the Indo-European language family.

Greek

The script used by the state of Gujarat in western India. It is one of the
modern scripts of India which was adapted from the Devanagari script.

Gujarati

The script used by Indian language Punjabi. This script has a considerable
influence from Nagari script which is an earlier form of the Devanagari script.

Gurmukhi

The script used by the Korean language. The Transliterator stage follows
the Korean Ministry of Culture and Tourism Transliteration regulations. For

Hangul

more information, see the website of The National Institute of the Korean
Language.

The script used by Chinese language. It is a branch of the Tibetan-Burman
language family and has been written with scripts based on Thai and
Chinese.

Han

The Transliterator stage supports both traditional and simplified Chinese.
For example, this is Traditional Chinese: . This is Simplified Chinese:

Traditional/Simplified
Chinese

The script used by several South Indian languages, such as Konkani. This
script is a descendent of Brahmi script of ancient India.

Kannada

One of several scripts that can be used to write Japanese. The Transliterator
stage uses a slight variant of the Hepburn system. With Hepburn system,

Katakana and
Hiragana

both ZI () and DI () are represented by "ji" and both ZU () and DU ()
are represented by "zu". This is amended slightly for reversibility by using
"dji" for DI and "dzu" for DU. The Katakana transliteration is reversible.
Hiragana-Katakana transliteration is not completely reversible since there
are several Katakana letters that do not have corresponding Hiragana
equivalents. Also, the length mark is not used with Hiragana. The
Hiragana-Latin transliteration is also not reversible since internally it is a
combination of Katakana-Hiragana and Hiragana-Latin.

The Transliterator stage can convert between narrow half-width scripts and
wider full-width scripts. For example, this is half-width: . This is full-width:

.

Half width/Full width

The script used by most languages of Europe, such as English. It was
originally used by the ancient Romans to write the Latin language.

Latin

239Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.korean.go.kr
http://www.korean.go.kr

The script used by the Malayalam language, the official language of the
Indian state of Kerala. This script was first written with the Vatteluttu alphabet

Malayalam

which means 'round writing' and developed from the Brahmi script of ancient
India.

The script used by the Oriya language, the official language of the Indian
state of Odisha. The Oriya script was developed from the Kalinga script,
one of the many descendents of the Brahmi script of ancient India.

Oriya

The script used by the Tamil language in several states of India, Sri Lanka,
and Malaysia. This script was originally written with a version of the Brahmi
script known as Tamil Brahmi.

Tamil

The script used by several languages of South India. This script is a
descendent of Brahmi script of ancient India.

Telugu

The script used by Thai language. This script is influenced by the Brahmi
script of ancient India and the Khmer alphabets.

Thai

Transliterator is a part of Data Normalization. For a listing of other stages, see Spectrum Data
Normalization.

Transliteration Concepts
There are a number of generally desirable qualities for script transliterations. A good transliteration
should be:

• Complete
• Predictable
• Pronounceable
• Unambiguous

These qualities are rarely satisfied simultaneously, so the Transliterator stage attempts to balance
these requirements.

Complete

Every well-formed sequence of characters in the source script should transliterate to a sequence of
characters from the target script.

Predictable

The letters themselves (without any knowledge of the languages written in that script) should be
sufficient for the transliteration, based on a relatively small number of rules. This allows the
transliteration to be performed mechanically.

240Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Pronounceable

Transliteration is not as useful if the process simply maps the characters without any regard to their
pronunciation. Simply mapping "αβγδεζηθ..." to "abcdefgh..." would yield strings that might be complete
and unambiguous, but cannot be pronounced.

Standard transliteration methods often do not follow the pronunciation rules of any particular language
in the target script. For example, the Japanese Hepburn system uses a "j" that has the English
phonetic value (as opposed to French, German, or Spanish), but uses vowels that do not have the
standard English sounds. A transliteration method might also require some special knowledge to
have the correct pronunciation. For example, in the Japanese kunrei-siki system, "tu" is pronounced
as "tsu". This is similar to situations where there are different languages within the same script. For
example, knowing that the word Gewalt comes from German allows a knowledgeable reader to
pronounce the "w" as a "v".

In some cases, transliteration may be heavily influenced by tradition. For example, the modern Greek
letter beta (β) sounds like a "v", but a transform may continue to use a b (as in biology). In that case,
the user would need to know that a "b" in the transliterated word corresponded to beta (β) and is to
be pronounced as a "v" in modern Greek. Letters may also be transliterated differently according to
their context to make the pronunciation more predictable. For example, since the Greek sequence
GAMMA GAMMA (γγ) is pronounced as "ng", the first GAMMA can be transcribed as an "n".

Note: In general, in order to produce predictable results when transliterating Latin script to
other scripts, English text will not produce phonetic results. This is because the pronunciation
of English cannot be predicted easily from the letters in a word. For example, grove, move,
and love all end with "ove", but are pronounced very differently.

Unambiguous

It should always be possible to recover the text in the source script from the transliteration in the
target script. For example, it should be possible to go from Elláda back to the original Ελλάδα.
However, in transliteration multiple characters can produce ambiguities. For example, the Greek
character PSI (ψ) maps to ps, but ps could also result from the sequence PI, SIGMA (πσ) since PI
(π) maps to p and SIGMA (σ) maps to s.

To handle the problem of ambiguity, Transliterator uses an apostrophe to disambiguate character
sequences. Using this procedure, the Greek character PI SIGMA (πσ) maps to p's. In Japanese,
whenever an ambiguous sequence in the target script does not result from a single letter, the transform
uses an apostrophe to disambiguate it. For example, it uses this procedure to distinguish between
man'ichi and manichi.

Note: Some characters in a target script are not normally found outside of certain contexts.
For example, the small Japanese "ya" character, as in "kya" (キャ), is not normally found in
isolation. To handle such characters, Transliterator uses a tilde. For example, the input "~ya"
would produce an isolated small "ya". When transliterating to Greek, the input "a~s" would
produce a non-final Greek sigma (ασ) at the end of a word. Likewise, the input "~sa" would
produce a final sigma in a non-final position (ςα).

241Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For the general script transforms, a common technique for reversibility is to use extra accents to
distinguish between letters that may not be otherwise distinguished. For example, the following shows
Greek text that is mapped to fully reversible Latin:

Input

DescriptionField Name

The Transliterator stage can transliterate any string field.
You can specify which fields to transliterate in the
Transliterator stage options.

Any string field

Overrides the default transliteration specified in the
Transliterator stage options. Use this field if you want to
specify a different transliteration for each record.

For Example:

From Arabic to Latin.Arabic-Latin

From Greek to Latin.Greek-Latin

From Latin to Hangul.Latin-Hangul

From Latin to Katakana.Latin-Katakana

From full width to half width.Fullwidth-Halfwidth

TransliteratorID

Options

Table 25: Transliterator Options

Description/Valid ValuesOption

The script used by the fields that you want to transliterate. For a description of the supported
scripts, see Transliterator on page 238.

Note: The Transliterator stage does not support transliteration between all scripts.
The From and To fields automatically reflect the valid values based on your
selection.

From

242Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description/Valid ValuesOption

The script that you want to convert the field into. For a description of the supported scripts,
see Transliterator on page 238.

Note: The Transliterator stage does not support transliteration between all scripts.
The From and To fields automatically reflect the valid values based on your
selection.

To

Click the swap button to exchange the languages in the From and To fields.Swap button

Specifies the fields that you want to transliterate.Fields to transliterate

Select the check box to remove accent marks from the field. This option remains turned
off by default.

Remove Accent Marks

Output
The Transliterator stage transliterates the fields you specify. It does not produce any other output.

Data Stewardship Stages

Introduction
Data Stewardship stages identify andmanage exception records that Spectrum Technology Platform
could not confidently process to allow manual review by a data steward.

Data Stewardship provides three stages in Enterprise Designer.

• Exception Monitor—A stage that evaluates records against a set of conditions to determine if the
record requires manual review by a data steward. When records meet those conditions, this stage
can send an email notifying recipients of the exceptions. An approval flow can be added to a
condition to require acceptance by reviewers in addition to the data steward.

• Write Exceptions—A stage that writes the exception records to the exception repository. Once
exception records are in the exception repository they are available for review by a data steward
and (if there is an approval flow) acceptance by other reviewers.

• Read Exceptions—A stage that reads records from the exception repository into a dataflow. This
stage allows you to reprocess exception records that have been corrected by a data steward.

243Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Exception Monitor
The Exception Monitor stage evaluates records against a set of conditions to determine if the record
requires manual review by a data steward. Exception Monitor enables you to route records that
Spectrum Technology Platform could not successfully process to a manual review tool (the Data
Stewardship Portal).

In the stage settings, you can set conditions that determine if records require manual review. You
can configure notifications to email addresses when those conditions have beenmet a certain number
of times. You can assign an approval flow type to a condition to create an approval flow.

For more information on exception processing, see Data Stewardship Portal.

Input
Exception Monitor takes any record as input. If the input data does not contain a field called
"CollectionNumber" the Return all records in exception's group option will be disabled.

Note: Exception Monitor cannot monitor fields that contain complex data such as lists or
geometry objects.

Output
Exception Monitor returns records in two ports. The success port transmits records that do not meet
any of the conditions defined in the Exception Monitor stage. The exception port transmits records
that match one or more exception conditions. The exception port may also include non-exception
records if you enable the option Return all records in exception's group. Exception Monitor only
evaluates conditions. It does not modify fields within a record.

Reference

Conditions tab

This tab is displayed in the Exception Monitor Options dialog box.
Specifies whether to continue evaluating a record against the remaining conditions
once a condition is met. Enabling this option may improve performance because

Stop
evaluating

it potentially reduces the number of evaluations that the system has to perform.when a
However, if not all conditions are evaluated you will lose some degree ofcondition is

met completeness in the exception reports shown in the Data Stewardship Portal. For
example, if you define three conditions (Address Completeness, Name Confidence,
and Geocode Confidence) and a record meets the criteria defined in Address
Completeness, and you enable this option, the record would not be evaluated
against Name Confidence and Geocode Confidence. If the record also qualifies
as an exception because it matches the NameConfidence condition, this information
would not be captured. Instead the record would be reported as having only an
Address Completeness problem, instead of both an Address Completeness and
Name Confidence problem.

244Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The list box on this tab shows all conditions that have been defined for the stage
in tabular view. The conditions are evaluated in the order that they appear in the
list. The list displays the following information for each condition.

Conditions list

• Name—The name for the condition. This is typically a meaningful name created
by the user who created the condition.

• Approval Flow Type—The name of an approval flow type defined on the
Management Console Data Stewardship Settings page.

• Domain—Specifies the kind of data being evaluated by the condition. This is
used solely for reporting purposes to show which types of exceptions occur in
the data.

• Metric—Specifies the metric that this condition measures. This is used solely
for reporting purposes to show which types of exceptions occur in your data.

• Assign to—The user to whom the exception records meeting this condition are
assigned. This user is referred to as the data steward. If this setting is empty,
exception records from a job are automatically assigned to the user who ran the
job.

Click this button to define a new condition.Add
Click this button to edit the currently selected condition in the list.Modify
Click the button to remove the currently selected condition from the list.Remove
Click these buttons to order conditions that appear in the list. Conditions are
evaluated in the order that they are displayed in the table. You can use these

MoveUp/Move
Down

buttons to arrange selections when Stop evaluating when a condition is met is
checked to assure that certain conditions more likely to be evaluated.

Configuration tab

This tab is displayed in the Exception Monitor Options dialog box.
Turns Exception Monitor on or off. If you disable Exception Monitor, records
will simply pass through the stage and no action will be taken. This is similar
in effect to removing Exception Monitor from the dataflow.

Disable exception
monitor

Specifies whether to halt job execution when the specified number of records
meet the exception conditions.

Stop job after
reaching
exception limit

If Stop job after reaching exception limit is selected, use this field to specify
themaximum number of exception records to allow before halting job execution.

Maximum number
of exception
records For example, if you specify 100, the job will stop once the 101st exception

record is encountered.
Enables you to track records that meet exception conditions and reports those
statistics on the Data Quality Performance page in the Data Stewardship Portal,
but does not create exceptions for those records.

Report only (do
not create
exceptions)

Specifies whether to return all records belonging to an exception record's group
instead of just the exception record. For example, a match group (based on a

Return all records
in exception's
group MatchKey) contains four records. One is the Suspect record, one is a duplicate

that scored 90, and two are unique records that scored 80 and 83. If you have

245Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

a condition that says that any record with a MatchScore between 80 and 89
is an exception, by default just the records with a match score of 80 and 83
would be sent to the exception port. However, if you enable this option, all four
records would be sent to the exception port.
Enable this option if you want data stewards to be able to compare the
exception record to the other records in the group. By comparing all the records
in the group, data stewards may be able to make more informed decisions
about what to do with an exception record. For example, in a matching situation
a data steward could see all candidates to determine if the exception is a
duplicate of the others.

Note: If the input data does not contain a field named
"CollectionNumber" this option will be disabled.

If you selected Return all records in exception's group, choose the field by
which to group the records.

Group by

Note: The "CollectionNumber" input field will not appear in this list
because it is not a valid selection for the Group by feature.

Select the service you want to run when you revalidate records from this
dataflow. The service runs when a user saves edited records in the Portal

Revalidation
service

Exception Editor. Status is changed to Failed for records that fail revalidation.
Successfully revalidated records are reprocessed or approved depending on
the selection for Action after revalidation.
In an approval flow, successfully revalidated records are passed to the next
approval level. For the last approval level in an approval flow, revalidated
records are either released for reprocessing or retained in the repository as
Resolved, depending on the selection for Action after revalidation.
Specifies whether to reprocess records or approve records that have been
successfully revalidated.

Action after
revalidation

• Reprocess records—Choose this option to reprocess records that are
successfully revalidated. The revalidated records are removed from the
repository for reprocessing.

• Approve records—Choose this option to approve records that are
successfully revalidated. The approved records are retained in the repository
and their status changed to Resolved.

Uses match fields to match input records against exception records in the
repository. Enable this option if your input contains records that previously
generated exceptions but are now corrected in the input.

The input records will be evaluated against the conditions and then matched
against the existing exception records in the repository. If an input record

Match exception
records using
match field

passes the conditions and matches an exception record, that exception record
will be removed from the repository. If an input record does not pass the
conditions and matches an exception record, that exception record will be
updated and retained in the repository. Additionally, if duplicates exist in the

246Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

repository, only one matched exception per dataflow will be updated; all others
for that dataflow will be deleted.

This option is activated when you check Match exception records using
match field. When this option is not checked (default), the server will load into

Optimized for
single records or
small batches memory all existing exception records for the current dataflow and stage before

processing the incoming exception records. This is recommended when the
repository has a low number of existing exception records and high number
of new exception records or updates. This scenario typically involves a longer
initial load time and an increased memory requirement; it is faster when
processing larger batches, such as daily, weekly, or monthly updates.

Checking this option is recommended when the repository has a high number
of existing exception records and a relatively low number of new exception
records or updates, as the server queries the repository for existing exception
records as each input record is read in. This scenario typically involves a shorter
initial load time and a lower memory requirement; it is faster when processing
a few records in real time.

Provides a list of all input fields used to build a key to match an exception
record in the repository. You must define at least one match field if you checked
the Match exception records using match field check box.

Match fields

Add/Modify Condition dialog box
Conditions consist of one or more logical statements that evaluate the value in an input field. Use
the Add Condition or Modify Condition dialog box to define the criteria to determine if a record is
an exception.

TheAddCondition dialog box is opened when you clickAdd on theConditions tab of the Exception
Monitor Options dialog box. It provides options to configure a new condition. TheModify Condition
dialog box is opened when you click Modify. It allows you to edit values of the same options for an
existing condition. After you have create conditions, they appear on the Conditions tab of the
Exception Monitor Options dialog box.

Select a predefined condition or retain <custom condition> in the drop-down menu
to create a new condition. After you have created predefined or custom conditions,

Predefined
Conditions

they will appear on the Conditions tab of the Exception Monitor Options dialog box.
The icon next to the name of the condition identifies it as either a predefined condition
or a custom condition. A dual-document icon designates a predefined condition,
and a single document icon designates a custom condition. Click the Save button
to save a condition. After you save a condition, the Predefined conditions field
changes to show the name of the condition rather than <custom condition>.
A name for the condition. The name can be anything you like. Since the condition
name is displayed in the Data Stewardship Portal, you should use a descriptive name.

Name

For example, MatchScore<80 or FailedDPV. If you try to give a new condition a
name that is identical to an existing condition but with other characters appended to
the end (for example, FailedDPV and FailedDPV2), you will be asked whether you
want to overwrite the existing condition as soon as you type the last character that
matches its name (using our example, "V"). Respond Yes to the prompt, finish naming
the condition, and when you press OK or Save, both conditions will be visible on the

247Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Exception Monitor Options dialog box. The new condition will not overwrite the existing
condition unless the new name is identical.
The user to whom the exception records meeting this condition are assigned. This
user is referred to as the data steward. If this setting is empty, exception records from

Assign to

a job are automatically assigned to the user who ran the job. For an approval flow,
you can configure this setting to specify a data steward other than the user who runs
the job.

Condition categories
(Optional) Specifies the kind of data being evaluated by the condition. This is used solely
for reporting purposes to show which types of exceptions occur in your data. For example,

Data
domain

if the condition evaluates the success or failure of address validation, the data domain
could be "Address"; if the condition evaluates the success or failure of a geocoding
operation, the data domain could be "Spatial", and so forth. You can specify your own data
domain or select one of the predefined domains:

• Account—The condition checks a business or organization name associated with a sales
account.

• Address—The condition checks address data, such as a complete mailing address or a
postal code.

• Asset—The condition checks data about the property of a company, such as physical
property, real estate, human resources, or other assets.

• Date—The condition checks date data.
• Email—The condition checks email data.
• Financial—The condition checks data related to currency, securities, and so forth.
• Name—The condition checks personal name data, such as a first name or last name.
• Phone—The condition checks phone number data.
• Product—The condition checks data about materials, parts, merchandise, and so forth.
• Spatial—The condition checks point, polygon, or line data which represents a defined
geographic feature, such as flood plains, coastal lines, houses, sales territories, and so
forth.

• SSN—The condition checks U.S. Social Security Number data.
• Uncategorized—Choose this option if you do not want to categorize this condition.

(Optional) Specifies the metric that this condition measures. This is used solely for reporting
purposes to show which types of exceptions occur in your data. For example, if the condition

Data
quality
metric is designed to evaluate the record's completeness (meaning, for example, that all addresses

contain postal codes) then you could specify "Completeness" as the data quality metric.
You can specify your own metric or select one of the predefined metrics:

• Accuracy—The condition measures whether the data could be verified against a trusted
source. For example, if an address could not be verified using data from the postal
authority, it could be considered to be an exception because it is not accurate.

• Completeness—The condition measures whether data is missing essential attributes.
For example, an address that is missing the postal code, or an account that is missing
a contact name.

248Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Consistency—The condition measures whether the data is consistent between multiple
systems. For example if your customer data system uses gender codes of M and F, but
the data you are processing has gender codes of 0 and 1, the data could be considered
to have consistency problems.

• Interpretability—The condition measures whether data is correctly parsed into a data
structure that can be interpreted by another system. For example, social security numbers
should contain only numeric data. If the data contains letters, such as xxx-xx-xxxx,
the data could be considered to have interpretability problems.

• Recency—The condition measures whether the data is up to date. For example, if an
individual moves but the address you have in your system contains the person's old
address, the data could be considered to have a recency problem.

• Uncategorized—Choose this option if you do not want to categorize this condition.
• Uniqueness—The condition measures whether there is duplicate data. If the dataflow
could not consolidate duplicate data, the records could be considered to be an exception.

Approval flow
Specifies the name of an approval flow type. Approval flows define a succession of review
levels through which exception records must be accepted by reviewers after they are edited

Type

by the data steward. When a condition is met, a record is associated with the approval
flow specified here. The approval flow type is defined on the Management Console
Resources > Data Stewardship Settings page. If the option is left as <undefined>, the
condition will not be associated with an approval flow type, and records will be resolved
by the data steward without any subsequent review.

Expression and Notification tabs
List expressions defined for a condition. Expressions are logical statements that check
the value of a field to determine if the record might be considered an exception. Click

Expressions

the Add button to add a new expression. You must add at least one expression to a
condition. Expressions are evaluated in the order that they appear hear. You can click
Move Up or Move Down to change the order.
Complete options on this tab to send amessage to email addresses when this condition
is met a specific number of times. A notification email includes a link to the failed

Notification

records in the Data Stewardship Portal Editor, where you can manually enter the
correct data. If you do not wish to set up notifications, do not configure options on this
tab. To stop sending notifications to a particular email address, remove that address
from the list of recipients in the Send notification to box.
• Send notification to—Specifies email addresses for notifications. You can separate
multiple email addresses with semicolons (;) or commas (,).

• Subject—Specifies the subject line on email notifications.
• On—Specifies to send a notification on the First occurrence that an expression
evaluates to true orAfter a specified number of occurrences. The maximum allowed
value is 1,000,000 occurrences.

249Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Send reminder after—Check this check box and specify the number of days on
which to send a repeat email.

• Remind daily—Check this check box to continue sending reminders every day until
the exception is resolved.

• Reminder recipients—Specifies recipients for reminders. The email addresses
listed here do not have to match those specified for the original notification.

Add/Modify Expression dialog box

Use the Add Expression orModify Expression dialog box to define expressions, which are logical
statements that check the value of a field to determine if the record might be considered an exception.
You must add at least one expression to a condition.

This dialog box opens when you click Add or Modify in the Add/Modify Condition dialog box.

Expression type
Select this option to create a basic expression.Expression created with

Expression Builder
Select this option to write an expression using Groovy scripting. If
you need to use more complex logic, such as nested evaluations,

Custom expression

use a custom expression. For more information, seeUsing Custom
Expressions in Exception Monitor on page 252.

Expression
If other expressions are already defined for this condition, you can select an
operator to combine it with the preceding expressions.

Logical operator

• And—This expression must be true in addition to the preceding expression
being true in order for the condition to be true.

• Or—If this expression is true the condition is true even if the preceding
expression is not true.

If you chose Expression created with expression builder for the Expression type, the following
options are available.

Select the field that you want this expression to evaluate. The list of available
fields is populated based on the stages upstream from the Exception Monitor
stage.

Field name

Select the operator you want to use in the evaluation.Operator
Specify the value you want the expression to check for using the operator
chosen in the Operator field. This is a regular expression if you selected
matches regular expression as the Operator.

Value

250Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

How to

Add the Exception Monitor stage to a workflow

1. In the Stages palette, expand Primary Stages > deployed Stages > Data Stewardship.
2. Drag the Exception Monitor stage to the canvas.
3. Optional: Click the Exception Monitor label and type a meaningful name for the stage in the

workflow.
4. Drag a connection from an upstream stage to the input port on the Exception Monitor stage.

This is the path through which records will enter the Exception Monitor.

5. Drag a connection from the success port to the first downstream stage that will process records
that do not trigger any exceptions.

6. Drag a connection from the exception port to the first downstream stage that will process records
that trigger an exception.

7. Double-click the Exception Monitor stage to configure its options.
8. On the Conditions tab, click the Add button to add conditions in the order that you want them

evaluated.
a) In the Add Condition dialog box, complete Name, Assign to, Data domain, and Data

quality metric. Under Approval flow.
For more information, see Add/Modify Condition dialog box on page 247.

b) Optional: In the Type box under Approval flow, you can select an approval type to trigger
an approval flow with a condition.
To show on theConditions tab, approval types must be defined on theManagement Console
Data Stewardship Settings page.

c) On the Expressions tab, click Add to add expressions to the condition.
You must add at least one expression to a condition.
For more information, see Expression and Notification tabs on page 249.

d) After you add expressions, click the Move Up or Move Down buttons to change the order
in which expressions are evaluated.

e) Optional: On the Notification tab, you can add recipients for reminder emails.
For more information, see Expression and Notification tabs on page 249.

f) Click OK.
g) To save this condition for reuse as a predefined condition, click Save.

For an existing condition, you will be prompted whether to overwrite the condition.

Note: If you overwrite a predefined condition, any changes will affect all dataflows
that already use the condition.

9. Use theMove Up andMove Down buttons to change the order in which conditions are evaluated.
The order of the conditions is important only if you have enabled the option Stop evaluating
when a condition is met. For more information, see Conditions tab on page 244

251Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

10. Configure options on the Configuration tab.
For more information, see Configuration tab on page 245.

11. Click the OK button.

Using Custom Expressions in Exception Monitor
You can write your own custom expressions to control how Exception Monitor routes records using
the Groovy scripting language to create an expression.

Using Groovy Scripting

For information on Groovy, see groovy-lang.org.

Groovy expressions used in the Exception Monitor stage must evaluate to a Boolean value (true or
false) that indicates whether the record is considered an exception and should be routed for manual
review. Exception records are routed to the exception port.

For example, if you need to review records with a validation confidence level of <85, your script
would look like:

data['Confidence']<85

The monitor would evaluate the value of the Confidence field against your criteria to determine which
output port to send it to.

Checking a Field for a Single Value
This example evaluates to true if the Status field has 'F' in it. This would have to be
an exact match, so 'f' would not evaluate to true.

return data['Status'] == 'F';

Checking a Field for Multiple Values
This example evaluates to true if the Status field has 'F' or 'f' in it.

boolean returnValue = false;
if (data['Status'] == 'F' || data['Status'] == 'f')
{
returnValue = true;
}
return returnValue;

252Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://groovy-lang.org

Evaluating Field Length
This example evaluates to true if the PostalCode field has more than 5 characters.

return data['PostalCode'].length() > 5;

Checking for a Character Within a Field Value
This example evaluates to true if the PostalCode field has a dash in it.

boolean returnValue = false;
if (data['PostalCode'].indexOf('-') != -1)
{
returnValue = true;
}
return returnValue;

Common Mistakes

The following illustrate common mistakes when using scripting.

The following is incorrect because PostalCode (the column name) must be in single or double quotes

return data[PostalCode];

The following is incorrect because no column is specified

return data[];

The following is incorrect because row.set() does not return a Boolean value. It will always evaluate
to false as well as change the PostalCode field to 88989.

return row.set('PostalCode', '88989');

Use a single equals sign to set the value of a field, and a double equals sign to check the value of
a field.

Read Exceptions
Read Exceptions is a stage that reads records from the exception repository as input to a dataflow.
(For more information on the exception repository, see Data Stewardship Portal.)

Note: Once a record is read into a dataflow by Read Exceptions, it is deleted from the
repository.

253Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input
The Read Exceptions stage reads data in from an exception repository. It does not take input from
another stage in a dataflow.

Note: Only records marked as Resolved in the Data Stewardship Portal are read into the
dataflow. This option can be changed by clearing the Process resolved records check box
on the Runtime tab.

Output
The Read Exceptions stage has a primary Output port and an optional History port.

Output port

The primary Output port returns records from the Data Stewardship repository that have resolved
status and that match the selection criteria specified in the Read Exception options. In addition to
the record fields, Read Exceptions returns the following fields that describe the last modifications
made to the record in the Data Stewardship Portal.

Table 26: Read Exceptions Output

DescriptionField Name

Any comments entered by the person who resolved the
exception. For example, comments might describe the
modifications that the Data Stewardship made to the record.

Exception.Comment

The last user to modify the record in the Data Stewardship
Portal

Exception.LastModifiedBy

The time that the record was last modified in the Data
Stewardship Portal. The time is expressed in milliseconds
since January 1, 1970 0:00 GMT. This is the standard way
of calculating time in the Java programming language. You
can use this value to perform date comparisons, or to create
a transform to convert this value to whatever date format
you want.

Exception.LastModifiedMilliseconds

254Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The time that the record was last modified in the Data
Stewardship Portal. This field provides a more
understandable representation of the date than the
Exception.LastModifiedMilliseconds field. The time is
expressed in this format:

Thu Feb 17 13:34:32 CST 2011

Exception.LastModifiedString

History port

The optional history port streams all versions of records. History records are typically used to assemble
change logs.

Options
Settings in the Read Exceptions stage are configured on the General, Sort, and Runtime tabs.

General Tab
The options on the General tab specify which exception records you want to read into the dataflow.

The Filter options allow you to select a subset of records from the exception repository using these
criteria.

The user who ran the dataflow that generated the exceptions you want to read
into the dataflow.

User

The name of the dataflow that generated the exceptions you want to read into
the dataflow.

Dataflow name

The Exception Monitor stage's label as shown in the dataflow in Enterprise
Designer. This criteria is useful if the dataflow that generated the exceptions

Stage label

255Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

contains multiple Exception Monitor stages and you only want to read in the
exceptions from one of those Exception Monitor stages.
The date and time of the oldest records that you want to read into the dataflow.
The date of an exception record is the date it was last modified.

From date

The date and time of the newest records that you want to read into the dataflow.
The date of an exception record is the date it was last modified.

To date

The Fields listing shows the fields that will be read into the dataflow. By default all fields are included,
but you can exclude fields by clearing the check box in the Include column.

The Preview listing shows the records that meet the criteria you specified under Filter.

Note: The preview displays only records that have been marked "Approved" in the Data
Stewardship Portal and meet the filter criteria.

Sort Tab
Options on the Sort tab specify how to sort input records based on field values.

Adds a field to sort on.Add
Shows the name of the field to sort on. You can select a field by
clicking the drop-down button.

Field Name column

Specifies whether to sort in ascending or descending order.Order column
Changes the order of the sort. Records are sorted first by the field
at the top of the list, then by the second, and so forth.

Up and Down

Removes a sort field.Remove

Runtime Tab
Options on the Runtime tab specify runtime behavior of the Read Exceptions stage.

Specify the position in the repository of the first record you want to read into
the dataflow. For example, if you want to skip the first 99 records in the

Starting record

repository, you would specify 100. The 100th record would be the first one
read into the repository if it matches the criteria specified on theGeneral tab.
A record's position is determined by the order of the records in the Data
Stewardship Portal.
Select this option if you want to read in all records that match the search
criteria specified on the General tab.

All records

Select this option if you want to limit the number of records read in to the
dataflow. For example, if you only want to read in the first 1,000 records that
match the selection criteria, select this option and specify 1000.

Max records

Select this check box to process resolved records. Clear this check box to
process and purge unresolved records. By default, this check box is selected.

Process resolved
records

256Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Write Exceptions
Write Exceptions is a stage that takes records that the Exception Monitor stage has identified as
exceptions and writes them to the exception repository. Once in the exception repository, the records
can be reviewed and edited using the Data Stewardship Portal.

Note: Exception records are not written to the Data Stewardship Portal when jobs or services
are run in inspection mode in Enterprise Designer or preview mode in Management Console.

Input
The Write Exceptions stage takes records from the exception port on the Exception Monitor stage
and then writes them to the exception repository. The Write Exceptions stage should be placed
downstream of the Exception Monitor stage's exception port. The exception port is the bottom output
port on the Exception Monitor stage:

Output
Write Exceptions does not return any output in the dataflow. It writes exception records to the exception
repository.

Options
The Write Exceptions stage enables you to select which fields' data should be returned to the
exceptions repository. The fields that appear depend upon the stages that occur upstream in the
dataflow. If, for instance, you have a Validate Address stage in the dataflow, you would see such
fields as AddressLine1, AddressLine2, City, PostalCode, and so on in the Write Exceptions stage.
By default, all of those fields are selected; uncheck the boxes for any fields you do not want returned
to the exceptions repository. The order of the fields is determined by how they are ordered when
they come into the Write Exceptions stage. You can reorder the fields by selecting a row and using
the arrows on the right side of the screen to move the row up or down. The order you select here
will persist for all users in the Data Stewardship Portal, but each user can reorder the fields within
the Portal to their own liking.

SelectAllow user to create best of breed records in Portal to performmanual record consolidation
when data matches cannot be made using standard rules. This feature copies a selected record
within a group and uses it instead of the duplicates for processing. This option is available only for

257Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

grouped exception records that are generated from amatching job, which is identified by the presence
of the CandidateGroup field or the CollectionNumber field. When you use this option, a read-only
field called “CollectionRecordType” will be added to the exception record. You can see this field at
the bottom of the list; note that all options for that field are disabled.

Note: If your dataflow is also being configured for revalidation, you will need to manually
add and expose the CollectionRecordType field in the Exception Monitor stage/subflow and
the service itself.

After adding a Best of Breed record in the Resolve Duplicates view of the Data Stewardship Portal
Editor, this field will be set to "BestOfBreed." If you choose to create best of breed records, you will
be unable to use the Approve All option for those records in the Data Stewardship Portal. Read
more about best of breed records in the Data Stewardship Portal here.

You may have input fields that you want in the repository but do not want to be viewable within the
Data Stewardship Portal. This could be due to the field containing sensitive data or simply because
you want to streamline what appears in the Portal. Check the Allow viewing box to designate which
of the selected fields should be viewable once they are passed to the exceptions repository. By
default, all fields are viewable. Uncheck the box for any field you do not want visible in the Portal.

Additionally, you can designate which of the selected fields should be editable in the Portal once
they are passed to the exceptions repository. By default, the Allow editing column is checked for
all fields coming in to the Write Exceptions stage. Uncheck the box for any field you wish to be
returned to the exceptions repository in a read-only state.

Finally, you can use the Lookup function to assign a lookup to a field containing problematic data.
You can select from the list of lookups that have been defined in the Data Stewardship Settings tool
or you can manually enter the name of the lookup. For more information on lookups, see Lookups.

Note: Lookups can be assigned only to fields whose type is string.

Enterprise Data Integration Stages

Call Stored Procedure
Call Stored Procedure is a source stage that executes a stored procedure in a database, and returns
the results of the stored procedure call as input for the dataflow. Use Call Stored Procedure when
you want to get data from a database using a database's stored procedure rather than a query to a
table or view.

Note: If you want to read data into a dataflow directly from a table or view, use the Read from
DB stage.

You may want to use Call Stored Procedure to read data into a dataflow if you have business logic
embedded in the stored procedure and you want to use that logic in your Spectrum Technology

258Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Platform environment. For example, many operational systems do not use referential integrity checks
in the database for large constantly-updated tables because of the reduction in performance that
such checks would cause. So to maintain referential integrity, you could create stored procedures
and use them for all updates to the system.

Stored procedures can also be used to simplify management of the Spectrum Technology Platform
environment. For example, if you have hundreds of ETL processes that all read the same data, you
may want to put the query into a stored procedure so it is in one place. This makes maintenance
easier since you only need to modify the one stored procedure instead of hundreds of different
processes.

DescriptionOption Name

Select the database connection you want to use. Your choices vary depending on
what connections are defined in the Connection Manager of Spectrum Management
Console. If you need to make a new database connection, or modify or delete an
existing database connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and
password to use to connect to the database.

Connection options

Connection

Specifies the schema that contains the stored procedure you want to call.Schema

Specifies the stored procedure you want to call.Procedure

259Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

This table specifies the values for the stored procedure parameters.

This column shows the parameters defined in the stored procedure.Parameters

For OUT, INOUT, and RETURN parameters, this column shows the
dataflow field name that will contain the data returned by the
parameter. Initially, the field name is the same as the parameter name.
You can modify the stage field name by clicking the field name and
typing a new name for parameters. This column is not used for IN
parameters.

Stage
Fields

One of the following:Direction

The parameter is an input parameter. The value you
specify for this parameter is passed to the stored
procedure as input.

IN

The parameter is an output parameter. The stored
procedure returns data to the stage in this parameter.

OUT

The parameter can be used as both an input parameter
to pass a value to the stored procedure, and as an
output parameter to receive data returned by the stored
procedure.

INOUT

The parameter contains a return code from the stored
procedure.

RETURN

This column displays the data type of the parameter value. If the data
type is not supported by Spectrum Technology Platform, the type will
be "Unsupported" and the stored procedure will not execute
successfully.

Types

In this column, enter the value you want to set for the parameter. This
column is disabled for OUT parameters.

Value

Stored Procedure Parameters

260Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

This table specifies which dataflow fields to use for the data returned by the stored
procedure.

This column shows the tables fromwhich the stored procedure
returned data.

Database Tables

This column shows the field from which the stored procedure
returned data.

Database Fields

This column shows the dataflow field name that will contain
the data from the database field.

Stage Fields

This column shows the data type of the field. If the data type
is not supported by Spectrum Technology Platform, the type
will be "Unsupported".

Types

Check the box in this column to include the field in the
dataflow. If the box is not checked, the field will not be used
in the dataflow.

Include

Result Set Fields

Click this button to populate the Result Set Fields table with the result set schema
returned by the stored procedure. This will execute the stored procedure and get the
result set schema.

Get Fields

Click this button to add a result set field manually.Add

Click this button to remove a result set field from the list of available fields.Remove

DB Change Data Reader
The DB Change Data Reader stage allows you to select the columns to be included in the current
jobflow, where the columns have the Change Data Capture feature enabled on them.

In the stage, you can create a Change Data Capture (CDC) Resource, which is the required data
source table. The columns of the CDC resource on which the Change Data Capture feature is enabled
are reflected using checkboxes.

Change Data Capture
The Change Data Capture feature enables capture of all changes made in a column. For each
selected column, all inserts, updates, and deletions are captured.

261Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Supported Databases
Currently, Spectrum Technology Platform supports the Change Data Capture (CDC) feature for MS
SQL and Oracle databases only.

For MS SQL data sources, the Change Data Capture feature can be enabled or disabled
for columns of tables from the backend. Refer to here for the necessary steps.

MS SQL

Note: The Change Data Capture feature is not supported in the Express edition
of SQL Server.

For Oracle data sources, Spectrum Technology Platform tracks the data changes in the
table columns using the LogMiner utility of Oracle. CDC cannot be enabled or disabled
on columns of tables in an Oracle data source through Spectrum Technology Platform.

The data changes resulting from insert, update, and delete queries are tracked and
captured from an entered start date and time up to the current date and time. This entered
start time is applicable during the first query execution with CDC switched on.

Oracle

In subsequent executions on the same Oracle connection, data changes are captured
from the time of the last execution till the current time.

Note: This is an incremental process. In the first capture, the changes are captured
from the entered start date and time to the current date and time. In subsequent
captures, the changes are captured from after the end date and time of the previous
capture to the current date and time.

Adding a CDC Resource
Note: To use the Change Data Capture feature, ensure the SQL Server Agent is running on
the MS SQL server.

1. Open the Change Data Capture Management popup, through either of the below two ways:

• Navigate to Tools > Change Data Capture Management.
• Add the DB Change Data Reader stage to a job, open the stage settings, and click Manage.

2. Click Add.
3. Enter a Name for the CDC Resource.
4. In the Connection field, select the SQL database connection you want to use. To make a new

database connection, click Manage. For more information on creating database connections,
see Database Connection Manager on page 397.

5. In the Table/View field, specify the table whose columns are to be included in the jobflow. Click
the browse button ([...]) to navigate to the table or view that you want to use.
The grid below displays all the columns of the selected table, along with the datatypes of each
column.

6. If you select an Oracle connection in theConnection field, the Start date field becomes available.

262Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://msdn.microsoft.com/en-US/library/cc627369.aspx

The field is filled with the default value of the current date with the time 12:00 AM. You can enter
a start date and time of your choice.

The end date and time is taken as the current date and time.

Attention: You should have execution rights on the Oracle LogMiner utility to be able to use
the CDC feature on an Oracle connection. For more information, see Oracle LogMiner
Configurations.

Note: The Start date field is not available on selecting an MS SQL connection in the
Connection field.

7. Click OK.
The created CDCResource table is now ready for use in theDBChange Data Reader stage, whose
columns can be included or excluded from the jobflow.

The stage displays the table columns on which the CDC feature has been enabled.

Editing a CDC Resource
1. Open the Change Data Capture Management popup, through either of the below two ways:

• Navigate to Tools > Change Data Capture Management.
• Add the DB Change Data Reader stage to a job, open the stage settings, and click Manage.

2. Select the CDC Resource you need to modify.
3. Click Edit.
4. Modify the details of the added CDC Resource as required.
5. Click OK.

Deleting a CDC Resource
1. Open the Change Data Capture Management popup, through either of the below two ways:

• Navigate to Tools > Change Data Capture Management.
• Add the DB Change Data Reader stage to a job, open the stage settings, and click Manage.

2. Select the CDC Resource you need to delete.
3. Click Delete.

Selecting Change Data Reader Options
The DB Change Data Reader Options reflects the table columns of the selected CDC Resource
for which the CDC feature is enabled.

You can select which columns to include or exclude in the current jobflow.

1. In a job, add the DB Change Data Reader stage.
2. Open the DB Change Data Reader Options by double-clicking the stage icon.

263Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Select the desired CDC Resource from the Select a resource dropdown.
You can add or modify a CDC Resource by clicking Manage.
The grid below displays all the table columns with their data types. It also displays whether a
particular column is included in the job flow, and whether the column is selected for the Change
Data Capture feature.

4. Using the check boxes under the Include column of the grid, select the table columns to be
included in the job flow.

5. The check boxes under the CDC Enabled column of the grid reflect the table columns on which
the CDC feature is enabled.
The read-only CDC Enabled check boxes are checked for columns on which the CDC feature
is enabled.

Note: For MS SQL data sources, refer here for the steps to enable or disable the Change
Data Capture feature on particular table columns from the back end.

6. Click OK.
The data of the table columns, which have been selected for Change Data Capture, is captured and
saved.

DB Loader
TheDB Loader stage allows you to access and load data from/to databases configured in Enterprise
Data Integration. This stage provides an interface to a high-speed data loading utility. Currently, the
Enterprise Data Integration platform supports Oracle Loader, DB2 Loader, PostgreSQL Loader,
and Teradata Loader.

Oracle Loader
The Oracle Loader allows you to load data to any Oracle database configured in the Enterprise Data
Integration platform.

Note: Oracle client must be installed with administrator setup before using the Oracle Loader.

264Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://msdn.microsoft.com/en-US/library/cc627369.aspx

DescriptionOption Name

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Spectrum Management Console.
If you need to make a new database connection, or modify or delete an existing database
connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password
to use to connect to the database.

Connection options

Connection

After selecting a connection, specify the table or view to write to. Click the browse button
([...]) to go to the table or view that you want to use, or click Create Table to create a new
table in the database.

Table/View

Specify a variable name that contains the address and connection details required to
establish a connection to the Oracle database. For example, "XE". This variable is present
in tnsnames.ora, a file that contains client side network configuration parameters.

Listener

This column lists the field names used in the dataflow. You cannot modify these field names.Stage fields

This column lists the data type of each field.Types

Runtime Tab

DescriptionOption Name

Specifies how you want to write data into the Oracle database.

Adds the data into the target table without erasing the table's
existing data.

Append

Loads the data into the database. The table must be empty before
it is loaded. It doesn't work on multiple runtime instances.

Insert

Deletes existing rows if any, then loads the input data into the table.
This does not work on multiple runtime instances.

Truncate and Insert

Load method

Select this to load data directly into the Oracle database bypassing much of the data
processing that normally takes place.

Use direct path loader

265Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

This check box is enabled when you select Use direct path loader. Select this if you do
not want to write Redo logs in the database. For more information about Redo logs, see
http://docs.oracle.com/cd/B28359_01/server.111/b28310/onlineredo001.htm#ADMIN11302

Unrecoverable

Specifies the path to the folder. Click the ellipses button (...) to browse to the folder you
want. The log file contains a record of this stage's activities during a load session.

Log file folder

Specifies the path to the folder. Click the ellipses button (...) to browse to the folder you
want. The bad file contains a list of records that the stage fails to load into the database.

Bad file folder

Specify the maximum number of errors to allow before halting the load operation. To halt
the load operation on the first error, set value to 0. A maximum of 32767 errors are allowed.

Maximum errors allowed

Note: You can achieve significant performance improvements by using multiple runtime
instances of this operation. To do this, click the Runtime button and enter the required value
in the Runtime instances field.

DB2 Loader
The DB2 Loader allows you to load data to any DB2 database configured in the Enterprise Data
Integration platform. You need to set up the DB2 Utility on the same machine where you are running
the Spectrum server.

Perform these steps:

1. Install the DB2 runtime client with Administrator set up.
2. Configure the loader utility as described in the table below.
3. Start the Spectrum server.

Note: In case the Spectrum server was already running when you started the configuration,
you will need to restart the server for the configuration to take effect.

266Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://docs.oracle.com/cd/B28359_01/server.111/b28310/onlineredo001.htm#ADMIN11302

DescriptionOption Name

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Spectrum Management Console.
If you need to make a new database connection, or modify or delete an existing database
connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password
to use to connect to the database.

Connection options

Connection

After selecting a connection, specify the table or view to write to. Click the browse button
([...]) to go to the table or view that you want to use, or click Create Table to create a new
table in the database.

Table/View

This is a variable that catalogues the DB2 server and database.

Use the DB2 command line processor on spectrum server machine
and enter the command:

CATALOG TCPIP NODE <nodename> REMOTE
<hostname> SERVER <port>

where:

nodename: name of connection

hostname: TCP/IP name of the DB2 server machine

port: server port

To catalog the
DB2 server

Use the command:

CATALOG DATABASE <databasename> AS
<local_database_alias> AT NODE <nodename>

where:

databasename: Name of the database on the DB2 server

local_database_alias: Local Name given to the database while
connectiong from the server machine

nodename: Name used in the previous CATALOG TCP/IP command

To catalog the
database

Database/Alias

This column lists the field names used in the dataflow. You cannot modify these field names.Stage fields

This column lists the data type of each field.Types

267Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Runtime Tab

DescriptionOption Name

Indicates the mode of writing data into a DB2 table.

Inserts the loaded data into the table, while the existing table data
remains unchanged.

Insert

Inserts the loaded data into the table after deleting all existing data
from it.

The table schema and index definitions remain unchanged.

Replace

Restarts the data load, in case the previous load attempt was
interrupted.

Restart

Load method

Indicates if this load transaction is non-recoverable.

If you select this option, the load transaction is marked as non-recoverable. Table spaces
are not put into the Backup Pending state after the load, nor is a copy of the loaded data
made during the load. Hence, a non-recoverable transaction cannot be recovered in the
event of a data load failure, even if a rollforward is attempted later.

If you select this option, you cannot recover from the transaction even if you use the DB2
rollforward utility because the utility skips such a non-recoverable transaction, and the
table is marked as "invalid". In addition, subsequent transactions against the table are also
ignored by rollforward.

To restore a table that contains non-recoverable transactions, you must use either a
tablespace-level backup or a full backup taken at a commit point following the
non-recoverable load.

Note: Do not select this option if the data contains Datalink columns that have
the File Link Control attribute present in them.

Non-recoverable

The number of parallel threads that the load utility can generate and sustain for loading,
parsing and formatting the records, while building table objects in each database partition.

CPU

The number of parallel threads that the load utility can generate and sustain for writing
data to table space containers.

Disk

268Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Indicates the mode of handling of indexes by the load utility.

The load utility decides whether to apply Rebuild or Incremental mode,
based on the amount of data and the depth of the index tree.

Autoselect

All indexes are rebuilt.Rebuild

New data is added to the existing indexes.

This mode can be applied only if the index object is valid and accessible
at the start of a load operation.

Incremental

Note: Incremental indexing is not supported if ALL of these
conditions hold true:

1. The Load Copy option is specified (logretain or userexit
is enabled).

2. The table resides in a DMS table space.
3. The index object resides in a table space that is shared by

other table objects belonging to the table being loaded.

To bypass this limitation, place indexes in separate table spaces.

The load utility does not attempt creating an index. Existing indexes are
marked for refresh.

Deferred

Note: Index construction requires more time in Deferred mode
than in Rebuild mode. Hence, while performing multiple load
operations, allow the last load operation to rebuild all indexes
instead of rebuilding indexes at the first access by a non-load
operation.

Note: This mode is supported only for tables with non-unique
indexes.

Indexing Mode

Indicates whether syntactical validation on column values must be left out, thus enhancing
performance.

If checked, any syntactical errors in the data are ignored in favor of optimized performance.

For example, if a String value 12wxvg56 is encountered in a field mapped to an integer
column in an ASCII file, the load utility should normally generate a syntax error. But if Fast
Parse is selected, the syntax error is ignored, and a random number is loaded into the
integer field.

Note: Ensure you use this option only with correct and clean data.

Fast Parse

The schema in which the exception tables are stored.Schema Name

The exception table into which those rows are copied in which some error is encountered
while loading.

Table Name

269Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The path of the directory in which the log files are to be stored.

A log file contains a list of the database load transactions run by a DB Loader stage in
one load session.

Click the ellipses button (...) to specify the desired directory for log files.

Log file folder

The path of the directory on the DB2 server in which the bad files are to be stored.

A bad file contains a list of the records that a DB Loader stage fails to load into the
database.

Click the ellipses button (...) to specify the desired directory for bad files.

Bad file folder

The maximum number of errors allowed before a load operation is aborted.

To abort a load operation as soon as the first error is encountered, set the value of this
field to 0.

Note: A maximum of 32767 errors are allowed.

Maximum errors allowed

A DB2 database can be divided into multiple partitions by cloning the environment
onto different physical nodes.

Separate database requests for data fetch and update are automatically divided
amongst the different partitions and run in parallel for optimized performance.

Parallelism

A DB2 database allows you to record the errors and exceptions encountered
while running queries and procedures, and also handle them appropriately.

For this, a DB2 database provides specific exception tables and schema which
store the source as well as the log traces of each database exception.

Exception
Handling

To use the Exception table, ensure:

• DB2 runtime client is version 10.5 or above
• Service pack version is 7 or above

PostgreSQL Loader
The PostgreSQL Loader allows you to load data to any PostgreSQL database configured in the
Enterprise Data Integration platform.

270Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Spectrum Management Console.
If you need to make a new database connection, or modify or delete an existing database
connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password
to use to connect to the database.

Connection options

Connection

Click the browse button ([...]) to navigate to the table or view you want to use.Table/View

This column lists the field name in the database. You cannot modify these field names.Database fields

This column lists the field names used in the dataflow. You cannot modify these field names.Stage fields

This column lists the data type of each field.Types

Runtime Tab

DescriptionOption Name

Specifies the method of writing data to the PostgreSQL database tables.

• Select Insert to write data to an empty table or to append it to an existing data table.
• Select Truncate and Insert to truncate the data before loading it to the database table.

Load method

Note: You can achieve significant performance improvements by using multiple runtime
instances of this operation. To do this, click the Runtime button and enter the required value
in the Runtime instances field.

Teradata Loader
The Teradata Loader allows you to load data to any Teradata database configured in the Enterprise
Data Integration platform.

271Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The loader is supported only on Windows systems.

DescriptionOption Name

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Spectrum Management Console.
If you need to make a new database connection, or modify or delete an existing database
connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password
to use to connect to the database.

Connection options

Connection

Click the browse button ([...]) to navigate to the table or view you want to use.Table/View

This column lists the field names in the database. You cannot modify these field names.Database fields

This column lists the field names used in the dataflow. You cannot modify these field names.Stage fields

This column lists the data type of each field.Types

Runtime Tab

DescriptionOption Name

Specifies the method of writing data to the Teradata database tables.

• Select Insert to write data to an empty table
• Select Append to write data to an existing data table.
• Select Truncate and Insert to truncate the data before writing it to the database table.

Load method

Select the folder location for saving the log files of the upload process.Log file folder

Mark this check-box to generate a log of the records that failed to get uploaded.Generate bad file

272Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Select the folder location for saving the log of failed records. The log gives details, such
as error codes and error field names of the failed records.

Bad file folder

Specify the limit of permitted errors for the upload session. If the number of errors exceeds
this value, the upload process pauses.

Maximum errors allowed

Note: Multiple runtime instances are not supported for Teradata Loader.

Field Parser
The Field Parser stage extracts fields from XML and delimited data in the specified input column.
To configure the Field Parser options, perform the following tasks.

1. From the Source field select the column that has the XML or delimited data to be parsed.

Note: The drop-down displays all the string input columns.

2. Select the XML or Delimited Format based on the type of data you want to parse, and
accordingly, select the options described below.

Field Parser Options for XML Data

DescriptionOption Name

Indicates whether the file selected for inferring the schema is located on the computer
running the Spectrum Enterprise Designer or on the server. If you select a file on the local
computer, the server name will be My Computer. If you select a file on the server the server
name will be Spectrum Technology Platform.

Server name

273Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the path to an XSD schema file. Click the ellipses button (...) to navigate to the
file location. The schema file can reside on the server or your local system.

Alternatively, you can also specify an XML file instead of an XSD file. If you specify an XML
file the schema will be inferred based on the structure of the XML file. Using an XML file
instead of an XSD file has the following limitations:

• The XML file cannot be larger than 1 MB. If the XML file is more than 1 MB in size, try
removing some of the data while maintaining the structure of the XML.

• The data file will not be validated against the inferred schema.

Note: If the Spectrum Technology Platform server is running on Linux, remember
that file names and paths on these platforms are case sensitive.

Schema file

This section displays details of the selected schema. It includes the root element followed
by the child elements along with their attributes.

By default all the nodes of the schema remain selected. However, you can clear the
check-box of the nodes that you do not want to be passed to the next stage.

• Search node: Type the name of the node to which you want to navigate in the schema
tree. The typed node gets highlighted in the preview pane below the field.

• XPath: Click anywhere in this field to view the XML path (XPath) of the elements and
attributes of the highlighted node in schema tree. To see all the previous XPaths viewed
by you, click the down arrow at the right end of the field.

Note: XPath is a language for finding information in an XML document. For
further details on this, see https://www.w3schools.com/xml/xml_xpath.asp

Output Fields

Field Parser Options for Delimited Data

DescriptionOption Name

From the dropdown list, select the field separator used in the delimited column to be parsed.

If the delimited column uses a different character as a field separator, click the ellipses
button to select another character as field separator.

Field separator

From the dropdown list, select the text qualifier used in the delimited column to be parsed.

Note: Text qualifiers are the character used to surround text values in a delimited
data.

If the delimited column uses a different text qualifier, click the ellipses button to select
another character as a text qualifier.

Text qualifier

274Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://www.w3schools.com/xml/xml_xpath.asp

DescriptionOption Name

Select if you want the parsed output in the form of a List (hierarchical display of values)
or Fields.

Note: For list as the output type, you can add only one output field, whereas the
Fields option allows you to add multiple fields in which you can get the values
segregated during parsing.

Output type

This section allows you to add/modify the various fields in which you want details of the
delimited column to be segregated. You can also delete any of the added output fields.

To add a new field for displaying the parsed output, click the Add button, and perform
these steps in the Field Setting pop-up that is displayed:

1. Enter the Name of the field.
2. From the Type drop-down, select the data type for the field being added. Based on

the selected type, few more fields can be defined. For example, in case of date, you
can define its format as M/d/yy, MMM d.yyyy, or MMMM d.yyyy. For details on the
data types and defining its details, see Defining Fields In a Delimited Input File on
page 312.

Note: If you select String as the data type, any type of delimited data will
be parsed. However, you can also use the specific type, based on the data
you want to parse in the field.

3. In the Position field, enter the position of the data type (in the input file) that is to be
parsed to this field. For example, in the following file snippet, if you want to parse the
date time values to the field being added, enter the Position as 3.

true;"02/02/2022";"10/2/92 5:05
AM";598985994665542.25634;1;
"Arjun";74785.155;5:05PM,1,Deepak,65152
false;"15/03/1923";"3/23/90 11:55
AM";3425699466554.2563;2;
"sharma";5.1;5:45AM,2,Arjun,365273

4. Click Add Field and Close.

The added field and its details are displayed in the box.

Note: If you want to have any excess space characters removed from the
beginning and end of a field's value string, select the Trim check box.

Modify: Click this button to modify details of any of the added output fields.

Remove: Click this button to delete any of the added output fields.

Output Fields

Runtime: Use this button to specify multiple runtime instances of parser. This results in significant
performance improvement.

OK: Click this button to save all the details entered in this stage.

275Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Cancel: Click this button to cancel all the updates you made.

Help: Click this button to refer to the help file for this stage.

Field Combiner
The Field Combiner stage combines fields coming from the previous stage in a dataflow to create
an XML string.

Field Combiner Options

DescriptionOption Name

Specify the name of the column that will have the combined fields as XML string.Output column name

This section helps you select the fields to be combined and perform various actions on
those fields.

Note: TheApply Namespace dropdown list andElement,Attribute, andRemove
buttons get enabled when you select one or more elements/attributes in the schema
pane.

• Quick Add: Click this button to open the Add/Remove Fields pop-up window. This
window displays a list of all the fields coming from the previous stage. Select the fields
you want to combine.

Note: The selected fields are displayed in the schema pane below the Search
node field.

• Search node: Type the name of the node to which you want to navigate in the schema
pane. The typed node gets highlighted and its XML path is displayed in the XPath field
below the pane.

• Element: Click this button to convert an attribute to an element in the XML string.
• Attribute: Click this button to convert an element to an attribute in the XML string.
• Apply Namespace: If you want to specify an XML namespace for an element or an
attribute, select it here.

Note: You can create namespaces by clicking the Namespace button above.
For details on this, see Defining Namespaces.

• Remove: Click this button to remove the elements/attributes that you do not want in the
XML string.

Output Fields

Click anywhere in this field to view the XML path (XPath) of the node highlighted in the
schema pane. To see all the previous XPaths viewed by you, click the down arrow at the
right end of the field.

Note: XPath is a language for finding information in an XML document. For further
details on this, see https://www.w3schools.com/xml/xml_xpath.asp

XPath

276Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://www.w3schools.com/xml/xml_xpath.asp

• Runtime: Use this button to specify multiple runtime instances of Field Combiner. This results in
significant performance improvement.

• OK: Click this button to save all the details entered in this stage.
• Cancel: Click this button to cancel all the updates you made.
• Help: Click this button to refer to the help file for this stage.

Defining Namespace

Namespaces allow you to have duplicate element and attribute names in your output by assigning
each element or attribute to an XML namespace.

To define one or more namespaces:

1. On the Field Combiner Options screen, click theNamespace button. TheNamespace Details
pop-up window is displayed.

2. In the Prefix column, enter the prefix to be associated with an element or attribute.
3. In the Namespace column, specify the URL of the namespace.
4. Repeat to define as many namespaces as you want to use.

Field Selector
Field Selector allows you to choose which fields to pass to the next stage in the dataflow. You can
use Field Selector to remove unwanted fields from a dataflow. For example, if you have created a
new field by combining the data from two fields, and you no longer need the two source fields, you
can use Field Selector to retain only the new field and remove the two source fields from the dataflow.

Options

DescriptionOption

Check the box next to each field that you want to send to the next stage in the
dataflow. To prevent a field from being sent on to the next stage, clear the check
box.

Select the fields to send to the next
stage

Check this box to select all the fields in the dataflow. Clear this box to deselect all
fields.

Select all

Generate Time Dimension
Generate Time Dimension creates date records, one for each day of the date range you specify.
You can then write these records to a time dimension table in a database using the Write to DB

277Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

stage. The time dimension table can then be used to perform accurate calculations based on a time
period. For example, sales by quarter, budget spend by quarter, and revenue by day are all analyses
that require a time dimension. Time dimension tables also enable you to account for fiscal years or
non-standard quarters in the analysis.

Example Use of a Time Dimension Table
Time dimension tables are necessary for accurate time-based calculations because
you sometimes cannot easily extract the necessary date data from the records. For
example, the following records are in a sales database. Note that there are time
gaps between records. For example, there is no record for the day 1/4/2012.

AmountProductDate

$10.00Red Shirt1/3/2012

$5.00Red Shirt1/5/2012

$15.00Red Shirt1/7/2012

If you query these records and calculate the average sales per day, the answer
would be $10.00 ($30 / 3 records). However, this is incorrect because the three
records actually span a period of five days. If you have a time dimension table with
a record for each day, you could join that table with the above table to get this:

AmountProductDate

$10.00Red Shirt1/3/2012

1/4/2012

$5.00Red Shirt1/5/2012

1/6/2012

$15.00Red Shirt1/7/2012

Calculating the average sales per day using these records, you would get the correct
answer: $6.00 ($30 / 5 days).

278Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

In addition, you could account for arbitrary time attributes such as holidays,
weekends, and quarters in your calculation. For example, if 1/6/2012 happened to
be a holiday and you were only interested in average sales per workday then the
answer would be $7.50.

Options
Generate Time Dimension has the following options.

DescriptionOption

The first day of the date range for which to generate time dimension records.Start date

Select this option if you want to specify a specific end date for the time dimension.
One record will be generated for each day between the start date and the date you
specify here.

End date

Select this option if you want the time dimension to span a certain number of days,
months, or years. One record will be generated for each day of the duration. For
example, if you specify one week, seven records will be generated, starting with the
day you specified in the Start date field.

Duration

279Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Time Attribute

280Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of time information that you want to include in the time dimension.
Each attribute will be a field in each day's record. One of the following:

The day's date in the format <Date> <Month> <Year>, with the
name of the month in the language of the server's locale setting.

Date

For example, if the server is running in an English locale, the
date would read like this: 30 October 2012.

A number representing the day of the month. For example, 10
means the day is the 10th day of the month.

Day of Month

A number representing the day of the year. For example, 304
means that the day is the 304th day of the year.

Day of Year

A boolean value that indicates whether the day is in a leap year,
in which case the value would be true, or not, in which case
the value would be false.

Is Leap Year

A boolean value that indicates whether the day is a weekday
(Monday through Friday), in which case the value would be
true, or not, in which case the value would be false.

Is Weekday

A boolean value that indicates whether the day is a weekend
day (Saturday or Sunday), in which case the value would be
true, or not, in which case the value would be false.

Is Weekend

A unique number for the day. The Julian day system counts
January 1, 4713 BC as day 1 and numbers all subsequent days

Julian Day

sequentially since then. For example, 2456231 means that the
day is the 2,456,231st day since January 1, 4713 BC.

A unique number for the day's week. The Julian system counts
the first week of 4713 BC as week 1 and numbers all subsequent

Julian Week

weeks sequentially since then. For example, 350890 means that
the day is in the 350,890thweek since the first week of 4713 BC.

A unique number for the year. The Julian system counts 4713
BC as year 1 and numbers all subsequent years sequentially

Julian Year

since then. For example, 6725 means that the day is in the year
2012 AD.

The name of the day's month in English.Month Name

The number of the month of the year. For example, 3 means
that the day is in the third month of the year.

Month Number

A number representing the quarter of the year. For example, 1
means that the day is in the first quarter of the year.

Quarter

A number representing the week of the year. For example, 43
means that the day is in the 43rd week of the year.

Week of Year

The name of the day in English. For example, Monday.Weekday Name

A number representing the day of the week, with day 1 being
Monday. So for example Tuesday is day 2, Wednesday is day

Weekday
Number

281Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

3, and so on.

The day's year according to the Gregorian calendar. For
example, 2012 means that the day is in the year 2012.

Year

The name of the field that will created in the dataflow to contain the time attribute. A
default field name is provided but you can modify the field name.

Field

The data type of this field. Generate Time Dimension automatically chooses the
appropriate data type for each time attribute.

Type

Specifies whether to use a custom calendar when calculating the time attribute or
the default Gregorian calendar. To define a custom calendar, click Calendar.

Calendar

Creating a Calendar

A calendar defines important characteristics of the year in a way that is appropriate to the type of
analysis you want to perform. By default, the calendar is the standard Gregorian calendar. However,
the standard Gregorian calendar is not always appropriate. For example, if your company's financial
year begins on June 1 instead of January 1, you could define the first month of the year as June,
and the "month of year" time attribute would have June as month 1, July as month 2, and so on, as
opposed to January as month 1, February as month 2, and so on.

1. Do one of the following:

• If you are configuring the Generate Time Dimension stage in Enterprise Designer, click
Calendars.

• In Management Console, go to Resources > Calendars.

2. Click Add.
3. In the Calendar name field, give the calendar a name that is meaningful to you.
4. In the Start month field, select the first month of the year.

For example, if you select July, then July is month 1, August is month 2, and so on.

Note: Changing the start month affects how the values in the following fields are calculated:
DayOfYear, MonthNumber, Quarter, and WeekOfYear.

5. Click Save.

Output
Generate Time Dimension produces the following output fields.

282Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 27: Generate Time Dimension Output

DescriptionField Name

The day's date in the format <Date> <Month> <Year>, with the name of the month
in the language of the server's locale setting. For example, if the server is running
in an English locale, the date would read like this: 30 October 2012.

Date

A number representing the day of the month. For example, 10 means the day is the
10th day of the month.

DayOfMonth

A number representing the day of the year. For example, 304 means that the day is
the 304th day of the year.

DayOfYear

A boolean value that indicates whether the day is in a leap year, in which case the
value would be true, or not, in which case the value would be false.

IsLeapYear

A boolean value that indicates whether the day is a weekday (Monday through Friday),
in which case the value would be true, or not, in which case the value would be
false.

IsWeekday

A boolean value that indicates whether the day is a weekend day (Saturday or
Sunday), in which case the value would be true, or not, in which case the value
would be false.

IsWeekend

A unique number for the day. The Julian day system counts January 1, 4713 BC as
day 1 and numbers all subsequent days sequentially since then. For example,
2456231 means that the day is the 2,456,231st day since January 1, 4713 BC.

JulianDay

A unique number for the day's week. The Julian system counts the first week of 4713
BC as week 1 and numbers all subsequent weeks sequentially since then. For
example, 350890 means that the day is in the 350,890th week since the first week
of 4713 BC.

JulianWeek

A unique number for the year. The Julian system counts 4713 BC as year 1 and
numbers all subsequent years sequentially since then. For example, 6725 means
that the day is in the year 2012 AD.

JulianYear

283Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The name of the day's month in English.MonthName

The number of the month of the year. For example, 3 means that the day is in the
third month of the year.

MonthNumber

A number representing the quarter of the year. For example, 1 means that the day
is in the first quarter of the year.

Quarter

A number representing the week of the year. For example, 43 means that the day
is in the 43rd week of the year.

WeekOfYear

The name of the day in English. For example, Monday.WeekdayName

A number representing the day of the week, with day 1 being Monday. So for example
Tuesday is day 2, Wednesday is day 3, and so on.

WeekdayNumber

The day's year according to the Gregorian calendar. For example, 2012 means that
the day is in the year 2012.

Year

Query Cache
Query Cache looks up data in a cache based on values in one or more dataflow fields and returns
data frommatching records in the cache, adding the cache record's data to the record in the dataflow.
Looking up data in a cache can improve performance compared to looking up data in a database.

There are two kinds of caches: global caches and local caches.

Global Cache Options

A global cache is system-wide, shared cache that will reside in memory. Choose a global cache if
you want the cache to be available to multiple dataflows or when data does not change often or
remains relatively static and when storage is not limited. A global cache is static as you can write to
it only once. The cache can not be updated once it has been created.

284Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A global cache is created by the Write to Cache stage. Before you can use a global cache you must
populate the cache with the data you want to look up. To do this, create a dataflow containing the
Write to Cache stage.

DescriptionOption Name

Select the Global cache option.Cache type

Specifies the cache you want to query.

To create a cache, use the Write to Cache stage.

Cache name

This column lists the fields in the cache. You cannot modify these field names.Cache Fields

This column lists the field names used in the dataflow. If you wish to change a field
name, click the field name and enter a new name.

Stage Fields

This column lists the data type of each dataflow field.Type

Check the box in this column to have the query return the value of the cache field.
Clear the box if you do not want the query to return the cache field.

Include

285Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the value to be displayed in the dataflow field if the query fails. The
drop-down list displays valid values corresponding to data type of the queried field.
For example, in case of an integer the option displayed is -1.

You can also enter a value to this field. See the table below for a list of valid default
error values for various data types.

Valid Default Error Value along with data type (in bracket)Data
type

EmptyFalse12:00:00

(Time)

1899-

12-30

(Date)

1899-

12-30

12:00:00

(Date
Time)

-1

(Integer)

Null

Date

Integer

Long

Float

Big

Decimal

Double

String

Time

Date
Time

Boolean

Default Error Value

286Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the field in the cache that will be used as a lookup key. If the value in the
field in the Input Field column matches the value in the key field in the cache, then
the query returns data from that record in the cache.

Key Field

Specifies the dataflow field, the value of which will be used as a key. If the value in
this field matches the value in the key field in the cache, then the query returns data
from that record in the cache.

Input Field

Local Cache Options

A local cache is a temporary cache which is only used during the execution of Query Cache stage.
The Query Cache builds the cache from the database table you choose. It then looks up data in the
cache based on key fields and lookup conditions and returns data from matching records in the
cache, adding the cache record's data to the record in the dataflow.
A local cache is dynamic as it is created during a job execution of the Query Cache. Once Query
Cache completes reading the data, the cache is automatically deleted from the memory. A local
cache is recreated every time the Query Cache stage is executed. Choose a local cache if it is only
going to be used in one dataflow or if the lookup table changes frequently.

DescriptionOption name

Specifies the Local cache option.Cache type

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Spectrum Management Console. If
you need to make a new database connection, or modify or delete an existing database
connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be anything
you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password
to use to connect to the database.

Connection options

Connection

Specifies the table or view in the database that you want to query.Table/view

This column lists the fields in the database. You cannot modify these field names.Database Fields

287Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption name

This column lists the field names used in the dataflow. If you wish to change a field name,
click the field name and enter the new name.

Stage Fields

This column lists the data type of each dataflow field.Type

Check the box in this column to have the query return the value of the cache field. Clear the
box if you do not want the query to return the cache field.

Include

288Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption name

Specifies the value to be displayed in the dataflow field if the query fails. The drop-down list
displays valid values corresponding to data type of the queried field. For example, in case
of an integer the option displayed is -1.

You can also enter a value to this field. See the table below for a list of valid default error
values for various data types.

Valid Default Error Value along with data type (in bracket)Data
type

EmptyFalse12:00:00

(Time)

1899-

12-30

(Date)

1899-

12-30

12:00:00

(Date
Time)

-1

(Integer)

Null

Date

Integer

Long

Float

Big

Decimal

Double

String

Time

Date
Time

Boolean

Default Error Value

289Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption name

Specifies the field in the database that will be used as a look up key. If the value in the field
in Input field column matches the value in the Key field in the database, then the query
returns the data from that record in the database.

Key Field

Data type of the Key Field valueType

Select the required operator. The supported operators are:

• =

• !=

• >

• >=

• <

• <=

Operator

Select this check box if you want the query to return value based on a constant you enter,
instead of the Input Field.

Is Constant

Specifies the dataflow field whose value will be used as a key. If the value in this field matches
the value in the Key field in the database, then the query returns data from that record in
the database..

Input Field

Advanced Cache Options

An advanced cache is a temporary cache similar to local cache. It is used during the execution of
Query Cache stage. It builds the cache based on the SQL Query which reads the data from the
tables mentioned in the query. It then looks up data in the cache based on the lookup keys mentioned
in the where clause and returns data from matching records in the cache, adding the cache record’s
data to the record in the dataflow..
An advanced cache is dynamic as it is created during a job execution of the Query Cache. Once
Query Cache completes reading the data, the cache is automatically deleted from the memory. An
advanced cache is recreated every time the Query Cache is executed. Choose an advanced cache
option if it is going to read the data from multiple tables and there is some complex query needs to
be executed for cache creation.

DescriptionOption name

Specifies the Advanced cache option.Cache type

290Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption name

Select the database connection you want to use. Your choices vary depending on what
connections are defined in the Connection Manager of Management Console. If you need
to make a new database connection, or modify or delete an existing database connection,
click Manage.

If you are adding or modifying a database connection, complete these fields:

Connection Name
Enter a name for the connection. The name can be anything you
choose.

Database Driver
Select the appropriate database type.

Connection Options
Specify the host, port, instance, user name, and password to use to
connect to the database.

Connection

Provides SQL query to read data from the database. The query can read data from multiple
tables.

Note: Providing alias is mandatory in the query.

Query

This text is used as the where clause to lookup the cache created based on Query. User
can specify input field in the Query using $ operator as prefix. For example, _id =
${_inputId}, Where _inputId is the input field and _id is the lookup column in the cache.

Where

This populates the grid with the fields which are selected to be cached using SQL query.Get Fields

This column lists the fields fetched in the database. You cannot modify these field names.Database Fields

This column lists the field names used in the dataflow. If you wish to change a field name,
click the field name and enter the new name.

Stage Fields

This column lists the data type of each dataflow field.Type

291Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption name

Specifies the value to be displayed in the dataflow field if the query fails. The drop-down list
displays valid values corresponding to data type of the queried field. For example, in case
of an integer the option displayed is -1.

You can also enter a value to this field. See the table below for a list of valid default error
values for various data types.

Valid Default Error Value along with data type (in bracket)Data
type

EmptyFalse12:00:00

(Time)

1899-

12-30

(Date)

1899-

12-30

12:00:00

(Date
Time)

-1

(Integer)

Null

Date

Integer

Long

Float

Big

Decimal

Double

String

Time

Date
Time

Boolean

Default Error Value

292Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Runtime Tab

The options available in Runtime tab are common for global, local, and advanced caches.

DescriptionOption Name

Specifies what to do if there is more than one record in the cache that matches the
query.

Return data from all records in the cache that have
a matching value in the key field or fields.

Return all matches

Return data from only the first record in the cache
that has a matching value in the key field or fields.

Return the first matching
record

Return data from only the last record in the cache
that has a matching value in the key field or fields.

Return the last matching
record

Match options

This section lists the dataflow options used in the SQL query of this stage and allows
you to provide a default value for all these options. TheName column lists the options
while you can enter the default values in the corresponding Value column.

Note: The default value provided here is also displayed in theMap dataflow
options to stages section of theDataflowOptions dialog box. The dialogue
box also allows you to change the default value. In case of a clash of default
values provided for an option through Stage Options, Dataflow Options,
and Job Executor the order of precedence is: Value provided through Job
Executor > Value defined through the Dataflow Options dialogue box >
Value entered through the Stage Options.

Stage Options

Query DB
The Query DB stage allows you to use fields as parameters into a database query and return the
results of the query as new fields in the dataflow.

Note: If you want to query a spatial database, use Query Spatial Data instead of Query DB.

293Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

General Tab

DescriptionOption

Select the database connection you want to use. Your choices vary depending on
what connections are defined in the Connection Manager of Spectrum Management
Console. If you need to make a new database connection, or modify or delete an
existing database connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and
password to use to connect to the database.

Connection options

Connection

Specifies the table or view in the database that you want to query.Table/View

If you want to use a WHERE statement, enter it here. Note that you should not actually
include the word WHERE in the statement. The purpose of a WHERE statement is to
return only the data from records that match the condition you specify.

To specify a value from a dataflow field, use this syntax:

${field name}

Where field name is the name of a field in the dataflow.

For example:

account_number=${customer_key}

In this example, the query would return data from records where the value in the
table column account_number matches the value in the dataflow field
customer_key.

Note: If you are querying a case-sensitive database, make sure you enter
the field name in the same format as used in the database table. In other
words, enclose the field name in quotes (") if the field names were quoted
during table creation.

Click Preview to see a preview of the data (first 50 records) based on the criteria
you defined.

Note: The preview feature in Query DB does not work if you use a dataflow
field in the WHERE statement. Instead, you can preview the result using the
dataflow inspection tool in Spectrum Enterprise Designer.

Where

294Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Check this box if you want records whose queries return no results to still be returned
by Query DB. If you clear this check box, the record will not be returned. We
recommend that you leave this option checked.

Return records with no results

In the fields table, select the fields you want to include by clicking the Include box
next to the field.

Include

Sort Tab

If you want to sort records based on the value of a field, specify the fields you want to sort on.

Parameterizing Query DB at Runtime
You can configure the Query DB stage so that values in the WHERE clause are specified at runtime.
This is useful in cases where you want to make the column name in the WHERE clause configurable
using Dataflow Options.

1. Open the dataflow in Spectrum Enterprise Designer.
2. Configure the Connection and Table/View name fields to point to the database you want to

query.

3. In theWhere field, enter a WHERE statement using the following format for values you want to
parameterize: ${parameter}.
For example:

${COL}=${EmployeeID}

Here COL represents a Dataflow option which will be populated with the column name for the
table at runtime.

4. Close the Query DB options window.
5. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options window appears.
6. Click Add. The Define Dataflow Options window appears.
7. Select the Query DB stage.
8. Specify Option name and Option label.

The value in the Option name field should be the same value as entered in the format
${parameter} in the WHERE clause. In the Option label field, you can specify a different label or
keep it the same as the Option name.
For example: COL

295Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

9. Specify the Default value. For example: "EmpID".
10. Click OK.

This procedure maps the actual database column name i.e. EmpID, to the runtime
option name "COL". The database column name needs to be appropriately quoted
with the specific quote identifier for the particular database.

Query NoSQL DB
The Query NoSQL DB stage allows lookups of required data from a NoSQL database. The stage
supports MongoDB databases.

General Tab

DescriptionField Name

Select the required database connection from the dropdown list. The options displayed
are based on the connections defined in Spectrum Management Console.

To add a new connection, see Connecting to NoSQL.

To modify an existing connection, select and open it from the list of connections on
the Connections page of Spectrum Management Console, make the required
updates, and click the Save button.

Connection

Specifies the collection or view in the database that you want to query.

Note: In a MongoDB database, a table/view is called a collection.

Table/View

Click the Browse button (...) to select a JSON Schema file. This file is optional. Fields
in the fields tab can be regenerated either using the schema file or database
table/view.

To clear the selected file path, click Clear.

Note: Fields will always be generated using the schema file if one is
selected.

Schema File

Enter the where clause to define the criteria for the lookup.

For a list of the supported operators in the WHERE clause, see
http://docs.mongodb.org/manual/reference/operator/query/.

Where

296Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://docs.mongodb.org/manual/reference/operator/query/

DescriptionField Name

Displays the records from the selected table or view.

Note: Clicking Preview fetches the first 50 records from the selected
database, without applying the filter criteria specified in theWhere field.

Preview

Expands the items in the preview tree.Expand All

Collapses the items in the preview tree.Collapse All

Fields Tab

The Fields tab allows you to select the data that you want to pass to the next stage. For more
information, see Defining Fields - Query NoSQL DB on page 297.

Defining Fields - Query NoSQL DB
The Fields tab displays the field and its type as defined in the NoSQL DB/Schema file.

1. On the Fields Tab, click Regenerate.
This generates the aggregated data based on the first 50 records. The data is displayed in the
following format: Fieldname(datatype).

Note: If the schema file is browsed, the fields are generated using the schema file. The
table/view is bypassed. To reset the schema file, click Clear.

2. To modify the name and type of a field, highlight the field, and click Modify.
3. In the Name field, choose the field you want to add or type the name of the field.
4. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical operations with the data. However, if you intend to perform these kinds of operations,
select an appropriate data type. This will convert the string data from the file to a data type that
will enable the proper manipulation of the data in the dataflow.
The stage supports the following data types:

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

297Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

5. You can also add fields that are not present in the table or schema file. Click Add to add a new
field. To remove a field, click Remove.

Note: You can only add a new field under the List type.

6. Click OK.

Configuring Dataflow Options - Query NoSQL DB
This procedure describes how to configure a dataflow to support runtime options for Query NoSQL
DB.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand the Query NoSQL DB stage.
6. The below dataflow options are exposed to query a Mongo DB database:

• Connection
• Table

The selected Query NoSQL DB option name is displayed in Option name and Option label
fields. This is the option name that will have to be specified at runtime in order to set this option.

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.

298Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.

Read From DB
TheRead FromDB stage reads data from a database table or view as input to a dataflow. The stage
is available for jobs, services, and subflows but not for process flows.

Note: The stage supports reading data from and writing data to HDFS 3.x and Hive 2.1.1.
The support includes:

• Connectivity to Hive from Spectrum on Windows
• Support and connectivity to Hive version 2.1.1 from Spectrum with high availability
• Support to Read and Write from Hive DB (JDBC) via Model Store connection

Also see Best Practices for connecting to HDFS 3.x and Hive 2.1.1.

Related task:
To be able to use the Read from DB stage, you need to create connection to the
respective database using the Connection Manager of Spectrum Management
Console. For details, see Database Connection Manager inWrite to DB on page
393.

General Tab

DescriptionField Name

Select the database connection you want to use. Your choices vary depending on
what connections are defined in the Connection Manager of Spectrum Management
Console. If you need to make a new database connection, or modify or delete an
existing database connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and
password to use to connect to the database.

Connection options

Connection

299Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Enter the SQL query to specify the records that need to be read from the data source
on running the dataflow. You can manually type the SQL query in this field.
Alternatively, use the Visual Query Builder to construct the query by clicking Build
SQL.

The SQL query can include variables instead of actual column names. Using variables
allows you to customize the query at runtime. For more information, see Query
Variables on page 304.

A sample query for exposing BranchID and BranchType from public.Branch table in
the database can be:

select * from "public"."Branch" where
"BranchID" = # {ID} and "BranchType" = # {Type}

Note: For Integer type fields values can be entered without quotes but for
String type it should be in single quotes.

SQL

Create a complex query by selecting multiple columns, and creating joins and nested
queries by clicking Build SQL. The Visual Query Builder opens. For more
information, see Visual Query Builder on page 301.

Note: A query created using the Visual Query Builder is displayed with fully
qualified names of columns and tables in the SQL field.

Build SQL

To see the schema of the data to be fetched by the query, click Regenerate Fields.

If you edit an existing query, click Regenerate Fields to fetch the modified schema.

Note: On clicking Regenerate Fields, the entity names in the SQL query
are retained and not replaced with their fully qualified names.

Regenerate Fields

To see a sample of the records fetched by the SQL query, click Preview.Preview

Note: The Read From DB stage allows you to modify the type of an input field.

Note: The Read from DB stage reads all values of the date datatype as String values.
This is the behavior of the jTDS driver, which is the default driver used by Spectrum. To handle
all date datatype values as is, use Microsoft's JDBC driver.

300Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Runtime Tab

DescriptionField name

Select this option to specify the number of records to read from the database table
at a time. For example, if the Fetch size value is 100 and total number of records
to be read is 1000, then it would take 10 trips to the database to read all the records.

Setting an optimum fetch size can improve performance significantly.

Note: You can calculate an optimum fetch size for your environment by
testing the execution times between a Read from DB stage and a Write
to Null stage. For more information, see Determining an Optimimum
Fetch Size.

Fetch size

This section lists the dataflow options used in the SQL query of this stage and
allows you to provide a default value for all these options. The Name column lists
the options while you can enter the default values in the corresponding Value
column.

Note: The default value provided here is also displayed in the Map
dataflow options to stages section of the Dataflow Options dialog box.
The dialogue box also allows you to change the default value. In case of
a clash of default values provided for an option through Stage Options,
Dataflow Options, and Job Executor the order of precedence is: Value
provided through Job Executor > Value defined through the Dataflow
Options dialogue box > Value entered through the Stage Options.

Stage Options

Visual Query Builder
Visual Query Builder provides a visual interface for building complex SQL queries in the Read from
DB stage. To work with Visual Query Builder, you need basic knowledge of SQL concepts.

To access Visual Query Builder, click the Build SQL button in Read from DB.

The query builder main window is divided into these parts:

• The Query Building Area is the main area where the visual representation of query will be
displayed. This area allows you to define source database objects, define links between them and
configure properties of tables and links.

• The Columns Pane is located below the query building area. It is used to perform all necessary
operations with query output columns and expressions. Here you can define field aliases, sorting
and grouping, and define criteria.

• The page control above the query building area will allow you to switch between the main query
and sub-queries.

301Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Adding Objects to a Query

To add an object to a query, use the Database Objects tree. The objects within the tree are grouped
by database, schema, and type. Drag the object you want to add to the query and drop it to the query
building area. Alternatively, you can also double click the object to add it to the query.

Setting Object Aliases

To set an alias for an object or derived table in the query, double-click the object and select Properties.
TheDatasource Properties dialog appears. It may contain other server-specific datasource options,
but the Alias property is the same for all database servers.

Joining Tables

When two objects referenced with a foreign key relationship are added to the query, they become
joined automatically with INNER JOIN. For those servers that do not support the JOIN clause, the
query builder adds a condition to the WHERE part of the query.

To join two objects manually, select the field by which you want to link the object with another and
drag it to the corresponding field of the other object. After you finish dragging, a line connecting the
linked fields will appear. Key cardinality symbols are placed at the ends of link when a corresponding
relationship exists in the database.

To remove a link between objects, double-click the link line and select Remove.

To change the join type, double click the link line.

Selecting Output Fields

To add a field to the list of query output fields, check the box at the left of the field name in the
datasource field list in the Query Building area. To include all the fields of the object, check the box

302Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

at the left of the asterisk item in the datasource field list. You may also drag fields from the Query
Building area to the Columns pane to get the same result.

If you do not select any fields from the query datasources, an asterisk item will be added to the select
list of the resulting query ("Select * From ..."). This is because a SELECT query without any columns
will produce an error for most database servers. The asterisk item is removed from the query if you
select any field or add any output expression to the query.

Tip: Another way to add a field is to select a field name from the drop-down list of the Expression
column in the Columns pane. You may also type any valid expression in the Expression column
in the Columns pane. To insert an empty line to the Columns pane, press the Alt+Insert key.

To remove a field from the Columns pane, clear the check box at the left of the field name in the
Query Building area or press the Alt+Delete key in the Columns pane.

To move a line up press the Alt+Up key. To move a line down press the Alt+Down key.

To remove an expression from the SELECT list of the query, clear the check box in the Output
column.

To set an alias for an expression, enter the alias in the Alias column. Aliases become the headings
of columns in the resulting dataset.

Sorting a Dataset

To sort the resulting dataset, use the Sort Type and Sort Order columns of the Columns pane. The
Sort Type column allows you to sort in ascending or descending order. The Sort Order column allows
you to set up the order in which fields will be sorted, if more than one field will be sorted.

To disable sorting by a field, clear the Sort Type column for the field.

Defining Criteria

To define criteria, use the Criteria column and the Or columns of the Columns pane. When writing
conditions in these columns, omit the expression itself. For example, to get the following criteria in
your query:

WHERE (Field1 >= 10) AND (Field1 <= 20)

Type the following in the Criteria cell of the Field1 expression:

>= 10 AND <= 20

Criteria placed in the Or columns will be grouped by columns using the AND operator and then
concatenated in the WHERE (or HAVING) clause using the OR operator. For example, the criteria
shown below will produce the SQL statement below. Please note that criteria for Field1 is placed
both to the Criteria and Or columns.

303Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

WHERE (Field1= 10) AND ((Field2 < 0) OR (Field2 > 10))

Some expressions may be of Boolean type, for example the EXISTS clause. In this case you should
type "= True" in the Criteria column of such expressions or "= False" if you want to place a NOT
operator before the expression.

Grouping Output Fields

To build a query with grouping, mark expressions for grouping with the Grouping check box.

A query with grouping may have only grouping or aggregate expressions in the SELECT list. Thus
the query builder allows you to set the Output check box for grouping and aggregate expressions.
If you try to set this check box for a column without the grouping or aggregate function set, a Grouping
check box will be set automatically to maintain the validity of resulting SQL query.

When the Columns pane contains columns marked with the Grouping check box, a new column
called Criteria for appears in the grid. This column applies criteria to expression groups or to their
values.

For example, you have a column "Quantity" with Aggregate function "Avg" in your query and you
type > 10 in the Criteria column. Having the "for groups" value set in the Criteria for column, the
resulting query will contain only groups with an average quantity greater than 10, and your query will
have the "Avg(Quantity) > 10" condition in a HAVING clause. Having the "for values" value set in
the Criteria for column, the result query will calculate the Average aggregate function only for records
with Quantity value greater than 10, and your query will have the "Quantity > 10" condition inWHERE
clause.

Defining SQL Query Properties

You can define options specific to your database server by using the context popup menu of the
Query Building area.

Query Variables
In the Read From DB stage, while defining the query, you can include variables instead of actual
column names. Using variables in the query allows you to customize the query conditions at runtime
(using the Dataflow Options) or through the Job Executor .

However, you can also provide Stage Options value in the Runtime tab and view the schema and
sample of records to be fetched by the query by using the Regenerate Fields and Preview buttons
respectively.

A variable is defined using the format #{variable}, and inserted in either the select or where clause
of an SQL query.

304Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: You can edit a query generated using the Visual Query Builder to include variables.
However, the edited query will not be readable by the Visual Query Builder anymore. The
Build SQL button is disabled when you include a variable in a manually written or generated
SQL query.

Inserting a Query Variable

1. Open the required job, which includes a Read From DB stage. Alternatively, add a Read From
DB stage to the job.

2. Open the Read From DB Options of the Read From DB stage.
3. Create the SQL query in the SQL field, either manually or using the Visual Query Builder. For

more information, see Visual Query Builder on page 301.
4. Add the desired conditions in the where clause of the query using variables with the syntax

#{variable}.
For example, in a table CUSTOMERS, which has the column AGE with values such as 28, 32, 30,
and so forth, and a column SALARY with values such as 1000, 1500, 2200, and so on, frame an
SQL query as below:

select * from CUSTOMERS where #{condition1} > 28 and #{condition2} >
1200

Note: On inserting a variable in the where clause of the SQL query, the Build SQL...,
button is disabled.

5. To view the schema and the sample records to be fetched by the query, enter Stage Options
value on the Runtime tab, and then click the Regenerate Fields and Preview buttons
respectively.

6. Click OK.
The where clause of the SQL query can now be customized at runtime using theDataflow Options,
or while executing the job through the JobExecutor.

Note: A variable can be placed in the select clause of an SQL query as well. However,
such a variable name should match the name of one of the columns of the table being queried.

Configuring a Query Variable as a Dataflow Option

1. Open the required job for which the query containing the variable(s) has been defined in a Read
From DB stage.

2. Open Edit > Dataflow Options....
3. Click Add.
4. In the Map dataflow options to stages section, expand the Read From DB entry.

The variables defined in the SQL query in the Read From DB stage are listed along with the
other attributes of the stage.

5. Select the variable you wish to customize using the corresponding checkbox.

305Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. Enter a relevant name for the variable in the Option label field.
7. In the Default value field, enter the column name which is to be used instead of the selected

variable in the where clause of the SQL query. Alternatively, enter a constant value to be used
instead of the variable in the where clause.
For example, for the below SQL query defined in the Read From DB stage:

select * from CUSTOMERS where #{condition1} > 28 and #{condition2} >
1200

you can select the column AGE of the table CUSTOMERS as the Default value for the variable
condition1, and the column SALARY as the Default value for the variable condition2.

At runtime, the query is interpreted as:

select * from CUSTOMERS where AGE > 28 and SALARY > 1200

8. Repeat steps 5-7 for all the variables placed in the SQL query in the Read From DB stage.
9. Click OK.
On running the dataflow, the customized query is used to fetch the required data.

Configuring a Query Variable for Job Executor

Note: Ensure you have the Spectrum Job Executor downloaded to your server.

1. Create a text file that defines the default values of the variables included in the SQL query of the
Read From DB stage of the job.
To assign a column name AGE as the default value to a variable condition1, create a text file,
say variables.txt, and include the below line in the file:

condition1=AGE

To assign a constant value, say 20, as the default value to a variable condition1, include the
below line in the file:

condition1=20

2. While running the job using the Job Executor on the command prompt, use the argument -o
followed by the path to the created text file.
For example, to run the job ReadCustomerDataJob, for which the default values of its variables
have been defined in the text file variables.txt, run the below command on a command
prompt:

java -jar jobexecutor.jar -h "localhost" -u "admin" -p "admin" -s
"8080" -j "ReadCustomerDataJob" -o "variables.txt"

On running the job using the Job Executor, the customized query is used to fetch the required data.

306Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: For instructions and command-line syntax, seeRunning a Job in the Spectrum Dataflow
Designer Guide.

Read From File
The Read from File stage specifies an input file for a job or subflow. It is not available for services.

Note: If you want to use an XML file as input for your dataflow, use the Read from XML stage
instead of Read from File. If you want to use a variable format file as input, use Read from
Variable Format File.

Prerequisite: To read a file from any of the file system connection types, such as
FTP, Cloud, Amazon AWS S3, and HDFS, perform these steps:

1. Create a connection to these file servers using Spectrum Management
Console or Discovery. For details, see section Defining Connections.

2. Select the file using the File name field in File Properties tab (described below).

File Properties Tab

DescriptionField Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to go to the file you want.

You can read multiple files by using a wild card character to read data from multiple
files in the directory. The wild card characters * and ? are supported. For example,
you could specify *.csv to read in all files with a .csv extension located in the
directory. In order to successfully read multiple files, each file must have the same
layout (the same fields in the same positions). Any record that does not match the
layout specified on the Fields tab will be treated as a malformed record.

While reading a file from an HDFS file server, the compression formats supported
are:

1. GZIP (.gz)
2. BZIP2 (.bz2)

Note: The extension of the file indicates the compression format to be used
to decompress the file.

Attention: If the Spectrum Technology Platform server is running on Linux, remember
that file names and paths on these platforms are case sensitive.

File name

307Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The format of the records in the file. Select one of:

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field has a fixed starting and ending character position.

Line Sequential

A text file in which each record is a specific number of characters
in length and each field has a fixed starting and ending character
position.

Fixed Width

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field is separated by a designated character such as a
comma.

Delimited

Record type

308Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The text file's encoding. Select one of these:

This encoding is also known as the Windows-1252 or simply
Windows character set. It is a super set of ISO-8859-1 and uses
the 128-159 code range to display additional characters not
included in the ISO-8859-1 character set.

CP1252

Supports all Unicode characters and is backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-8

Supports all Unicode characters but is not backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-16

A character encoding based on the order of the English
alphabet.

US-ASCII

UTF-16 encoding with big endian byte serialization (most
significant byte first).

UTF-16BE

UTF-16 encoding with little endian byte serialization (least
significant byte first).

UTF-16LE

An ASCII character encoding typically used for Western
European languages. Also known as Latin-1.

ISO-8859-1

An ASCII character encoding typically used for Southern
European languages. Also known as Latin-3.

ISO-8859-3

An ASCII character encoding typically used for Turkish
language. Also known as Latin-5.

ISO-8859-9

AnASCII code page used to writeWestern European languages.CP850

An EBCDIC code page used to write Western European
languages.

CP500

A character encoding for the Japanese language.Shift_JIS

A Microsoft's extension of Shift_JIS to include NEC special
characters, NEC selection of IBM extensions, and IBM
extensions.

MS932

An EBCDIC code page with the full Latin-1 character set.CP1047

Character encoding

309Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

DescriptionField Name

Specifies the character used to separate fields in a delimited file. For example, this
record uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to
select another character as a delimiter.

Field separator

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another
character as a text qualifier.

Text qualifier

Specifies the character used to separate records in line a sequential or delimited file.
This field is not available if you check the Use default EOL check box.

The record separator settings available are:

A line feed character separates the records. This is the
standard record separator for Linux systems.

Linux (U+000A)

A carriage return character separates the records. This
is the standard record separator for Macintosh systems.

Macintosh (U+000D)

A carriage return followed by a line feed separates the
records. This is the standard record separator for
Windows systems.

Windows (U+000D
U+000A)

If your file uses a different record separator, click the ellipses button to select another
character as a record separator.

Record separator

310Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Specifies that the file's record separator is the default end of line (EOL) character
used on the operating system on which the Spectrum Technology Platform server
is running.

Do not select this option if the file uses an EOL character that is different from the
default EOL character used on the server's operating system. For example, if the
file uses aWindows EOL but the server is running on Linux, do not check this option.
Instead, select the Windows option in the Record separator field.

Use default EOL

For fixed width files, specifies the exact number of characters in each record.

For line sequential files, specifies the length, in characters, of the longest record in
the file.

Record length

Specifies whether the first record in a delimited file contains header information and
not data.

For example, this file snippet shows a header row in the first record.

"AddressLine1"|"City"|"StateProvince"|"PostalCode"
"7200 13TH ST"|"MIAMI"|"FL"|"33144"
"One Global View"|"Troy"|"NY"|12180

First row is header record

Delimited file records containing fewer fields than are defined on the Fields tab will
be treated as malformed.

Treat records with fewer fields than
defined as malformed

Imports the file layout definition, encoding setting, and sort options from a settings
file. The settings file is created by exporting settings from another Read from File or
Write to File stage that used the same input file or a file that has the same layout as
the file you are working with.

Import

Saves the file layout definition, encoding setting, and sort options to a settings file.
You can then import these settings into other Read from File or Write to File stages
that use the same input file or a file that has the same traits as the file you are working
with now. You can also use the settings file with job executor to specify file settings
at runtime.

For information about the settings file, see The File Definition Settings File on page
318.

Export

311Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields Tab

The Fields tab defines the names, positions, and, for fixed width and line sequential files, lengths of
fields in the file. For more information, see these topics:

Defining Fields In a Delimited Input File on page 312
Defining Fields In a Line Sequential or Fixed Width File on page 315

Sort Fields Tab

The Sort Fields tab defines fields by which to sort the input records before they are sent into the
dataflow. Sorting is optional. For more information, see Sorting Input Records on page 317.

Runtime Tab

DescriptionField Name

Displays the file name selected in the first tab.File name

If you want to skip records at the beginning of the file when reading records into the
dataflow, specify the first record you want to read. For example, if you want to skip
the first 50 records, in a file, specify 51. The 51st record will be the first record read
into the dataflow.

Starting record

Select this option if you want to read all records starting from the record specified in
the Starting record field to the end of the file.

All records

Select this option if you want to only read in a certain number of records starting from
the record specified in the Starting record field. For example, if you want to read
the first 100 records, select this option and enter 100.

Max records

Defining Fields In a Delimited Input File
The Fields tab defines the names, position, and, for some file types, lengths, of the fields in the file.
After you define an input file on the File Properties tab you can define the fields.

If the input file does not contain a header record, or if you want to manually define the fields, follow
these steps on the Fields tab:

1. To define the fields already present in the input file, click Regenerate. Then, click Detect Type.
This will automatically set the data type for each field based on the first 50 records in the file.

2. To add additional fields in the output, click Add.

312Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. In the Name field, choose the field you want to add or type the name of the field.
4. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical or date time operations with the data. However, if you intend to perform these
kinds of operations, select an appropriate data type. This will convert the string data from the
file to a data type that will enable the proper manipulation of the data in the dataflow.

Spectrum Technology Platform supports these data types:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a

313Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

5. If you selected a date, time, or numeric data type, you can use the default date and time or
number format or you can specify a different format for this specific field. The default format is
either the system default format that has been set in the type conversion options in Spectrum
Management Console, or it is the dataflow's default format specified in the type conversion
options in Spectrum Enterprise Designer. The format that is in effect is displayed. To use the
default format, leave Default selected. To specify a different format, choose Custom and follow
these steps:

Note: It is important that you choose a date and time format that accurately reflects the
data you are reading from the file. For example, if the file contains date data in the format
Month/Day/Year but you choose Day/Month/Year, any date calculations you perform in
the dataflow, such as sorting by date, will not reflect the correct date. In addition, records
may fail type conversion, in which case the failure behavior specified in the type conversion
options in Spectrum Management Console or Spectrum Enterprise Designer will take
effect.

a) In the Locale field, select the country whose formatting convention you want to use. Your
selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify
your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

6. In the Position field, enter the position of this field within the record.

314Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For example, in this input file, AddressLine1 is in position 1, City is in position 2, StateProvince
is in position 3, and PostalCode is in position 4.

"AddressLine1"|"City"|"StateProvince"|"PostalCode"
"7200 13TH ST"|"MIAMI"|"FL"|"33144"
"One Global View"|"Troy"|"NY"|12180

7. If you want to have any excess space characters removed from the beginning and end of a field's
value string, select the Trim check box.

Defining Fields In a Line Sequential or Fixed Width File
In the Read from File stage, the Fields tab defines the names, position, and, for some file types,
lengths, of the fields in the file. After you define an input file on the File Properties tab you can define
the fields.

1. On the Fields tab, under Preview, click at the beginning of a field and drag to the left so that
the desired field is highlighted, as shown in the following image:

2. In the Name field, enter the field you want to add.
3. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical or date and time operations with the data. However, if you intend to perform these
kinds of operations, select an appropriate data type. This will convert the string data from the
file to a data type that will enable the proper manipulation of the data in the dataflow.

Spectrum Technology Platform supports these data types:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

315Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

4. To apply the packed decimal storage format to the field, check the Packed Decimal checkbox.
The packed decimal type uses 4 bits as compared to the integer type which uses 8 bits.

Note: This storage format is available only on selecting the datatypes double, integer
and long while reading line sequential and fixed width files.

5. If you selected a date, time, or numeric data type, you can use the default date and time or
number format or you can specify a different format for this specific field. The default format is
either the system default format that has been set in the type conversion options in Spectrum
Management Console, or it is the dataflow's default format specified in the type conversion
options in Spectrum Enterprise Designer. The format that is in effect is displayed. To use the

316Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

default format, leave Default selected. To specify a different format, choose Custom and follow
these steps:

Note: It is important that you choose a date and time format that accurately reflects the
data you are reading from the file. For example, if the file contains date data in the format
Month/Day/Year but you choose Day/Month/Year, any date calculations you perform in
the dataflow, such as sorting by date, will not reflect the correct date. In addition, records
may fail type conversion, in which case the failure behavior specified in the type conversion
options in Spectrum Management Console or Spectrum Enterprise Designer will take
effect.

a) In the Locale field, select the country whose formatting convention you want to use. Your
selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify
your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

6. The Start Position and Length fields are automatically filled in based on the selection youmade
in the file preview.

7. If you want to have any excess space characters removed from the beginning and end of a field's
character string, select the Trim Spaces check box.

8. Click OK.

Sorting Input Records
In the Read from File stage, the Sort Fields tab defines fields by which to sort the input records
before they are sent into the dataflow. Sorting is optional.

1. On the Sort Fields tab, click Add.
2. Click the drop-down arrow in the Field Name column and select the field you want to sort by.

The fields available for selection depend on the fields defined in this input file.
3. In the Order column, select Ascending or Descending.
4. Repeat until you have added all the input fields you wish to use for sorting. Change the order of

the sort by highlighting the row for the field you wish to move and clicking Up or Down.
5. Default sort performance options for your system are set in Spectrum Management Console. If

you want to override your system's default sort performance options, click Advanced. The
Advanced Options dialog box contains these sort performance options:

317Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Specifies the maximum number of data rows a sorter will hold in memory
before it starts paging to disk. By default, a sort of 10,000 records or less

In memory
record limit

will be done in memory and a sort of more than 10,000 records will be
performed as a disk sort. The maximum limit is 100,000 records. Typically
an in-memory sort is much faster than a disk sort, so this value should be
set high enough so that most of the sorts will be in-memory sorts and only
large sets will be written to disk.

Note: Be careful in environments where there are jobs running
concurrently because increasing the In memory record limit setting
increases the likelihood of running out of memory.

Specifies the maximum number of temporary files that may be used by a
sort process. Using a larger number of temporary files can result in better

Maximum
number of
temporary files performance. However, the optimal number is highly dependent on the

configuration of the server running Spectrum Technology Platform. You
should experiment with different settings, observing the effect on performance
of using more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Note: Themaximum number of temporary files cannot be more than
1,000.

Specifies that temporary files are compressed when they are written to disk.Enable
compression

Note: The optimal sort performance settings depends on your server's hardware
configuration. You can use this equation as a general guideline to produce good sort
performance: (InMemoryRecordLimit × MaxNumberOfTempFiles ÷ 2) >=
TotalNumberOfRecords

The File Definition Settings File
A file definition settings file contains the file layout, encoding, and sort options that have been exported
from a Read from File or Write to File stage. The file definitions settings file can be imported into
Read from File or Write to File to quickly set the stage's options instead of manually specifying the
options.

The easiest way to create a file definition settings file is to use specify the file settings using Read
from File or Write to File, then click the Export button to generate the file definitions settings file.

However, for your information the schema of the file definition settings file is shown below. Each
element in the XML file has a type, and if that type is anything other than string or integer, the
acceptable values are shown. These values correspond directly to options in the stage's dialog box.

318Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For example, the FileTypeEnum element corresponds to the Record Type field on the File Properties
tab, and these values appear in the schema: linesequential, fixedwidth, and delimited.

Note: If you enter "custom" for the LineSeparator, FieldSeparator or TextQualifier fields, a
corresponding custom element must also be included (for example, "CustomLineSeparator",
"CustomFieldSeparator", or "CustomTextQualifier") with a hexadecimal number representing
the character, or sequence of characters, to use.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="FileSchema" nillable="true" type="FileSchema"/>
<xs:complexType name="FileSchema">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
default="linesequential"
name="Type"
type="FileTypeEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="UTF-8" name="Encoding" type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="RecordLength"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="default"
name="LineSeparator"
type="LineSeparatorEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomLineSeparator"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="comma"
name="FieldSeparator"
type="FieldSeparatorEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomFieldSeparator"
type="xs:string"/>

<xs:element

319Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

minOccurs="0"
maxOccurs="1"
default="none"
name="TextQualifier"
type="TextQualifierEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomTextQualifier"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="false"
name="HasHeader"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="true"
name="EnforceColumnCount"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Fields"
type="ArrayOfFieldSchema"/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="FileTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="linesequential"/>
<xs:enumeration value="fixedwidth"/>
<xs:enumeration value="delimited"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="LineSeparatorEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="default"/>
<xs:enumeration value="windows"/>
<xs:enumeration value="linux"/>
<xs:enumeration value="mac"/>
<xs:enumeration value="custom"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="FieldSeparatorEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="comma"/>
<xs:enumeration value="tab"/>
<xs:enumeration value="space"/>
<xs:enumeration value="semicolon"/>
<xs:enumeration value="period"/>
<xs:enumeration value="pipe"/>

320Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<xs:enumeration value="custom"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="TextQualifierEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="single"/>
<xs:enumeration value="double"/>
<xs:enumeration value="custom"/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name="ArrayOfFieldSchema">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="unbounded"
name="Field"
nillable="true"
type="FieldSchema"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="FieldSchema">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
name="Name"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="string"
name="Type"
type="xs:string"/>

<xs:element
minOccurs="1"
maxOccurs="1"
name="Position"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Length"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="false"
name="Trim"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"

321Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

name="Locale"
type="Locale"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Pattern"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="none"
name="Order"
type="SortOrderEnum"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Locale">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
name="Country"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Language"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Variant"
type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="SortOrderEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="ascending"/>
<xs:enumeration value="descending"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Configuring Dataflow Options
This procedure describes how to configure a dataflow to support runtime options for Read from File
stage.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.

322Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow
Options dialog box appears.

4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand the Read from File stage.

The Dataflow options exposed are:

a. Character Encoding
b. Field Separator
c. Text Qualifier
d. Record Length
e. First Row is Header Record
f. Starting Record
g. Max Records

6. The selected Read from File option name is displayed in Option name and Option label fields.
This is the option name that will have to be specified at run time in order to set this option.

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.
13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.

Dataflow Options Rules
1. Character Encoding: All encoding types that are valid for the underlying JVM are accepted. This

option cannot be empty.
2. Field Separator: Any single character delimiter is accepted. Currently, HEX values and spaces

are not supported.
3. Text Qualifier: Any single character qualifier is accepted. HEX values are not supported.
4. Record Length: Only integers accepted. Cannot be blank or non numeric.
5. Starting Record: Only integers accepted. Cannot be non numeric.
6. Max records: Only integers accepted. Cannot be non numeric.
7. First Row is Header: Only boolean values of true and false accepted. Cannot be blank.

323Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Read from Hadoop Sequence File
TheRead fromHadoop Sequence File stage reads data from a sequence file as input to a dataflow.
A sequence file is a flat file consisting of binary key/value pairs. For more information, refer to
https://knpcode.com/hadoop/hadoop-io/how-to-read-and-write-sequencefile-in-hadoop/.
The stage supports reading data from and writing data to HDFS 3.x. The support includes:

• Connectivity to HDFS from Spectrum on Windows
• Support and connectivity to Hadoop 3.x from Spectrum with high availability
• Kerberos-enabled HDFS connectivity through Windows

Also see Configuring HDFS Connection for HA Cluster and Best Practices for connecting to
HDFS 3.x and Hive 2.1.1.

Note: TheRead from Hadoop Sequence File stage only supports delimited, uncompressed
sequence files located on Hadoop Distributed File System (HDFS).

Related tasks:

Connecting to Hadoop: To be able to read a file located on the Hadoop system
or to write a file to it, you need to create a connection to the Hadoop file server.
Once you do that, the name by which you save the connection is displayed as the
server name.

File Properties Tab

DescriptionFields

Indicates the file you select in the File name field is located on the Hadoop system.

Note: You need to create a connection to the Hadoop file server before using it
here. For details on creating connection, see Connecting to Hadoop.

If you select a file on the Hadoop system, the server name will be the name you specify
while creating a file server.

Server

Specifies the path to the file. Click the ellipses button (...) to go to the file you want.File name

324Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://knpcode.com/hadoop/hadoop-io/how-to-read-and-write-sequencefile-in-hadoop/

DescriptionFields

Specifies the character used to separate fields in a delimited file. For example, this record
uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to select
another character as a delimiter.

Field separator

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another character
as a text qualifier.

Text qualifier

Fields Tab

The Fields tab defines the names, positions, and types of fields in the file. For more information, see
Defining Fields In an Input Sequence File on page 326.

Sort Fields Tab

The Sort Fields tab defines fields by which to sort the input records before they are sent into the
dataflow. Sorting is optional. For more information, see Sorting Input Records on page 326.

Filter Tab

The Field tab defines fields by which to filter the input records before they are sent into the dataflow.
For more information, see Filtering Input Records on page 327.

325Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Defining Fields In an Input Sequence File
In the Read from Hadoop Sequence File stage, the Fields tab defines the names, positions, and
types of fields in the file. After you define an input file on the File Properties tab you can define the
fields.

The Fields tab defines the names, position, and, for some file types, lengths, of the fields in the file.
After you define an input file on the File Properties tab you can define the fields.

1. To add additional fields in the output, click Add.
2. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical operations with the data. However, if you intend to perform these kinds of operations,
select an appropriate data type. This will convert the string data from the file to a data type that
will enable the proper manipulation of the data in the dataflow.
The stage supports the following data types:

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

3. In the Name field, choose the field you want to add or type the name of the field.

Sorting Input Records
In the Read from Hadoop Sequence File stage, the Sort Fields tab defines fields by which to sort
the input records before they are sent into the dataflow. Sorting is optional.

1. In Read from Hadoop Sequence File, click the Sort Fields tab.
2. On the Sort Fields tab, click Add.
3. Click the drop-down arrow in the Field Name column and select the field you want to sort by.

The fields available for selection depend on the fields defined in this input file.
4. In the Order column, select Ascending or Descending.
5. Repeat until you have added all the input fields you wish to use for sorting. Change the order of

the sort by highlighting the row for the field you wish to move and clicking Up or Down.

326Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Filtering Input Records
In the Read from Hadoop Sequence File stage, the Filter tab defines fields by which to filter the input
records before they are sent into the dataflow. Filtering is optional.

1. In Read from Hadoop Sequence File, click the Filter tab.
2. In theCombine expressionmethod field, chooseAll if you want all the expressions to evaluate

to true in order for the record to be routed to this port; select Any if you want records to be routed
to this port if one or more of the expressions is true.

3. Click Add, specify the field to test, the operator, and a value. The operators are listed in the
table, below.

DescriptionOperator

Checks if the value in the field matches the value specified.Is Equal

Checks if the value in the field does not match the value specified.Is Not Equal

Checks if the field has a numeric value that is greater than the value specified. This
operator works on numeric data types as well as string fields that contain numbers.Is Greater Than

Checks if the field has a numeric value that is greater than or equal to the value
specified. This operator works on numeric data types as well as string fields that contain
numbers.

Is Greater Than Or Equal To

Checks if the field has a numeric value that is less than the value specified. This operator
works on numeric data types as well as string fields that contain numbers.Is Less Than

Checks if the field has a numeric value that is less than or equal to the value specified.
This operator works on numeric data types as well as string fields that contain numbers.

Is Less Than Or Equal To

Checks if the field is a null value.Is Null

Checks if the field is not a null value.Is Not Null

4. Select the Trim option as desired. This option, first trims all the white spaces that may be present
before and after the value of the field, before filtering the data in the field.

5. Repeat until you have added all the input fields you wish to use for filtering.

327Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Read From Hive File
The Read from Hive File stage reads data from the selected file, which can be in any of these
formats: ORC, Parquet, and Avro.
The stage supports reading data from and writing data to HDFS 3.x. The support includes:

• Connectivity to HDFS and Hive from Spectrum on Windows
• Support and connectivity to Hadoop 3.x from Spectrum with high availability
• Kerberos-enabled HDFS connectivity through Windows
• Support of Datetime datatype in the Parquet file format

Also see Configuring HDFS Connection for HA Cluster and Best Practices for connecting to
HDFS 3.x and Hive 2.1.1.

Related task:
Connecting to Hadoop: To be able to use Read from Hive File stage, you need
to create a connection to the Hadoop file server. Once you do that, the name by
which you save the connection is displayed as the server name.

File Properties tab

DescriptionFields

Indicates the file you select in the File name field is located on the Hadoop system.

Note: You need to create a connection to the Hadoop file server before using it
here. For details on creating connection, see Connecting to Hadoop.

If you select a file on the Hadoop system, the server name will be the name you specify
while creating a file server.

Server

Specifies the path to the file. Click the ellipses button (...) to browse to the file you want.
You may, however, rename the columns of the schema as required. The first 50 records
of the file are fetched in the Preview grid on selecting the file.

Note: The schema of an input file is imported as soon as you go to the correct
location and select the file. This imported schema cannot be edited.

File name

Select the type of the file being read:

• ORC
• Parquet
• Avro

File type

328Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields tab

The Fields tab defines the names, datatypes, positions of the fields as present in the input file, as
well as the user-given names for the fields. For more information, see Defining Fields for Reading
from Hive File on page 329.

Defining Fields for Reading from Hive File
In the Fields tab of the Read from Hive File stage, the schema names, datatypes, positions, and
the given names of the fields in the file are listed.

1. Click Regenerate.
For ORC, Avro, and Parquet files, this generates the schema based on the metadata of the
existing file.

The grid displays the columns Name, Type, Stage Field, and Include.

The Name column displays the field name, as derived from the header record of the file.

The Type column lists the datatypes of each respective field of the file.

The stage supports these data types:

A logical type with two values: true and false.boolean

A data type that contains a month, day, and year. For example, 2012-01-30
or January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.

For example, 2012/01/30 6:15:00 PM.

datetime

Note: The datetime datatype in Spectrum maps to the timestamp
datatype of Hive files.

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

Note: For Avro and Parquet Hive files, fields of the decimal datatype
in the input file are converted to bigdecimal datatype.

329Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

Note: The long datatype in Spectrum maps to the bigint datatype
of Hive files.

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A sequence of characters.string

The Position column displays the starting position of the respective field within a record.
2. In the Stage Field column, edit the existing field name to the desired name for each field.

By default, this column displays the field names read from the file.

3. In the Include column, select the checkboxes against the fields you wish to include in the output
of the stage.
By default, all the fields are selected in this column.

4. Click OK.

Read from HL7 File
The Read from HL7 File stage reads Health Level Seven (HL7) data from a text file as input to a
dataflow. HL7 is a messaging standard used in the healthcare industry to exchange data between
systems. For more information about HL7, visit http://www.hl7.org.

HL7 Message Format

Data in an HL7 message is organized hierarchically as follows:

message
segment

field
component

subcomponent

Each line of an HL7 message is a segment. A segment is a logical grouping of fields. The first three
characters in a segment identify the segment type. In the above message, there are five segments
MSH (message header), PID (patient identification), two NK1 (next of kin) segments, and IN1
(insurance).

330Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.hl7.org

Each segment consists of fields. A field contains information related to the purpose of the segment,
such as the name of the insurance company in the IN1 (insurance) segment. Fields are typically
(but not always) delimited by a | character.

Fields can be divided into components. Components are typically indicated by a ^ character. In the
above example, the PID (patient identification) segment contains a patient name field containing
LEVERKUHN^ADRIAN^C which has three parts, last name (LEVERKUHN), first name (ADRIAN),
and middle initial (C). Components can be divided into subcomponents. Subcomponents are typically
indicated by a & character.

This is an example of an HL7 message:

MSH|^~\&||.|||199908180016||ADT^A04|ADT.1.1698593|P|2.7
PID|1||000395122||LEVERKUHN^ADRIAN^C||19880517180606|M|||6 66TH AVE
NE^^WEIMAR^DL^98052||(157)983-3296|||S||12354768|87654321
NK1|1|TALLIS^THOMAS^C|GRANDFATHER|12914 SPEM
ST^^ALIUM^IN^98052|(157)883-6176
NK1|2|WEBERN^ANTON|SON|12 STRASSE MUSIK^^VIENNA^AUS^11212|(123)456-7890
IN1|1|PRE2||LIFE PRUDENT BUYER|PO BOX
23523̂ WELLINGTON̂ ON̂ 98111|||19601||||||||THOMAŜ JAMEŜ M|F|||||||||||||||||||ZKA535529776

Note: To create an HL7 file using the given sample text:

1. Copy and paste the sample text into a new document using any text editing software.
2. Make the required content changes.
3. Configure the settings to view EOL (End of Line) on the text. In your text editor, go to View

> Show Symbol > Show End of Line.
4. Change the EOL (End of Line) Conversion format to CR (Carriage Return). In your text

editor, go to Edit > EOL Conversion > Old Mac Format.
5. Save the HL7 file after making this format change.

File Properties Tab

DescriptionField Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to access the file you want.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

File name

331Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The version of the HL7 standard used in the file you specified. For example, "2.7"
means that the file uses HL7 version 2.7. The HL7 version is indicated by the 12th
field in the MSH segment.

HL7 Version

The text file's encoding. Select one of these:

This encoding is also known as the Windows-1252 or simply
Windows character set. It is a super set of ISO-8859-1 and uses
the 128-159 code range to display additional characters not
included in the ISO-8859-1 character set.

CP1252

Supports all Unicode characters and is backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-8

Supports all Unicode characters but is not backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-16

A character encoding based on the order of the English
alphabet.

US-ASCII

UTF-16 encoding with big endian byte serialization (most
significant byte first).

UTF-16BE

UTF-16 encoding with little endian byte serialization (least
significant byte first).

UTF-16LE

An ASCII character encoding typically used for Western
European languages. Also known as Latin-1.

ISO-8859-1

An ASCII character encoding typically used for Southern
European languages. Also known as Latin-3.

ISO-8859-3

An ASCII character encoding typically used for Turkish
language. Also known as Latin-5.

ISO-8859-9

AnASCII code page used to writeWestern European languages.CP850

An EBCDIC code page used to write Western European
languages.

CP500

A character encoding for the Japanese language.Shift_JIS

A Microsoft's extension of Shift_JIS to include NEC special
characters, NEC selection of IBM extensions, and IBM
extensions.

MS932

An EBCDIC code page with the full Latin-1 character set.CP1047

Character encoding

332Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

DescriptionField Name

These options specify whether to check the file to ensure that it conforms to the HL7
2.7 standard. If any message in the file fails validation, it is treated as a malformed
record and the malformed record options specified for the job (in Spectrum Enterprise
Designer under Edit > Job Options) or for the system (in Spectrum Management
Console) will take effect.

Check this box if you want to make sure that each segment, field,
component, and subcomponent contains the elements that are
required by the HL7 2.7 standard.

Required fields

Check this box if you want to make sure that each element meets
the minimum and maximum length requirements for the element
as defined in the HL7 2.7 standard.

Length

Validate

333Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Select these options if you want to allow messages to contain segments, fields,
components, and subcomponents that are not in the expected position. The expected
positions are defined in the HL7 standard or, in the case of custom message types,
in the HL7 Schema Management tool in Spectrum Enterprise Designer.

For example, consider this custom message schema:

MSH
[PID]
{ZSS}
PV1
NK1
{[DG1]}

And this data:

MSH|̂ ~\&|Pharm|GenHosp|CIS|GenHosp|198807050000||RAŜ O17|RAS1234|P|2.7
ZSS|100|abc
PID|1234||PATID1234^5^M11^ADT1^MR^GOOD HEALTH
HOSPITAL~123456789^^^USSSA^SS|
PV1||O|O/R||||0148^ADDISON,JAMES|0148^ADDISON,JAMES
NK1|Son|John

In this case the segment PID is unexpected because it is before the ZSS segment.

Messages that contain elements in unexpected positions are treated as malformed
records and themalformed record options specified for the job (in SpectrumEnterprise
Designer under Edit > Job Options) or for the system (in Spectrum Management
Console) take effect.

By default all the Ignore unexpected options are enabled to allow as many records
as possible to be processed successfully.

Check this box to allow messages to contain segments that are
not defined in the HL7 2.7 standard. Unexpected segments are
ignored and other segments in the message are processed.

Segments

Check this box to allow segments to contain fields that are not
defined in the HL7 2.7 standard. Unexpected fields are ignored
and other fields in the segment are processed.

Fields

Check this box to allow fields to contain components that are not
defined in the HL7 2.7 standard. Unexpected components are
ignored and other components in the field are processed.

Components

Check this box to allow components to contain subcomponents
that are not defined in the HL7 2.7 standard. Unexpected
subcomponents in the component are ignored and other
subcomponents are processed.

Subcomponents

Ignore unexpected

334Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields Tab

The Fields tab displays the segments, fields, components, and subcomponents. Use the Fields tab
to select the data you want to read into the dataflow.

Segment groups, which are collections of segments that are used together to contain a category of
data, are displayed using a numbering system that shows where in the message schema the group
appears. Each segment group is given a label "Group_n" where "n" is a number that corresponds
to the group's position in the message schema. To illustrate how the number system works, consider
this example:

This example shows the field list for the message RAS^017. This message has two segment groups:
RAS_017_Group_1 andRAS_017_Group_2. The "Group_1" segment group refers to the first segment
group in the RAS^017 schema and the second group, "Group_2", refers to the second group listed
in the RAS^017 schema.

To determine which segment group is represented by "Group_1" and "Group_2", find the description
of the message RAS^017 in the document HL7 Version 2.7 Standard. You can download a copy of
this document from http://www.hl7.org.

In the description of the message, find the first group, which in the case of RAS^017 is the PATIENT
group. The second group in the schema is the ORDER group.

Segment groups that are nested under a segment group have an additional number appended to
their group number. For example, Group_21 represents the first group nested under the second
group. Further subgroups have additional numbers appended to them, such as Group_221, which
for message RAS^017 represents the segment group ORDER_DETAIL_SUPPLEMENT. An example
of nested groups is shown here:

335Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.hl7.org

The controls on the Fields tab are described in this table.

Table 28: Fields Tab

DescriptionOption Name

Click this button to populate the Fields tab with a list of all segments, fields,
components, and subcomponents for the message type contained in the input file.
All elements for themessage type are displayed based on the HL7 schema regardless
of whether the input file contains all the elements. For example, if the file contains
an RAS message, the schema for the entire RAS message type will be displayed
regardless of whether the input file actually contains data for all the segments, fields,
components, and subcomponents.

If you have defined any custom elements using the HL7 Schema Management tool
in Enterprise Designer, those elements are also listed.

Regenerate

Expands all elements in the fields tab so you can view all segments, fields,
components, and subcomponents of the message types contained in the file.

Expand All

Closes all nodes in the view so that only the segments are displayed. Use this to
easily see the segments for the message types in the file. You can then expand
individual segments in order to view the fields, components, and subcomponents in
a segment.

Collapse All

Check this box to create dataflow fields for all segments, fields, components, and
subcomponents for all message types included in the file.

Select all

Flattening HL7 Data
HL7 data is organized hierarchically. Since many stages require data to be in a flat format, you may
have to flatten the data in order to make the data usable by downstream stages for things like address
validation or geocoding.

The following procedure describes how to use a Splitter stage to flatten HL7 data.

1. Add a Read from HL7 File stage to your data flow and configure the stage.
2. Add a Splitter stage and connect it to Read from HL7 File.
3. Add additional Splitter stages as needed so that you have one splitter stage for each segment,

field, or component that you want to flatten.

Note: You only need to flatten the data that you want to process in a downstream stage.
Other data can remain in hierarchical format. For example, if you only want to process
address data, you only need to flatten the address data.

336Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. Connect all the Splitter stages.

You should now have a data flow that looks like this:

5. Double-click the first Splitter stage to open the stage options.
6. In the Split at field, select the segment, field, or component that you want to flatten.
7. Click OK.
8. Configure each additional Splitter stage, selecting a different segment, field, or component in

each Splitter's Split at field.
9. Add additional stages as needed after the last Splitter to complete your dataflow.

Example
You have the following HL7 data and you want to validate the address in the PID
segment.

MSH|^~\&||.|||199908180016||RAS^O17|ADT.1.1698594|P|2.7
PID|1||000395122||SMITH^JOHN^D||19880517180606|M|||One Global
View^^Troy^NY^12180||(630)123-4567|||S||12354768|87654321

In order to do this you need to convert that address data to flat data so that it can
be processed by the Validate Address stage. So, you create a dataflow containing
a Splitter followed by a Validate Address sage, like this:

The Splitter stage is configured to split at the PID/Patient_Address/Street_Address
component, which converts this data to flat data.

337Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The channel that connects the Splitter stage to the Validate Address stage renames
the fields to use the field names required by Validate Address:
Street_or_Mailing_Addres is renamed to AddressLine1, State_or_Province is
renamed to StateProvince, and Zip_or_Postal_Code is renamed to PostalCode.

In this example, the output is written to an XML file containing this data.

<?xml version='1.0' encoding='UTF-8'?>
<XmlRoot xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<PatientInformation>

<Confidence>95</Confidence>
<RecordType>Normal</RecordType>
<CountryLevel>A</CountryLevel>
<ProcessedBy>USA</ProcessedBy>
<MatchScore>0</MatchScore>
<AddressLine1>1 Global Vw</AddressLine1>
<City>Troy</City>
<StateProvince>NY</StateProvince>
<PostalCode>12180-8371</PostalCode>
<PostalCode.Base>12180</PostalCode.Base>
<PostalCode.AddOn>8371</PostalCode.AddOn>
<Country>United States Of America</Country>
<Patient_Name>

<Family_Name>
<Surname>SMITH</Surname>

</Family_Name>
<Given_Name>JOHN</Given_Name>
<Second_and_Further_Given_Names_or_Initials_Thereof>
D
</Second_and_Further_Given_Names_or_Initials_Thereof>

</Patient_Name>

338Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

</PatientInformation>
</XmlRoot>

Adding a Custom HL7 Message
The Read from HL7 File stage validates messages using the HL7 2.7 schema. However, your HL7
data may contain messages that are not part of the HL7 standard. If you want the Read from HL7
File stage to validate your customized HL7 data, you need to create a custom HL7 schema. This
topic describes how to create a custom HL7 schema using the HL7 Schema Management tool. For
more information about HL7, go to www.hl7.org.

1. In Spectrum Enterprise Designer, go to Tools > HL7 Schema Management.

This will open the HL7 SchemaManagement windowwhich contains a list of supportedmessages.
These messages are predefined by HL7.

2. In the HL7 Schema Management window, click Add.
3. In the Message type field, specify a type for a custom HL7 message.

The message type indicates what health-related information is being provided in the message.
For example, an ADT (Admin Discharge Transfer) message type is used to exchange the patient
state within a healthcare facility and an ORU (Observation Result) message type is used to
transmit observations and results from the LIS (Lab Information System) to the HIS (Hospital
Information System).

4. In the Trigger event field, specify an event code.

The trigger event is a real-world event that initiates communication and the sending of a message.
Both the message type and trigger event are found in the MSH-9 field of the message. For
example, MSH-9 field might contain the value ADT^A01. This means that ADT is the HL7message
type, and A01 is the trigger event.

5. In the Description field, type a description for a custom HL7 message.

This field helps you to understand more about a message type. For example, if you are adding
a XYZ message type, you can provide a description that it is used to exchange the patient state
within a healthcare facility.

You will now see a newly created message under theDefinition. Click on the plus sign to expand
the message. You can see the MSH segment is added automatically.

6. To add an existing segment to a message
a) Click Select Segment.
b) Select the segments you want to add to the message and click OK.

A schema of a selected segment is displayed in the Segment Schema grid and the checked
messages are added in the message schema.

7. To add a custom segment to a message

339Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.hl7.org

a) Click Select Segment.
b) Click Add Segment.
c) In the Name field, specify a name for the segment and click OK.

The newly added segment is displayed at the bottom of the Segments Supported list.

d) Select the added custom segment and then click the Add field button.
e) In the Name field, specify a field name of the selected segment.

For example, a PID (Patient information) segment contains field names as Patient ID, Patient
Name, Patient Address, County Code, and so on.

f) In the Type field, select an appropriate data type.

HL7 data types define the kind of data that can be included in a field, and are used throughout
the HL7 message structure. For example, ST for string, TX for text data and FT for formatted
data.

g) In the Normative length field, specify the minimum and maximum length of the field using
the following format: m..n. You can also specify a list of possible values for a length of the
field using the following format: x,y,z.

For example, length of 1..3 means the length of the item may be either 1, 2 or 3 and the
length of 1, 3, 4 means the length of the item may be either 1, 3 or 4 but not 2. A value other
than 1, 3, and 4 would be treated as invalid.

h) In the Optionality field, specify whether a field is optional or required.
O
The field is optional.

R
The field is required.

i) In theRepetition field, if you want to allow the field to appear more than once in the segment,
check the Repetition box and specify the number of times the field can be used.

For example, a value of 3 would mean that the field can have three occurrences. If it is
unspecified, there will only be one occurrence, which means this field will not be repeated.

8. Click OK.

You can also choose the options Optional and Repeating from the Segment properties.

9. Choose Optional to make the selected segment as optional and choose Repeating to allow a
repetition of a selected segment in a message.

10. Click OK.

The newly added message is displayed at the bottom of the list.

340Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Read from NoSQL DB
TheRead from NoSQL DB stage reads data from a database table as input to a dataflow. The stage
supports MongoDB and Couchbase database (version 5.x and above).

General Tab

DescriptionField Name

Select the required database connection from the dropdown list. The options displayed
are based on the connections defined in Spectrum Management Console.

To add a new connection, see Connecting to NoSQL.

To modify an existing connection, select and open it from the list of connections on
the Connections page of Spectrum Management Console, make the required
updates, and click the Save button.

Connection

Specifies the collection or view in the database that you want to query.

Note: While the term Table/View is used in the user interface, MongoDB
calls it a collection, and Couchbase calls it a view.

Table/View

Click the Browse button (...) to select a JSON Schema file. This file is optional. Fields
in the fields tab can be regenerated either using the schema file or database
table/view.

To clear the selected file path, click Clear.

Note: Fields will always be generated using the schema file if one is
selected.

Schema File

341Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Enter the required filter criteria, if any, using MongoDB syntax, to fetch specific records.
Leave the field blank if no filter criteria is required.

This syntax is for a clause with an equal to operator:

{"<column name>" : "<filter value>"}

You can join multiple clauses using the required operators. For a list of the supported
operators in the where clause, see
http://docs.mongodb.org/manual/reference/operator/query/.

For example, to fetch records where the value of the column customer_name
matches the value John, and the value of the column customer_age is greater
than or equal to 45, enter the below:

{$and: [{"customer_name": "John"}, {$gte:
["customer_age","45"]}]}

Attention: Ensure you do not include the keyword where in this field.

Note: Currently, this field is visible only on selecting a MongoDB connection.

Where

Fields defined in the schema, if not present in the actual record will not flow to the
next stage if this option is selected.

Note: If you do not enable this option, fields that are not present in the
database table or view, are added and processed with the value as NULL.

Ignore Absent Fields

Displays the records from the selected table.

Note: For MongoDB data sources, clicking Preview shows the filtered
records, if one or more where clauses have been entered in theWhere
field. If no where clause has been entered, the preview displays all the
records.

Note: For Couchbase data sources, clicking Preview also displays the
added _id field containing the key. If the record already has an _id field,
then the added _id field overwrites the pre-existing one at the time of
previewing the fields.

Preview

Expands the items in the preview tree.Expand All

Collapses the items in the preview tree.Collapse All

342Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://docs.mongodb.org/manual/reference/operator/query/

Fields Tab

The Fields tab allows you to select the data that you want to pass to the next stage. For more
information, see Defining Fields in a NoSQL Database on page 343

Defining Fields in a NoSQL Database
The Fields tab displays the field and its type as defined in the NoSQL DB/Schema file.

1. On the Fields Tab, click Regenerate.
This generates the aggregated data based on the first 50 records. The data is displayed in the
following format: Fieldname(datatype).

Note: If the schema file is browsed, the fields are generated using the schema file and
the table or view is bypassed. To reset the schema file, click Clear.

Note: While reading data from a Couchbase DB, the key of each record is also read.
This key is stored as a part of the record using an added _id field at the time of regenerating
the fields, and is also included in the data sent to the next stage. If the record already has
an _id field, then this would be overwritten with the added _id field at the time of
regenerating the fields.

2. To modify the name and type of a field, highlight the field, and click Modify.
3. In the Name field, choose the field you want to add or type the name of the field.
4. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical operations with the data. However, if you intend to perform these kinds of operations,
select an appropriate data type. This will convert the string data from the file to a data type that
will enable the proper manipulation of the data in the dataflow.
The stage supports the following data types:

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

5. You can also add fields that are not present in the table or schema file. Click Add to add a new
field. To remove a field, click Remove.

343Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: You can only add a new field under the List type.

6. Click OK.

NoSQL DB Dataflow Options
This procedure describes how to configure a dataflow to support runtime options for NoSQL DB.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand the NoSQLDB stage.
6. The Dataflow options are exposed as described in the following table:

WriteReadDatabase

ConnectionConnectionMongo DB

TableTable

ConnectionConnectionCouchbase DB

View

Design Document Name

The selected NoSQL DB option name is displayed in Option name and Option label fields.
This is the option name that will have to be specified at run time in order to set this option.

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.
13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.

344Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Read from SAP
The Read from SAP stage reads data from a SAP database as input to a dataflow. It can read data
from a single table or multiple tables. When reading data from multiple tables, the stage performs a
join operation to determine which records to read into the dataflow.

Table 29: Minimum SAP application requirements

Support PackageSP LevelReleaseComponent

SAPKB740050005740SAP_BASIS

SAPKA740050005740SAP_ABA

Note: The minimum supported version of SAP Business Suite 7 application is ECC 6.0
EHP 7 and CRM 7.0 EHP 3 with its components, release, and support pack levels mentioned
in this table.

Connecting to SAP
In order to read data from SAP into a dataflow using Read from SAP, you need to create a connection
between Spectrum Technology Platform and your SAP system.

Note: For details on installing the supporting databases and dataflows on the Spectrum
Technology Platform server, and configuring the SAP system to communicate with Spectrum
Technology Platform see the section Installing Support Files for Read from SAP in the
Installation Guide.

1. Open the SAP connection manager. You an do this in Spectrum Enterprise Designer under
Tools > SAP Connection Management or in theRead from SAP stage by clicking theManage
button next to the Connection field.

2. Click Add.
3. In the Connection name field, give this connection a name.
4. Complete the other fields with the information about the SAP server you want to connect to. See

your SAP Basis administrator for the necessary information.

Important: The user ID and password must be for a SAP account with administrator privileges.

5. Click Test to verify the connection.
6. Click OK.

You have now created a connection that can be used by the Read from SAP stage to read data from
SAP into a dataflow.

345Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Reading Data from a Single SAP Table
The Read from SAP stage can be configured to read data from a single table in the SAP database
or multiple tables. This procedure describes how to configure Read from SAP to read data from a
single table.

1. In Spectrum Enterprise Designer, drag Read from SAP onto the canvas.
2. Double-click the Read from SAP stage on the canvas.
3. In the Connection field, select the SAP server that contains the data you want to read into the

dataflow. If there is no connection defined for the SAP server you need to create the connection
by clicking Manage.

4. In the Source type field, choose Single.
5. Click Select.
6. Select the table you want to read into the dataflow then click OK.

Note: Only the first 200 tables are listed. Use the search feature to find tables not listed
in the first 200. The search field only searches the values in theName and Label columns.

7. To view the field names that will be used in the dataflow, check the boxDisplay technical name.

Fields in SAP have a user-friendly name used for display purposes and a unique name that may
be less readable. For example, a field may have a user-friendly name of "Distribution Channel"
and a technical name of "DIS_CHANNEL". In order to ensure that the field name is valid in the
dataflow, the technical name is used as the field name.

8. Check the box in the Include column for each field you want to read into the dataflow.
9. Click OK.
10. If you want to read only certain records, you can specify filter conditions on the Filter tab. In

order for a record to be read into the dataflow it must meet all the conditions you define.
11. You can improve performance by specifying an appropriate fetch size on the Runtime tab.

Select this option to specify the number of records to read from the database table at a time. For
example, if the Fetch size value is 100 and total number of records to be read is 1000, then it
would take 10 trips to the database to read all the records.

Setting an optimum fetch size can improve performance significantly.

Note: You can calculate an optimum fetch size for your environment by testing the
execution times between a Read from DB stage and a Write to Null stage. For more
information, see Determining an Optimimum Fetch Size.

The default fetch size for Read from SAP is 10,000.

12. Click OK.

The Read from SAP stage is now configured to read data from a single table in the SAP database
into the dataflow.

346Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Reading Data from Multiple SAP Tables
The Read from SAP stage can be configured to read data from a single table in the SAP database
or multiple tables. This procedure describes how to configure Read from SAP to read data from a
multiple tables. To read data from multiple tables, you define a JOIN statement to combine data into
a single stream.

1. In Spectrum Enterprise Designer, drag Read from SAP onto the canvas.
2. Double-click the Read from SAP stage on the canvas.
3. In the Connection field, select the SAP server that contains the data you want to read into the

dataflow. If there is no connection defined for the SAP server you need to create the connection
by clicking Manage.

4. In the Source type field, choose Multiple.
5. Click Add.
6. Select the tables you want to read into the dataflow then click OK.

Note: Only the first 200 tables are listed. Use the search feature to find tables not listed
in the first 200. The search field only searches the values in theName and Label columns.

7. Select the first table in the list and click Create Relationship. This is the source table.
8. In the Source key field, select the column from the source table whose value will be used match

records to records from the other table.
9. In the Join type field, select one of the following:

Returns only those records that have a match between the source and
target tables.

INNER JOIN

Returns all records from the source table even if there are no matches
between the source and target tables. This option returns all records from
the source table plus any records that match in the target table.

LEFT JOIN

10. In the Table field, select the target table.
11. In the Table key field, select the column in the target table containing the data you want to

compare to the data from the Source key field to determine if the record meets the join condition.
12. Click OK.
13. Click Select Schema.
14. Choose the fields that you want to read into the dataflow. To view the field names that will be

used in the dataflow, check the Display technical name box.

Fields in SAP have a user-friendly name used for display purposes and a unique name that may
be less readable. For example, a field may have a user-friendly name of "Distribution Channel"
and a technical name of "DIS_CHANNEL". In order to ensure that the field name is valid in the
dataflow, the technical name is used as the field name.

15. Click OK.

347Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

16. If you want to read only certain records, you can specify filter conditions on the Filter tab. In
order for a record to be read into the dataflow it must meet all the conditions you define.

17. You can improve performance by specifying an appropriate fetch size on the Runtime tab.

Select this option to specify the number of records to read from the database table at a time. For
example, if the Fetch size value is 100 and total number of records to be read is 1000, then it
would take 10 trips to the database to read all the records.

Setting an optimum fetch size can improve performance significantly.

Note: You can calculate an optimum fetch size for your environment by testing the
execution times between a Read from DB stage and a Write to Null stage. For more
information, see Determining an Optimimum Fetch Size.

The default fetch size for Read from SAP is 10,000.

The Read from SAP stage is now configured to read data from a multiple tables in the SAP database
into the dataflow.

Filtering Records in Read from SAP
The filter settings in Read from SAP allow you to read a subset of records from an SAP table rather
than all records in the table. To filter records, you specify the values that a record must contain in
order for it to be read into the dataflow. If you do not specify any filter conditions, all records in the
table are read into the dataflow. Using filter conditions is optional.

Note: If the Read from SAP stage is configured to read data from multiple SAP tables, the
filter is applied after the JOIN operation is performed.

1. In the Read from SAP stage, click the Filter tab.
2. Click Add.
3. In the Table name field, select the table that contains the records you want to filter.
4. In the Filter by field, select the field that contains the data you want to use as the basis for

filtering.
5. Choose one of the following operators:

Note: The operators available to you vary depending on the data type of the field on
which you are filtering.

DescriptionOperator

Checks if the string contains the value specified.Contains

Checks if the value in the field matches the value specified.Equals

348Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOperator

Checks if the value in the field does not match the value specified.Not Equals

Checks if the field has a numeric value that is greater than the value specified. This
operator works on numeric data types as well as string fields that contain numbers.Greater Than

Checks if the field has a numeric value that is greater than or equal to the value
specified. This operator works on numeric data types as well as string fields that contain
numbers.

Greater Than Or Equals

Checks if the field has a numeric value that is less than the value specified. This operator
works on numeric data types as well as string fields that contain numbers.Less Than

Checks if the field has a numeric value that is less than or equal to the value specified.
This operator works on numeric data types as well as string fields that contain numbers.

Less Than Or Equals

Checks if the field is a null value.Is Null

Checks if the field is not a null value.Is Not Null

Checks if the field starts with the value specified.Starts With

Checks if the field ends with the value specified.Ends With

6. Enter the value to which you want to compare the selected field's value.
7. Click OK.
8. Add additional filter conditions if needed.

Note: If you specify multiple filter conditions, all the filter conditions must be true in order
for the record to be read into the dataflow. If any one of the conditions is not true, the
record is not read into the dataflow.

Read from Spreadsheet
Read from Spreadsheet reads data from an Excel spreadsheet as input to a dataflow in these
supported formats: *.xls and *.xlsx.

349Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

File Properties Tab

The File Properties tab contains options for specifying the spreadsheet and data to read into the
dataflow.

DescriptionField Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to locate the file you want.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

File name

Specifies how you want to select data from the spreadsheet to read into the dataflow:

Select this option to read in all the data from a sheet in the
spreadsheet.

Sheet Data

Select this option to read in a subset of data from a sheet
by specifying a range of cells to read.

Range Data

Select this option to read in a subset of data from a sheet
by specifying a named range from the spreadsheet.

Named Range

Data selection

If you choose Sheet Data or Range Data in the Data selection field, use this option
to choose the sheet from which you want to read data into the dataflow.

Sheet selection

If you choose Range Data in the Data selection field, use this option to specify the
cell that starts the range and the cell that ends the range.

Range

If you choose Named Range in the Data selection field, use this option to specify
the name of the range you want to read into the dataflow. Ranges are defined in the
spreadsheet. If no ranges are listed it means that no ranges are defined in the
spreadsheet.

Named range

350Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Check this box to specify a row that contains column headings. Column headings
become the dataflow field names although you can change field names on the Fields
tab. If you do not check this box, the dataflow fields are given generic default names
such as Column1 and Column2.

The header row you specify is relative to the data selection. For example, if you
choose Range Data in the Data selection field and the range begins on the fifth
row, and you specify 1 as the header row, then the fifth row in the spreadsheet will
be used as the header because the fifth row of the spreadsheet is the first row of the
range.

Header row

If you specify a header row, this field specifies the first row that contains data, relative
to the header. For example, if you specify 1, the first row below the header will be
the first row of data to be read into the dataflow. If you specify 2, the second row
below the header will be the first row read into the dataflow.

Data offset from header

If you do not specify a header row, this field specifies which row within the data
selection contains the first row of data to read into the dataflow. The row you specify
is relative to the data selection. For example, if you choose Range Data in the Data
selection field and the range begins on the fifth row, and you specify 1 as the first
data row, then the first row of data to be read into the dataflow will be the fifth row.

First data row

Select this option if you want empty rows to be excluded from the dataflow. If you
do not select this option, empty rows in the spreadsheet will result in empty records
in the dataflow.

Note: This option does not affect the data shown in the preview. Empty
rows are always shown in the preview even if this option is selected.

Ignore empty rows

Fields Tab

The Fields tab contains options for mapping the data from the spreadsheet to fields in the dataflow.

DescriptionOption

Click this button to populate the fields tab with the fields in the input file defined on
the File Properties tab.

Regenerate

351Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Click this button to automatically determine the data type for all the fields. You can
manually change a field's data type by selecting the field and clicking Modify.

Detect Type

Select a field then click this button to modify the field name or data type.Modify

Read from Variable Format File
Read from Variable Format File reads data from a file containing records of varying layout. Each
record is read in as a list field. You can specify the tag that indicates the parent record type, and all
other record types will become list fields under the parent.

Variable format files have these characteristics:

• Records in the file may have different fields, and different numbers of fields.
• Each record must contain a tag (usually a number) identifying the type of record.
• Hierarchical relationships are supported.

Example of a Variable Format File
This example shows a variable format file containing information about checking
account activity for two customers, Joe Smith and Anne Johnson. In this example,
the file is a delimited file that uses a comma as the field delimiter.

001 Joe,Smith,M,100 Main St,555-234-1290
100 CHK12904567,12/2/2007,6/1/2012,CHK
200 1000567,1/5/2012,Fashion Shoes,323.12
001 Anne,Johnson,F,1202 Lake St,555-222-4932
100 CHK238193875,1/21/2001,4/12/2012,CHK
200 1000232,3/5/2012,Blue Goose Grocery,132.11
200 1000232,3/8/2012,Trailway Bikes,540.00

The first field in each record contains the tag which identifies the type of record and
therefore the record's format:

• 001: Customer record
• 100: Account record
• 200: Account transaction record

For delimited files it is common for the tag value (001, 100, 200) to be in a fixed
number of bytes at the start of the record as shown in the above example.

Each record has its own format:

352Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• 001: FirstName,LastName,Gender,Address,PhoneNumber
• 100: AccountID,DateOpened,ExpirationDate,TypeOfAccount
• 200: TransactionID,DateOfTransaction,Vendor,Amount

Record format 100 (account record) is a child of the previous 001 record, and record
format 200 (account transaction record) is a child of the previous record 100 (account
record). So in the example file, Joe Smith's account CHK12904567 had a transaction
on 1/5/2012 in the amount of 323.12 at Fashion Shoes. Likewise, Anne Johnson's
account CHK238193875 had two transactions, one on 3/5/2012 at Blue Goose
Grocery and one on 3/8/2012 at Trailway Bikes.

File Properties Tab

DescriptionOption Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to go to the file you want.

You can read multiple files by using a wild card character to read data from multiple
files in the directory. The wild card characters * and ? are supported. For example,
you could specify *.csv to read in all files with a .csv extension located in the
directory. In order to successfully read multiple files, each file must have the same
layout (the same fields in the same positions). Any record that does not match the
layout specified on the Fields tab will be treated as a malformed record.

While reading a file from an HDFS file server, the compression formats supported
are:

1. GZIP (.gz)
2. BZIP2 (.bz2)

Note: The extension of the file indicates the compression format to be used
to decompress the file.

Attention: If the Spectrum Technology Platform server is running on Linux, remember
that file names and paths on these platforms are case sensitive.

File name

353Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The format of the records in the file. Select one of:

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field has a fixed starting and ending character position.

Line Sequential

A text file in which each record is a specific number of characters
in length and each field has a fixed starting and ending character
position.

Fixed Width

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field is separated by a designated character such as a
comma.

Delimited

Record type

354Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The text file's encoding. Select one of these:

This encoding is also known as the Windows-1252 or simply
Windows character set. It is a super set of ISO-8859-1 and uses
the 128-159 code range to display additional characters not
included in the ISO-8859-1 character set.

CP1252

Supports all Unicode characters and is backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-8

Supports all Unicode characters but is not backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-16

A character encoding based on the order of the English
alphabet.

US-ASCII

UTF-16 encoding with big endian byte serialization (most
significant byte first).

UTF-16BE

UTF-16 encoding with little endian byte serialization (least
significant byte first).

UTF-16LE

An ASCII character encoding typically used for Western
European languages. Also known as Latin-1.

ISO-8859-1

An ASCII character encoding typically used for Southern
European languages. Also known as Latin-3.

ISO-8859-3

An ASCII character encoding typically used for Turkish
language. Also known as Latin-5.

ISO-8859-9

AnASCII code page used to writeWestern European languages.CP850

An EBCDIC code page used to write Western European
languages.

CP500

A character encoding for the Japanese language.Shift_JIS

A Microsoft's extension of Shift_JIS to include NEC special
characters, NEC selection of IBM extensions, and IBM
extensions.

MS932

An EBCDIC code page with the full Latin-1 character set.CP1047

Character encoding

For fixed width files, specifies the exact number of characters in each record.Record length

355Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

DescriptionOption Name

Specifies the character used to separate fields in a delimited file. For example, this
record uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to
select another character as a delimiter.

Field separator

Specifies the character placed after the tag field to demarcate the identifying field
for each record in a delimited file. A tag separator must be a single character.

By default, these characters are available to be selected as tag separators:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a tag separator, click the ellipses button to
add and select a custom tag separator.

Note: By default, the Record separator character is the same as the
selected Field separator character. To enable this field and select a different
character, uncheck the Same as Field separator checkbox.

Tag separator

Indicates if the tag separator is the same as the field separator. Uncheck this to select
a different character as the tag separator.

Note: By default, this checkbox is checked and the Tag separator field is
disabled.

Same as Field separator

356Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another
character as a text qualifier.

Text qualifier

Specifies the character used to separate records in line a sequential or delimited file.
This field is not available if you check the Use default EOL check box.

The record separator settings available are:

A line feed character separates the records. This is the
standard record separator for Linux systems.

Linux (U+000A)

A carriage return character separates the records. This
is the standard record separator for Macintosh systems.

Macintosh (U+000D)

A carriage return followed by a line feed separates the
records. This is the standard record separator for
Windows systems.

Windows (U+000D
U+000A)

If your file uses a different record separator, click the ellipses button to select another
character as a record separator.

Record separator

The tag to use for records that are a parent of other record types. For example if you
have three record types 001, 100, and 200, and record types 100 and 200 are children
of record type 001, then 001 is the root tag.

Root tag name

Specifies whether to allocate a fixed amount of space at the beginning of each record
in which to place the record tag. This example shows a file with the tags 001, 100,
and 200 in a fixed-width field:

001 Joe,Smith,M,100 Main St,555-234-1290
100 CHK12904567,12/2/2007,6/1/2012,CHK
200 1000567,1/5/2012,Mike's Shoes,323.12

Use fixed-width tags

If you check the Use fixed-width tags box, this option specifies the position in each
record where the tag begins. For example, if the tag begins in the fourth character
in the record, you would specify 4.

Tag start position

357Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

If you check theUse fixed-width tags box, this option specifies the number of spaces
to allocate for tags starting from the position specified in the Tag start position field.
For example, if you specify 3 in the Tag start position field and you specify 7 in the
Tag width field, then positions 4 though 10 would be considered the record tag. The
value you specify must be large enough to include all the characters of the longest
tag name.

The value in the Tag width field is automatically increased if you lengthen the tag
name in the Root tag name field.

The maximum tag width is 1024.

Tag width

Specifies that the file's record separator is the default end of line (EOL) character
used on the operating system on which the Spectrum Technology Platform server
is running.

Do not select this option if the file uses an EOL character that is different from the
default EOL character used on the server's operating system. For example, if the
file uses aWindows EOL but the server is running on Linux, do not check this option.
Instead, select the Windows option in the Record separator field.

Use default EOL

If you enable this option, child records that contain fewer fields than a complete
record are considered malformed. When a malformed record is encountered,
processing advances to the next root tag, ignoring all child tags in between. An
exception is written to the log containing information about the malformed child
records along with a line number.

Records are always considered malformed in these situations, regardless of whether
you enable this option.

• The tag is unknown
• The line is empty
• There is a tag with no data
• A record with a tag that is a child of another tag appears immediately after a record
with a root tag

Treat records with fewer fields than
defined as malformed

Fields Tab

The Fields tab specifies the characteristics of each field read in from the file.

358Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Runtime Tab

DescriptionField Name

Displays the file name selected in the first tab.File name

If you want to skip records at the beginning of the file when reading records into the
dataflow, specify the first record you want to read. For example, if you want to skip
the first 50 records, in a file, specify 51. The 51st record will be the first record read
into the dataflow.

Starting record

Select this option if you want to read all records starting from the record specified in
the Starting record field to the end of the file.

All records

Select this option if you want to only read in a certain number of records starting from
the record specified in the Starting record field. For example, if you want to read
the first 100 records, select this option and enter 100.

Max records

Defining Fields in Delimited Variable Format Files
This procedure describes how to define fields in the Read from Variable Format File stage for delimited
files.

1. In the Read from Variable Format File stage, click the Fields tab.
2. Click Regenerate.

A list of all the fields for each record type is displayed. For each field the following information
is displayed:

The tag from the input file indicating the record type in which the field appears.
If the tag begins with a number, the tag is prefixed with "NumericTag_". For

Parent

example, a tag named 100 would become NumericTag_100. The prefix is
necessary because dataflow field names cannot begin with a number.

The name that will be used in the dataflow for the field. By default, fields are given
names in the format <Tag Name>_<Column n>. For example, the first field of

Field

record type Owner would be Owner_Column1, the second would be
Owner_Column2, and so on.

The field's data type.Type

Note: The first 50 records are used to generate the fields list. The input file must contain
at least two root tags in order to generate a fields list.

359Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. If you want to modify the parent/child relationships between the tags:
a) Click Modify Tag Hierarchy.
b) Click and drag the tags to define the tag hierarchy you want.
c) Click OK.

4. If you want to modify the a field's name or data type, select the field and click Modify.
5. In the Name field, choose the field you want to add or type the name of the field.

Typically you will want to replace the default names with meaningful names to represent the data
in the field. For example, consider this input data:

001 Joe,Smith,M,100 Main St,555-234-1290

This record has a parent tag of 001 and would have these fields created by default:

NumericTag_001_Column1: Joe
NumericTag_001_Column2: Smith
NumericTag_001_Column3: M
NumericTag_001_Column4: 100 Main St
NumericTag_001_Column5: 555-234-1290

You would probably want to rename the fields so that the names describe the data. For example:

FirstName: Joe
LastName: Smith
Gender: M
AddressLine1: 100 Main St
PhoneNumber: 555-234-1290

Note: You cannot rename list fields. List fields, which contain all the fields for a given
record type, always use the tag name from the input file as the field name.

6. To change a field's data type, select the data type you want in the Type field.

The following data types are available:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

360Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

7. If you selected a date, time, or numeric data type, you can use the default date and time or
number format or you can specify a different format for this specific field. The default format is
either the system default format that has been set in the type conversion options in Spectrum
Management Console, or it is the dataflow's default format specified in the type conversion
options in Spectrum Enterprise Designer. The format that is in effect is displayed. To use the
default format, leave Default selected. To specify a different format, choose Custom and follow
these steps:

361Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: It is important that you choose a date and time format that accurately reflects the
data you are reading from the file. For example, if the file contains date data in the format
Month/Day/Year but you choose Day/Month/Year, any date calculations you perform in
the dataflow, such as sorting by date, will not reflect the correct date. In addition, records
may fail type conversion, in which case the failure behavior specified in the type conversion
options in Spectrum Management Console or Spectrum Enterprise Designer will take
effect.

a) In the Locale field, select the country whose formatting convention you want to use. Your
selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify
your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

8. Click OK.

Defining Fields in a Line Sequential or Fixed Width Variable Format File
This procedure describes how to define fields in the Read from Variable Format File stage for line
sequential or fixed width files.

1. In the Read from Variable Format File stage, click the Fields tab.
2. Click Get Tags.

A list of all the fields for each record type is displayed. For each field the following information
is displayed:

The tag from the input file indicating the record type in which the field appears.
If the tag begins with a number, the tag is prefixed with "NumericTag_". For

Parent

example, a tag named 100 would become NumericTag_100. The prefix is
necessary because dataflow field names cannot begin with a number.

The name that will be used in the dataflow for the field. By default, fields are given
names in the format <Tag Name>_<Column n>. For example, the first field of

Field

record type Owner would be Owner_Column1, the second would be
Owner_Column2, and so on.

The field's data type.Type

362Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The first 50 records are used to generate the fields list. The input file must contain
at least two root tags in order to generate a fields list.

3. In the Filter field, select the tag for the record type whose fields you want to define then click
Add.

Note: The filter does not have any impact on which fields are read into the dataflow. It
only filters the list of fields to make it easier to browse.

4. In the Name field, choose the field you want to add or type the name of the field.
5. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical or date time operations with the data. However, if you intend to perform these
kinds of operations, select an appropriate data type. This will convert the string data from the
file to a data type that will enable the proper manipulation of the data in the dataflow.

Spectrum Technology Platform supports these data types:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field

363Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

6. If you selected a date, time, or numeric data type, you can use the default date and time or
number format or you can specify a different format for this specific field. The default format is
either the system default format that has been set in the type conversion options in Spectrum
Management Console, or it is the dataflow's default format specified in the type conversion
options in Spectrum Enterprise Designer. The format that is in effect is displayed. To use the
default format, leave Default selected. To specify a different format, choose Custom and follow
these steps:

Note: It is important that you choose a date and time format that accurately reflects the
data you are reading from the file. For example, if the file contains date data in the format
Month/Day/Year but you choose Day/Month/Year, any date calculations you perform in
the dataflow, such as sorting by date, will not reflect the correct date. In addition, records
may fail type conversion, in which case the failure behavior specified in the type conversion
options in Spectrum Management Console or Spectrum Enterprise Designer will take
effect.

a) In the Locale field, select the country whose formatting convention you want to use. Your
selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify

364Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

7. In the Start position field, enter the position of the first character of the field, and in the Length
field enter the number of characters in the field.

For example, if the field starts at the tenth character of the record and is five characters long,
you would specify a starting position of 10 and a length of 5.

8. Click Add.
9. Repeat this process to add additional fields to the record type, or click Close if you are done

adding fields.

Flattening Variable Format Data
Variable format file data often contains records that have a hierarchical relationship, with one record
type being a parent to other record types. Since many stages require data to be in a flat format, so
youmay have to flatten the data in order to make the data usable by downstream stages. For example,
consider this input data:

001 Joe,Smith,M,100 Main St,555-234-1290
100 CHK12904567,12/2/2007,6/1/2012,CHK
200 1000567,1/5/2012,Fashion Shoes,323.12
001 Anne,Johnson,F,1202 Lake St,555-222-4932
100 CHK238193875,1/21/2001,4/12/2012,CHK
200 1000232,3/5/2012,Blue Goose Grocery,132.11
200 1000232,3/8/2012,Trailway Bikes,540.00

You may want to flatten the records so that you have one record per transaction. In the above
example, that would mean taking the transaction records (records with the tag 200) and flattening
them to include the account owner information (records with the tag 001) and the account details
(records with the tag 100).

The following procedure describes how to use Splitter stages to flatten records.

1. Add a Read from Variable Format File stage to your data flow and configure the stage. For more
information, see Read from Variable Format File on page 352.

2. Add a Splitter stage and connect it to Read from Variable Format File.
3. Add additional Splitter stages as needed so that you have one splitter stage for each child record

type in your input data.
4. Connect all the Splitter stages.

You should now have a data flow that looks like this:

365Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. Double-click the first Splitter stage to open the stage options.
6. In the Split at field, select one of the child record types.
7. Click OK.
8. Configure each additional Splitter stage, selecting a different child record type in each Splitter's

Split at field.

Read From XML
The Read from XML stage reads an XML file into a job or subflow. It defines the file's path and data
format, including XML schema and data element details.

Simple XML elements are converted to flat fields and passed on to the next stage. Simple XML data
consists of records made up of XML elements that contain only data and no child elements. For
example, this is a simple XML data file:

<customers>
<customer>

<name>Sam</name>
<gender>M</gender>
<age>43</age>
<country>United States</country>

</customer>
<customer>

<name>Jeff</name>
<gender>M</gender>
<age>32</age>
<country>Canada</country>

</customer>
<customer>

<name>Mary</name>
<gender>F</gender>
<age>61</age>
<country>Australia</country>

</customer>
</customers>

Notice that in this example each record contains simple XML elements such as <name>, <gender>,
<age>, and <country>. None of the elements contain child elements.

The Read from XML stage automatically flattens simple data like this because most stages require
data to be in a flat format. If you want to preserve the hierarchical structure, use an Aggregator
stage after Read from XML to convert the data to hierarchical data.

Complex XML elements remain in hierarchical format and are passed on as a list field. Since many
stages require data to be in a flat format, so you may have to flatten complex XML to make the data
usable by downstream stages. See Flattening Complex XML Elements on page 371 for more
information.

Note: Read From XML does not support the XML types xs:anyType and
xs:anySimpleType.

366Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

File Properties Tab

Table 30: File Properties Tab

DescriptionOption Name

Specifies the path to an XSD schema file. Click the ellipses button (...) to locate
the file you want. Note that the schema file must be on the server in order for the
data file to be validated against the schema. If the schema file is not on the server,
validation is disabled.

Alternatively, you can specify an XML file instead of an XSD file. If you specify an
XML file the schema will be inferred based on the structure of the XML file. Using
an XML file instead of an XSD file has some limitations:

• The XML file cannot be larger than 1 MB. If the XML file is more than 1 MB in
size, try removing some of the data while maintaining the structure of the XML.

• The data file will not be validated against the inferred schema.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

Schema file

Specifies the path to the XML data file. Click the ellipses button (...) to locate the
file you want.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

Data file

Displays a preview of the schema or XML file. When you specify an XSD file, the
tree structure reflects the selected XSD. Once you specify both a schema file and
a data file, you can click on the schema elements in bold to see a preview of the
data that the element contains.

Preview

367Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields Tab

Table 31: Fields Tab

DescriptionOption Name

Filters the list of elements and attributes to make it easier to browse. The filter does
not have any impact on which fields are included in the output. It only filters the list
of elements and attributes to make it easier to browse.

Filter

The XPath column displays the XPath expression for the element or attribute. It is
displayed for information purposes only. For more information about XPath, review
this page.

XPath

The name that will be used in the dataflow for the element or attribute. To change
the field name, double-click and type the field name you want.

Field

368Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://www.w3schools.com/xml/xpath_intro.asp

DescriptionOption Name

Type

369Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The data type to use for the field.

A numeric data type that supports 38 decimal points of precision. Use
this data type for data that will be used in mathematical calculations

bigdecimal

requiring a high degree of precision, especially those involving financial
data. The bigdecimal data type supports more precise calculations
than the double data type.

A logical type with two values: true and false.boolean

A data type that contains a month, day, and year. Dates must be in
the format yyyy-MM-dd. For example, 2012-01-30.

date

A data type that contains a month, day, year, and hours, minutes, and
seconds. Datetime must be in the format yyyy-MM-dd'T'HH:mm:ss.
For example, 2012-01-30T06:15:30

datetime

A numeric data type that contains both negative and positive double
precision numbers between 2-1074 and (2-2-52)×21023. In E notation,

double

the range of values is -1.79769313486232E+308 to
1.79769313486232E+308.

A numeric data type that contains both negative and positive single
precision numbers between 2-149 and (2-223)×2127. In E notation, the
range of values -3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole
numbers between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field
contains hierarchical data, it is treated as a "list" field. In Spectrum

list

Technology Platform a list is a collection of data consisting of multiple
values. For example, a field Names may contain a list of name values.
This may be represented in an XML structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data
type different from the XML schema list data type in that the XML list
data type is a simple data type consisting of multiple values, whereas
the Spectrum Technology Platform list data type is similar to an XML
complex data type.

A numeric data type that contains both negative and positive whole
numbers between -263 (-9223372036854775808) and 263-1
(9223372036854775807).

long

A sequence of characters.string

A data type that contains the time of day. Time must be in the formattime

370Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

HH:mm:ss. For example, 21:15:59.

Specifies whether to make this field available in the dataflow or to exclude it.Include

Example: Simple XML File
In this example, you want to read this file into a dataflow:

<addresses>
<address>

<addressline1>One Global View</addressline1>
<city>Troy</city>
<state>NY</state>
<postalcode>12128</postalcode>

</address>
<address>

<addressline1>1825B Kramer Lane</addressline1>
<city>Austin</city>
<state>TX</state>
<postalcode>78758</postalcode>

</address>
</addresses>

In this example, you could choose to include the <addressline1>, <city>,
<state>, and <postalcode>. This would result in one record being created for
each <address> element because <address> is the common parent element for
<addressline1>, <city>, <state>, and <postalcode>.

Flattening Complex XML Elements
Most stages in a dataflow require data to be in a flat format. This means that when you read
hierarchical data from an XML file into a dataflow, you will have to flatten it if the data contains
complex XML elements. A complex XML element is an element that contain other elements or
attributes. For example, in the data file the <address> element and the <account> element are
complex XML elements:

<customers>
<customer>

<name>Sam</name>
<gender>M</gender>
<age>43</age>
<country>United States</country>
<address>

371Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<addressline1>1253 Summer St.</addressline1>
<city>Boston</city>
<stateprovince>MA</stateprovince>
<postalcode>02110</postalcode>

</address>
<account>

<type>Savings</type>
<number>019922</number>

</account>
</customer>
<customer>

<name>Jeff</name>
<gender>M</gender>
<age>32</age>
<country>Canada</country>
<address>

<addressline1>26 Wellington St.</addressline1>
<city>Toronto</city>
<stateprovince>ON</stateprovince>
<postalcode>M5E 1S2</postalcode>

</address>
<account>

<type>Checking</type>
<number>238832</number>

</account>
</customer>
<customer>

<name>Mary</name>
<gender>F</gender>
<age>61</age>
<country>Australia</country>
<address>

<addressline1>Level 7, 1 Elizabeth Plaza</addressline1>
<city>North Sydney</city>
<stateprovince>NSW</stateprovince>
<postalcode>2060</postalcode>

</address>
<account>

<type>Savings</type>
<number>839938</number>

</account>
</customer>

</customers>

This procedure describes how to use Splitter stages to flatten XML data containing multiple complex
XML elements.

Note: If your data contains a single complex XML element, you can use a single Splitter stage
to flatten the data by simply connecting the Read from XML stage to the Splitter stage. You
do not need to use the Broadcaster and Record Combiner stages as described in this procedure
for data files containing a single complex XML element.

372Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

1. Add a Read from XML stage to your data flow and configure the stage. For more information,
see Read From XML.

2. Add a Broadcaster stage and connect Read from XML to it.
3. Add a Splitter stage for each complex XML element in your data.
4. Connect the Broadcaster stage to each Splitter.
5. Add a Record Combiner stage and connect each Splitter to it.

You should now have a data flow that looks like this:

6. Double-click the first Splitter stage to open the stage options.
7. In the Split at field, select one of the complex fields. In the example data file above, this could

be the address field.
8. Click OK.
9. Configure each additional Splitter stage, selecting a different complex XML element in each

Splitter's Split at field.

The data flow is now configured to take XML input containing records with complex XML elements
and flatten the data. The resulting records from Record Combiner can be sent to any stage that
requires flat data. For example, you could attached the Record Combiner stage to a Validate Address
stage for address validation.

SQL Command
SQL Command executes one or more SQL commands for each record in the data flow. You can
use SQL Command to:

• Execute complex INSERT/UPDATE statements, such as statements that have subqueries/joins
with other tables.

• Update tables after inserting/updating data to maintain referential integrity.
• Update or delete a record in a database before a replacement record is loaded.
• Update multiple tables in a single transaction.

You can execute additional SQL commands before and after executing the main SQL commands,
and you can invoke stored procedures.

Note: To execute a stored procedure, use this syntax:

Call <Procedure Name>

373Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Stored procedures invoked from SQL Command must not use OUT parameters.

Note: Significant performance improvements can be achieved by using multiple runtime
instances of SQL Command. To specify multiple runtime instances, click the Runtime button.

General

The General tab is where you specify dynamic SQL statements that you want to execute once for
each record. The following table lists the options available on the General tab.

DescriptionOption

Select the database connection you want to use. Your choices vary depending on
what connections are defined in the Connection Manager of Spectrum Management
Console. If you need to make a new database connection, or modify or delete an
existing database connection, click Manage Connections.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be
anything you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and
password to use to connect to the database.

Connection options

Connection

Enter the SQL statements you want to run for each record in the dataflow. As you
begin to type, an auto-complete pop-up window will display the valid SQL commands.
Separate multiple SQL statements with a semicolon (;).

To specify a value from a dataflow field, use this syntax:

${<field name>}

Where <field name> is the name of a field in the data flow.

For example,

UPDATE MyDatabase.dbo.customer
SET name=${Name}
WHERE id=${ID};

In this example ${Name} will be replaced with the value from the dataflow's Name
field and ${ID} will be replaced with the value from the dataflow's ID field.

Note: Queries must use the fully-qualified name. For example,
MyDatabase.dbo.customer.

SQL statements

374Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies whether to process records in batches or to process all records at the same
time. One of these:

Groups records into batches of the size you specify and
processes one batch at a time.

Batch size

Creates one large batch for all records and processes all
transactions at the same time.

Entire Run

Transaction processing

Specifies what to do if an error is encountered while executing the SQL commands.
One of the following:

The data flow continues to run if the database
returns an error while executing the SQL
commands.

Do not terminate the data flow
on error

The data flow will stop running after the
database returns the specified number of
errors.

Terminate the data flow after
encountering this many errors

Note: If there is a syntax error in the SQL, the data flow will always terminate
regardless of which setting you choose here.

In addition, you can optionally write error records to a sink by connecting the SQL
Command error port to the type of sink you want. The error port is the white triangle
on the right side of the stage icon in the data flow. For example, to write error records
to a flat file, you would connect the SQL Command error port to a Write to File stage,
as shown here:

Error processing

Pre/Post SQL

The Pre/Post SQL tab is where you specify SQL statements that you want to execute once per data
flow run, as opposed to once per record as is the case with the SQL you specify on the General tab.
The following table lists the options available on the Pre/Post SQL tab.

375Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Type one or more SQL statements that you want to execute before the records
coming into the stage are processed. The SQL statements you enter here are
executed once per run after the data flow starts running but before the SQL Command
stage processes the first records.

An example use of pre-SQL would be to create a table for the records that will be
processed.

Pre-SQL

Check this box to commit the pre-SQL statements before executing the SQL
statements on the General tab.

If you do not check this box, the pre-SQL statements will be committed in the same
transaction as the SQL statements on the General tab.

Note: If you check neither the Autocommit pre-SQL nor the Autocommit
post-SQL boxes, then all SQL statements for the stage are committed in
one transaction.

Autocommit pre-SQL

Type one or more SQL statements that you want to execute after all the records are
processed. The SQL statements you enter here are executed once per run after the
SQL Command stage is finished but before the data flow finishes.

An example use of pre-SQL would be to build an index after processing the records.

Post-SQL

Check this box to commit the post-SQL statements in their own transaction after the
SQL commands on the General tab are committed.

If you do not check this box, the post-SQL statements will be committed in the same
transaction as the SQL statements on the General tab.

Note: If you check neither the Autocommit pre-SQL nor the Autocommit
post-SQL boxes, then all SQL statements for the stage are committed in
one transaction.

Autocommit post-SQL

Runtime Tab

The Runtime tab displays Stage Options and gives you the flexibility of defining default values for
the stage options.

376Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

This section lists the dataflow options used in the SQL query of this stage and allows
you to provide a default value for all these options. TheName column lists the options
while you can enter the default values in the corresponding Value column.

Note: The default value provided here is also displayed in theMap dataflow
options to stages section of theDataflowOptions dialog box. The dialogue
box also allows you to change the default value. In case of a clash of default
values provided for an option through Stage Options, Dataflow Options,
and Job Executor the order of precedence is: Value provided through Job
Executor > Value defined through the Dataflow Options dialogue box >
Value entered through the Stage Options.

Stage Options

Specifying SQL Command at Runtime
This procedure describes how to configure a dataflow to support runtime options for SQL Command
and also how to specify the job executor arguments to do this.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand the SQL Command stage.
6. Select a SQL Command option. It can be PreSqlCommand, SqlCommand, or

PostSqlCommand.
SQL statements that you want to execute before the records coming into
the stage are processed. These SQL statements are executed once per

PreSqlCommand

run after the dataflow starts running but before the SQL Command stage
processes the first record.
An example use of pre-SQL would be to create a table for the records that
will be processed.

SQL statements you want to execute for each record in the dataflow.SqlCommand

SQL statements that you want to execute after all the records are
processed. These SQL statements are executed once per run after the
SQL Command stage is finished but before the dataflow finishes.

PostSqlCommand

An example use of post-SQL would be to build an index after processing
the records.

The selected SQL Command option name is displayed inOption name andOption label fields.
This is the option name that will have to be specified at run time in order to set this option.

377Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.
13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.
15. Create a text file containing the SQL statement you want to use at runtime.

The text file may look like this:

SqlCommand = UPDATE CustomersSET
ContactName='Alfred Schmidt'
City='Hamburg'
WHERE CustomerName='Alfreds Futterkiste';

In this example, SqlCommand is one of the SQL Command stage's option names.

16. Use the -o argument when running a job executor from command line.

java -jar jobexecutor.jar -h "noipa019sh-l1" -u "admin" -p "admin" -s
"8080" -o "options.txt" -j "FetchOracleData" -w

The filename (options.txt) specifies a name of the text file that you created in step 14.
For more information, see Running A Job from the Command Line on page 378

Running A Job from the Command Line
Before you can run a job from the command line, it must be exposed. To expose a job, open the job
in Spectrum Enterprise Designer and select File > Expose/Unexpose and Save.

To run a job from the command line, you must install the job executor utility on the system where
you want to run the job. The Job Executor is available from the Spectrum Technology Platform
Welcome page on the Spectrum Technology Platform server (for example, http://myserver:8080).

Usage
java -jar jobexecutor.jar -u UserID -p Password -j Job [Optional Arguments]

378Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionArgumentRequired

Prints usage information.-?No

Sets instance/status delimiter. This appears in synchronous output only.-d delimiterNo

Use a secure HTTPS connection for communication with the Spectrum
Technology Platform server.

-eNo

Specifies a path to a job property file. A job property file contains job
executor arguments. For more information on job property files, see
Using a Job Property File on page 828.

-f property fileNo

Specifies the name or IP address of the Spectrum Technology Platform
server.

-h host nameNo

Specifies how often to check for completed jobs, in seconds. This
applies only in synchronous mode.

-i poll intervalNo

A comma-separated list of jobs to run. Job names are case-sensitive.
Jobs are started in the order listed.

-j job nameYes

Specifies a comma-separated list of additional email addresses for
configured job notifications.

-n email listNo

Specifies a path to a flow options property file. Use a flow options
property file to set options for stages in the flow. In order to set flow

-o property fileNo

options using a property file, you must configure the flow to expose
stage options at runtime. For more information, see Adding Flow
Runtime Options on page 843.

For example, a flow options properties file for a flow that contains an
Assign GeoTAX Info stage may look like this:

OutputCasing=U
UseStreetLevelMatching=N
TaxKey=T
Database.GTX=gsl

The password of the user.-p passwordYes

Specify this argument to return a detailed report about the job. This
option only works if you also specify -w . The report contains this
information:

-rNo

• Position 1 - Name of job
• Position 2 - Job process ID
• Position 3 - Status
• Position 4 - Start Date-Time (MM/DD/YYYY HH:MM:SS)
• Position 5 - End Date-Time (MM/DD/YYYY HH:MM:SS)
• Position 6 - Number of successful records
• Position 7 - Number of failed records

379Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionArgumentRequired
• Position 8 - Number of malformed records
• Position 9 - Currently unused

For example:

MySimpleJob|4|succeeded|04/09/2019
14:50:47|04/09/2019 14:50:47|100|0|0|

The information is delimited using the delimiter specified in the -d
argument.

The socket (port) on which the Spectrum Technology Platform server
is running. The default is 8080.

-s portNo

Sets the timeout (in seconds) for synchronous mode. The default is
3600. The maximum is 2147483. This is a global, aggregate timeout

-t timeoutNo

and represents the maximum time to wait for all spawned jobs to
complete.

The login name of the user.-u user nameYes

Return verbose output.-vNo

Runs job executor in synchronous mode. This means that job executor
remains running until the job completes.

If you do not specify -w, job executor exits after starting the job, unless
the job reads from or writes to files on the server. In this case, job
executor will run until all local files are processed, then exit.

-wNo

Overrides the input or output file specified in Read from File or Write
to File. For more information, see Overriding Job File Locations on
page 823.

StageName=Protocol:FileNameNo

Overrides the file layout definition specified in Read from File or Write
to File with one defined in a schema file. For more information, see
Overriding the File Format at the Command Line on page 825.

StageName:schema=Protocol:SchemaFileNo

Example Use of Job Executor
This example shows command line invocation and output:

D:\spectrum\job-executor>java -jar jobexecutor.jar -u user123
-p "mypassword" -j validateAddressJob1 -h
spectrum.example.com -s 8888 -w -d "%" -i 1 -t 9999

validateAddressJob1%105%succeeded

In this example, the output indicates that the job named 'validateAddressJob1' ran
(with identifier 105) with no errors. Other possible results include "failed" or "running."

380Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Executing SQL Commands Before or After a Dataflow
The Execute SQL activity performs operations on database at any point during a process flow. This
activity allows you to run the SQL statements both before and after the execution of Spectrum
Technology Platform dataflow or an external program. For example, the Execute SQL activity can
be used to delete indexes before the execution of a Spectrum Technology Platform dataflow and to
create indexes again after the execution of the dataflow. To execute SQL statements using Execute
SQL activity, you must create a process flow.

Note: Please refer to Spectrum Dataflow Designer Guide for instructions on how to create
and schedule a process flow.

1. Drag the Execute SQL activity to the canvas.
2. Double click the Execute SQL activity.
3. Select a database connection you want to use.

If you need to make a new database connection, or modify or delete an existing database
connection, click Manage.

If you are adding or modifying a database connection, complete these fields:

Enter a name for the connection. The name can be anything
you choose.

Connection name

Select the appropriate database type.Database driver

Specify the host, port, instance, user name, and password to
use to connect to the database.

Connection options

4. Write the SQL statement in the SQL statement(s) box.
By default, the Terminate flow on error option is checked which means that the process flow
will be terminated if an exception occurs. If the option Terminate flow on error is unchecked
and an exception occurs, the process flow will not stop and the exception will be logged in the
server logs.

5. Add the action you want a process flow to perform.
You can add a job by dragging a job's icon to the canvas, or add an external program by dragging
a Run Program icon onto the canvas.

6. Connect the two activities.
7. Add additional Execute SQL activity as needed.

Refer step 2 to step 5 for performing actions on Execute SQL.

8. When you have added all the jobs, Run Program and Execute SQL activities you want to execute
in the process flow, drag a Success activity onto the canvas and connect it to the last activity in
the process flow.

381Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

9. Run the Process flow.

Transposer
Transposer converts columns to rows. Transposing data is the opposite of pivoting data using the
Group Statistics stage, which transforms row data into columns.

To understand Transposer, consider the following example. A table contains four quarters of sales
data and you want to add all the revenue generated and to analyze the growth achieved in first three
quarters. To accomplish this, use Transposer to create a column containing all the revenue of three
transposed quarters. Using Transposer to add all the revenues generated in different columns into
a column potentially improves performance instead of adding them in different columns.

The following table explains the options in the Transposer dialog box.

DescriptionOption

Type a header name for the column that will contain those columns which are to be transposed.
This new column is automatically added to the dataflow.

Transposed fields header

Type a header name for the column that will contain the transposed column values. This new
column is automatically added to the dataflow.

Transposed values
header

Check this option to retain all the transposed fields as columns in the output.Retain transposed fields

Displays all the column headers of input file.Field Name

382Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Displays the data type of the respective fields (column headers).

The columns to be transposed should have compatible data type in the input source file. Below
is the compatibility matrix. The tick marked grids correspond to the compatible data types.

Type

Check the box next to each field that you want to convert to a column. In order to prevent a
column from getting transposed and retain it in the output, clear the check box.

Transposed

Example Use of Transposer
The following input data contains four quarters of sales by store. Note that Q1, Q2,
Q3, and Q4 represent four quarters of sales (in millions).

Q4Q3Q2Q1Store (US)

400.00300.00200.10100.00New York

650.00550.00450.00250.10California

383Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Q4Q3Q2Q1Store (US)

450.00350.00250.10150.00Illinois

The cases mentioned below illustrate the behavior of Transposer using the options
provided in the stage. Note that Quarter is the column name for Transposed fields
header and Revenue is the column name for Transposed fields values.

Case 1
Suppose you want columns Q1, Q2, and Q3 to be transposed and Q4 to be retained
in the output. To do this, check the box under the Transposed header next to each
column which is to be transposed. You will now see Q1, Q2, and Q3 as rows
whereas Q4 will be retained as a column in the output.

Q4RevenueQuarterStore (US)

400.00100.00Q1New York

400.00200.10Q2New York

400.00300.00Q3New York

650.00250.10Q1California

650.00450.00Q2California

650.00550.00Q3California

450.00150.00Q1Illinois

450.00250.10Q2Illinois

450.00350.00Q3Illinois

Case 2
Suppose you want columns Q1 and Q2 to be transposed and Q3 and Q4 to be
retained in the output. In addition, you also want to retain all the transposed fields
(Q1 and Q2) as columns in the output. To do this, check the option Retain

384Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

transposed fields and the box under the Transposed header next to each column
to be transposed. You will now see Q1 and Q2 as rows whereas Q3 and Q4 will
be retained as columns in the output along with Q1 and Q2.

Q4Q3Q2Q1RevenueQuarterStore (US)

400.00300.00200.10100.00100.00Q1New York

400.00300.00200.10100.00200.10Q2New York

650.00550.00450.00250.10250.10Q1California

650.00550.00450.00250.10450.00Q2California

450.00350.00250.10150.00150.00Q1Illinois

450.00350.00250.10150.00250.10Q2Illinois

Unique ID Generator
The Unique ID Generator stage creates a unique key that identifies a specific record. A unique ID
is crucial for data warehouse initiatives in which transactions may not carry all name and address
data, but must be attributed to the same record or contact. A unique ID may be implemented at the
individual, household, business, and premises level. Unique ID Generator provides a variety of
algorithms to create unique IDs.

The unique ID is based on either a sequential number or date and time stamp. In addition, you can
optionally use a variety of algorithms to generate data to appended to the ID, thereby increasing the
likelihood that the ID will be unique. The sequential number or date and time stamp IDs are required
and cannot be removed from the generated ID.

Unique ID Generator can be used to generate a non-unique key using one of the key generation
algorithms. In non-unique mode, you can create keys to use for matching. This may be useful in a
data warehouse where you have already added keys to a dimension and you want to generate a
key for new records in order to see if the new records match an existing record.

This example shows that each record in the input is assigned a sequential record ID in the output.

385Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

RecordIDRecord

0John Smith

1Mary Smith

2Jane Doe

3John Doe

The Unique ID stage produces a field named RecordID which contains the unique ID. You can
rename the RecordID field as required.

Defining a Unique ID
By default, the Unique ID Generator stage creates a sequential ID, with the first record having an ID
of 0, the second record having an ID of 1, the third record having an ID of 2, and so forth. If you want
to change how the unique ID is generated, follow this procedure.

1. In the Unique ID Generator stage, on the Rules tab, click Modify.
2. Choose the method you want to use to generate the unique ID.

For more information, see Unique ID Definition Methods on page 91.

3. Click OK.

Unique ID Definition Methods

DescriptionOptions

Assigns an incremental numeric value to each record starting with the number
you specify. If you specify 0, the first record will have an ID of 0, the second
record will have an ID of 1, and so on.

Note: For this Unique Key, ensure you do not increase the Runtime
instances (in the Runtime Performance tab) beyond 1 as this can
create duplicate IDs.

Sequential Numeric tag starting at

386Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOptions

Assigns an incremental numerical value to each record starting with themaximum
number read from the database field. This number is then incremented by 1 and
assigned to the first record. For example, if the number read from the database
field is 30, the first record will have an ID of 31, the second record will have an
ID of 32, and so forth.

Select the database connection you want to use. Your choices
vary depending on what connections are defined in the Connection
Manager of Spectrum Management Console. If you need to make
a new database, or modify or delete an existing connection, click
Manage.
If you are adding or modifying a database connection, complete
these fields:
Connection name
Enter a name for the connection. This can be anything you choose.
Database driver
Select the appropriate database type.
Connection options
Specify the host, port, instance, user name, and password to use
to connect to the database.

Connection

Specifies the table or view in the database that you want to query.Table view

Select a column from the list to generate a unique key.

The supported data types for unique ID generation are:

Database
field

A numeric data type that contains both negative and
positive whole numbers between -263

(-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A numeric data type that contains both negative and
positive whole numbers between -231

(-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that supports 38 decimal points
of precision. Use this data type for data that will be
used in mathematical calculations requiring a high
degree of precision, especially those involving
financial data. The bigdecimal data type supports
more precise calculations than the double data type.

bigdecimal

A numeric data type that contains both negative and
positive double precision numbers between 2-1074

and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to
1.79769313486232E+308.

double

A numeric data type that contains both negative and
positive single precision numbers between 2-149 and
(2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

Sequential Numeric tag starting at
value in a database field

387Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOptions

Creates a unique key based on the date and time stamp instead of sequential
numbering.

Date/Time stamp

Creates a universally unique 32-digit identifier key for each record. The digits in
the key are displayed in five groups separated by hyphens, in the form 8-4-4-4-12
for a total of 36 characters (32 alphanumeric characters and four hyphens).
Example: 123e4567-e89b-12d3-a456-432255330000

UUID

Select this option only if you want to generate a non-unique key using an
algorithm.

Off

Using Algorithms to Augment a Unique ID
Unique ID Generator generates a unique ID for each record by either numbering each record
sequentially or generating a date-time stamp for each record. You can optionally use algorithms to
append additional information to the sequential or date-time unique ID, thereby creating a more
complex unique ID and one that is more likely to be truly unique.

1. In the Unique ID Generator stage, click Add.
2. In the Algorithm field, select the algorithm you want to use to generate additional information

in the ID.
Returns specified fields with consonants removed.Consonant

Returns a code based on a phonetic representation of their characters.
Double Metaphone is an improved version of the Metaphone algorithm,

DoubleMetaphone

and attempts to account for the many irregularities found in different
languages.

Indexes names by sound as they are pronounced in German. Allows
names with the same pronunciation to be encoded to the same

Koeln

representation so that they can be matched, despite minor differences in
spelling. The result is always a sequence of numbers; special characters
and white spaces are ignored. This option was developed to respond to
limitations of Soundex.

A message digest algorithm that produces a 128-bit hash value. This
algorithm is commonly used to check data integrity.

MD5

Returns a Metaphone coded key of selected fields. Metaphone is an
algorithm for coding words using their English pronunciation.

Metaphone

Returns a Metaphone coded key of selected fields for the Spanish
language. This metaphone algorithm codes words using their Spanish
pronunciation.

SpanishMetaphone

388Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Improves upon the Metaphone and Double Metaphone algorithms with
more exact consonant and internal vowel settings that allow you to produce

Metaphone 3

words or names more or less closely matched to search terms on a
phonetic basis. Metaphone 3 increases the accuracy of phonetic encoding
to 98%. This option was developed to respond to limitations of Soundex.

3. In the Field name field, choose the field to which you want to apply the algorithm. For example,
if you chose the soundex algorithm and chose a field named City, the ID would be generated by
applying the soundex algorithm to the data in the City field.

4. If you selected the substring algorithm, specify the portion of the field you want to use in the
substring:
a) In the Start position field, specify the position in the field where you want the substring to

begin.
b) In the Length field, select the number of characters from the start position that you want to

include in the substring.

For example, say you have this data in a field named LastName:

Augustine

If you specified 3 as the start position and 6 as the end position, the substring would produce:

gustin

5. Check the Remove noise characters box to remove all non-numeric and non-alpha characters
such as hyphens, white space, and other special characters from the field before applying the
algorithm.

6. For consonant and substring algorithms, you can sort the data in the field before applying the
algorithm by checking the Sort input box. You can then choose to sort either the characters in
the field or terms in the field in alphabetical order.

7. Click OK to save your settings.
8. Repeat as needed if you want to add additional algorithms to produce a more complex ID.

Note: The unique key definition is always displayed in a different color and cannot be
deleted.

Defining a Non-Unique ID
Unique ID Generator can be used to generate a non-unique key using one of the key generation
algorithms. In non-unique mode, you can create keys to use for matching. This may be useful in a
data warehouse where you have already added keys to a dimension and you want to generate a
key for new records in order to see if the new records match an existing record.

1. In the Unique ID Generator stage, on the Rules tab, click Modify.
2. Select Off.

389Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

This turns off the unique ID portion of the ID generation rules. With this option off, only the
algorithm you choose in the steps below are used to create the ID. This means that any records
that have the same data in the fields you use to generate the ID will have the same ID. You can
then use the ID for matching.

3. Click OK.
4. At the warning prompt, click Yes.
5. In the Unique ID Generator stage, click Add.
6. In the Algorithm field, select the algorithm you want to use to generate additional information

in the ID.
Returns specified fields with consonants removed.Consonant

Returns a code based on a phonetic representation of their characters.
Double Metaphone is an improved version of the Metaphone algorithm,

DoubleMetaphone

and attempts to account for the many irregularities found in different
languages.

Indexes names by sound as they are pronounced in German. Allows
names with the same pronunciation to be encoded to the same

Koeln

representation so that they can be matched, despite minor differences in
spelling. The result is always a sequence of numbers; special characters
and white spaces are ignored. This option was developed to respond to
limitations of Soundex.

A message digest algorithm that produces a 128-bit hash value. This
algorithm is commonly used to check data integrity.

MD5

Returns a Metaphone coded key of selected fields. Metaphone is an
algorithm for coding words using their English pronunciation.

Metaphone

Returns a Metaphone coded key of selected fields for the Spanish
language. This metaphone algorithm codes words using their Spanish
pronunciation.

SpanishMetaphone

Improves upon the Metaphone and Double Metaphone algorithms with
more exact consonant and internal vowel settings that allow you to produce

Metaphone 3

words or names more or less closely matched to search terms on a
phonetic basis. Metaphone 3 increases the accuracy of phonetic encoding
to 98%. This option was developed to respond to limitations of Soundex.

7. In the Field name field, choose the field to which you want to apply the algorithm. For example,
if you chose the soundex algorithm and chose a field named City, the ID would be generated by
applying the soundex algorithm to the data in the City field.

8. If you selected the substring algorithm, specify the portion of the field you want to use in the
substring:
a) In the Start position field, specify the position in the field where you want the substring to

begin.

390Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

b) In the Length field, select the number of characters from the start position that you want to
include in the substring.

For example, say you have this data in a field named LastName:

Augustine

If you specified 3 as the start position and 6 as the end position, the substring would produce:

gustin

9. Check the Remove noise characters box to remove all non-numeric and non-alpha characters
such as hyphens, white space, and other special characters from the field before applying the
algorithm.

10. For consonant and substring algorithms, you can sort the data in the field before applying the
algorithm by checking the Sort input box. You can then choose to sort either the characters in
the field or terms in the field in alphabetical order.

11. Click OK to save your settings.
12. Repeat as needed if you want to add additional algorithms to produce a more complex ID.

Note: The unique key definition is always displayed in a different color and cannot be
deleted.

Write to Cache
Write to Cache loads output from a dataflow into a global cache, making the data available for lookup
from the Query Cache stage. Using a global cache for data lookups improves performance compared
to lookups to databases.

A global cache is system-wide, shared cache that will reside in memory. Choose a global cache if
you want the cache to be available to multiple dataflows or when data does not change often or
remains relatively static and when storage is not limited. A global cache is static as you can write to
it only once. The cache can not be updated once it has been created.

The cache size is set to 500K records (default). You can configure it by using the following property
of jmx-console:

MBean:
com.pb.spectrum.edi.managers.config.impl:manager=EDIGlobalCacheConfigManager

Description: Data Global Cache Configuration Manager

MaxCacheSize = 500000

Note: Write to Cache overwrites the cache each time the dataflow runs.

391Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

General

DescriptionOption Name

Specifies the name you want to give to the cache. If there are caches already on the
system, they are listed and you can choose one if you want to populate the existing
cache with new data. To create a new cache, type the name you want for the new
cache. The name must begin with a letter. It can contain an underscore but no other
special characters. The name can contain numeric values.

Cache name

This column lists the field names that will be used in the cache. If you wish to change
a field name, click the field name and enter a new name.

Cache Fields

This column lists the field names used in the dataflow. You cannot modify these field
names.

Stage Fields

This column lists the data type of each field.Type

Check the box in this column to have the field written to the cache. Clear the box if
you do not want the field written to the cache.

Include

Check the box in this column if you want the field to be used as a key in the Query
Cache stage. For example, if you have a dataflow field named AccountNumber and
you want the Query Cache stage to look up data by querying for a matching value
in the AccountNumber field, you would check the box in the Key Field column for the
AccountNumber field.

The fields you specify as key fields are available for selection in the Query Cache
stage as key fields.

Key Field

Clearing a Global Cache
To clear a global cache you must create and execute a process flow. The process flow must contain
a Clear Cache activity. The Clear Cache activity clears the global cache but does not delete it. You
can also clear the cache automatically by scheduling a process flow.

Note: Please see Dataflow Designer Guide for instructions on how to create and schedule
a process flow.

392Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

To manually clear the global cache data, follow these steps:

1. Drag the Clear Cache activity to the canvas.
2. Drag the Success activity to the canvas.
3. Connect the two activities.
4. Double-click the Clear Cache activity.
5. Select the cache. You can also select multiple caches to clear their data.

The caches that you create in Write to Cache stage are listed in Clear Cache activity.

6. Run the process flow.

Write to DB
TheWrite to DB stage writes the output of a dataflow to a database. The stage writes all values of
the date datatype as String values. This is the behavior of the jTDS driver, which is the default
driver used by Spectrum. To handle all date datatype values as is, use Microsoft's JDBC driver.

Note: The stage supports reading data from and writing data to HDFS 3.x and Hive 2.1.1.
The support includes:

• Connectivity to Hive from Spectrum on Windows
• Support and connectivity to Hive version 2.1.1 from Spectrum with high availability
• Support to Read and Write from Hive DB (JDBC) via Model Store connection

Also see Best Practices for connecting to HDFS 3.x and Hive 2.1.1.

Note: Significant performance improvements can be achieved by using multiple runtime
instances of Write to DB. To specify multiple runtime instances, click the Runtime button.

Configuring the General tab

1. From the Connection drop down list, select the connection for the database you want to use.
2. Tomake a new database connection, clickManage. For more information about creating database

connections, see Database Connection Manager on page 397

Note: This option is available only through the Spectrum Enterprise Designer.

393Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. To select a table or view from the database, click the browse button and to go to the table or
view that you want to use.

When you browse a table and select it, the Table Schema, including Database Fields, Stage
Fields, and Data Types are displayed. A Preview of the table is also available.

Note: If you are writing to a SQL database, you cannot write to views that reference more
than one table. This is due to a limitation in SQL Server.

4. To create a new table in the database, click Create Table and in the pop-up that appears,
select the Table Owner and specify the Table Name.

Note: Table names are case sensitive

Note: If you do not have an input stage (such as Read from File or Read from DB)
linked to theWrite to DB stage, you will get this error message: Cannot create table
without Table schema defined. Please make sure you have upstream fields defined for
this stage.

5. In the Table Schema, specify these details:

a. Indicate the primary key by selecting the corresponding Primary key check box.
b. Select the Include check box to specify the fields you want to write to the new table.
c. For string data type, specify the fields's length in theWidth column.

Note: The default is 512.

d. If Allow Null is checked and the Input Fields contains a null value, then the dataflow writes
the null value to the database.

e. You can edit the column name by changing the value in the corresponding Output Fields.

The Create Table button supports table creation in these databases:

• Axion
• DB2
• Derby or Cloudscape
• Firebird
• HSQLDB
• Interbase
• MaxDB or SapDB
• McKoi
• MySQL
• Oracle
• PostgreSQL
• SQL Server
• Sybase

394Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: For DB2 databases, if you try to create a table and the page size is smaller than
the total length of all string columns, you will get an error that says "Failed to build body
from content. Serializable class not available to broker."

6. Click the OK button to close the Create Table pop-up and return toWrite to DB Options.
7. In the Stage Fields column of the Table Schema, you can specify the field name you want to

write to the database corresponding to the Database Field column.
8. Mark the Include check box to select the fields you want to write.

Note: To prevent poor performance you should have a sorted index or key in the database
table.

Configuring the Runtime tab

DescriptionOption Name

Specifies an action to take when writing to the database:

Insert new records into the database but do not update existing
records. This is the default setting.

Insert

Update existing records in the database but do not insert new
records.

Update

Note: If you select Update, the primary key column
name used in the input table must match the primary
key column name in the output table. If you try to update
a table where the primary key column name does not
match the input, or where the primary key column is not
defined, the update will not work.

Insert new records into the database if the record does not exist,
otherwise update the existing record.

Insert if not
able to update

Write Mode

Select this option to commit changes to the database after a specified number of
records are processed. By default this option is not selected, which means that
changes are committed after each record is processed. Selecting this option can
significantly improve the performance of the Write to DB stage.

Batch commit

395Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

If you enable the Batch commit option, specifies the number of records to commit
to the database in each batch. The default is 1,000. For dataflows created in Spectrum
Technology Platform 7.0 and earlier, the default is 100.

A larger batch size does not always offer better load performance. Consider these
factors when choosing a batch size:

• Data arrival rate to Write To DB stage: If data is arriving at slower rate than the
database can process then modifying batch size will not improve overall dataflow
performance. For example, dataflows with address validation or geocoding may
not benefit from an increased batch size.

• Network traffic: For slow networks, increasing batch size to a medium batch size
(1,000 to 10,000) will result in better performance.

• Database load and/or processing speed: For databases with high processing
power, increasing batch size will improve performance.

• Multiple runtime instances: If you use multiple runtime instances of the Write to
DB stage, a large batch size will consume a lot of memory, so use a small or
medium batch size (100 to 10,000).

• Database roll backs:Whenever a statement fails, the complete batch is rolled
back. The larger the batch size, the longer it will take to perform the to rollback.

Batch size

Select this option to ensure that the commit to database operation occurs after all
the records are transferred to the database.

Commit at the end

Specify a value after which the records are to be committed. Records are committed
to the database after every (batch count to commit * batch size) number of records
are transferred to the database. For example, ifBatch size is set as 1000 andBatch
count to commit is set as 3, then the commit occurs after every 3000 records are
transferred to the database.

Batch count to commit

Select this option if you want to clear all data from the table before writing to the
database.

Truncate table before inserting data

Select this option to delete and recreate the table before writing the dataflow's output
to the table. This option is useful if you want the table's schema to match the fields
from the dataflow and not contain any extraneous schema information.

The table that will be deleted and recreated is the one specified in the Table/View
field on the General tab. For example, if you specify the Customers table in the
Table/View field, and you select Drop and recreate the table if it already exists,
then the Customers table will be deleted from the database, and a new table named
Customers will be created with a schema that matches the actual fields written to
the table.

Drop and recreate the table if it
already exists

396Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Database Connection Manager
The Database Connection Manager allows you to manage registered database connections. To add,
modify, delete, and test connections:

1. In theWrite To DB Options dialog box, click Manage.
2. Click Add, Modify, or Delete.
3. If you are adding or modifying a database connection, complete these fields:

• Connection name — Enter the name of the new connection.
• Database driver — Select the appropriate database type.
• Connection Options — Specify all the options, typically host, port, instance, user name, and
password.

Note: You can test the connection by clicking Test.

4. If you are deleting a database connection, select the connection you want to remove and click
Delete.

5. Click the Apply button when you are done with the configuration.

Configuring Error Handling in Write to DB
The Write to DB stage has an error port which allows you to filter out records that cause database
errors when writing the record to a database, such as a primary key constraint violation or a unique
constraint violation. These records can then be routed along another path in the dataflow while other
records are successfully committed. For example, if you are processing 100 records and records 4,
23, and 56 cause a database error, these three records would be routed through the error port while
the other 97 records would be committed to the database.

Note: Using the error port is optional. If you do not use the error port, the job will fail if any
record causes an error.

1. From the palette, choose the type stage you want to handle error records (for example, Write to
File) and drag it onto the canvas. You have a couple options for selecting a stage:

• To write failed records to a file, drag one of the following onto the canvas: Write to File, Write
to XML, or Write to Variable Format File,.

• To simply discard failed records, drag Write to Null onto the canvas.

2. Connect the error port on Write to DB to the stage you want to handle failed records.

The following example shows the error port on Write to DB connected to a Write to File stage.
In this example, records that cause an error when written to the database are instead written to
the file specified in the Write to File stage.

397Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

When you run the dataflow, records that cause an error are routed through the error port. The records
from the error port contain the fields specified in Write to DB plus the following fields:

This field contains the numeric error code returned from the database. For
example, given the error ORA-00001: unique constraint

Error.code

ANKUSH.SYS_C0010018) violated, the value in the Error.code field would
be 1. See your database software's documentation for a listing of error codes.
This field contains the error message returned from the database. For example:
ORA-01034 ORACLE not available. In this case, ORACLE not

Error.Message

availablewould be the value in the Error.Message field. See your database
software's documentation for a listing of error messages.
This field contains the SQLSTATE code which provides detailed information
about the cause of the error. For a listing of SQLSTATE codes, see your
database software's documentation.

Error.SQLState

The date and time on the Spectrum Technology Platform server when the
error occurred.

Timestamp

The name of the Spectrum Technology Platform user that ran the dataflow.Username

Write to File
Write to File writes dataflow output to a flat file.

• To write records of varying format, seeWrite to Variable Format File on page 430.
• To write records to an XML file, seeWrite to XML on page 440.

Tip: You can copy your source and paste it as the sink into your dataflow to quickly set up the file
and use the same fields as you defined in your source.

Prerequisite: To write a file to any of the file system connection types, such as
FTP, Cloud, Amazon AWS S3, and HDFS, perform these steps:

1. Create a connection to these file servers using Spectrum Management
Console or Discovery. For details, see section Defining Connections.

2. Select the required file path using the File name field in File Properties tab
(described below).

398Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

File Properties Tab

DescriptionField Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to locate the file you want.

While writing a file to an HDFS file server, these compression formats are supported:

1. GZIP (.gz)
2. BZIP2 (.bz2)

Note: Include the appropriate extension in the file name, to indicate the
desired compression format to be used while writing the file.

Attention: If the Spectrum Technology Platform server is running on Linux, remember
that file names and paths on these platforms are case sensitive.

File name

The format of the records in the file. Select one of:

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field has a fixed starting and ending character position.

Line Sequential

A text file in which each record is a specific number of characters
in length and each field has a fixed starting and ending character
position.

Fixed Width

A text file in which records are separated by an end-of-line (EOL)
character such as a carriage return or line feed (CR or LF) and
each field is separated by a designated character such as a
comma.

Delimited

Record type

399Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The text file's encoding. Select one of these:

This encoding is also known as the Windows-1252 or simply
Windows character set. It is a super set of ISO-8859-1 and uses
the 128-159 code range to display additional characters not
included in the ISO-8859-1 character set.

CP1252

Supports all Unicode characters and is backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-8

Supports all Unicode characters but is not backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-16

A character encoding based on the order of the English
alphabet.

US-ASCII

UTF-16 encoding with big endian byte serialization (most
significant byte first).

UTF-16BE

UTF-16 encoding with little endian byte serialization (least
significant byte first).

UTF-16LE

An ASCII character encoding typically used for Western
European languages. Also known as Latin-1.

ISO-8859-1

An ASCII character encoding typically used for Southern
European languages. Also known as Latin-3.

ISO-8859-3

An ASCII character encoding typically used for Turkish
language. Also known as Latin-5.

ISO-8859-9

AnASCII code page used to writeWestern European languages.CP850

An EBCDIC code page used to write Western European
languages.

CP500

A character encoding for the Japanese language.Shift_JIS

A Microsoft's extension of Shift_JIS to include NEC special
characters, NEC selection of IBM extensions, and IBM
extensions.

MS932

An EBCDIC code page with the full Latin-1 character set.CP1047

Character encoding

400Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

DescriptionField Name

Specifies the character used to separate fields in a delimited file. For example, this
record uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to
select another character as a delimiter.

Field separator

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another
character as a text qualifier.

Text qualifier

Specifies the character used to separate records in line a sequential or delimited file.
This field is not available if you check the Use default EOL check box.

The record separator settings available are:

A line feed character separates the records. This is the
standard record separator for Linux systems.

Linux (U+000A)

A carriage return character separates the records. This
is the standard record separator for Macintosh systems.

Macintosh (U+000D)

A carriage return followed by a line feed separates the
records. This is the standard record separator for
Windows systems.

Windows (U+000D
U+000A)

If your file uses a different record separator, click the ellipses button to select another
character as a record separator.

Record separator

401Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Specifies that the file's record separator is the default end of line (EOL) character
used on the operating system on which the Spectrum Technology Platform server
is running.

Do not select this option if the file uses an EOL character that is different from the
default EOL character used on the server's operating system. For example, if the
file uses aWindows EOL but the server is running on Linux, do not check this option.
Instead, select the Windows option in the Record separator field.

Use default EOL

For fixed width files, specifies the exact number of characters in each record.

For line sequential files, specifies the length, in characters, of the longest record in
the file.

Record length

Specifies whether the first record in a delimited file contains header information and
not data.

For example, this file snippet shows a header row in the first record.

"AddressLine1"|"City"|"StateProvince"|"PostalCode"
"7200 13TH ST"|"MIAMI"|"FL"|"33144"
"One Global View"|"Troy"|"NY"|12180

First row is header record

Delimited file records containing fewer fields than are defined on the Fields tab will
be treated as malformed.

Treat records with fewer fields than
defined as malformed

Imports the file layout definition, encoding setting, and sort options from a settings
file. The settings file is created by exporting settings from another Read from File or
Write to File stage that used the same input file or a file that has the same layout as
the file you are working with.

Import

Saves the file layout definition, encoding setting, and sort options to a settings file.
You can then import these settings into other Read from File or Write to File stages
that use the same input file or a file that has the same traits as the file you are working
with now. You can also use the settings file with job executor to specify file settings
at runtime.

For information about the settings file, see The File Definition Settings File on page
318.

Export

402Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields Tab

The Fields tab defines the names, positions, and, for fixed width and line sequential files, lengths of
fields in the file. For more information, see these topics:

Defining Fields In a Delimited Output File on page 404
Defining Fields In a Line Sequential or Fixed Width File on page 406

Sort Fields Tab

The Sort Fields tab defines fields by which to sort the output records before they are written to the
output file. Sorting is optional. For more information, see Sorting Output Records on page 409.

Runtime Tab

DescriptionOption Name

This displays the file defined on the File Properties tab.File name

Select this option to write records to different files instead of writing all records to one
file. The file to which each record is written is specified in the record itself. Each record
must contain a field that specifies either a file name or the full file path of the file to
which you want the record written. For example, if you want to send the stock prices
of different companies (of various groups) to all the clients separately, this feature writes
the stock prices of different companies into separate files that may be sent to each of
the clients, if you so wish. If you enable the Generate multiple file option you must
specify an output file on either the Spectrum Technology Platform server or on an FTP
server. If you want to write data to a file on an FTP server you must define a connection
to the file server using Spectrum Management Console.

Note: The records in the column you select in the File path field must be in
sorted order. Use this feature when record contains either a file name or the
full file path of the file.

Generate multiple files

Selects the field that contains the path (either a file name or the full file path) of the file
to which you want to write the record. This field is only enabled if you select Generate
multiple files.

File path field

403Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether to add the dataflow's output to the end of the file or to delete the
existing data in the file before writing the output:

Replaces the existing data in the output file each time the
dataflow runs.

Overwrite

Adds the dataflow's output to the end of the file without erasing
the file's existing data.

Append

Write Mode

Defining Fields In a Delimited Output File
In theWrite to File stage, the Fields tab defines the names, position, and, for some file types, lengths
of the fields in the file. After you define an output file on the File Properties tab you can define the
fields.

If the output file contains a header record, you can quickly define the fields by clicking Regenerate.

To define fields with default values for position, length, and data type, click Quick Add and select
the fields to add.

If the input file does not contain a header record, or if you want to manually define the fields, follow
these steps:

1. Click Add.
2. In the Name field, choose the field you want to add.
3. In the Type field, select the data type of the field coming from the dataflow.

Spectrum Technology Platform supports these data types:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

404Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

4. If you selected a date, time, or numeric data type, you can use the default date/time or number
format or you can specify a different format for this specific field. The default format is either the
system default format that has been set in the type conversion options in SpectrumManagement
Console, or it is the dataflow's default format specified in the type conversion options in Spectrum
Enterprise Designer. The format that is in effect is displayed. To use the default format, leave
Default selected. To specify a different format, choose Custom and follow these steps:
a) In the Locale field, select the country whose formatting convention you want to use. Your

selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

405Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify
your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

5. Click Add.

After defining the fields in your output file, you can edit its contents and layout.

DescriptionOption Name

Adds a field to the output. You can append a field to the end of the existing layout,
or you can insert a field into an existing position and the position of the remaining
fields will be adjusted accordingly.

Add

Modifies the field's name and type.Modify

Removes the selected field from the output.Remove

Reorders the selected field.Move Up/Move Down

Defining Fields In a Line Sequential or Fixed Width File
In theWrite to File stage, the Fields tab defines the names, position, and, for some file types, lengths,
of the fields in the file. After you define an output file on the File Properties tab you can define the
fields.

To define fields with default values for position, length, and data type, click Quick Add and select
the fields to add.

To add fields manually from a list of fields used in the dataflow, follow this procedure:

1. Click Add.
2. In the Name field, choose the field you want to add.
3. In the Type field, select the data type of the field coming from the dataflow.

Spectrum Technology Platform supports these data types:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

406Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field
Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

407Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. If you selected a date, time, or numeric data type, you can use the default date/time or number
format or you can specify a different format for this specific field. The default format is either the
system default format that has been set in the type conversion options in SpectrumManagement
Console, or it is the dataflow's default format specified in the type conversion options in Spectrum
Enterprise Designer. The format that is in effect is displayed. To use the default format, leave
Default selected. To specify a different format, choose Custom and follow these steps:
a) In the Locale field, select the country whose formatting convention you want to use. Your

selection will determine the default values in the Format field. For date data, your selection
will also determine the language used when a month is spelled out. For example, if you
specify English the first month of the year would be "January" but if you specify French it
would be "Janvier."

b) In the Format field, select the format for the data. The format depends on the data type of
the field. A list of the most commonly used formats for the selected locale is provided.

An example of the selected format is displayed to the right of the Format field.

You can also specify your own date, time, and number formats if the ones available for
selection do not meet your needs. To specify your own date or time format, type the format
into the field using the notation described in Date and time patterns on page 32. To specify
your own number format, type the format into the file using the notation described inNumber
Patterns on page 34.

5. The Start Position and Length fields are automatically filled in based on the data in the dataflow
and number of fields you have already added.

6. Click Add.
Alternatively, you can also add a field by first defining the starting position and length of the field.
To do this, under Sample File click at the position where you want to begin a field and drag to
the left so that the desired field is highlighted, as shown here:

After defining the fields in your output file, you can edit its contents and layout. The Recalculate
start position option tells the Write to File stage to recalculate the positions of the fields when you
modify, move, or remove a field in the output file. Uncheck this box if you do not want the positions
recalculated and instead want the fields to stay in their existing position after you edit the output file.

408Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Adds a field to the output.Add

Modifies the field's name, type, start position, and length.Modify

Removes the selected field from the output.Remove

Reorders the selected field.Move Up/Move Down

Sorting Output Records
In the Write to File stage, the Sort Fields tab defines fields by which to sort the output records before
they are written to the output file. Sorting is optional.

1. In Write to File, click the Sort Fields tab.
2. Click Add.
3. Click the drop-down arrow in the Field Name column and select the field you want to sort by.

The fields available for selection depend on the fields in the dataflow.
4. In the Order column, select Ascending or Descending.
5. Repeat until you have added all the output fields you wish to use for sorting. Change the order

of the sort by highlighting the row for the field you wish to move and clicking Up or Down.
6. Default sort performance options for your system are set in Spectrum Management Console. If

you want to override your system's default sort performance options, click Advanced. The
Advanced Options dialog box contains these sort performance options:

Specifies the maximum number of data rows a sorter will hold in memory
before it starts paging to disk. By default, a sort of 10,000 records or less

In memory
record limit

will be done in memory and a sort of more than 10,000 records will be
performed as a disk sort. The maximum limit is 100,000 records. Typically
an in-memory sort is much faster than a disk sort, so this value should be
set high enough so that most of the sorts will be in-memory sorts and only
large sets will be written to disk.

Note: Be careful in environments where there are jobs running
concurrently because increasing the In memory record limit setting
increases the likelihood of running out of memory.

409Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Specifies the maximum number of temporary files that may be used by a
sort process. Using a larger number of temporary files can result in better

Maximum
number of
temporary files performance. However, the optimal number is highly dependent on the

configuration of the server running Spectrum Technology Platform. You
should experiment with different settings, observing the effect on performance
of using more or fewer temporary files. To calculate the approximate number
of temporary files that may be needed, use this equation:
(NumberOfRecords × 2) ÷ InMemoryRecordLimit =
NumberOfTempFilesN

Note: Themaximum number of temporary files cannot be more than
1,000.

Specifies that temporary files are compressed when they are written to disk.Enable
compression

Note: The optimal sort performance settings depends on your server's hardware
configuration. You can use this equation as a general guideline to produce good sort
performance: (InMemoryRecordLimit × MaxNumberOfTempFiles ÷ 2) >=
TotalNumberOfRecords

The File Definition Settings File
A file definition settings file contains the file layout, encoding, and sort options that have been exported
from a Read from File or Write to File stage. The file definitions settings file can be imported into
Read from File or Write to File to quickly set the stage's options instead of manually specifying the
options.

The easiest way to create a file definition settings file is to use specify the file settings using Read
from File or Write to File, then click the Export button to generate the file definitions settings file.

However, for your information the schema of the file definition settings file is shown below. Each
element in the XML file has a type, and if that type is anything other than string or integer, the
acceptable values are shown. These values correspond directly to options in the stage's dialog box.
For example, the FileTypeEnum element corresponds to the Record Type field on the File Properties
tab, and these values appear in the schema: linesequential, fixedwidth, and delimited.

Note: If you enter "custom" for the LineSeparator, FieldSeparator or TextQualifier fields, a
corresponding custom element must also be included (for example, "CustomLineSeparator",
"CustomFieldSeparator", or "CustomTextQualifier") with a hexadecimal number representing
the character, or sequence of characters, to use.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="FileSchema" nillable="true" type="FileSchema"/>
<xs:complexType name="FileSchema">

410Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
default="linesequential"
name="Type"
type="FileTypeEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="UTF-8" name="Encoding" type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="RecordLength"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="default"
name="LineSeparator"
type="LineSeparatorEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomLineSeparator"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="comma"
name="FieldSeparator"
type="FieldSeparatorEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomFieldSeparator"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="none"
name="TextQualifier"
type="TextQualifierEnum"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="CustomTextQualifier"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="false"

411Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

name="HasHeader"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="true"
name="EnforceColumnCount"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Fields"
type="ArrayOfFieldSchema"/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="FileTypeEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="linesequential"/>
<xs:enumeration value="fixedwidth"/>
<xs:enumeration value="delimited"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="LineSeparatorEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="default"/>
<xs:enumeration value="windows"/>
<xs:enumeration value="linux"/>
<xs:enumeration value="mac"/>
<xs:enumeration value="custom"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="FieldSeparatorEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="comma"/>
<xs:enumeration value="tab"/>
<xs:enumeration value="space"/>
<xs:enumeration value="semicolon"/>
<xs:enumeration value="period"/>
<xs:enumeration value="pipe"/>
<xs:enumeration value="custom"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="TextQualifierEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="single"/>
<xs:enumeration value="double"/>
<xs:enumeration value="custom"/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name="ArrayOfFieldSchema">
<xs:sequence>
<xs:element

412Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

minOccurs="0"
maxOccurs="unbounded"
name="Field"
nillable="true"
type="FieldSchema"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="FieldSchema">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
name="Name"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="string"
name="Type"
type="xs:string"/>

<xs:element
minOccurs="1"
maxOccurs="1"
name="Position"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Length"
type="xs:int"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="false"
name="Trim"
type="xs:boolean"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Locale"
type="Locale"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Pattern"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
default="none"
name="Order"
type="SortOrderEnum"/>

</xs:sequence>

413Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

</xs:complexType>
<xs:complexType name="Locale">
<xs:sequence>
<xs:element

minOccurs="0"
maxOccurs="1"
name="Country"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Language"
type="xs:string"/>

<xs:element
minOccurs="0"
maxOccurs="1"
name="Variant"
type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name="SortOrderEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="ascending"/>
<xs:enumeration value="descending"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

Configuring Dataflow Options
This procedure describes how to configure a dataflow to support runtime options for Write to File
stage.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand theWrite to File stage.

The Dataflow options exposed are:

a. Character Encoding
b. Field Separator
c. Text Qualifier
d. Record Length
e. First Row is Header Record

414Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. The selected Write to File option name is displayed in Option name and Option label fields.
This is the option name that will have to be specified at run time in order to set this option.

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.
13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.

Dataflow Options Rules
1. Character Encoding: All encoding types that are valid for the underlying JVM are accepted. This

option cannot be empty.
2. Field Separator: Any single character delimiter is accepted. Currently, HEX values and spaces

are not supported.
3. Text Qualifier: Any single character qualifier is accepted. HEX values are not supported.
4. Record Length: Only integers accepted. Cannot be blank or non numeric.
5. Starting Record: Only integers accepted. Cannot be non numeric.
6. Max records: Only integers accepted. Cannot be non numeric.
7. First Row is Header: Only boolean values of true and false accepted. Cannot be blank.

Write to Hadoop Sequence File
TheWrite to Hadoop Sequence File stage writes data to a sequence file as output from a dataflow.
A sequence file is a flat file consisting of binary key/value pairs. For more information, go to
wiki.apache.org/hadoop/SequenceFile.
The stage supports reading data from and writing data to HDFS 3.x. The support includes:

• Connectivity to HDFS from Spectrum on Windows
• Support and connectivity to Hadoop 3.x from Spectrum with high availability
• Kerberos-enabled HDFS connectivity through Windows

Also see Configuring HDFS Connection for HA Cluster and Best Practices for connecting to
HDFS 3.x and Hive 2.1.1.

Note: The Write to Hadoop Sequence File stage only supports delimited, uncompressed
sequence files located on Hadoop Distributed File System (HDFS).

415Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://wiki.apache.org/hadoop/SequenceFile

Related tasks: Connecting to Hadoop: To be able to useWrite to Hadoop
Sequence File stage, you need to create a connection to the Hadoop file server.
Once you do that, the name by which you save the connection is displayed as the
server name.

File Properties Tab

DescriptionFields

Specifies the character used to separate fields in a delimited file. For example, this
record uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to
select another character as a delimiter.

Field separator

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another
character as a text qualifier.

Text qualifier

Fields Tab

The Fields tab defines the names, positions, and types of fields in the file. For more information, see
Defining Fields In an Output Sequence File on page 417

416Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Defining Fields In an Output Sequence File
In the Write to Hadoop Sequence File stage, the Fields tab defines the names, positions, and types
of fields in the file. After you define an input file on the File Properties tab you can define the fields.

1. To select the desired fields from the input data, or an existing file, click Quick Add.
a) Select the specific fields from the input data.
b) Click OK.

2. To add new fields, click Add.

a. Enter the Name of the field.
b. Select the Type of the field.

The stage supports the following data types:
A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

3. If you're overwriting an existing file, click Regenerate to pick the schema from the existing file,
and modify it.
This generates the schema based on the first 50 records in the input data to this stage.

4. If you want to have any excess space characters removed from the beginning and end of a field's
character string, select the Trim Spaces check box.

5. Specify an option to generate the key:
The Hadoop cluster auto generates the key. For auto generation, all the
fields in the grid are considered value fields. The data type of the key is
long.

Auto Generate

By default, the first field in the grid is selected as the key field. An icon
is displayed to indicate that the field is the key field. You can select any
other field as the key field.

User Defined

After defining the fields in your output file, you can edit its contents and layout.

417Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Adds a field to the output. You can append a field to the end of the existing layout,
or you can insert a field into an existing position and the position of the remaining
fields will be adjusted accordingly.

Add

Modifies the field's name and type.Modify

Removes the selected field from the output.Remove

Reorders the selected field.Move Up/Move Down

Write to Hive File
TheWrite to Hive File stage writes the dataflow input to the specified output Hive file.

You can select any of these supported Hive file formats for the output file: ORC, Parquet, and Avro.

The stage supports reading data from and writing data to HDFS 3.x. The support includes:

• Connectivity to HDFS and Hive from Spectrum on Windows
• Support and connectivity to Hadoop 3.x from Spectrum with high availability
• Kerberos-enabled HDFS connectivity through Windows
• Support of Datetime datatype in the Parquet file format

Also see Configuring HDFS Connection for HA Cluster and Best Practices for connecting to
HDFS 3.x and Hive 2.1.1.

Related task:
Connecting to Hadoop: To be able to useWrite to Hive File stage, you need to
create a connection to the Hadoop file server. Once you do that, the name by which
you save the connection is displayed as the server name.

418Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

File Properties tab

Table 32: Common File Properties

DescriptionFields

Indicates that the file selected in the File name field is located on the Hadoop system.
Once you select a file located on a Hadoop system, the Server name reflects the name
of the respective file server, as specified in Spectrum Management Console.

Server name

Click the ellipses button (...) to browse to the output Hive file to be created in the defined
Hadoop file server. The output data of this stage is written to the selected file.

Note: You need to create a connection to the Hadoop file server in Spectrum
Management Console before using it in the stage.

File name

Select one of these supported Hive file formats:

• ORC
• Parquet
• Avro

File type

Table 33: ORC File Properties

DescriptionFields

Defines the buffer size to be allocated while writing to an ORC file. This is specified in
kilobytes.

Note: The default buffer size is 256 KB.

Buffer size

Defines the size of stripes to be created while writing to an ORC file. This is specified in
megabytes.

Note: The default stripe size is 64MB.

Stripe size

Defines the number of rows to be written between two consecutive row index entries.

Note: The default Row Index Stride is 10000 rows.

Row index stride

419Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFields

Defines the compression type to be used while writing to an ORC file. The compression
types available are ZLIB and SNAPPY.

Note: The default compression type is ZLIB.

Compression type

Indicates whether the stripes are padded to minimize stripes that cross HDFS block
boundaries, while writing to an ORC file.

Note: By default, the Padding checkbox is selected.

Padding

The first 50 records of the written file are fetched and displayed in the Preview grid, after
the dataflow is run at least once and the data has been written to the selected file.

Preview

Table 34: Parquet File Properties

DescriptionFields

Defines the compression type to be used while writing to a PARQUET file. The compression
types available are UNCOMPRESSED, GZIP and SNAPPY.

Note: The default compression type is UNCOMPRESSED.

Compression type

Defines the size of block to be created while writing to a PARQUET file. This is specified
in megabytes.

Note: The default block size is 128 MB.

Block size

The page size is for compression. When reading, each page can be decompressed
independently. This is specified in kilobytes.

Note: The default page size is 1024 KB.

Page size

To enable/disable dictionary encoding.

Attention: The dictionary must be enabled for the Dictionary Page Size to be enabled.

Note: The default is true.

Enable dictionary

420Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFields

There is one dictionary page per column per row group when dictionary encoding is used.
The dictionary page size functions like the page size. This is specified in kilobytes.

Note: The default dictionary Page size is 1024 KB.

Dictionary Page size

Parquet supports two writer API versions: PARQUET_1_0 and PARQUET_2_0.

Note: The default is PARQUET_1_0.

Writer version

The first 50 records of the written file are fetched and displayed in the Preview grid, after
the dataflow is run at least once and the data has been written to the selected file.

Preview

Table 35: Avro File Properties

DescriptionFields

Specifies the approximate number of uncompressed bytes to be written in each block. The
valid values range from 32 to 2^30. However, it is suggested to keep the sync interval
between 2K and 2M.

Note: The default sync interval is 16000.

Sync Interval (in Bytes)

Defines the compression type to be used while writing to an Avro file. The compression
types available are NONE, SNAPPY and DEFLATE. Choosing DEFLATE compression
gives you an additional option of selecting the compression level (described below).

Note: The default compression type is NONE.

Compression

This field is displayed if you select the DEFLATE option in the Compression field above.

It can have values ranging from 0 to 9, where 0 denotes no compression. The compression
level increases from 1 to 9, with a simultaneous increase in the time taken to compress
the data.

Note: The default compression level is 1.

Compression level

The first 50 records of the written file are fetched and displayed in this grid, after the dataflow
is run at least once and the data is written to the selected file.

Preview

421Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Fields tab

The Fields tab defines the names and types of the fields as present in the source file of this stage,
and to be selected to be written to the output file.

For more information, see Defining Fields for Writing to Hive File on page 422.

Runtime tab

TheRuntime tab provides the option toOverwrite an existing file of the same name in the configured
Hadoop file server. If you check the Overwrite checkbox, then on running the dataflow, the new
output Hive file overwrites any existing file of the same name in the same Hadoop file server.

By default, the Overwrite checkbox is unchecked.

Note: If you do not select Overwrite, an exception is thrown while running the dataflow, if
the file to be written has the same name as an existing file in the same Hadoop file server.

Defining Fields for Writing to Hive File
In the Fields tab of theWrite to Hive File stage, the schema names and datatypes of the fields in
the input data to the stage are listed.

1. To select the desired fields from the input data, or an existing file, click Quick Add.
a) Select the specific fields from the input data.
b) Click OK.

2. To add new fields, click Add.
a) Enter the Name of the field.
b) Select the Type of the field. The stage supports these data types:

A logical type with two values: true and false.boolean

A data type that contains a month, day, and year. For example, 2012-01-30
or January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and
seconds. For example, 2012/01/30 6:15:00 PM.

datetime

Note: In Parquet files, datetime and time datatypes are mapped
as String.

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of
values is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

422Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that supports 38 decimal points of precision. Use this
data type for data that will be used in mathematical calculations requiring

bigdecimal

a high degree of precision, especially those involving financial data. The
bigdecimal data type supports more precise calculations than the double
data type.

Note: For Avro and Parquet Hive files, the bigdecimal datatype
is converted to a decimal datatype with precision 38 and scale 10.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

c) In the Position field, enter the position of this field within the record.

For example, in this input file, AddressLine1 is in position 1, City is in position 2, StateProvince
is in position 3, and PostalCode is in position 4.

"AddressLine1"|"City"|"StateProvince"|"PostalCode"
"7200 13TH ST"|"MIAMI"|"FL"|"33144"
"One Global View"|"Troy"|"NY"|12180

3. If you're overwriting an existing file, click Regenerate to pick the schema from the existing file,
then modify it.
This generates the schema based on the metadata of the existing file, in case of ORC and
Parquet output files.

The Name column lists the names of the various columns of the input data. The Type column
lists the datatypes of each respective field of the input data.

Note: In case of Parquet file type, another column Nullable indicates whether the field
is nullable or not. You can check this checkbox for a particular field to make the field
nullable, or uncheck it otherwise.

4. You can modify the names, datatypes and sequence of the selected columns in the output using
these buttons:

DescriptionOption Name

Adds a field to the output.Add

423Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Modifies the selected field's name and datatype.Modify

Removes the selected field from the output.Remove

Reorders the position of the selected field in the output.Move Up/Move Down

5. Click OK.

Write to NoSQL DB
TheWrite to NoSQL DB writes the output of a dataflow to a NoSQL database. The stage supports
MongoDB and Couchbase database (version 5.x and above).

Note: Significant performance improvements can be achieved by using multiple runtime
instances of Write to NoSQLDB. To specify multiple runtime instances, click the Runtime
button.

General Tab

DescriptionFields

Select the required database connection from the dropdown list. The options displayed
are based on the connections defined in Spectrum Management Console.

To add a new connection, see Connecting to NoSQL.

To modify an existing connection, select and open it from the list of connections on
theConnections page of SpectrumManagement Console, make the required updates,
and click the Save button.

Connection

Specify the name of the collection you want to write to.

You can create a new collection in the NoSQL database by entering a collection name
in the Table/View drop box and clicking Create.

Note: For Couchbase the 'table/view drop down' and 'create' button is
disabled, as we write to a bucket instead of a view. In addition, the Preview
button is also disabled.

Table/View

424Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFields

If this option is enabled, any field that has a NULL value, is ignored.

Note: If you do not enable this option, any field that has a NULL value will
be also written to the database.

Ignore NULL Values

Displays the records from the selected table.

Note: For MongoDB data sources, clicking Preview shows the filtered
records, if one or more where clauses have been entered in theWhere field.
If no where clause has been entered, the preview displays all the records.

Note: For Couchbase data sources, clicking Preview also displays the added
_id field containing the key. If the record already has an _id field, then the
added _id field overwrites the pre-existing one at the time of previewing the
fields.

Preview

Expands the items in the preview tree.Expand All

Collapses the items in the preview tree.Collapse All

Fields Tab

The Fields tab allows you to select the data that you want to write to the database. For more
information, see Defining Fields in a NoSQL Database on page 425.

Defining Fields in a NoSQL Database
In the Write to NoSQL DB stage, the Fields tab defines the names and types of fields fetched from
the previous stage.

1. On the Fields Tab, click Regenerate.

This displays the fields that are flowing from the previous stage.

The data is displayed in the following format: Fieldname(datatype).

Note: For Couchbase, if the record has an _id field, this field will be used as a key for
writing the record into the database. Else, the key for the record, will be autogenerated
and written to the database.

2. To modify the name and type of a field, highlight the field, and click Modify.
3. In the Name field, choose the field you want to add or type the name of the field.
4. In the Type field, you can leave the data type as string if you do not intend to perform any

mathematical operations with the data. However, if you intend to perform these kinds of operations,

425Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

select an appropriate data type. This will convert the string data from the file to a data type that
will enable the proper manipulation of the data in the dataflow.

The stage supports the following data types:

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

5. From the Fields tab, you can either individually select each field to be written to the database
or click Select All to select all the fields.

6. Optionally, from theRuntime tab, you can set the batch size. The batch size denotes the number
of records that are to be written to the database at one time.

7. Click OK.

NoSQL DB Dataflow Options
This procedure describes how to configure a dataflow to support runtime options for NoSQL DB.

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. Expand the NoSQLDB stage.
6. The Dataflow options are exposed as described in the following table:

WriteReadDatabase

ConnectionConnectionMongo DB

TableTable

ConnectionConnectionCouchbase DB

View

426Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

WriteReadDatabase

Design Document Name

The selected NoSQL DB option name is displayed in Option name and Option label fields.
This is the option name that will have to be specified at run time in order to set this option.

7. Enter a description of the option in the Description field.
8. In the Target field, select the option Selected stage(s).
9. If you want to limit the values that can be specified at runtime, edit the options in the Legal

values field by clicking on the icon just to the right of the field.
10. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

11. Click OK.
12. Continue adding options as desired.
13. Click OK in the Dataflow Options dialog box when you are done adding options.
14. Save and expose the dataflow.

Write to Spreadsheet
Write to Spreadsheet writes data to an Excel spreadsheet as output from a dataflow.

File Properties Tab

The File Properties tab contains options for specifying the spreadsheet and data to write from a
dataflow.

DescriptionField Name

Indicates the file you select in the File name field is located on the Spectrum
Technology Platformserver.

Server name

Specifies the path to the file. Click the ellipses button (...) to browse to the file.

Attention: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

File name

427Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Specifies how you want to write data in the spreadsheet in order to write into the
dataflow. You can create a spreadsheet at runtime using any of the following options.
Options are as following:

Creates a new file and replaces the existing data in the output
file each time the dataflow runs.

Create or Overwrite

Adds the dataflow's output to the mapped area and shifts
the data down if already present there.

Insert

Adds the dataflow's output to the end of the file without
erasing the file's existing data.

Append

Write Mode

Specifies a sheet name in the spreadsheet to which you want to write data into the
dataflow.

Sheet name

Specifies either a row-column combination (A1 or B2 ..) or a column from where
you want the data to be written. For the option Insert you need to provide both row
& column. For the option Append you can only provide column as it ignores the row
value.

Start writing from

Specifies the first row in a file contains header information and not data.First row as column header

Fields Tab

The Fields tab defines columns, positions, types and nullable values for the fields in the file. For
more information, see the following topic:

Defining fields in an Output file on page 428

Defining fields in an Output file
In Write to Spreadsheet, the Fields tab defines the names, position, and data types of the fields in
the file. After you define an output file on the File Properties tab you can define the fields. If the
option Nullable is checked and the Name field contains a null value, then the dataflow will write the
null value in the spreadsheet.

If the output file contains a header record, you can quickly define the fields by clicking Regenerate.

To define fields with default values for position, length, and data type, click Quick Add and select
the fields to add.

If the input file does not contain a header record, or if you want to manually define the fields, follow
these steps:

1. Click Add.

428Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. In the Name field, choose the field you want to add.
3. In the Type field, select the data type of the field coming from the dataflow.

Spectrum Technology Platform supports the following data types:

A numeric data type that supports 38 decimal points of precision. Use this
data type for data that will be used in mathematical calculations requiring a

bigdecimal

high degree of precision, especially those involving financial data. The
bigdecimal data type supports more precise calculations than the double data
type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30
or January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains amonth, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59
PM.

time

4. Click Add.

After defining the fields in your output file, you can edit its contents and layout.

429Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Adds a field to the output. You can append a field to the end of the existing layout,
or you can insert a field into an existing position and Write to Spreadsheet will adjust
the remaining fields accordingly.

Add

Modifies the field's name and type.Modify

Removes the selected field from the output.Remove

Reorders the selected field.Move Up/Move Down

Write to Variable Format File
Write to Variable Format File writes records of varying layout to a file.

Variable format files have these characteristics:

• Records in the file may have different fields, and different numbers of fields.
• Each record must contain a tag (usually a number) identifying the type of record.
• Hierarchical relationships are supported.

Example of a Variable Format File
This example shows a variable format file containing information about checking
account activity for two customers, Joe Smith and Anne Johnson. In this example,
the file is a delimited file that uses a comma as the field delimiter.

001 Joe,Smith,M,100 Main St,555-234-1290
100 CHK12904567,12/2/2007,6/1/2012,CHK
200 1000567,1/5/2012,Fashion Shoes,323.12
001 Anne,Johnson,F,1202 Lake St,555-222-4932
100 CHK238193875,1/21/2001,4/12/2012,CHK
200 1000232,3/5/2012,Blue Goose Grocery,132.11
200 1000232,3/8/2012,Trailway Bikes,540.00

The first field in each record contains the tag which identifies the type of record and
therefore the record's format:

• 001: Customer record
• 100: Account record
• 200: Account transaction record

430Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For delimited files it is common for the tag value (001, 100, 200) to be in a fixed
number of bytes at the start of the record as shown in the above example.

Each record has its own format:

• 001: FirstName,LastName,Gender,Address,PhoneNumber
• 100: AccountID,DateOpened,ExpirationDate,TypeOfAccount
• 200: TransactionID,DateOfTransaction,Vendor,Amount

Record format 100 (account record) is a child of the previous 001 record, and record
format 200 (account transaction record) is a child of the previous record 100 (account
record). So in the example file, Joe Smith's account CHK12904567 had a transaction
on 1/5/2012 in the amount of 323.12 at Fashion Shoes. Likewise, Anne Johnson's
account CHK238193875 had two transactions, one on 3/5/2012 at Blue Goose
Grocery and one on 3/8/2012 at Trailway Bikes.

File Properties Tab

DescriptionOption Name

Indicates whether the file you select as input is located on the computer running
Spectrum Enterprise Designer or on the Spectrum Technology Platform server. If
you select a file on the local computer, the server name will be My Computer. If you
select a file on the server the server name will be Spectrum Technology Platform.

Server name

Specifies the path to the file. Click the ellipses button (...) to locate the file you want.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

File name

The tag to use for records that are a parent of other record types. For example if you
have three record types 001, 100, and 200, and record types 100 and 200 are children
of record type 001, then 001 is the root tag.

Root tag name

Specifies whether to allocate a fixed amount of space at the beginning of each record
in which to place the record tag. This example shows a file with the tags 001, 100,
and 200 in a fixed-width field:

001 Joe,Smith,M,100 Main St,555-234-1290
100 CHK12904567,12/2/2007,6/1/2012,CHK
200 1000567,1/5/2012,Mike's Shoes,323.12

Use fixed-width tags

431Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

If you check theUse fixed-width tags box, this option specifies the number of spaces
to allocate for tags at the beginning of each record. For example, if you specify 7,
then the first seven positions in each record will be reserved for the tag. The value
you specify must be greater than or equal to the size in characters of the longest tag
name. For information about tag names, see Tag Names in Variable Format Files
on page 439.

The value in the Tag width field is automatically increased if you add fields on the
Fields tab that have a name that is longer than the value specified.

The maximum tag width is 1024.

Tag width

Removes the "NumericTag_" portion of the field name before writing the tag to the
file. The "NumericTag_" prefix is added to tag names by the Read from Variable
Format File stage for any tag names that start with a number. This is because the
tag name is used as the name of a list dataflow field which contains the data in the
record, and dataflow field names cannot begin with a number. For example, a tag
100 would by changed to list field named "NumericTag_100". If you enable this
option, this field would be written to the output file as a record with a tag of "100"
instead of "NumbericTag_100".

Remove numeric tag prefix

432Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The text file's encoding. Select one of these:

This encoding is also known as the Windows-1252 or simply
Windows character set. It is a super set of ISO-8859-1 and uses
the 128-159 code range to display additional characters not
included in the ISO-8859-1 character set.

CP1252

Supports all Unicode characters and is backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-8

Supports all Unicode characters but is not backwards-compatible
with ASCII. For more information about UTF, see
unicode.org/faq/utf_bom.html.

UTF-16

A character encoding based on the order of the English
alphabet.

US-ASCII

UTF-16 encoding with big endian byte serialization (most
significant byte first).

UTF-16BE

UTF-16 encoding with little endian byte serialization (least
significant byte first).

UTF-16LE

An ASCII character encoding typically used for Western
European languages. Also known as Latin-1.

ISO-8859-1

An ASCII character encoding typically used for Southern
European languages. Also known as Latin-3.

ISO-8859-3

An ASCII character encoding typically used for Turkish
language. Also known as Latin-5.

ISO-8859-9

AnASCII code page used to writeWestern European languages.CP850

An EBCDIC code page used to write Western European
languages.

CP500

A character encoding for the Japanese language.Shift_JIS

A Microsoft's extension of Shift_JIS to include NEC special
characters, NEC selection of IBM extensions, and IBM
extensions.

MS932

An EBCDIC code page with the full Latin-1 character set.CP1047

Character encoding

433Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://unicode.org/faq/utf_bom.html
http://unicode.org/faq/utf_bom.html

DescriptionOption Name

Specifies the character used to separate fields in a delimited file. For example, this
record uses a pipe (|) as a field separator:

7200 13TH ST|MIAMI|FL|33144

These characters available to define as field separators are:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a field separator, click the ellipses button to
select another character as a delimiter.

Field separator

Specifies the character placed after the tag field to demarcate the identifying field
for each record in a delimited file. A tag separator must be a single character.

By default, these characters are available to be selected as tag separators:

• Space
• Tab
• Comma
• Period
• Semicolon
• Pipe

If the file uses a different character as a tag separator, click the ellipses button to
add and select a custom tag separator.

Note: By default, the Record separator character is the same as the
selected Field separator character. To enable this field and select a different
character, uncheck the Same as Field separator checkbox.

Tag separator

Indicates if the tag separator is the same as the field separator. Uncheck this to select
a different character as the tag separator.

Note: By default, this checkbox is checked and the Tag separator field is
disabled.

Same as Field separator

434Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The character used to surround text values in a delimited file.

For example, this record uses double quotes (") as a text qualifier.

"7200 13TH ST"|"MIAMI"|"FL"|"33144"

The characters available to define as text qualifiers are:

• Single quote (')
• Double quote (")

If the file uses a different text qualifier, click the ellipses button to select another
character as a text qualifier.

Text qualifier

Specifies the character used to separate records in line a sequential or delimited file.
This field is not available if you check the Use default EOL check box.

The record separator settings available are:

A line feed character separates the records. This is the
standard record separator for Linux systems.

Linux (U+000A)

A carriage return character separates the records. This
is the standard record separator for Macintosh systems.

Macintosh (U+000D)

A carriage return followed by a line feed separates the
records. This is the standard record separator for
Windows systems.

Windows (U+000D
U+000A)

If your file uses a different record separator, click the ellipses button to select another
character as a record separator.

Record separator

Specifies that the file's record separator is the default end of line (EOL) character
used on the operating system on which the Spectrum Technology Platform server
is running.

Do not select this option if the file uses an EOL character that is different from the
default EOL character used on the server's operating system. For example, if the
file uses aWindows EOL but the server is running on Linux, do not check this option.
Instead, select the Windows option in the Record separator field.

Use default EOL

Fields Tab

The Fields tab controls which fields from the dataflow are included in the output file.

435Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Click to add a field to the output.

For information about constructing dataflow fields for use with Write to Variable
Format File, seeWriting Flat Data to a Variable Format File on page 437.

Add

Click to modify the name of the tag. This button is only enabled when a tag is selected.
If the Use fixed-width tags option is enabled on the File Properties tab, the tag
width is automatically adjusted if you enter a longer tag name.

Note: Using this button to modify the root tag name has the same effect
as modifying the value of the Root tag name field on the File Properties
tab.

Modify

Removes the selected field from the output. If you remove a list field all child fields
are also removed. If you remove a child field, just the selected child field is removed
from the list field.

Remove

Removes all the fields from the output.xx

Remove All

Reorders the selected field.Move Up/Move Down

Runtime Tab

DescriptionOption Name

This displays the file defined on the File Properties tab.File name

436Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Select this option to write records to different files instead of writing all records to one
file. The file to which each record is written is specified in the record itself. Each record
must contain a field that specifies either a file name or the full file path of the file to which
you want the record written. For example, if you want to send the stock prices of different
companies (of various groups) to all the clients separately, this feature writes the stock
prices of different companies into separate files that may be sent to each of the clients,
if you so wish. If you enable the Generate multiple file option you must specify an
output file on either the Spectrum Technology Platform server or on an FTP server. If
you want to write data to a file on an FTP server you must define a connection to the
file server using Spectrum Management Console.

Note: The records in the column you select in the File path field must be in
sorted order. Use this feature when record contains either a file name or the
full file path of the file.

Generate multiple files

Selects the field that contains the path (either a file name or the full file path) of the file
to which you want to write the record. Note that only the simple type elements mapped
directly to a root tag will be listed in the File path field. This field is only enabled if you
select the Generate multiple files.

File path field

Specifies whether to add the dataflow's output to the end of the file or to delete the
existing data in the file before writing the output:

Replaces the existing data in the output file each time the
dataflow runs.

Overwrite

Adds the dataflow's output to the end of the file without erasing
the file's existing data.

Append

Write Mode

Writing Flat Data to a Variable Format File
In a Spectrum Technology Platform dataflow each record has the same fields. However, in a variable
format file, not all records contain the same fields. In order to write flat data from a dataflow to a
variable format file you need to break up each record in the dataflow, grouping the fields from each
record into list fields corresponding to the record types you want to use for the variable format file.
A list field is a collection of fields. For example, the fields FirstName, LastName, Gender, Address,
and Phone could be grouped together into a list field called AccountOwner.

To write flat data to a variable format file, use an Aggregator stage to group fields into list fields
corresponding to the record types you want to write to the variable format file. To do this:

1. Place an Aggregator stage in your dataflow anywhere upstream from theWrite to Variable Format
File stage.

2. Double-click the Aggregator stage to open its options window.
3. Select Group by then click Add.

437Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. In theGroup By field, select the field that contains a unique identifier that can be used to identify
related data. This field's value should be unique across the records in the flat data. For example,
an account number, a social security number, or a phone number.

Note: The field you select should be sorted. If it is not, use a Sorter stage to sort the
records by the field.

5. Click OK.
6. Select Output lists then click Add.

Each output list will represent one record type in the variable format file.

7. Select New data type and in the Type name field specify the type of information that will be
contained in this data type. This will become a record type in the variable format file. For example,
this data type will contain records related to account transactions, you could name the type
"AccountTransaction".

8. In the Name field, enter the name you want to give to this field. This may be the same name you
specify in the Type name field.

9. Click OK.
10. Select the data type you just created and click Add.
11. Leave the option Existing field selected and select one of the fields you want to include in this

data type then click OK. Remember that this will become a record type in the variable format
file. Repeat to add additional fields to this record type.

12. Create additional output lists for each record type you want to have in the variable format file.
When finished, click OK to close the Aggregator options.

The fields coming out of the Aggregator stage are now grouped into list fields that correspond to the
record types you want to include in the variable format file output.

For example, given this flat data:

FIRSTNAME,LASTNAME,ADDRESS,ACCOUNTNUMBER,DATE_OPENED,TRANSACTION_NUMBER,TRANSACTION_DATE,AMOUNT
Joe,Smith,100 Main St,CHK12904567,12/2/2007,1000567,1/5/2012,323.12

You would want to convert it to something like this in the variable format file:

AccountOwner Joe,Smith,100 Main St
AccountInformation CHK12904567,12/2/2007
Transaction 1000567,1/5/2012,323.12

To accomplish this, you would create an Aggregator stage that is configured like this:

438Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Tag Names in Variable Format Files
In a variable format file, each record in the output file has a tag which indicates the record type. In
Write To Variable Format File, the field name is used as the tag name in the output file. For example,
consider these fields:

These fields would be written to the file as follows. Note that in this example the account has two
AccountTransaction records.

AccountOwner Anne,Johnson,F,1202 Lake St,555-222-4932
AccountDetails CHK238193875,1/21/2001,4/12/2012,CHK
AccountTransaction 1000232,3/5/2012,Blue Goose Grocery,132.11
AccountTransaction 1000232,3/8/2012,Trailway Bikes,540.00

439Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: Only list fields containing simple fields such as strings are written to the output file. If
a list field consists only of other list fields it is not written to the output file. In the above example,
no record with an AccountActivity tag would be written to the output file because AccountActivity
consists only of other list fields (AccountOwner, AccountDetails, and AccountTransaction).

Write to XML
TheWrite to XML stage writes the output of a job or subflow to an XML file.

File Properties Tab

DescriptionField Name

Specifies the path to the output XML file. Click the ellipses button (...) to locate the
file you want.

Note: If the Spectrum Technology Platform server is running on Linux,
remember that file names and paths on these platforms are case sensitive.

Data file

Displays the structure specified in the Fields tab. If you click an element and the file
specified in the Data file field contains the element, a preview of the data will be
displayed. Note that only data from simple elements can be displayed in the preview.

Actual File

Click this button to save an XSD file that represents the schema shown in the Actual
File view. The schema file is immediately saved to the location you specify.

Export Schema

Fields Tab

The Fields tab defines the fields you want to include in the output XML file. When you add fields,
they are displayed in a tree structure. The tree displays the name of the element or attribute that will
be written to the XML file. In parentheses following the element-attribute name is the name of the
dataflow field followed by the data type, as in this example:

440Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

This indicates that four elements and one attribute will be written to the XML file. The attribute is
indicated by the red "@" sign.

Note that the element State will contain the data from the field StateProvince and be string data.
Likewise, the element ZIP will contain data from the PostalCode field and be string data. The XML
file might look like this:

<XmlRoot>
<Customer Status="0">

<AddressLine1>7713 Mullen Dr</AddressLine1>
<City>Austin</City>
<State>TX</State>
<ZIP>78757-1346</ZIP>

</Customer>
<Customer Status="0">

<AddressLine1>1825B Kramer Ln</AddressLine1>
<City>Austin</City>
<State>TX</State>
<ZIP>78758-4260</ZIP>

</Customer>
</XmlRoot>

Note: The root element name (in this example <XmlRoot>) is specified on the File Properties
tab.

The following table describes the options on the Fields tab.

DescriptionOption Name

Adds a field to the output.Add

441Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Modifies how the field is written to XML. You can specify the following:

This option is available if you are modifying a simple field. It
specifies whether the dataflow field should be written to an XML
element or attribute.

Output type

Select this to write the field's data to an XML
element. Specify the element name you want to
use in the Element name field.

Element

Writes the field's data to an attribute of the parent
element. Specify the attribute name you want to
use in the Attribute name field.

Attribute

Specifies the name of the element or attribute to be written to the
XML file. The default name is the dataflow field name.

Element
name/Attribute
name

This option is available if you are modifying a complex element. It
specifies the type of XML you want the complex element to contain.
One of the following:

Change all
children to

The child types remain as they are currently
defined, either element or attribute. You can
specify the type for each field individually by
selecting the field and clicking Modify.

No change

All simple fields under the element are written
as XML elements.

Elements

All simple fields under the element are written
as XML attributes.

Attributes

If you want to specify an XML namespace to use for the element
or attribute, select it here. You can create namespaces on the
Fields tab of the Write to XML stage.

Namespace

Check this box to include in the output file XML elements that have
a null value or no data. If you do not check this box, empty
elements will not be included in the output.

For example, if you define an element named <City> but there
is a record that does not have any data in the City field, the XML
output will contain the following if you check Include empty fields:

<City xs:nil="true"></City>

If you do not check this box the <City> element will not be written
to the output file.

Include empty
fields

Note: Dataflow field displays the field whose data will be written to the
element or attribute. This is displayed so that if you change the element or
attribute name to something different you can still see which field's data is
contained in the element or attribute.

Modify

442Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Removes the selected field from the output. If you remove a list field all child fields
are also removed. If you remove a child field, just the selected child field is removed
from the list field.

Remove

Removes all the fields from the output.Remove All

Reorders the selected field.

Note that you cannot move simple elements into complex elements. If you want to
modify the elements in a complex element, you must modify your dataflow's
Aggregator stage to include the dataflow fields you want in the complex element.
For more information, see Creating Complex XML from Flat Data on page 444.

Move Up/Move Down

Replaces the fields currently defined with the fields coming into Write to XML from
the upstream channel.

Regenerate

Runtime Tab

DescriptionOption Name

Select this option to write records to different files instead of writing all records to one
file. The file to which each record is written is specified in the record itself. Each record
must contain a field that specifies either a file name or the full file path of the file to
which you want the record written. For example, if you want to send the stock prices
of different companies (of various groups) to all the clients separately, this feature
writes the stock prices of different companies into separate files that may be sent to
each of the clients, if you so wish. If you enable the Generate multiple file option you
must specify an output file on either the Spectrum Technology Platform server or on
an FTP server. If you want to write data to a file on an FTP server you must define a
connection to the file server using Spectrum Management Console.

Note: The records in the column you select in the File path field must be in
sorted order. Use this feature when record contains either a file name or the
full file path of the file.

Generate multiple files

Selects the field that contains the path (either a file name or the full file path) of the file
to which you want to write the record. Note that only the simple type elements mapped
directly to a root will be listed in the File path field. This field is only enabled if you
select the Generate multiple files.

File path field

443Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Select this option to generate an XSD at runtime and insert a
noNamespaceSchemaLocation reference to schema in the XML file. The value of
attribute noNamespaceSchemaLocation is XSD file name in the XML file. If you
export the schema while editing a dataflow, there will be no reference to the XSD in
the output XML file and the user would need to manually add in the reference to the
XSD.

Generate schema at runtime

Specifies the path to save the XSD file that contains the schema of the output XML
file. Click the ellipses button (...) to browse to the file you want. The schema file is
saved to the location you specify when you run the dataflow.

Schema path

Using Namespaces in an XML Output File
Namespaces allow you to have duplicate element and attribute names in your output by assigning
each element or attribute to an XML namespace.

1. In Spectrum Enterprise Designer, open the dataflow.
2. Double-click the Write to XML stage on the canvas.
3. Click the Fields tab.
4. Define one ore more namespaces:

a) In the Prefix column, enter the prefix you want to use to associate an element or attribute
with the namespace.

b) In the Namespace column, specify the URL of the namespace.
c) Repeat to define as many namespaces as you want to use for the output XML file.

5. Associate one or more elements or attributes to the namespace.
a) On the Fields tab, select the element or attribute you want to associate with a namespace

then click Modify, or create a new element or attribute by clicking Add.
b) In theNamespace field, choose the namespace prefix you want to associate with the element

or attribute.
c) Click OK.

Creating Complex XML from Flat Data
Dataflows often produce records containing flat fields which get written to XML as a simple XML
elements. If you want to organize flat fields into complex XML elements to produce hierarchical data,
you can do so using one or more Aggregator stages.

For example, given this flat data where the first line is a header record:

addressline1,age,city,country,gender,name,number,postalcode,stateprovince,type
1253 Summer St.,43,Boston,United States,M,Sam,019922,02110,MA,Savings

444Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

You might want to group the fields of data related to the address and fields related to the account
into complex XML elements named <Address> and <Account> as shown here:

<CustomerRecord>
<name>Sam</name>
<age>43</age>
<gender>M</gender>
<country>United States</country>
<Address>

<addressline1>1253 Summer St.</addressline1>
<city>Boston</city>
<stateprovince>MA</stateprovince>
<postalcode>02110</postalcode>

</Address>
<Account>

<number>019922</number>
<type>Savings</type>

</Account>
</CustomerRecord>

1. Add an Aggregator stage to the point in the dataflow where you want to construct complex
elements.

2. Double-click the Aggregator stage to open the stage options.
3. Select Group by and click Add.
4. Select the field that contains a unique value for each record, such as an account number and

click OK.
5. If there are other simple fields you want to pass through, select Group by and click Add again

and add all the simple fields you want to include.

For example, in this case there are five simple fields that will be included in each record: number,
name, age, gender, and country.

445Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. Select Output lists and click Add.
7. Select New data type. This will have the effect of defining a new complex element. Enter a

description for the kind of data that this complex element will contain. For example, you could
enter "Complex" since you are constructing a complex XML element. The data type name can
be anything you want.

8. In the Name field, enter the name to use for the field. This will also be the name of the XML
element.

9. Click OK.
10. Select the field you just created and click Add.
11. With Existing field selected, choose a field that you want to add as a child field to the complex

element and click OK.
12. Repeat the previous two steps to add additional fields to the complex element.
13. Add additional complex fields as needed.

When you are finished, you should have an Aggregator stage that lists each simple and complex
field you want to include in each record. For example:

446Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

14. Click OK.

Date and Number Patterns

Date and time patterns
When defining data type options for date and time data, you can create your own custom date or
time pattern if the predefined ones do not meet your needs. To create a date or time pattern, use
the notation described in the table below. For example, this pattern:

dd MMMM yyyy

Would produce a date like this:

14 December 2020

ExampleDescriptionLetter

ADEra designatorG

447Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ExampleDescriptionLetter

96Two-digit yearyy

1996Four-digit yearyyyy

7Numeric month of the year.M

07Numeric month of the year. If the number is less than 10 a
zero is added to make it a two-digit number.

MM

JulShort name of the monthMMM

JulyLong name of the monthMMMM

27Week of the yearw

06Two-digit week of the year. If the week is less than 10 an
extra zero is added.

ww

2Week of the monthW

189Day of the yearD

006Three-digit day of the year. If the number contains less than
three digits, zeros are added.

DDD

10Day of the monthd

09Two-digit day of the month. Numbers less than 10 have a
zero added.

dd

2Day of the week in monthF

TueShort name of the day of the weekE

TuesdayLong name of the day of the weekEEEE

PMAM PM markera

0Hour of the day, with the first hour being 0 and the last hour
being 23.

H

448Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ExampleDescriptionLetter

08Two-digit hour of the day, with the first hour being 0 and the
last hour being 23. Numbers less than 10 have a zero added.

HH

24Hour of the day, with the first hour being 1 and the last hour
being 24.

k

02Two-digit hour of the day, with the first hour being 1 and the
last hour being 24. Numbers less than 10 have a zero added.

kk

0Hour hour of the morning (AM) or afternoon (PM), with 0
being the first hour and 11 being the last hour.

K

02Two-digit hour of the day, with the first hour being 1 and the
last hour being 24. Numbers less than 10 have a zero added.

KK

12Hour of the morning (AM) or afternoon (PM), with 1 being
the first hour and 12 being the last hour.

h

09Two-digit hour of the morning (AM) or afternoon (PM), with
1 being the first hour and 12 being the last hour. Numbers
less than 10 have a zero added.

hh

30Minute of the hourm

05Two-digit minutes of the hour. Numbers less than 10 have
a zero added.

mm

55Second of the minutes

02Two-digit second of the minute. Numbers less than 10 have
a zero added.

ss

978Millisecond of the secondS

978
078
008

Three-digit millisecond of the second. Numbers containing
fewer than three digits will have one or two zeros added to
make them three digits.

SSS

PST
GMT-08:00

Time abbreviation of the time zone name. If the time zone
does not have a name, the GMT offset.

z

449Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ExampleDescriptionLetter

Pacific Standard Time
GMT-08:00

The full time zone name. If the time zone does not have a
name, the GMT offset.

zzzz

-0800The RFC 822 time zone.Z

-08ZThe ISO 8601 time zone.X

-0800ZThe ISO 8601 time zone with minutes.XX

-08:00ZThe ISO 8601 time zone with minutes and a colon separator
between hours and minutes.

XXX

Number Patterns
When defining data type options for numeric data, you can create your own custom number pattern
if the predefined ones do not meet your needs. A basic number pattern consists of the elements
below:

• A prefix such as a currency symbol (optional)
• A pattern of numbers containing an optional grouping character (for example a comma as a
thousands separator)

• A suffix (optional)

For example, this pattern:

$ ###,###.00

Would produce a number formatted like this (note the use of a thousands separator after the first
three digits):

$232,998.60

Patterns for Negative Numbers

By default, negative numbers are formatted the same as positive numbers but have the negative
sign added as a prefix. The character used for the number sign is based on the locale. The negative
sign is "-" in most locales. For example, if you specify this number pattern:

0.00

The number negative ten would be formatted like this in most locales:

-10.00

450Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

However, if you want to define a different prefix or suffix to use for negative numbers, specify a
second pattern, separating it from the first pattern with a semicolon (";"). For example:

0.00;(0.00)

In this pattern, negative numbers would be contained in parentheses:

(10.00)

Scientific Notation

If you want to format a number into scientific notation, use the character E followed by the minimum
number of digits you want to include in the exponent. For example, given this pattern:

0.###E0

The number 1234 would be formatted like this:

1.234E3

In other words, 1.234 x 103.

Note that:

• The number of digit characters after the exponent character gives the minimum exponent digit
count. There is no maximum.

• Negative exponents are formatted using the localized minus sign, not the prefix and suffix from the
pattern.

• Scientific notation patterns cannot contain grouping separators (for example, a thousands separator).

Special Number Pattern Characters

The characters below render other characters, as opposed to being reproduced literally in the resulting
number. If you want to use any of these special charters as literal characters in your number pattern's
prefix or suffix, surround the special character with quotes.

DescriptionSymbol

Represents a digit in the pattern including zeros where needed to fill in the pattern.
For example, the number twenty-seven when applied to this pattern:

0000

Would be:

0027

0

451Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionSymbol

Represents a digit but zeros are omitted. For example, the number twenty-seven
when applied to this pattern:

####

Would be:

27

#

The decimal separator or monetary decimal separator used in the selected locale.
For example, in the U.S. the dot (.) is used as the decimal separator but in France
the comma (,) is used as the decimal separator.

.

The negative sign used in the selected locale. For most locals this is the minus sign
(-).

-

The grouping character used in the selected locale. The appropriate character for
the selected locale will be used. For example, in the U.S., the comma (,) is used as
a separator.

The grouping separator is commonly used for thousands, but in some countries it
separates ten-thousands. The grouping size is a constant number of digits between
the grouping characters, such as 3 for 100,000,000 or 4 for 1,0000,0000. If you
supply a pattern with multiple grouping characters, the interval between the last one
and the end of the integer is the one that is used. For example, all the following
patterns produce the same result:

#,##,###,####

######,####

##,####,####

,

Separates mantissa and exponent in scientific notation. You do not need to surround
the E with quotes in your pattern. See Scientific Notation on page 451.

E

Separates positive and negative subpatterns. See Patterns for Negative Numbers
on page 450.

;

Multiply the number by 100 and show the number as a percentage. For example,
the number .35 when applied to this pattern:

##%

Would produce this result:

35%

%

452Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionSymbol

The currency symbol for the selected locale. If doubled, the international currency
symbol is used. If present in a pattern, the monetary decimal separator is used instead
of the decimal separator.

¤

Used to quote special characters in a prefix or suffix. For example,

"'#'#"

Formats 123 to:

"#123"

To create a single quote itself, use two in a row:

"# o''clock"

'

Global Addressing Management Stages

Spectrum Global Address Validation
Spectrum Global Address Validation provides enhanced address standardization and validation. It
is part of Spectrum Global Addressing Management.

Supported Countries
Spectrum Global Address Validation provides enhanced address standardization and validation for
the following prioritized countries. The three-digit ISO country code is shown for each country. For
a complete list of all ISO country codes, see ISO Country Codes and Coder Support.

• Argentina (ARG)
• Australia (AUS)
• Austria (AUT)
• Belgium (BEL)
• Brazil (BRA)
• Canada (CAN)
• China (CHN)
• Czech Republic (CHZ)
• Denmark (DNK)
• Finland (FIN)
• France (FRA)
• Germany (DEU)

453Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Greece (GRC)
• India (IND)
• Ireland (IRL)
• Italy (ITA)
• Japan (JPN)
• Malaysia (MYS)
• Mexico (MEX)
• Netherlands (NLD)
• New Zealand (NZL)
• Norway (NOR)
• Poland (POL)
• Russia (RUS)
• Spain (ESP)
• Sweden (SWE)
• Switzerland (CHE)
• United Kingdom (GBR) (Includes POI information)
• United States (USA)

Spectrum Global Address Validation provides additional support for 130+ countries worldwide.

Using Spectrum Global Address Validation
After installing and deploying Spectrum Global Addressing Management, you can use Spectrum
Global Address Validation:

• As a service from Management Console
• As a stage from Enterprise Designer

Using Spectrum Global Address Validation As a Service
To use Spectrum Global Address Validation as a service from Management Console:

1. Open the Management Console.
2. Under the Services tab, select Global Addressing.
3. From the list of services on the left side of the pane, select Global Address Validation.
4. On the Database Resources tab, select the Global Address Validation database resource to

use.
a) Click Enable International Processing to perform global address processing and select

your Global database.
b) Click Enable US Processing to perform United States (USA) address processing and select

your US database.

5. Click Save to save your database selection.
6. Use theDefault Options tab to define the default options for address processing. For information

on the default options, see Options on page 455

454Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

a) Click Global Addressing Options to define default options for global address processing.
For information on the global addressing default option fields, see "Global Addressing Options"
in Options on page 455.

b) ClickUS Addressing Options to define the default options for United States (USA) address
processing. For information on the US addressing default option fields, see "US Addressing
Options" in Options on page 455.

7. If you make changes to the global default options, click Save to save those changes. Any changes
you make to the global default options are also applied to Global Address Validation in Enterprise
Designer. If an Enterprise Designer job is open, you will need to refresh the job to pick up the
changes.

8. Use theOutput Options tab to define the output options for address processing. For information
on the output options fields, see "Output Options" in Options on page 455.

9. Click the Preview tab.
10. On the Preview tab, enter your input address elements in the appropriate fields. For information

on the input fields, see Input on page 469.
11. Click Run Preview.
12. In Preview Output Records, on the right side of the pane, note that the results of the search

have been placed in the appropriate output field. For information on the output fields, seeOutput
on page 471.

13. In the Preview tab, you can:

a) Use Add to add additional input records for Run Preview processing.
b) Use Import to import a number of input records for Run Preview processing.
c) Use Delete to delete all records from the current Run Preview session.

Using Spectrum Global Address Validation As a Stage
You can use Spectrum Global Address Validation as a stage from Enterprise Designer to perform
address validation as a batch process. For more information about creating a job using Global
Address Validation as a stage, see:

• My First Dataflow (Job) in the Dataflow Designer Guide
• Options
• Input
• Output

Options
Global Address Validation uses the default options settings to define address validation processing.

455Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 36: Global Addressing Options

DescriptionCountry
Support

Option Name

The default country for address processing.

To improve coding performance when your input addresses do not
contain country information, set up an additional instance of the Global
Address Validation stage as a preliminary stage to process and retrieve
the country code for the input addresses.

1. Set up an additional instance of the Global Address Validation stage
as a preliminary (first) stage in your dataflow.

Give the preliminary stage a unique label. For example, "Identify
Country".

Specify "World" as the default country for the preliminary stage.

The preliminary stage uses the available input address elements
with additional data sources (available when you select "World" as
the default country) to determine the country code. The
"country-coded" output from the preliminary stage becomes the
input for the next step in the dataflow.

2. As the next step in the dataflow, the addresses are sent through a
second Global Address Validation stage with the proper country
code (retrieved in the preliminary stage) to validate the address to
the street/house/premise level.

AllDefault country

Global Addressing Options

Spectrum Global Address Validation uses the Global Addressing options settings to define address
validation processing.

Table 37: Global Addressing Options

DescriptionCountry
Support

Option Name

The options specific to global address processing.All except
USA

Global Addressing Options

When a street level match cannot be made, use the input city to
determine match candidates.

All except
USA

City fallback

When a street level match cannot be made, use the input postal code
to determine match candidates.

All except
USA

Postal fallback

456Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Matching Options

Global Address Validation uses the Matching options settings to define address validation processing.

Table 38: Matching Options

DescriptionCountry
Support

Option Name

Match modes determine the leniency used to make a match between
the input address and the reference data. Select one of the following
match modes based on the quality of your input and your desired output.

A very tight match. This restrictive mode generates the
fewest match candidates. When using this mode, ensure
that your input is very clean; free of misspellings and
incomplete addresses.

Exact

A loose match. This mode generates the most match
candidates and results in more multiple matches. Use this
mode if you are not confident that your input is clean and
free of misspellings and incomplete addresses.

Relaxed

Note: For USA, the relaxed match mode is only
allowed for the US Database Lookup.

A custom match. Allows you to define the matching criteria
by selecting Custom Match Fields.

Custom

AllMatch mode

457Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionCountry
Support

Option Name

The number of match candidates to return. Using a looser Match Mode
setting such as "Relaxed" can result in the matching output including
multiple match candidates.

• If an exact match is found, the single match candidate is returned.
• If an exact match is not found and the maximum records to return
option is set to a value other than 1, Global Address Validation returns
the specified number of match candidate suggestions when match
candidate suggestions are available.

For example, an exact match is not found. The maximum records to
return is set to 3. Processing finds 8 match candidate suggestions.
However, since maximum records to return is set to 3, only the three
best match candidate suggestions are presented to the user to select
the desired match candidate.

In another example, an exact match is not found. The maximum records
to return is set to 5. However, processing only finds two match candidate
suggestions. In this example, only the two available match candidate
suggestions are presented to the user to select the desired match
candidate.

Note: If you specify ON for the CASS Flag, CASS processing
overrides the Maximum Records to Return to 1 (for the current
processing run). Multiple candidate suggestions are not valid
when CASS processing is turned ON.

Maximum records to return

Prefer candidates matching the input PO Box over matches to the input
street. The default is disabled.

CAN

FRA

GBR

Prefer PO Box over street

Prefer candidates matching the input postal code over matches to the
input city. The default is disabled.

AUSPrefer postal code over city

Custom Match Options

Global Address Validation uses the custommatch options to set custommatch criteria for determining
match candidates. To enable these options, you must set the Match Mode to Custom. By default,
these options are disabled.

458Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 39: Custom Match Options

DescriptionCountry
Support

Option Name

A match must be made to the input address number.All except
USA

Address number

A match must be made to the input address city.All except
USA

City

A match must be made to the input address city subdivision.All except
USA

City subdivision

A match must be made to the input address state or province.All except
USA

State/province

Amatch must be made to the input address state or province subdivision.All except
USA

State/province subdivision

A match must be made to the input street name, type, and directional
fields.

All except
USA

Street

A match must be made to the input address postal code.All except
USA

Postal code

US Addressing Options

Spectrum Global Address Validation uses the US Addressing Options to define U.S. address
processing.

Table 40: US Addressing Options

DescriptionOption Name

Process in a United States Postal Service (USPS) CASS-certified mode.

Note: If you are performing Global Address Validation US Addressing
processing outside of the physical United States, you must disable the
Delivery Point Validation (DPV), LACSLink, SuiteLink, and Residential
Delivery Indicator (RDI) options. You will not be able to run in a USPS
CASS-certified mode.

CASS flag

Return abbreviated city names in the label lines.Assign abbreviated city

459Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Remove input noise characters (for example, unnecessary punctuation and
blanks).

Remove noise characters

Return the input firm.Return input firm

Perform All Street Matching (ASM) processing. ASM applies additional matching
logic to correct errors in street names to find a match. For example, when the
first letter of a street is misspelled or missing on input, ASM searches all street
names in a locality to find an input address. ASM provides the best address
validation but may reduce performance. ASM processing is available for U.S.
addresses only.

All street matching

Addresses with Carrier Route code R777 are phantom routes and are not eligible
for street delivery. However, since these addresses are assigned a ZIP + 4 code
by the USPS, these addresses are marked as deliverable. If you do not want the
addresses with Carrier Route code R777 marked as deliverable, disable this
option and the following actions are performed for the address:

• ZIP + 4 code is not assigned.
• The address is not counted on the USPS Form 3553 (CASS Summary Report)
• DPV Footnote Code R7 is returned.

R777 deliverable

Convert secondary information to Private Mail Box (PMB) under the following
conditions:

• A secondary number is present in the returned ZIP + 4 address.
• The secondary number does not DPV confirm.
• The primary number (and/or other secondary number) confirms as a
Commercial Mail Receiving Agency (CMRA).

• The unconfirmed unit designator is not a pound sign (#).

Note: This processing only applies if the primary address codes to
a CMRA.

Convert secondary to PMB

Do not merge separate second unit and PMB information in the output address
line. Save unit in a separate field.

Save unit in separate field

Do not merge separate second unit and PMB information in the output address
line. Save PMB in a separate field.

Save PMB in separate field

460Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Return alias street names in the label line. An alias street name is an alternate
name for a street, maintained at the ranged ZIP + 4 Code level.

• Return input alias or base. If the input address matches to an alias, return
the alias. If the input address matches to a base address, but a preferred alias
exists, return the preferred alias. If the input address matches to a base address
and no Preferred alias exists, return the base address

• Return preferred alias or base. If a preferred alias exists, return the preferred
alias. Otherwise, return the base street.

• Return preferred, abbreviated, input alias or base. Return the preferred
alias. If no preferred alias exists, return the abbreviated alias. If no abbreviated
or preferred alias exists, but some other alias type was input, return the input
alias. If none of these scenarios apply, return the base street name.

• Return preferred, abbreviated alias, or base. If a preferred alias exists,
return the preferred alias. If no preferred alias exists, return the Abbreviated
alias. If neither exists, return the base street name.

• Return abbreviated, preferred, input alias or base. Return the abbreviated
alias. If no abbreviated alias exists, return the preferred alias. If no abbreviated
or preferred alias exists, but some other alias type was input, return the input
alias. If no alias exists, return the base street name.

• Return abbreviated, preferred, alias or base. Return the abbreviated alias.
If no abbreviated alias exists, return the Preferred alias. If neither exists, return
only the base street name

Return alias street

461Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

If the input file contains dual addresses (one a conventional address, a second
containing a PO Box address), this field determines the order to use to process
and match the addresses. If the selected address is valid, processing stops. If
the selected address does not validate, processing attempts to code the
secondary address.

• Above city and ZIP Code. The address line closest to the last line in the
address is given the highest priority in the match process. Any address line
above the last line is not used for matching. Default.

• Line 1 is given preference. The first line in the dual address is given the
highest priority in the match process.

• Line 2 is given preference. The second line in the dual address is given the
highest priority in the match process.

• Conventional is given preference. The conventional address is given the
highest priority in the match process.

• PO Box is given preference. The PO Box is given the highest priority in the
match process.

• The first valid address is given preference. The first valid address (in the
order Address line 1 and then Address line 2) is given the highest priority in
the match process.

Note: When dual addresses are contained on a single line and the
CASS flag is enabled, the USPS address type priority is used in the
following order:

1. PO Box
2. Firm
3. Highrise
4. Street
5. Rural Route
6. General Delivery

Dual address

The VeriMove data block option determines whether to return 250-bytes of
additional information codes to the output file. This additional information can be
used as input to Precisely's VeriMove product to comply with USPS® Move
Update requirements.

VeriMove data block

Additional Processing

Global Address Validation uses the default options settings to define additional processing options.

462Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 41: Additional Processing Options

DescriptionOption Name

Perform Delivery Point Validation (DPV) processing. USPS CASS regulations
require DPV processing. If you do not perform DPV processing, Global Address
Validation does not generate a USPS Form 3553 (CASS Summary Report). The
default is disabled.

Note: When DPV is disabled, all DPV options are also disabled and
display in a grayed out mode.

Note: If you are performing Global Address Validation US Addressing
processing outside of the physical United States, you must disable the
Delivery Point Validation (DPV) option. You will not be able to run in a
USPS CASS-certified mode.

Delivery Point Validation (DPV)

The USPS allows DPV processing to be used as a tie breaker for matching
inexact street records. If only one of the records in a tie is delivery point validated,
a match is allowed to the inexact record. When processing results in an inexact
match due to the input address directional, DPV processing can be used as a
tie breaker if only one of the records is found to be delivery point validated and
the delivery point validated record does not violate the cardinal direction rule.
The default is enabled.

USPS CASS regulations require DPV Tie Break processing to generate the
USPS Form 3553 (USPS CASS Summary Report).

Tie Break

Perform Commercial Mail Receiving Agency (CMRA) processing. A private
company offering mailbox rental services to individuals and businesses is a
Commercial Mail Receiving Agency (CMRA). The default is disabled.

Commercial Mail Receiving Agency
(CMRA)

Perform DPV P.O. Box Street Address (PBSA) processing. A PBSA address is
a street address that represents a USPS P.O. Box. Use the PBSA table to identify
PBSA addresses. Return the PBSA result to the output. The default is disabled.

PO Box as Street Address (PBSA)

Perform DPV No-Stat processing. Use the No-Stat table to identify deliveries
that are not valid for Computerized Delivery Sequence (CDS) pre-processing.
Return the proper No-Stat code to the output. The default is disabled.

No-Stat

Perform DPV Vacant Table processing. Use the Vacant Table to identify delivery
addresses that have been active in the past but, according to USPS data, have
not been occupied within the last 90 days. Return the proper Vacant code to the
output. The default is disabled.

Vacant

463Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Perform DPV Door Not Accessible (DNA) processing. Use the DNA Table to
identify delivery addresses where carriers cannot knock on the door for mail
delivery or where carriers cannot physically access a residence/building such
as rural/highway contract route (HCR), long driveway, or gated community.
Return the proper DNA code to the output. The default is disabled.

Door Not Accessible (DNA)

Perform DPV P.O. Box Throwback processing. Use the P.O. Box Throwback
Table to identify a delivery point that is a street address where mail is not
delivered. Instead, delivery is made to the customer’s P.O. Box address. Return
the P.O. Box Throwback result to the output. The default is disabled.

Throwback

Perform DPVNo Secure Location (NSL) processing. Use the NSL table to identify
delivery locations that are not secure. For example, a carrier can access a door
but cannot leave a package due to security concerns. The NSL designation alerts
mailers to locations where businesses are closed on certain days and locations
without mail receptacles (for example, a storefront). Return the NSL result to the
output. The default is disabled.

No Secure Location (NSL)

Assign enhanced Line of Travel (eLOT) codes. The default is disabled.Enhanced Line of Travel (eLOT)

PerformEarlyWarning System (EWS) processing. PerformEarlyWarning System
(EWS) processing. New address information that is in use, but not yet available
on the ZIP + 4 File, can be found as part of the USPS Early Warning System
(EWS). The USPS requires all CASS-certified software to verify addresses that
are not found in the current ZIP + 4 File against the USPS EWS File. If an address
is found in the EWS File, the address is not matched to any similar addresses
in the current ZIP + 4 File. Instead, the input address fails and is not coded until
the ZIP + 4 File is updated with the correct address from the USPS EWS File.
The default is disabled.

Early Warning System (EWS)

Perform Residential Delivery Indicator (RDI) processing. The default is disabled.

Note: If you are performing Global Address Validation US Addressing
processing outside of the physical United States, you must disable the
Residential Delivery Indicator (RDI) option. You will not be able to run
in a USPS CASS-certified mode.

Residential Delivery Indicator (RDI)

Perform LACSLink (Locatable Address Conversion System) processing. USPS
CASS regulations require LACSLink processing. If you do not perform LACSLink
processing, Global Address Validation does not generate a USPS Form 3553
(CASS Summary Report). The default is disabled.

Note: If you are performing Global Address Validation US Addressing
processing outside of the physical United States, you must disable the
LACSLink option. You will not be able to run in a USPS CASS-certified
mode.

LACSLink

464Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Perform SuiteLink processing. USPS CASS regulations require SuiteLink
processing. If you do not perform SuiteLink processing, Global Address Validation
does not generate a USPS Form 3553 (CASS Summary Report). The default is
disabled.

Note: If you are performing Global Address Validation US Addressing
processing outside of the physical United States, you must disable the
SuiteLink option. You will not be able to run in a USPS CASS-certified
mode.

SuiteLink

Indicate how to return secondary information when SuiteLink secondary
information is available.

• Both SuiteLink and input. Return both SuiteLink and input secondary
information. Default.

• SuiteLink only. Return SuiteLink secondary only. Do not return input
secondary.

• Input only. Return input secondary only. Do not return SuiteLink secondary.
• None. Do not return SuiteLink secondary or input secondary.

Return SuiteLink secondary

CASS Mailer Information

The Mailer's name and address that displays on the USPS Form 3553 (CASS Summary Report).
This information is required if you are running DPV and optional if you are not running DPV.

Table 42: CASS Mailer Information

DescriptionOption Name

The Mailer's name displays in section D box 3 on the USPS Form 3553 (CASS
Summary Report).

Name

Mailer's address. This information displays in section D box 3 on the USPS Form
3553 (CASS Summary Report).

Address

Additional address line for Mailer's address displays in section D box 3 on the
USPS Form 3553 (CASS Summary Report).

Address2

Additional address line for Mailer's address displays in section D box 3 on the
USPS Form 3553 (CASS Summary Report).

Address3

Additional address line for Mailer's address displays in section D box 3 on the
USPS Form 3553 (CASS Summary Report).

Address4

465Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The Mailer's city, state, and ZIP Code information displays in section D box 3 on
the USPS Form 3553 (CASS Summary Report).

City, State, ZIP Code

Multiple Address Line Options

Global Address Validation uses the multiple address line options settings to define the options specific
to multiple address line processing. To specify the format of your returned lines address, select three
options (one for each returned line and a special option).

Table 43: Multiple Address Line Options

DescriptionOption Name

Specify the format for returned line 1.

• Return the first valid line from the top.
• Return the first firm line from top.
• Return the first valid line above the city line.
• Return the street address line above the city line.
• Return the PO box or RR/HC line above the city line.
• Return the best street or PO box line from top. If not found, the first firm or
rural route line from top. When selecting this option for return line 1, processing
selects from the top down in this order:

1. First PO box line or complete address.
2. First street line with a range but no suffix.
3. First Street line with a suffix but no range.
4. First rural route line.
5. First firm type.

Return Line 1

Specify the format for returned line 2.

• Return a blank line.
• Return the first valid line from the top.
• Return the second valid line from the top.
• Return the first firm line from top.
• Return the second half of the combined address line if the first half is returned
in line 1.

• Return the first valid line above the city line.
• Return the second valid line above city line.
• Return the street address line above the city line.
• Return the PO box or RR/HC line above the city line.
• Return the first valid line above city line. If that criteria is not met resulting in
a blank second line, return the topmost line not used in return line 2.

Return Line 2

466Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specify special options for returned lines.

• Use all special options for returned lines.
• Do not use any special options for returned lines.
• Add a range of "0" to street lines without a range. For example, Main St
becomes 0 Main St.

• Separate combined address lines.

Special Options

Specify the order for returning the standardized lines.

• 0 Firm line.
• 1 PO Box address line.
• 2 Address line with both a range and a suffix word.
• 3 Address line with a range but no suffix, Address line with a suffix but no
range.

• 4 Rural route address line.
• 5 Personal name, Firm name (w/o firm words), Unidentified.
• 6 Apartment type line.
• 7 Possible city line.
• 8 City line.
• 9 Ignore this line.
• B Box address line following a rural route address line.
• M Military address line.
• N Best address line 1, best address line 2, city state, firm. URB and ZIP Code
are returned in separate fields. The default is N.

• R Rural route address line preceding a box line.

Return Line Order

Check Do not concatenate lines beginning with # if you do not want to
concatenate lines beginning with a # to existing address lines.

Do not concatenate lines beginning with
#

Check Do not recognize periods (.) as valid characters if you do not want to
recognize periods as valid characters (periods should be removed before
scanning address lines).

Do not recognize periods (.) as valid
characters

Check Do not concatenate dangling lines if you do not want to concatenate
one-word lines to address lines.

Do not concatenate dangling lines

CheckDo notmerge secondary or PMB if you do not want to merge a separated
second unit and PMB information.

Do not merge secondary or PMB

Check Do not identify FirmName if you do not want to perform firm name
processing.

Do not identify FirmName

467Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Check Do not identify CitySubdivision if you do not want to perform
Urbanization name (Puerto Rico) processing.

Do not identify CitySubdivision

Check Do not identify LastLine if you do not want to perform last line (City,
State, or ZIP Code) processing.

Do not identify LastLine

Log Level Options

Global Address Validation uses the log level options settings to define message logging.

Table 44: Log Level Options

DescriptionOption Name

The level of the messages to log.

• No messages.
• Critical messages
• Error messages
• Warning messages
• Info messages
• Debug messages

Log level

Output Options

Output Options define the elements to be returned by SpectrumGlobal Address Validation processing.

Table 45: Output Options

DescriptionOption Name

The parsed address elements (for example, Address Line 1, postal codes,
and country). The meaning of some of these fields may vary by country.
Do not select Parsed address when returning G/Z level matches.

Parsed address

Return the original input address.Input address

Return a code describing the precision of the address match.Precision

Return country-specific output information.Country specific fields

468Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Return result code information.Result Codes

The format for the returned address:

The output data is returned in a mixed case format. For
example, 100 Main Street.

Mixed

The output data is returned in an all lower case format.
For example, 100 main street.

Lower

The output data is returned in an all upper case format.
For example, 100 MAIN STREET. The default is Upper.

Upper

Casing

Input
Spectrum Global Address Validation uses an address as input. All addresses use this format
regardless of the address's country. To obtain the best performance and address match, your input
address lists should be as complete as possible, free of misspellings and incomplete addresses,
and as close to postal authority standards as possible. Most postal authorities have websites that
contain information about address standards for their particular country.

Note: The country name or two- or three- character country ISO code is optional. If you omit
the country, Spectrum Global Address Validation returns the best available candidates for the
Default Country selected on the Default Options tab. For a list of ISO codes, see ISO
Country Codes and Coder Support.

Table 46: Spectrum Global Address Validation Input

DescriptionFormatField Name

Company, firm name, or place name. For example, PRECISELY.StringFirmName

The first address line. For example, 34 GLENVIEW ROAD MOUNT
KURNING-GAI NSW2080. AddressLine1 can also contain a dual address
(contains more than one mailable address). For example, the dual
address PO BOX 3220 STN C 181 QUEEN STREET OTTAWA ON
K1Y1E4 contains both a PO Box and a street address.

StringAddressLine1

The second address line (USA only).StringAddressLine2

The third address line (USA only).StringAddressLine3

The fourth address line (USA only).StringAddressLine4

469Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The fifth address line (USA only).StringAddressLine5

The sixth address line (USA only).StringAddressLine6

The last line of the address. For example, 34 GLENVIEWROADMOUNT
KURNING-GAI NSW 2080.

Note: Spectrum Global Address Validation only considers the
LastLine information when individual components such as City
and PostalCode are not provided.

StringLastLine

The city or town name. To produce the best match results, your input
address should use the official city name.

StringCity

The name of one of the following depending on the country:

• Not used—AUS, AUT, BEL, CHE, DEU, DNK, FIN, FRA, IRL, MYS,
NLD, NOR, POL, SWE

• Dissemination Area and Enumeration Area (DA and EA)—CAN
• Locality—BRA, GBR, GRC, ITA, ESP
• Suburb—NZL
• Urbanization name (Puerto Rico)—USA

StringCitySubdivision

The name of the state or province depending on the country:

• Not used—BEL, CHE, DNK, IRL, NLD, NOR
• Bundesland—DEU
• Province—CAN
• Province (voivodship)—POL
• Region—AUT, ESP, FRA, GBR, GRC, NZL
• Region (län)—FIN
• Region (lan)—SWE
• State—AUS, BRA, USA
• State (negeri)—MYS

StringStateProvince

470Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The name of the state or province subdivision depending on the country:

• Not used—AUT, BRA, CAN, FIN, GBR, MYS
• Department—FRA
• District—GRC
• District (fylke/counties)—NOR
• District (poviat)—POL
• Kommun—SWE
• Kreis—DEU
• Local Government Authority (LGA)—AUS
• Province—BEL, CHE, DNK, ESP, IRL, ITA, NLD
• Region—NZL

StringStateProvinceSubdivision

The postal code in the appropriate format for the country.StringPostalCode

The country name of the two- or three-character ISO country code. This
field is optional. If you omit the country, Spectrum Global Address
Validation returns the best available candidates for the Default Country
selected on the Default Options tab. For a list of ISO codes, see ISO
Country Codes and Coder Support.

StringCountry

Output
Spectrum Global Address Validation output is determined by the output options you select.

Standard Address Output

Standard address output consists of address lines which correspond to how the address would
appear on an address label. City, state or province, postal code, and other data are also included in
the standard address output.

Table 47: Standard Address Output

DescriptionFormatField Name

Additional input data entered that was not used for matching.StringAdditionalInputData

471Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The AddressBlock output fields contain a formatted version of the
standardized or normalized address as it would be printed on a physical
mailpiece. Global Address Validation formats the address into address
blocks using postal authority standards. Each line of the address is
returned in a separate address block field. There can be up to two
address block output fields: AddressBlock1 and AddressBlock2.

AddressBlock1 includes:

• PO Box—CAN, FRA, GBR
• Firm Name
• Unit Number
• Unit Type
• House Number
• Street Name

AddressBlock2 includes:

• Locality
• Town
• Postal Code
• County
• State

For example, this input address:

AddressLine1: 34 Glenview Road
City: Mount Kurning-Gai StateProvince: NSW PostalCode: 2080

Results in this address block output:

AddressBlock1: 34 Glenview Road
AddressBlock2: Mount Kurning-Gai NSW 2080

In this example, the input address includes a PO Box (CAN, FRA, and
GBR) and the "Prefer PO Box over street" option is selected:

AddressLine1: 1 Great Lawn PO Box 10916 CM5 5AL

Results in this address block output:

AddressBlock1: PO Box 10916
AddressBlock2: ONGAR CM5 5AL

StringAddressBlock1-2

Additional AddressBlock fields for USA addresses. For USA addresses,
starting from AddressBlock1 the data includes:

• Firm Name
• URB name
• Extra address line information
• Required address line information
• Last line

StringAddressBlock3-10

472Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The first address line.

For example, 34GLENVIEWROADMOUNTKURNING-GAI NSW2080.

In an example of a dual address, the address PO BOX 3220 STN C 181
QUEEN STREET OTTAWA ON K1Y1E4 contains both a PO Box and
a street address.

If the option "Prefer PO Box over street" is enabled, PO BOX 3220 STN
C displays in this field.

If the option "Prefer PO Box over street" is not enabled, 181 QUEEN
STREET displays in this field.

Global Address Validation supports PO Boxmatching for these countries:

• Canada (CAN)
• France (FRA)
• United Kingdom (GBR)
• United States (USA)

StringAddressLine1

The second address line (USA only).StringAddressLine2

The flat or unit type. For example, 39 Acacia Avenue Flat B.StringApartmentLabel

The flat or unit number. For example, 39 Acacia Avenue Flat B.StringApartmentNumber

The name of a building.StringBuilding

The city or town name. Your input address should use the official city
name to produce the best match results.

StringCity

The status of the city match.

Matched on the city name.True

Did not match on the city name.False

StringCity.Matched

The name of one of the following depending on the country:

• Not used—AUS, AUT, BEL, CHE, DEU, DNK, FIN, FRA, IRL, MYS,
NLD, NOR, POL, SWE

• Dissemination Area and Enumeration Area (DA and EA)—CAN
• Locality—BRA, GBR, GRC, ITA, ESP
• Suburb—NZL
• Urbanization name (Puerto Rico)—USA

StringCitySubdivision

473Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The status of the match on city subdivision.

Matched on the city subdivision.True

Did not match on the city subdivision.False

StringCitySubdivision.Matched

The level of confidence assigned to the address being returned. Range
is from zero (0) to 100. Zero indicates failure. 100 indicates a very high
level of confidence that the match results are correct.

StringConfidence

The country in the language or code specified in the Country format
option. For a list of ISO codes, see ISO Country Codes and Coder
Support.

StringCountry

The country specific output information. To include the country specific
output information in the output, check theCountry specific fields output
option.

StringCountry specific fields

The name of a company.StringFirmName

The status of the match on firm name.

Matched on the firm name.True

Did not match on the firm name.False

StringFirmname.Matched

The house number or PO Box number (CAN, FRA, UK). For example,
39 Acacia Avenue or PO Box 3220.

StringHouseNumber

The status of the match on house number.

Matched on the house number.True

Did not match on the house number.False

StringHousenumber.Matched

The leading directional. For example, 123 E Main St Apt 3.StringLeadingDirectional

The status of the match on all street fields.

Matched on all street fields.True

Did not match on all street fields.False

StringMatchOnAllStreetFields

474Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The status of the match on street directional.

Matched on the street directional.True

Did not match on the street directional.False

StringMatchOnStreetDirectional

Reserved for future use.StringMatchScore

If the address was matched to multiple candidate addresses in the
reference data, this field contains the number of candidate matches
found.

StringMultimatchCount

The postal code for the address. The format of the postal code varies
by country.

StringPostalCode

The second part of a postal code. This field is not used by most countries.StringPostalCode.AddOn

The status of the match on postal code.

Matched on the postal code.True

Did not match on the postal code.False

StringPostalcode.Matched

An area within a country. For example, England, Scotland, and Wales
are principalities. This field will normally be blank.

StringPrincipality

The Spectrum Global Addressing Management stage name.StringProcessedBy

The field-level result codes. Field-level result codes describe how each
address element was processed. Field-level result codes are returned
in the qualifier "Result". For example, the field-level result code for City
is contained in City.Result. For a complete listing of result code output
fields, see Result Codes.

StringResult Code

The name of one of the state or province depending on the country:

• Not used—BEL, CHE, DNK, IRL, NLD, NOR
• Bundesland—DEU
• Province—CAN
• Province (voivodship)—POL
• Region—AUT, ESP, FRA, GBR, GRC, NZL
• Region (län)—FIN
• Region (lan)—SWE
• State—AUS, BRA, USA
• State (negeri)—MYS

StringStateProvince

475Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The status of the match on state or province.

Matched on the state or province.True

Did not match on the state or province.False

StringStateProvince.Matched

The name of the state or province subdivision depending on the country.

• Not used—AUT, BRA, CAN, FIN, GBR, MYS
• County—USA
• Department—FRA
• District—GRC
• District (fylke/counties)—NOR
• District (poviat)—POL
• Kommun—SWE
• Kreis—DEU
• Local Government Authority (LGA)—AUS
• Province—BEL, CHE, DNK, ESP, IRL, ITA, NLD
• Region—NZL

StringStateProvinceSubdivision

The status of the match on state or province subdivision.

Matched on the state or province subdivision.True

Did not match on the state or province subdivision.False

StringStateProvinceSubdivision.Matched

The name of street where the property is located or "PO Box" to indicate
the input record matched to a PO Box. For example, 123 E Main St or
PO Box 3220.

StringStreetName

The status of the match on street name.

Matched on the street name.True

Did not match on the street name.False

StringStreetName.Matched

The street type. For example, 123 E Main St Apt 3. In another example,
123 E Main Ave Apt 3. These are two entirely different entities. Using
street types adds precision to your data.

StringStreetType

The status of the match on street type.

Matched on the street type.True

Did not match on the street type.False

StringStreetType.Matched

476Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The trailing directional. For example, 123 Pennsylvania Ave NW.StringTrailingDirectional

The vendor code. This field is only available if you select the output
option "Country specific fields".

StringVendorCode

Parsed Input

Spectrum Global Address Validation output can include the input address in parsed form. This type
of output is referred to as "parsed input." Parsed input fields contain the address data that was used
as input regardless of whether or not Spectrum Global Address Validation validated the address.
This information is not available when the address is validated at the postal / city level. It is available
when an address gets validated at the street level. To include parsed input fields in the output, select
the Parsed address output option.

Table 48: Parsed Input

DescriptionFormatField Name

A dual address is an address that contains more than one mailable
address. For example, an address that contains both a PO Box and a
street address is considered a dual address. When a dual address line
is entered as input, this field contains the address line that is not used
for AddressBlock1.

If a PO Box (CAN, FRA, and UK) and a street address are entered as
input and the option "Prefer PO Box over street" is enabled, the PO Box
number is returned in the AddressLine1 field and AddressBlock1 fields
and the street address is returned in the DualAddressParsed.Input field.

If a PO Box (CAN, FRA, and UK) and a street address are entered as
input and the option "Prefer PO Box over street" is not enabled, the
street address is returned in the AddressLine1 field and AddressBlock1
fields and the PO Box is returned in the DualAddressParsed.Input field.

StringDualAddressParsed.Input

The first address line passed on input.

For some countries (CAN, FRA, and UK), when the "PO Box over street"
option is activated, this field contains PO Box.

StringParsedAddressLine1.Input

The unit designator passed on input.StringParsedApartmentLabel.Input

The unit number passed on input.StringParsedApartmentNumber.Input

477Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The city/locality/suburb name passed on input.StringParsedCity.Input

The urbanization name passed on input.StringParsedCitySubdivision.Input

The country passed on input.StringParsedCountry.Input

The house number passed on input. For example, 123 E Main St Apt 3.StringParsedHouseNumber.Input

The place or firm name passed on input.StringParsedPlaceName.Input

The second part of a postal code passed on input. This field is not used
by most countries.

StringParsedPostCodeAddOn.Input

The postal code passed on input.

For some countries, this field contains the first part of the postal code
and the ParsedPostCodeAddOn.Input contains the second part of the
postal code.

StringParsedPostCodeBase.Input

The street type passed on input. For example, 123 E Main St Apt 3.StringParsedPostStreetType.Input

The predirectional type passed on input. For example, 123 E Main St
Apt 3.

StringParsedPreStreetType.Input

The name of one of the state or province depending on the country
passed on input.

StringParsedStateProvince.Input

The subdivision passed on input.StringParsedStateProvinceSubdivision.Input

Precision

SpectrumGlobal Address Validation output can include the precision code that describes the precision
of the address match for the input address. To include the precision code in the output, select the
Precision output option.

Note: The "Precision code counts" section on the Match Analysis Report only displays when
you check the "Precision" output option.

478Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 49: Precision

DescriptionFormatField Name

StringPrecisionCode

479Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

A code describing the precision of the address match.

The matches in the Z category indicate that a match was made at the
postal code level.

Match to ZIP Code™ or postal code 1.Z1

Match to ZIP + 2 or partial match to postal code 2.Z2

Match to ZIP + 4® or postal code 2.Z3

The matches in the G category indicate that the record was matched to
an area name.

Match to state/province (area name 1).G1

Match to country/region (area name 2).G2

Match to city/town (area name 3).G3

Match to suburb/village (area name 4).G4

The matches in the B category indicate that the record was matched to
a PO Box.

Matched to an unvalidated PO Box. Although there is enough
information in the record to identify this as a PO Box, not

B1

enough information exists to determine whether the PO Box
number is valid.

Matched to a validated PO Box.B2

The matches in the S category indicate that the record was matched to
a single address candidate.

Single match; however, no coordinates are available. This is
a very rare occurrence. Parts of the address may have
matched the source data.

S0

Single match to a ZIP Code™ or postal code 1 level. This is
the same quality match as a Z1 result.

S1

Single match to a ZIP + 2 or partial match to postal code 2
level. This is the same quality match as a Z2 result.

S2

Single match to a ZIP + 4® or postal code 2 level. This is the
same quality match as a Z3 result.

S3

Single match at the street level.S4

Single match to the street address. Because only the street
segment data is available, the interpolation is not as accurate

S5

as an S7 return. The S5 code is followed by letters and
dashes indicating match precision.

Single match to a point located at a ZIP centroid.S6

Single match to a street address that was interpolated
between houses.

S7

480Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

S8 Single match to the street address or house number.

Single match at the house-level that has been projected from
the nearest segment.

SC

Single match with point at the center of a locality
(areaName3) or Locality level geocode derived from
topographic feature. An SG result code is associated with
GNAF Reliability Level 5 (locality or neighborhood) or with
Level 6 (unique region). (Australia addresses only.)

SG

Single match to a sublocality (block or sector) street level
match. An SL result code also requires a match on other
geographic input fields (city, district, or state). (India
addresses only.)

SL

Single match to a point located at a street intersection.SX

For S (street matched) precision codes, eight additional characters
describe how closely the address matches an address in the database.
The characters appear in the order shown.

For example, the result code S5--N-SCZA represents a single match
that matched the street name, street suffix direction, town, and postal
code. The dashes indicate that there was no match on house number,
street prefix direction, or thoroughfare type. The match came from the
Street Range Address database. This record would be matched at the
street address level of the match candidate.

481Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

House number match.H

Street prefix (pre-directional). P is present if any of these
conditions are satisfied:

P

• The candidate pre-directional matches the input
pre-directional.

• The candidate post-directional matches the input
pre-directional after pre- and post-directionals are swapped.

• The input does not have a pre-directional.

Street name match.N

Street/thoroughfare type match.T

Street suffix (post-directional).S

• The candidate post-directional matches the input
post-directional.

• The candidate pre-directional matches the input
post-directional after pre- and post-directionals are swapped.

• The input does not have a post-directional.

City or town name.C

Postal code match.Z

Addressing dataset match.A

Custom user dictionary match.U

Single Match 'S' Precision Codes

The following table shows the support for the S category precision codes by country. For more
information on the 'S' precision codes, see Table 49: Precision on page 479. These descriptions
apply to the vast majority of the countries. The exceptions for Australia and Canada are described
in the sections that follow this table.

A bullet "•" indicates the S code is supported. A blank cell indicates the S code is not supported.

SLSGSCSXS0S1S2S3S4S5S6S7S8Country Name

••••••Australia (AUS)

••••••••Canada (CAN)

482Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

SLSGSCSXS0S1S2S3S4S5S6S7S8Country Name

•••••Denmark (DNK)

•••••Germany (DEU)

••••••Great Britain

(GBR)

•••India (IND)

•••••New Zealand
(NZL)

•••••••All other
countries

Australia — 'S' Precision Code Descriptions

The following table provides 'S' precision code descriptions for Australia.

DescriptionResult Code

Street level geocoded candidates return a result code beginning with the letter S. The second character in the code
indicates the positional accuracy of the resulting point for the geocoded record.

Single match, point located at either the single point associated with an address point candidate
or at an address point candidate that shares the same house number. No interpolation is
required.

S8

The S8.......G result code is used for single matches with GNAF Reliability levels of 1or 2
(the highest level of GNAF Reliability.

S8.......G

Single match, located at an interpolated point along the candidate’s street segment. When the
potential candidate is not an address point candidate and there are no exact house number
matches among other address point candidates, the S7 result is returned using address point
interpolation.

S7

483Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionResult Code

The S7.......G result code is used for single matches with GNAF Reliability level of 3.S7.......G

Single match, point located at a street address position.S5

Single match, point located at the center of a shape point path (shape points define the shape
of the street polyline).

S4

The S4.......G result code is used for single matches with a GNAF Reliability level of 4
(associated with a unique road feature).

S4.......G

Single match, however, no coordinates are available (this is a very rare occurrence).S0

Single match with the point located at street intersection.SX

Single match where the original point has been moved a specified distance (usually along a
perpendicular line) toward or away from the associated street segment. This result code can
be returned only when both a point geocoding dataset and a street segment geocoding dataset
are available and when the centerline offset feature is used.

SC

Single match with point at the center of a locality (areaName3) or Locality level geocode
derived from topographic feature. An SG result code is associated with GNAF Reliability Level
5 (locality or neighborhood) or with Level 6 (unique region).

SG

Canada — 'S' Precision Code Descriptions

The following table provides 'S' precision code descriptions for Canada.

DescriptionResult Code

Street level geocoded candidates return a result code beginning with the letter S. The second character in the code
indicates the positional accuracy of the resulting point for the geocoded record.

Single match, point located at either the single point associated with an address point candidate
or at an address point candidate that shares the same house number. No interpolation is
required.

S8

Single match, located at an interpolated point along the candidate’s street segment. When the
potential candidate is not an address point candidate and there are no exact house number
matches among other address point candidates, the S7 result is returned using address point
interpolation.

S7

484Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionResult Code

Single match, point located at a street address position.S5

Single match, point located at the center of a shape point path (shape points define the shape
of the street polyline).

S4

Single match, point located at postal centroid of FSALDU.S3

Single match, point located at postal centroid of FSA.S1

Single match, however, no coordinates are available (this is a very rare occurrence).S0

Single match where the original point has been moved a specified distance (usually along a
perpendicular line) toward or away from the associated street segment. This result code can
be returned only when both a point geocoding dataset and a street segment geocoding dataset
are available and when the centerline offset feature is used.

SC

Result Codes

The result codes provide information on how Spectrum Global Address Validation processed U.S.
addresses.

Table 50: Result Codes

DescriptionFormatField Name

The result codes for the apartment designator (for example, STE or APT).

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringApartmentLabel.Result

485Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the apartment number (for example, Apt 3).

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringApartmentNumber.Result

The result codes for the validated city name.

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringCity.Result

486Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the validated urbanization name. This is primarily
used for Puerto Rico addresses.

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringCitySubdivision.Result

The result codes for the validated firm or company name.

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringFirmName.Result

487Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the House number (for example, 123 E Main St Apt
3).

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringHouseNumber.Result

The result codes for the leading directional (for example, 123 E Main St
Apt 3).

The input field was empty and supposed to be empty.-

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in the
postal database. Each matching record has a different value
in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringLeadingDirectional.Result

The result codes for the Post office box number.

Not applicable.Blank

Corrected.C

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringPOBox.Result

488Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the postal code. For U.S. addresses, this is the ZIP
Code.

Not applicable.Blank

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in
the postal database. Each matching record has a different
value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringPostalCode.Result

The result codes for the postal code source.

Not applicable.Blank

The ZIP Code™ in the input address was corrected
because the USPS® redrew ZIP Code™ boundaries
and the address is now in a different ZIP Code™.

ZIPMOVE

StringPostalCode.Source

The result codes for the postal code type.

Not applicable.Blank

Post office box only.P

Unique ZIP Code™.U

Military ZIP Code™.M

StringPostalCode.Type

The result codes for the rural route/highway contract indicator.

Not applicable.Blank

Corrected.C

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringRRHC.Result

489Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the rural route/highway contract indicator.

Not applicable.Blank

Highway contract route.HC

Rural route.RR

StringRRHC.Type

The result codes for the state or province name.

Not applicable.Blank

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in
the postal database, and each matching record has a
different value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringStateProvince.Result

The alternate street name type.

Not applicable.Blank

Alias (other).A

Base street.B

Alternate street.D

Preferred alias.P

Abbreviated alias.X

StringStreetName.Alternate.Type

490Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the street name (for example, 123 E Main St Apt
3).

Not applicable.Blank

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in
the postal database, and each matching record has a
different value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringStreetName.Result

The street name type.

Not applicable.Blank

Alias (other).A

Base street.B

Alternate street.D

Preferred alias.P

Abbreviated alias.X

StringStreetName.Type

The result codes for the street name (for example, 123 E Main St Apt
3).

Not applicable.Blank

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in
the postal database. Each matching record has a different
value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringStreetSuffix.Result

491Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The result codes for the trailing directional (for example, 123 Pennsylvania
Ave NW).

Not applicable.Blank

Appended. The field was added to a blank input field.A

Corrected.C

Dropped. The field provided on input was removed.D

Multiple. The input address matched multiple records in
the postal database. Each matching record has a different
value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Validated. The data was confirmed correct and remained
unchanged from input.

V

StringTrailingDirectional.Result

Input Address

Spectrum Global Address Validation output can include the input address. To include the input
address, select the Input address output option.

Table 51: Input Address

DescriptionFormatField Name

The first address line passed on input.StringAddressLine1.Input

The second address line passed on input (USA only).StringAddressLine2.Input

The city/locality/suburb name passed on input.StringCity.Input

The city/town subdivision passed on input.StringCitySubdivision.Input

The last line passed on input.StringLastLine.Input

The state/province passed on input.StringStateProvince.Input

The state/province subdivision passed on input.StringStateProvinceSubdivision.Input

492Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The postal code passed on input.StringPostalCode.Input

The country passed on input.StringCountry.Input

The firm name passed on input.StringFirmName.Input

Country Specific Fields

Spectrum Global Address Validation output can include country specific fields. To include country
specific fields in the output, select the Country specific fields output option.

Table 52: Australia (AUS) Country Specific Fields

DescriptionFormatField Name

The GNAF parcel identifier.StringAUS.Parcel.ID

The GNAF Persistent Identifier (GNAF PID) is a 14-character
alphanumeric string that uniquely identifies each GNAF address. The
PID is constructed from a combination of the major address fields of the
GNAF Dictionary. For example, GAACT718519668.

StringAUS.Pid

The Persistent Identifier of the principal address.StringAUS.Principal.Pid

The GNAF address classification.StringAUS.Address.Class

The GNAF Statistical Area Level 1 (SA1) identifier.StringAUS.SA1

The number of a floor or level in a multi-story building. For example,
Floor 2, 17 Jones Street.

StringAUS.Level.Number

493Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 53: Canada (CAN) Country Specific Fields

DescriptionFormatField Name

Indicates whether a building is a commercial building or an apartment
building.

1 Residential (apartment)

2 Commercial

<blank> indicates not a building

StringCAN.BuildingType

The Census Division (CD) in which the address is located. For more
information about Census Divisions, see:
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo008.htm
on the Statistics Canada website.

StringCAN.Census.CD

The Census Metropolitan Area (CMA) in which the address is located.
For more information about Census Metropolitan Areas, see
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo009.htm
on the Statistics Canada website.

StringCAN.Census.CMA

The Census Subdivision (CSD) in which the address is located. For more
information about Census Subdivisions, see
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo012.htm
on the Statistics Canada website.

StringCAN.Census.CSD

The Census Tract (CT) in which the address is located. For more
information about Census Tracts, see
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo013.htm
on the Statistics Canada website.

StringCAN.Census.CT

The Dissemination Area (DA) in which the address is located. For more
information about Dissemination Areas, see
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo021.htm
on the Statistics Canada website.

StringCAN.Census.DA

Table 54: India (IND) Country Specific Fields

DescriptionFormatField Name

Indicates whether an address is located in a rural region (village).StringIND.Is.Rural

494Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www12.statcan.ca/english/census01/Products/Reference/dict/geo008.htm
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo009.htm
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo012.htm
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo013.htm
http://www12.statcan.ca/english/census01/Products/Reference/dict/geo021.htm

DescriptionFormatField Name

Point of interest category. This field describes the type of POI, such as
a bank, ATM, or restaurant.

StringIND.POI.Category

Block information.StringIND.ExtendedResultCode

The municipal division below locality level.StringIND.SubLocality

Table 55: Ireland (IRL) Country Specific Fields

DescriptionFormatField Name

The Eircode for the address. The Eircode is a seven character
alpha-numeric code made up of two parts.

The first three characters define a principal post
town span of delivery.

Routing key

The last four characters uniquely identify each
residential and business address.

Unique Identifier

StringIRL.Eircode

Table 56: Italy (ITA) Country Specific Field

DescriptionFormatField Name

The previous postal code for this address.StringITA.Historical.Postcode

Table 57: Japan (JAP) Country Specific Fields

DescriptionFormatField Name

The block number.StringJPN.BANCHI

The city block number.StringJPN.CHOMOKU

The number for a group of city blocks.StringJPN.CHOOAZA

The house number.StringJPN.GO

495Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

A point ID that represents a unique address.StringJPN.JUSHOCODE

Table 58: Netherlands (NLD) Country Specific Field

DescriptionFormatField Name

The 6-digit postal code. The output contains a candidate’s 6-digit postal
code if one is available.

StringNLD.EXTENED_POST_CODE

Table 59: New Zealand (NZL) Country Specific Fields

DescriptionFormatField Name

The New Zealand aliased suburb. An alternative to the
officially-recognized suburb name.

StringNZL.Aliased.SUBURB

Table 60: United Kingdom (GBR) Country Specific Fields

DescriptionFormatField Name

The addresses in the United Kingdom may contain two street names: a
main street name and dependent street name. Some addresses may
not contain a street name at all.

StringGBR.DependentStreet.Name

The dependent locality name. A dependent locality is a large village or
district. For example,Wimbledon.

StringGBR.Dependent.Locality

The double dependent locality name. A double dependent locality is a
small village or subdistrict.

StringGBR.DoubleDependent.Locality

If the input address contained an old postal code that has been replaced
by a new postal code, this field contains the old postal code.

StringGBR.Historic.Postcode

A locality that is not part of the postal address.StringGBR.Aliased.Locality

496Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

TheOrdnance Survey Address Point reference (OSAPR). Each address
has a unique OSAPR. OSAPRs are always 18 characters long and must
start with the letters AP.

StringGBR.OSAPR

The Unique Property Reference Number. The UPRN is a unique identifier
that provides a persistent reference to a unique property, regardless of
changes in the property name, status, subdivision, use (such as from
single occupancy to multiple occupancy), or demolition of the property.
All historic, alternative, and provisional addresses are recorded against
the same UPRN. The UPRN field is not returned for Northern Ireland
addresses.

StringGBR.UPRN

The RPC identifies the positional accuracy of the candidate. The RPC
describes the accuracy of the coordinates allocated to the address.

StringGBR.RPC

Table 61: United States (USA) Country Specific Fields

DescriptionFormatField Name

The abbreviated city name.StringUSA.AbbreviatedCityName

The location where the address information was found.

Input address found on address line 1.01

Input address found on address line 2.02

Input address found on address lines 1 and 3.03

Firm found on input address line 1. No address line found.04

Input address found on address line 2. Firm found on
address line 1.

06

Firm found on input address line 2. No address line found.08

Input address found on address line 1. Firm found on
address line 2.

09

Address line not found.80

StringUSA.AddressLocation

The returned 14-digit barcode consisting of the beginning frame
character, ZIP Code, ZIP + 4, delivery point, check digit, and end framing
character.

StringUSA.AdvancedBarcode

The returned alternate street name.StringUSA.AltStreet

497Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The returned alternate street name type.

Base street.B

Alias (other).A

Alternate street.D

Preferred alias.P

Abbreviated alias.X

StringUSA.AltStreetType

The first apartment (unit) field in the address. This field is used for output.
This field will only be populated if the Save unit in separate field is
selected. If selected, the data is not included on the AddressLineX field(s).

StringUSA.Apartment1

The second apartment (unit) field in the address. This field is used for
output. This field will only be populated if the Save unit in separate field
is selected. If selected, the data is not included on the AddressLineX
field(s).

StringUSA.Apartment2

The valid one-digit modulo check digit required for printing the correct
barcode.

StringUSA.BCCheckDigit

The returned carrier route code.StringUSA.CarrierRouteCode

For successfully-coded addresses, the output label line Address Line 1
contains the coded address line information.

StringUSA.CASSAddressLine1

For successfully-coded addresses, the output label line Address Line 2
contains the city/state/ZIP Code information.

StringUSA.CASSAddressLine2

The city name. The city name returned here is the city name mandated
by USPS regulations. Variations of the city name (for example, full,
abbreviated, and non-mailing) are returned in alternate fields.

StringUSA.CASSCityName

The returned congressional district.StringUSA.CongressionalDistrict

The returned default match.

Carrier route, or ZIP + 4, or DPBC default values
returned.

Y

No default values returned.Blank

StringUSA.DefaultMatch

498Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The returned Delivery Point Validation (DPV) indicators.

The address is not a valid delivery point. The USPS cannot
deliver mail to this address.

N

The address is delivery point validated. Primary range and
secondary range (when present) are valid. The USPS can
deliver mail to this address.

Y

This address contains a valid primary range. Secondary range
is present but is not confirmed. The USPS can deliver mail to
this address.

S

This address contains a valid primary range. Secondary range
is missing. The USPS can deliver mail to this address.

D

StringUSA.DPV

The returned Commercial Mail Receiving Agents (CMRA) indicators.

The address is a valid CMRA.Y

The address is a confirmed delivery point but is not a
valid CMRA.

N

This field is blank if the address is not a confirmed
delivery point.

Blank

StringUSA.DPV.CMRA

The DPV Door Not Accessible (DNA) Table status indicator. The DNA
Table identifies delivery addresses where carriers cannot knock on the
door for mail delivery or where carriers cannot physically access a
residence/building such as rural/highway contact route (HCR), long
driveway, or gated community.

The address was found in the DPV DNA Table.Y

The address was not found in the DPV DNA Table.N

The DPV DNA Table was not queried.Blank

StringUSA.DPV.DNA

The DPV False Positive Flag.

The address is not a confirmed delivery point and a positive
response was received from the False Positive File.

Y

The address is not a confirmed delivery point and a negative
response is received from the False Positive File. This field
is blank if the address is a confirmed delivery point.

N

The False/Positive Table was not queried.Blank

StringUSA.DPV.FalsePositive

499Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The returned DPV footnote code.

Input address did not match to the ZIP + 4 File.A1

Input address matched to the ZIP + 4 File.AA

Input address matched to DPV (all components).BB

Input address primary number matched to DPV but
secondary number did not match (present but invalid).

CC

Input address matched to a military ZIP Code.F1

Input address matched to a General Delivery address.G1

Input address primary number missing.M1

Input address primary number is invalid.M3

Input address primary number matched to DPV but
address is missing secondary number.

N1

Input address missing PO Box, rural route, or highway
contract number.

P1

Input address PO Box, rural route, or highway contract
number invalid.

P3

Input address is a PO Box Street Address (PBSA).PB

Input address matched to CMRA but secondary number
is not present.

R1

Input address is a Carrier Route R777.R7

Input address matched to CMRA.RR

Input address matched to a unique ZIP Code.U1

StringUSA.DPV.Footnote

The parsed street predirectional for the record creating the False Positive
(Seed) Table violation.

StringUSA.DPV.LeadingDirectional

The parsed ZIP Code for the record creating the False Positive (Seed)
Table violation.

StringUSA.DPV.MatchedZIP

The parsed Plus4 ZIP Code for the record creating the False Positive
(Seed) Table violation.

StringUSA.DPV.MatchedZIP4

The DPV No-Stat Table status.

The address was found in the DPV No-Stat Table.Y

The address was not found in the DPV No-Stat Table.N

The DPV No-Stat Table was not queried.Blank

StringUSA.DPV.NoStat

500Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The DPV No Secure Location (NSL) Table status.

The address was found in the in the DPV NSL Table.Y

The address was not found in the DPV NSL Table.N

The DPV NSL Table was not queried.Blank

StringUSA.DPV.NSL

The DPV PO Box Street Address (PBSA) Table status indicator.

The address was found in the DPV PBSA Table.Y

The address was not found in the DPV PBSA Table.N

The DPV PBSA Table was not queried.Blank

StringUSA.DPV.PBSAFound

The parsed street primary range for the record creating the False Positive
(Seed) Table violation.

StringUSA.DPV.Range

The DPV False Positive (Seed) Table indicator.

The address was found in the in the DPV False Positive
(Seed) Table.

Y

The address was not found in the DPV False Positive (Seed)
Table.

N

StringUSA.DPV.SeedHit

The street name for the address creating the False Positive (Seed) Table
violation.

StringUSA.DPV.StreetName

The street suffix for the address creating the False Positive (Seed) Table
violation.

StringUSA.DPV.Suffix

The DPV P.O. Box Throwback Table indicator.

The address was found in the in the DPV P.O. Box
Throwback Table.

Y

The address was not found in the DPV P.O. Box
Throwback Table.

N

The DPV P.O. Box Throwback Table was not queried.Blank

StringUSA.DPV.Throwback

The street postdirectional for the address creating the False Positive
(Seed) Table violation.

StringUSA.DPV.TrailingDirectional

The unit designator for the address creating the False Positive (Seed)
Table violation.

StringUSA.DPV.UnitDesignator

501Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The unit number for the record creating the False Positive (Seed) Table
violation.

StringUSA.DPV.UnitNumber

The DPV Vacant Table indicator.

The address was found in the DPV Vacant Table.Y

The address was not found in the DPV Vacant Table.N

The DPV Vacant Table was not queried.Blank

StringUSA.DPV.Vacant

The ZIP + 4 used for DPV processing.StringUSA.DPV.ZIP4

The address was not matched because the address was found in the
USPS Early Warning System (EWS) File.

StringUSA.EWSFailure

The returned five-digit FIPS code. Positions 1 and 2 contain the state
code. Positions 3 through 5 contain the county code. Used for output
information only.

StringUSA.FIPSCountyNumber

The returned five-digit barcode.StringUSA.FiveDigitBarcode

The returned 5-digit combined ZIP Code.StringUSA.FiveDigitScheme

The full city name.StringUSA.FullCityName

The LACSLink status.

The address is eligible for LACSLink processing.L

No LACSLink processing available.Blank

StringUSA.LACS

The one-byte CASS Stage file LACSLink Indicator value. If you are not
performing a CASS Stage test, this field can be ignored. If you are
performing a CASS Stage test, use the value in this field to populate the
stage record.

Record found in the LACSLink False Positive (Seed) Table.Y

Record not found in the LACSLink False Positive (Seed) Table.N

StringUSA.LACS.Indicator

The input address before LACSLink processing.StringUSA.LACS.PreLACSAddress

The input address street predirectional determined before LACSLink
processing.

StringUSA.LACS.PreLACSLeadingDirectional

502Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The input address matched ZIP Code determined before LACSLink
processing.

StringUSA.LACS.PreLACSMatchedZIP

The input address matched ZIP+4 Code determined before LACSLink
processing.

StringUSA.LACS.PreLACSMatchedZIP4

The input address street primary range determined before LACSLink
processing.

StringUSA.LACS.PreLACSRange

The input address street name determined before LACSLink processing.StringUSA.LACS.PreLACSStreetName

The input address street suffix determined before LACSLink processing.StringUSA.LACS.PreLACSSuffix

The input address street postdirectional determined before LACSLink
processing.

StringUSA.LACS.PreLACSTrailingDirectional

The input address unit designator determined before LACSLink
processing.

StringUSA.LACS.PreLACSUnitD

The input address unit number determined before LACSLink processing.StringUSA.LACS.PreLACSUnitN

The LACSLink return code.

LACSLink processing successful. Record matched through
LACSLink processing.

A

LACSLink processing failed. No matching record found during
LACSLink processing.

00

LACSLink processing matched the input address to an older
highrise default address. The address has been converted.
However, rather than provide an imprecise address, LACSLink

processing does not provide a new address.

09

LACSLink processing failed. Match found during LACSLink

processing but conversion did not occur due to other USPS
regulations.

14

LACSLink processing successful. Record matched through
LACSLink processing. Unit number dropped on input.

92

StringUSA.LACS.ReturnCode

503Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

Indicates if the address was found in the LACSLink False Positive (Seed)
Table.

The address was found in the LACSLink False Positive (Seed)
Table.

Y

The address was not found in the LACSLink False Positive
(Seed) Table.

N

StringUSA.LACS.SeedHit

The returned enhanced Line of Travel (eLOT) code. Used for output
information only. If eLOT is unavailable, the default value is 0000D.

StringUSA.LOTCode

The last character of the eLOT code indicates eLOT sequence.

Ascending.A

Descending.D

StringUSA.LOTSequence

The returned match level.

Firm record match.F

General delivery match.G

Highrise match.H

PO Box match.P

Rural route/highway contract match.R

Street level match.S

StringUSA.MatchLevel

The non-mailing city name. A city name that is recognized by the USPS,
but is not the preferred name for the ZIP Code. This is often a vanity
name for the area.

StringUSA.NonMailingCityName

The parsed alternate post directional.StringUSA.Parsed.AltPostDirectional

The parsed alternate pre-directional.StringUSA.Parsed.AltPreDirectional

The parsed alternate range.StringUSA.Parsed.AltRange

The parsed alternate street name.StringUSA.Parsed.AltStreetName

The parsed alternate suffix.StringUSA.Parsed.AltStreetSuffix

The parsed PMB or MSC designator.StringUSA.Parsed.PMUnitDesignator

504Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The parsed PMB or MSC unit number.StringUSA.Parsed.PMUnitNumber

The parsed post-directional.StringUSA.Parsed.PostDirectional

The parsed pre-directional.StringUSA.Parsed.PreDirectional

The parsed primary range.StringUSA.Parsed.Range

The parsed street name.StringUSA.Parsed.StreetName

The parsed street suffix.StringUSA.Parsed.StreetSuffix

The parsed second unit designator.StringUSA.Parsed.Unit2Designator

The parsed second unit number.StringUSA.Parsed.Unit2Number

The parsed unit designator.StringUSA.Parsed.UnitDesignator

The parsed unit number.StringUSA.Parsed.UnitNumber

The PO Box only delivery zone status indicator.

The address ZIP Code is a PO Box only delivery zone.Y

The address ZIP Code is not a POBox only delivery zone.N

Unable to determine USPS ZIP Code for input address.Blank

StringUSA.POBoxOnly

The returned delivery point barcode.StringUSA.PostalBarcode

The preferred city name for ZIP Code.

Note: For successfully-coded addresses, the
USA.PreferredCityName and the USA.PreferredState fields are
always populated.

For non-coded addresses, the USA.PreferredCityName and
the USA.PreferredState fields are populated in the following
scenarios:

• ZIP Code only input (city not input, or not found).
• Single ZIP Code city input (ZIP Code not input, or not found).
• City/St/ZIP Code input and agree (ZIP Code is part of city).

For all other non-coded scenarios, the preferred fields are blank.

StringUSA.PreferredCityName

505Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The preferred state abbreviation for the preferred city name.

Note: For successfully-coded addresses, the
USA.PreferredCityName and USA.PreferredState fields are
always populated.

For non-coded addresses, the USA.PreferredCityName and
USA.PreferredState fields are populated in the following
scenarios:

• ZIP Code only input (city not input, or not found).
• Single ZIP Code city input (ZIP Code not input, or not found).
• City/St/ZIP Code input and agree (ZIP Code is part of city).

For all other non-coded scenarios, the preferred fields are blank.

StringUSA.PreferredState

The returned matched Private Mail Box (PMB) or Mail Stop Code (MSC).StringUSA.PrivateMailbox

Reserved for future use.StringUSA.PrivateMailbox.Input

Reserved for future use.StringUSA.PrivateMailbox.Type

Reserved for future use.StringUSA.PrivateMailbox.Type.Input

The returned Residential Delivery Indicator (RDI).

The address is a residential delivery.Y

The address is a business delivery.N

The address failed address lookup (did not return a
ZIP+4), or RDI was not active.

Blank

StringUSA.RDI

The seasonal delivery indicator beginning with January. The seasonal
indicators for the returned ZIP Code. These indicators identify, at the
5-digit ZIP Code level, the months in which seasonal addresses receive
delivery. There are 12 monthly flags (January through December). A "Y"
in one of the monthly slots indicates that seasonal addresses are
delivered mail in the month indicated by that slot. This field is blank if
there are no seasonal deliveries for the ZIP Code.

Deliver mail in this month.Y

Do not deliver mail in this month.N

StringUSA.SeasonalFlags

506Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The match status of the address.

The address failed to match.F

The address was successfully matched.Blank

StringUSA.Status

507Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

StringUSA.Status.Code

USA.Status.Description

508Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The returned match status code.

No city, state, and ZIP Code in address.4101

No ZIP Code and no city name in address.4102

No ZIP Code and no state name in address.4103

Cannot match to Unique ZIP Code.4104

Invalid ZIP Code and no city name in address.4211

No ZIP Code and invalid city name in address.4212

Invalid ZIP Code and invalid city name in address.4213

No street name in input address.4301

Blank address record.4399

No primary street name found in the Global Address
Validation database.

4411

No primary names ranked with certainty.4412

Invalid range or house number.4421

Incorrect or missing directional.4422

Incorrect or missing suffix.4423

Incorrect or missing suffix and directional.4425

No range in input address.4450

Multiple component failure. An address component had
multiple options causing the address to fail assignment.

4451

EWS Failure. Address found on EWS table.4460

eLOT assignment has failed. Address coded
successfully but eLOT code not assigned.

4461

The address requires a firm. No firm was provided or
the firm failed to match.

4465

The address requires secondary addresses (there is
no default street address). No secondary was provided
or the secondary did not match.

4466

The address coded but was flagged for ZIP Move
processing. The address failed to meet the final ZIP

4467

Move criteria. ZIP Move processing requires an exact
match of street, suffix, and directional (both pre and
post).

Unable to code. If reason for inability to code cannot
be determined, this error is issued.

4500

Undeliverable address in the Global Address Validation
database.

4600

509Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

Note: This status code can still be valid with
a successfully matched address. The
combination of the two codes indicates that
this is a valid address but is not deliverable by
USPS standards.

The address failed Delivery Point Validation (DPV)
processing.

4601

The address is flagged as Carrier Route R777 and is
not eligible for street delivery. This status code is only
generated if the option R777 Deliverable is not
activated.

4602

Address is locked and was not be processed.4801

Warning: Missing apt/suite number.5101

Warning: Apt/suite was input but is not valid.5102

Warning: Input firm name is missing or invalid.5103

Warning: Multiple firms returned for address.5104

Warning: PO Box number is invalid or unavailable.5105

Warning: Apt/Suite was input but not allowed for this
address.

5106

Information: Address bypassed counted correct in
Process Unassign run.

5200

The type of alias street name. An alias street name is an alternate name
for a street, maintained at the 5-digit ZIP Code level.

The alias street name is an abbreviation of the street
name. For example, HARTS-NM RD is an abbreviated
alias for HARTSVILLE NEW MARLBORO RD.

Abbreviated

The official street name changed and the alias street
name reflects the new official street name. For example,
if SHINGLE BROOK RD is changed to CANNING DR,
then CANNING DR would be a changed alias type.

Changed

The alias street name is made up of nicknames, other
names, or common abbreviations for the street name.

Other

The alias street name is the USPS preferred alias street
name.

Preferred

StringUSA.StreetNameAliasType

510Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The SuiteLink fidelity code.

All words in the business name match.1

Acceptable match. One or more words in the business name
did not match, but acceptance criteria was still met.

2

Unacceptable match. One or more words in the business name
did not match. Acceptance criteria was not met.

3

StringUSA.SuiteLink.Fidelity

The SuiteLink match code.

SuiteLink match found.A

No SuiteLink match found.B

Business name normalized to a blank value.C

ZIP + 4 Code not recognized as a high-rise default.D

SuiteLink database expired.E

StringUSA.SuiteLink.MatchCode

The SuiteLink return code.

Successful SuiteLink match.A

Failed SuiteLink match.00

StringUSA.SuiteLink.ReturnCode

Reserved for future use.StringUSA.VeriMoveDataBlock

The returned ZIP Code.StringUSA.ZIPValid

The returned ZIP + 4 Code.StringUSA.ZIP4Valid

Reports

Reports

Spectrum Global Address Validation can produce reports for batch processing. To create the report,
in Enterprise Designer drag the report icon you want to the canvas. You do not need to draw a
connector to the report. For instructions on how to use reports, see the Spectrum Technology Platform
Dataflow Designer's Guide.

Match Analysis by Country

The Spectrum Global Address Validation Match Analysis by Country Report provides address
matching summary statistics for each country processed in your job. For instructions on how to use
reports, see the Spectrum Technology Platform Dataflow Designer's Guide.

511Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Summary of Matched Elements

This section contains summary information on matched elements for each country.

The total number of input records processed for the country
listed.

Total country records

The number and the percentage of records that matched on
the house number.

House number matched

The number and the percentage of records that matched on
the street name.

Street name matched

The number and the percentage of records that matched on
the city name.

City name matched

The number and the percentage of records that matched on
the postal code.

Postal code matched

The number and the percentage of records that matched on
the state/province.

State/Province matched

Precision Code Counts

This section provides statistics on the number and the percentage of records in your job that matched
for each precision code. The precision code describes the level of precision for each record's address
match.

Note: The "Precision code counts" section on the Match Analysis Report only displays when
you check the Precision output option.

Precision Code B Category

PO Box level candidates return a precision code beginning with the letter B. The number following
the B in the precision code provides more detailed information on the accuracy of the match.

The number and percentage of records that matched to an unvalidated
PO Box. Although there is enough information in the record to identify

Precision Code B1

this as a PO Box, not enough information exists to determine whether
the PO Box number is valid.
The number and percentage of records that matched to a validated PO
Box.

Precision Code B2

Precision Code G Category

Geographic level candidates return a precision code beginning with the letter G. The number following
the G in the precision code provides more detailed information on the accuracy of the match.

The number and percentage of records that match to state/province
(area name 1).

Precision Code G1

512Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The number and percentage of records that match to county/region
(area name 2).

Precision Code G2

The number and percentage of records that match to city/town
(area name 3).

Precision Code G3

The number and percentage of records that match to suburb/village
(area name 4).

Precision Code G4

Precision Code S Category

Street level candidates return a precision code beginning with the letter S. The character following
the S in the precision code provides more detailed information on the accuracy of the match.

The number and percentage of records that matched at the house-level
that has been projected from the nearest segment.

Precision Code SC

The number and percentage of records that matched to a point at the
center of a locality (area name 3) or locality level geocode. An SG result

Precision Code SG

code is associated with GNAF Reliability Level 5 (locality or
neighborhood) or with Level 6 (unique region). (Australia addresses
only.)
The number and percentage of records that matched to a sublocality
(block or sector) street level match. An SL result code also requires a

Precision Code SL

match on other geographic input fields (city, district, or state). (India
addresses only.)
The number and percentage of records that validated at a street
intersection.

Precision Code SX

The number and percentage of records where parts of the address may
have matched the source data.

Precision Code S0

The number and percentage of records that resulted in a single match
to a ZIP Code™ or postal code 1 level. This is the same quality match
as a Z1 result.

Precision Code S1

The number and percentage of records that resulted in a single match
to a ZIP + 2 or partial match to postal code 2 level. This is the same
quality match as a Z2 result.

Precision Code S2

The number and percentage of records that resulted in a single match
to a ZIP + 4® or postal code 2 level. This is the same quality match as
a Z3 result.

Precision Code S3

The number and percentage of records that matched at the street level.Precision Code S4
The number and percentage of records that matched to the street
address.

Precision Code S5

The number and percentage of records that matched to a single point
located at a ZIP centroid.

Precision Code S6

The number and percentage of records that matched to a street address
that was interpolated between houses.

Precision Code S7

513Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The number and percentage of records that matched to the street
address or house number.

Precision Code S8

For more information about the S precision code, see the Global Address Validation Output section.

Precision Code Z Category

The Z category indicates that a match was made at the postal code level. A postal code match is
returned in either of these cases:

• You specified to match to postal code. The resulting match is located at the postal code with the
following possible accuracy levels.

• There is no street level match and you specified to fall back to postal code.

The number and percentage of records that match to the ZIP Code
or postal code 1.

Precision Code Z1

The number and percentage of records that result in a ZIP + 2 or
partial match to postal code 2.

Precision Code Z2

The number and percentage of records that match to ZIP + 4 or
postal code 2.

Precision Code Z3

Confidence Levels

This section provides a graphical representation of the percentage of records for each country that
matched at different confidence levels. The confidence level assigned to a returned address ranges
from zero (0) to 100. Zero indicates failure. 100 indicates a very high level of confidence that the
match results are correct.

Note: The confidence levels are calculated as a percentage of matched records. Input records
that fail (Status.Code=F) and do not match are not included in the confidence level calculations
and are not included in the confidence level graph on the report.

The percentage of records that match at a confidence level
less than 40 (low).

Confidence level less than 40

The percentage of records that match at a confidence level
between 40 and 85 (medium).

Confidence level 40-85

The percentage of records that match at a confidence level
greater than 85 (high).

Confidence level greater than 85

Summary of Matched Elements for: Unknown

This section of the report provides matching statistics on records for which the input country code
was not recognized and the country was not determined via address match.

Note: This section only displays when the output from your job includes records that did not
match on country.

514Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Precision Code Counts for: Unknown

This section provides matching precision statistics on records for which the input country code was
not recognized and the country was not determined via address match. The precision code describes
the level of precision for each record's address match.

Note: The "Precision code counts" section on the Match Analysis Report only displays when
you check the Precision output option.

Summary of Matched Elements for: All Countries

This section of the report provides matching statistics for all input addresses that matched on country
for all countries combined.

Precision Code Counts for: All Countries

This section provides matching precision statistics for all input addresses that matched on country
for all countries combined. The precision code describes the level of precision for each record's
address match.

Note: The "Precision code counts" section on the Match Analysis Report only displays when
you check the Precision output option.

Precision Code Definitions

This section provides a reference for the precision codes that display on the report. For more
information on precision codes, see the Global Address Validation Output section.

Report Footer

The footer on each page displays the time the report was generated and the page number.

Address Matching Summary Report

The Address Matching Summary Report provides summary matching statistics for each country
processed. For instructions on how to use reports, see the Spectrum Technology Platform Dataflow
Designer's Guide.

Country

This section provides matching statistics for each country processed.

This column lists each country processed in your job.Country
The number of records that were successfully matched.Matched Records
The percentage of records that were successfully matched.Matched Records %

515Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The number of records that were not successfully matched.Unmatched Records
The percentage of records that were not successfully matched.Unmatched Records %
The total number of records processed for the country.Total Records

All Records

This section lists the total matching results for all countries processed.

The total number of records that were successfully matched.Matched Records
The percentage of all records in your job that were successfully
matched.

Matched Records %

The total number of records that were not successfully matched.Unmatched Records
The percentage of all records in your job that were not
successfully matched.

Unmatched Records %

The total number of matched and unmatched records processed
in your job.

Total Records

USPS Form 3553 (CASS Summary Report)

The United States Postal Service® (USPS) Form 3553 (CASS Summary Report) is a facsimile of
the Postal Form 3553. Global Address Validation generates this form automatically when you are
using a USPS Coding Accuracy Support System (CASS) certified configuration. The USPS requires
this form to verify CASS certification.

The second page of the USPS Form 3553 (CASS Summary Report) provides detailed information
for each field on the form. For additional information on the USPS Form 3553 (CASS Summary
Report), see http://about.usps.com/forms/ps3553.pdf. For instructions on how to use reports, see
the Spectrum Technology Platform Dataflow Designer's Guide.

Spectrum Global Type Ahead
SpectrumGlobal Type Ahead automatically suggests addresses as you type and immediately returns
candidates based on your input. You can then select your candidate from the presented candidate
list. Spectrum Global Type Ahead is part of Spectrum Global Addressing Management.

Global Type Ahead Features
Global Type Ahead provides the following capabilities.

• Select country (optional). See Supported Countries on page 517 for a list of available countries.
• Single and multiple line input search for street addresses
• Specify the number of candidates to display
• Candidates returned in order based on closest match
• Search Points of Interest (POI)

516Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://about.usps.com/forms/ps3553.pdf

Note: POI and category/subcategory features are accessible only if available and you have
licensed and installed POI data.

• Search can include both street addresses and POI
• Additional filtering by City, State/Province, or Postal Code is available
• Fuzzy Match capabilities

For both address searches and POI searches, candidates are displayed as you type. As you type
more specific information, the results are refined to display more relevant candidates. Candidates
include the full address and POI (if the candidate is a Point of Interest).

After installing and deploying Global Type Ahead, you can use the Management Console to explore
all the capabilities and see candidate results.

A sample application for Global Type Ahead is available on the Spectrum landing page under
Spectrum Data Quality.

Supported Countries
Global Type Ahead covers street addresses and Points of Interest (POI) for the following countries.
The three-digit ISO country code is shown for each country. For a complete list of all ISO country
codes, see ISO Country Codes and Coder Support.

Note: The POI data must be purchased separately. POI and category/subcategory features
are accessible only if available and you have licensed and installed POI data. Street address
data is packaged with the Spectrum Global Addressing Management.

• Andorra (AND)
• Australia (AUS)
• Austria (AUT)
• Bahrain (BHR)
• Belgium (BEL)
• Brazil (BRA)
• Canada (CAN)
• Czech Republic (CZE)
• Denmark (DNK)
• Finland (FIN)
• France (FRA)
• Germany (DEU)
• Greece (GRC) (Does not include POI information)
• Hungary (HUN)
• Ireland (IRL)
• Italy (ITA)
• Japan (JPN)
• Kuwait (KWT)
• Liechtenstein (LIE)

517Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Luxembourg (LUX)
• Mexico (MEX)
• Netherlands (NLD)
• New Zealand (NZL) (Does not include POI information)
• Norway (NOR)
• Oman (OMN)
• Poland (POL)
• Portugal (PRT)
• Qatar (QAT)
• Russia (RUS)
• Saudi Arabia (SAU)
• Singapore (SGP)
• Slovakia (SVK)
• Slovenia (SVN)
• South Africa (ZAF)
• Spain (ESP)
• Sweden (SWE)
• Switzerland (CHE)
• Thailand (THA)
• Turkey (TUR)
• United Arab Emirates (ARE)
• United Kingdom (GBR)
• United States (USA)

Note: See the current Database Release Notes for more details of country coverage and
data vintages.

Using Global Type Ahead
After installing and deploying the Spectrum Global Addressing Management, you can use Global
Type Ahead:

• As a service from Management Console
• As a stage from Enterprise Designer
• As a sample web application
• As a Java Script Component that you can use as a simple interface to integrate Global Type Ahead
(GTA) functionality into an existing web application.

Using Global Type Ahead As a Service
To use Global Type Ahead as a service from Management Console:

1. Open the Management Console.
2. Under the Services tab, select Global Addressing.

518Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. From the list of services on the left side of the pane, select Global Type Ahead.
4. On the Database Resources tab, specify the Global Type Ahead database resource to use.
5. Click Save to save your database selection.
6. Click the Default Options tab.
7. On the Default Options tab, specify the options you want. For information on the options, see

Options on page 519.
8. If you make changes to the global default options, click Save to save those changes. Any changes

you make to the global default options are also applied to Global Type Ahead in Enterprise
Designer.

9. Click the Preview tab.
10. In the AddressLine1 field, enter the complete first line of the address, typically including street

and house number.
11. In the Country field, enter the country name or the two or three-character ISO country code. If

you omit the country, Global Type Ahead returns the best available candidates for the Default
Country selected on the Default Options tab. For a list of ISO codes, see ISO Country Codes
and Coder Support.

12. You can further filter results by providing a city, state/province, or postal code.
13. Click Run Preview.
14. In Preview Output Records on the right side of the pane, note that the results of the search

have been placed in the appropriate output field. For information on the output fields, seeOutput
on page 521.

Using Global Type Ahead As a Stage
You can use Global Type Ahead as a stage from Enterprise Designer to perform address validation
as a batch process. For more information about creating a job using Global Type Ahead as a stage,
see:

• My First Dataflow (Job) in the Dataflow Designer Guide
• Options on page 519
• Input on page 521
• Output on page 521

Options
Global Type Ahead uses the default options settings to define address retrieval processing.

519Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 62: Global Type Ahead Options

DescriptionCountry
Support

Option Name

The database to use for Global Type Ahead processing. Only databases
that have been defined in the Database Resources panel in the
Management Console are available.

AllDatabase

The default country for address match processing.AllDefault Country

The Global Type Ahead search options:

Search for street addresses.Address

Search for Points of Interest (POI).Point Of Interest

Search for street addresses within a specific city.City

Search for street addresses within a specific
state.

State

Search for street addresses within a specific
postal code.

Postal

AllSearch type

The maximum number of search candidates returned. The maximum is
99. The default is 5.

AllMax candidates

Global Type Ahead implements algorithms that optimize the retrieval of
addresses and POIs, even when the input spelling is incorrect or
incomplete. These capabilities are referred to as Fuzzy Match, and are
implemented through match setting constraints.

Fuzzy Match is disabled by default.None

The hard match allows one character substitution,
insertion, deletion, or transposition.

Hard Match

The soft match allows two character substitutions,
insertions, deletions, or transpositions.

Soft Match

AllFuzzy match

You can specify Match on address number to determine if a house
number match is required to get a match. If this match restriction is
checked, then returned candidates must match the input house number.
By default, the Match on address number box is unchecked, which
means that returned candidates do not have to match the input house
number. If the input does not contain a house number, the Match on
address number restriction has no effect.

AllMatch on address number

520Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input
In an interactive environment, Global Type Ahead automatically suggests addresses as you type
and immediately returns candidates based on your input. Global Type Ahead can also return Points
of Interest (POI).

Note: The POI data must be purchased separately. POI and category/subcategory features
are available only if you have licensed and installed POI data. Street address data is packaged
with the Global Addressing Module.

Table 63: Global Type Ahead Input

DescriptionFormatField Name

The complete first line of the address, typically including street and house
number.

StringAddressLine1

The city or town name.StringCity

The name of one of the state or province depending on the country.StringStateProvince

The postal code for the address. The format of the postal code varies
by country.

StringPostCode

The country name or the two or three-character ISO country code. If you
omit the country, Global Type Ahead returns the best available candidates
for the Default Country selected on the Default Options tab. For a list of
ISO codes, see ISO Country Codes and Coder Support.

StringCountry

Output
Global Type Ahead output is determined by the output options you selected.

Returned candidates can be previewed in theManagement Console. Candidates include the complete
address elements that you expect to see in Spectrum Technology Platform candidates, such as
AddressLine, Range, City, County, State, and Country.

Note: TheGlobal Type Ahead stage currently supports Range and Range Units for the United
Kingdom (GBR) and the United States (USA). For the United Kingdom (GBR), UK Royal Mail
(RM) data is used. For the United States (USA), Master Location Data (MLD) is used.

521Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 64: Global Type Ahead Output

DescriptionFormatField Name

The complete first line of the address, typically including street and house
number.

StringAddressLine1

The status of the match attempt on address number. Returns true to
indicate that the input address number matched the candidate. If address
number is not matched, this field is not returned.

StringAddressNumber.Match

The city or town name.StringCity

The status of the match attempt on city. Returns true to indicate that the
input city matched the candidate. If city is not matched, this field is not
returned.

StringCity.Match

The county name.StringCounty

The country name.StringCountry

The name of a company.StringFirmName

The formatted address.StringFormattedAddress

The last line of the address. For example, 10 DOWNING STREET
LONDON, SW1A 2AA.

StringLastLine

The locality.StringLocality

The postal code for the address. The format of the postal code varies
by country.

StringPostalCode

The number of ranges for the candidate.StringRangeCount

Additional information for each range identified for the candidate.

• Range—The range number.
• UnitCount—The number of units for the range.
• UnitsInfo—Provides information for the unit and the formatted unit
address.

StringRanges

The name of one of the state or province depending on the country.StringStateProvince

522Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The status of the match attempt on street name. Returns true to indicate
that the input street name matched the candidate. If street name is not
matched, this field is not returned.

StringStreetName.Match

Returns 1 for a POI match. Returns 2 for a street address match. POI
and category/subcategory features are available only if you have licensed
and installed POI data. You must have a license for POI data to include
it and be able to return candidates for the dictionary.

StringType

Spectrum Global Type Ahead Sample Web Application
The SpectrumGlobal Type Ahead stage is packaged with a sample web application that demonstrates
the Spectrum Global Type Ahead features and functionality. Global Type Ahead automatically
suggests addresses as you type and immediately returns candidates based on your input. You can
then select your candidate from the presented candidate list.

Note: Before using the sample web application, add a Global Type Ahead database resource
in Management Console and save the database resource in the Global Type Ahead Service.

To use the Global Type Ahead sample web application:

1. Be sure the Spectrum Technology Platform server is running.
2. Open a web browser and go to: http://<servername>:<port>/globaltypeahead. For

example, if your server is named "myserver" and your server uses the default HTTP port 8080,
you would go to: http://myserver:8080/globaltypeahead. You can also find the sample
web application for Global Type Ahead on the Spectrum™ landing page under Spectrum Data
Quality.

Note: This site is best viewed in Internet Explorer 8.0 or later, Chrome, or Mozilla Firefox.

3. When the login screen appears, enter your user name and password.
4. Press OK.
5. Select a database from the drop-down list.
6. Select a country from the drop-down list.
7. Select the maximum number of candidates to display as you type addresses.
8. Select the appropriate match type.
9. Type an address in the address field. Address candidates display as you type. As you type more

specific address information, the results are refined to display more relevant candidates.
10. You can filter results by providing a city, state, or postal code.
11. Select from the list of suggested addresses.
12. The selected address displays in the Search Result box.
13. To search for another address, click Reset to clear the fields.

523Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Global Type Ahead Java Script Component
The Global Type Ahead Java Script Component is a simple interface that you can use to integrate
Global Type Ahead (GTA) functionality into an existing web application. Global Type Ahead suggests
candidate addresses based on your typed input. As you type more specific information, the results
are refined to display more relevant candidates. You can then select your candidate from the
suggested candidate list.

Requirements

The Global Type Ahead Java Script Component:

• Uses an AngularJS (1.x) web interface
• Uses a single line interface in the HTML source for your existing web application
• Maintains the Global Type Ahead Java Script Component options in a separate file from the main
code

• Places the main Global Type Ahead Java Script Component code in a sub-folder to be included
in your HTML application

• Calls the Spectrum Technology Platform and SpectrumGlobal Addressing Management interfaces
using one of the following authentication methods:

• No authentication
• Session
• Client
• Open token

• Uses the Spectrum Technology Platform as the host service provider (for example, localhost:8080)
for Global Type Ahead and Global Address Validation

• Accepts any web server to drive the web pages

Integrating Global Type Ahead Into Your Web Application

To integrate the Global Type Ahead functionality into an existing web application, you will need to:

• Review Requirements on page 524 if you have not already done so.
• Insert a few lines of code into your existing application.
• Edit the configuration file.
• Include a folder that provides the interface logic from the existing web application to the Global
Type Ahead APIs.

Installing the Global Type Ahead Java Script Component

To install the Global Type Ahead Java Script Component, follow these steps:

1. The Global Type Ahead Java Script Component is installed as part of the Global Addressing
Module installation. Locate globaltypeahead.war in the Spectrum/server/app/deploy folder.

2. Open the globaltypeahead.war file.

524Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Locate theWebWidget subfolder. This folder contains the required files for using the Java Script
Component.

Configuring Spectrum Technology Platform to Use the Global Type Ahead Java Script Component

After installing the Global Type Ahead Java Script Component, you must configure Spectrum
Technology Platform to use the Global Type Ahead Java Script Component for your web application.
If you have not already done so, review Requirements on page 524.

Enabling CORS

If you want to use an external web site to call Spectrum Technology Platform, Cross-Origin Resource
Sharing (CORS) must be enabled. CORS prevents unauthorized web applications from stealing
services from a server like the Spectrum Technology Platform. For more information, see the section
"Enabling CORS" in your Spectrum Technology Platform Administration Guide.

1. Go to the server/conf folder.
2. Modify the following options in the spectrum.properties file.
3. Set the spectrum.jetty.cors.enabled property to true. The default is false.
4. Add your web server host name along with the port number to the

spectrum.jetty.cors.allowedOrigins option.

Note: CORS only requires secure web access from a localhost (for example,
https://localhost:*).

Non-secure access is allowed from a named server as shown in the following example:

spectrum.jetty.cors.allowedOrigins=http://us-8qxyp12.pbi.global.pvt:82.

In this example, us-8qxyp12.pbi.global.pvt is the machine name. The machine name
is case sensitive so it is recommended that you check how your browser treats what you
type. You need to change that to your server (machine) name. The :82 is the port on which
the web server is running. You configure the port when setting up the web server. For
more information, seeWeb Server.

Authentication

Before using the Global Type Ahead Java Script Component, you must configure authentication for
web service requests to the Spectrum Technology Platform server. For more information on the
Spectrum Technology Platform authentication processing, refer to your Spectrum Technology Platform
Web Services Guide.

To configure the Global Type Ahead Java Script Component authentication properties, follow these
steps:

1. Edit the spectrum-container.properties file in the Spectrum/app/conf folder.
a) For REST, in the spectrum-container.properties file, set the value for the

spectrum.security.authentication.webservice.enabled.REST property as needed. For

525Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://localhost:*

example, set spectrum.security.authentication.webservice.enabled.REST=true to enable
authentication for all REST services.
Setting the value to FALSE removes any authentication requirements from Spectrum
Technology Platform (not recommended). It is recommended that the values of both SOAP
and REST be kept in sync.

b) For SOAP, in the spectrum-container.properties file, set the value for the
spectrum.security.authentication.webservice.enabled.SOAP property as needed. For
example, set spectrum.security.authentication.webservice.enabled.SOAP=true to enable
authentication for all SOAP services.
Setting the value to FALSE removes any authentication requirements from Spectrum
Technology Platform (not recommended). It is recommended that the values of both SOAP
and REST be kept in sync.

2. Enable CORS authentication. In the spectrum.properties file, add “, Authorization” to the end
of the spectrum.jetty.cors.allowedHeaders option. For example:

spectrum.jetty.cors.allowedHeaders=X-PINGOTHER, Origin,
X-Requested-With, Content-Type, Accept, Authorization

Configuring the Global Type Ahead Java Script Component

After installing the Global Type Ahead Java Script Component, you must configure the tool for your
web application. If you have not already done so, review Requirements on page 524.

Customizing the Global Type Ahead Java Script Component

To customize the Global Type Ahead Java Script Component for your use, follow these steps:

1. Edit the autoCompleteDemoApp.js file in the your root folder.
2. In the spectrumServerName field, enter the name of the Spectrum Technology Platform server

including the port.
3. In the authentication field, enter one of the following for the type of the Spectrum Technology

Platform authorization required.

• None
• Session
• Client
• Token
• Self-created authentication token

4. In the defaultCountry field, specify the default country. Enter the full country name. You should
specify the country where most of the addresses in your data are located. For example, if most
of your addresses are in the United Kingdom, specify the United Kingdom. If you omit the country
when entering addresses, Global Type Ahead returns the best available candidates for the
Default Country specified.

526Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. In the fuzzy field, enter the type of matching logic to use. Global Type Ahead implements
algorithms that optimize the retrieval of addresses, even when the input spelling is incorrect or
incomplete. These capabilities are referred to as Fuzzy Match, and are implemented through
match setting constraints.

• None—Fuzzy Match is disabled by default.
• Hard Match—The hard match allows one character substitution, insertion, deletion, or
transposition.

• Soft Match—The soft match allows two character substitutions, insertions, deletions, or
transpositions.

Note: The use of fuzzy matching is only available in the alternative tool display.

6. In the maxCandidatesReturned field, enter a number between 1 and 99 for the maximum
number of search candidates to be returned. The maximum is 99. The default is 5.

7. In the sessionTimeout field, enter the timeout value for token authentication in minutes. The
default is 30.

Configuring Global Type Ahead Java Script Component Processing

To define the Global Type Ahead Java Script Component processing for your use, follow these steps:

1. Edit the index.html file in the your root folder.
2. Line 6 defines the AngularJS version being used for the Global Type Ahead Java Script

Component. To replace the default AngularJS version, enter the version to use.
3. Line 7 makes the source code available to the web page.
4. Line 9 identifies the customization file. For more information, see Customizing the Global Type

Ahead Java Script Component on page 526.
5. Lines 11, 12, and 13 define the Cascading Style Sheets (CSS) that drive the index.html web

page. To replace the default CSS, enter the CSS to use with the Global Type Ahead Java Script
Component.

6. Line 34 calls the Global Type Ahead Java Script Component.
The web server and the Spectrum Technology Platform server do not need to be on the same
physical machine or platform. For example, you could have the web server running on Linux
accessing a Spectrum Technology Platform server running on Windows.

7. The module name (for example, ng-app) and the controller (for example, ng-controller) need to
match in bothWebWidget/autoCompleteDemoApp.js and the index.html file.

8. \WebWidget\pb-address-complete\address-complete.js, the location of the template.html
file, needs to be accurate based on your setup.

527Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Alternative Global Type Ahead Java Script Component Processing

The Global Type Ahead Java Script Component installs with a default interface. This interface is
located in the pb-address-complete folder. The pb-address-complete folder contains the Global Type
Ahead Java Script Component code.

If you would like to view the alternative interface:

1. Locate the pb-address-complete folder.
2. Rename template.html to template1.html.
3. Rename template2.html to template.html.
4. This exposes the alternative interface including the FuzzyMatching option describedCustomizing

the Global Type Ahead Java Script Component on page 526.

Using the Global Type Ahead Java Script Component

To use the Global Type Ahead Java Script Component:

1. Start Spectrum and your web server.
2. Open a web browser and point to your web server. For example, if your server is named

"myserver" and your server uses port 82, you would go to: http://myserver:82.
3. Begin typing your address in the Address Search fields. Potential candidates start displaying

with the third character typed.
4. If you type in an address that is a high rise with secondary ranges (APT numbers), the type

ahead display indicates how many secondary ranges (APTs) are available. Click on the type
ahead display item to see the secondary ranges for that address.

5. Select the final address.
6. The address is validated (using Global Address Validation) and displays displayed in Search

Result section at the bottom of the page. The result is also exposed as fields for the end user
which can further be used (as per application requirement) in the customer application or page.
The fields are:

• selectedRangeItem - This field outputs the object of the selected high-rise address with the
high rise and includes secondary ranges (if any).

• selectedResult - This field outputs the object of the secondary range from the above selected
high-rise address or a possible selected candidate from the list.

• selectedAddress - This field outputs the address format of the selected address that also
appears in the type ahead text box.

7. To filter the results for the address you are typing, before typing the address, change the country
or specify a city, state, or postal code. As you type a city or postal code, you will be provided
with a list of validated alternatives.

Technical Notes

For more information on web service authentication, see the section "Web Service Authentication"
in your Spectrum Technology Web Services Guide.

528Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For more information on enabling CORS, see the section "Enabling CORS" in your Spectrum
Technology Platform Administration Guide

The following tags in the index.html drive the widget processing:

• The <Link> tag defines the CSS (Cascading Style Sheets) that drives the index.html web page.
You can remove the tag to see the effects that the CSS file defines or use your own CSS.

• This tag defines the version of AngularJS that is being included:

• <script src="./js/angular.min.js"></script>

• This tag makes the widget source code available to the web page:

• <script src="../pb-address-complete/address-complete.js"></script>

• This tag includes the customization file (see above):

• <script type="text/javascript" src="autoCompleteDemoApp.js"></script>

• This tag includes the widget in the html page:

• <pb-address-complete options="options" selected-address = "selectedAddress" city = "city"
country = "country" on-select="onSelect(address)"></pb-address-complete>

• The web server and the Spectrum server do not need to be on the same physical machine or
platform. For example, you could have the web server running on Linux accessing a Spectrum
Server running on Windows.

Spectrum Global Address Parser
Spectrum Global Address Parser splits postal address strings into their constituent elements, such
as name of organization, city, locality, district, and post code, using the machine learning techniques.
It is a part of Spectrum Global Addressing Management.

You can feed data to the Spectrum Global Address Parser in these two ways:

• Enter addresses one at a time using the Management Console
• Import a comma-separated file of addresses arranged in a single column and having a header
such as address in the Management Console or alternatively use any data source stage in the
Enterprise Designer

This example shows an input address string and the corresponding formatted output:

Input string: "Widget Ltd Unit 5 Hatfield Business Park Mosquito Way Hatfield Hertfordshire AL10
9UJ GBR"

Formatted Output Record:

Formatted OutputField Name

Widget LTDOrganizationName

529Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Formatted OutputField Name

HATFIELD BUSINESS PARKPlaceName

UNIT 5Floor

MOSQUITO WAYStreet

HATFIELDCity

HERTFORDSHIRECounty

AL10 9UJPostCode

GBRCountry

78.64Confidence.Total

Features of Global Address Parser
Global Address Parser can:

• Split and format address strings into components with the help of models trained through machine
learning.

• Parse addresses in Roman script and accept input addresses in Roman script. Some Greek
alphabets are also supported.

• Currently support parsing for:

• Australia
• Canada
• France
• Germany
• Spain
• United Kingdom
• United States

• Handle country-specific addressing conventions efficiently. Address components of different
countries vary in many ways. For example, in German addresses, house number usually comes
after the street name and the post code comes before the city. The module handles all these
complexities efficiently and predicts the address components in accordance with the conventions
of the specified country.

• Eliminate the need for reference address databases for parsing.

530Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Standard Fields
This table describes global address parsing terms and standard fields.

DescriptionsFields

Australia, Canada, France, Germany, Spain, United Kingdom, United States.Supported Countries

Handles country-specific addressing conventions efficiently. Primarily, the address
pattern supported is 3 box: point information followed by street information, and
location information.

Formats

OrganizationName >AddressNumber >Street >City >StateProvince >PostCode
> Country

Australia (AUS) Format

OrganizationName >AddressNumber >Street >PostCode >City >StateProvince
> Country

Canada (CAN) Format

OrganizationName >AddressNumber >Street >PostCode >City >StateProvince
> Country

France (FRA) Format

OrganizationName > Floor > PlaceName > AddressNumber > Street >
Neighbourhood > City/Suburb/County > PostCode > Country

Germany (DEU) Format

OrganizationName >Street >AddressNumber >PostCode >City >StateProvince
> Country

Spain (ESP) Format

OrganizationName > Floor > PlaceName > AddressNumber > Street >
Neighbourhood > City/Suburb/County > PostCode > Country

United Kingdom (GBR) Format

OrganizationName >AddressNumber >Street >City >StateProvince >PostCode
> Country

United States (USA) Format

Global Address Parser can break up single line addresses into address elements
that can be used as input to a validation engine.

Use Case

Output

This confidence value indicates how sure the engine is of the fields parsed. Parsing
is done on the basis of pre-shipped ML models. The patterns created by the machine
learning engine are assigned a confidence value. You can use the confidence value
to decide how to use the output fields as input to the address validation engine or
other processes.

Confidence.Total

531Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Guidelines to Improve Prediction Accuracy
In order to get the most accurate prediction of address components, your input address strings should
adhere to these patterns.

Guidelines for Australia Addresses

Presence of non-address components in the input string might lead to
wrong prediction. Remove such components before feeding the string
for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName > AddressNumber > Street > PostCode > City
> StateProvince > Country.

Maintain a sequence in
address components

Example:

• Incorrect: Level 5 176 Messines Ridge Rd Griffith College Mount
Gravatt QLD 4122 Australia

• Correct: Griffith College Level 5 176 Messines Ridge Rd Mount
Gravatt QLD 4122 Australia

The input address string should not have repeated address
components, such as two different organization names or repetitive
name of an organization in one string.

Remove redundant
address components

Example: Griffith College Level 5 176 Messines Ridge Rd Griffith
College Mount Gravatt QLD 4122 Australia

Merged address components result in incorrect prediction.Do not have merged
components in address
strings

Example:

• Incorrect:Griffith College Level-5-176 Messines Ridge RdMount
Gravatt QLD 4122 Australia

• Correct: Griffith College Level 5 176 Messines Ridge Rd Mount
Gravatt QLD 4122 Australia

Addressee name in the string results in incorrect prediction for the
Australia addresses.

Avoid addressee name
in the string

Example:

• Incorrect: Alice Smith Griffith College Level 5 176 Messines Ridge Rd
Mount Gravatt QLD 4122 Australia

• Correct:Griffith College Level 5 176 Messines Ridge RdMount Gravatt
QLD 4122 Australia

Including any of your address components inside brackets "()"
will leave it unparsed.

Do not have bracketed "()"
address component

532Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Example: Griffith College (Level 5) 176 Messines Ridge Rd
Mount Gravatt QLD 4122 Australia

Limitations for Australia Addresses

These are the limitations of the address parser for Australia addresses:

• PO Box addresses are not supported.
• Sentence specific addresses (for example, addresses containing "close to", "between", "nearby")
are not supported.

Example: Tourquay Road Close To Butcher Shop Hervey Bay QLD 4655 AUS

• Addresses containing roads with "and" or "&" are not supported.

Example: Corner Farrall Road and O'Connor Road Stratton 6056 AUS

• Addresses with a complex street format (for example, extra street information like tower, park, and
building) are not supported.

Example:Wesfarmers Limited Level 14 Brookfield Place Tower 2 123 St Georges Terrace Perth
6000 AUS

• Unit/street components in character format are not supported.

Example: Ground Floor 46 Charlotte St Brisbane 4000 AUS

• Avoid repeating words for Org, state, or country in addresses (for example, Australia or QLD).

Example:DOF Subsea Australia Pty Ltd 5th FL 181 St Georges TCE PerthWestern Australia 6000
AUS

Guidelines for Canada Addresses

Presence of non-address components in the input string might lead
to wrong prediction. Remove such components before feeding the
string for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName >AddressNumber > Street > PostCode >City
> StateProvince > Country.

Maintain a sequence in
address components

Example:

• Incorrect: 127 ORR AVE L4L9K2 ON WOODBRIDGE CAN
• Correct: 127 ORR AVE L4L9K2 WOODBRIDGE ON CAN

The input address string should not have repeated address components,
such as two different organization names or repetitive name of an
organization in one string.

Remove redundant
address components

533Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Example: Adlib Publishing Systems Inc Adlib Publishing Systems Inc
10 5100 South Service Rd Burlington ON Canada

Merged address components result in incorrect prediction.Do not have merged
components in address
strings

Example:

• Incorrect: Adlib-Publishing-Systems-Inc-10 South Service Rd
Burlington ON Canada

• Correct: Adlib Publishing Systems Inc-10 South Service Rd
Burlington ON Canada

Address name in the string results in incorrect prediction for the Canada
addresses.

Avoid addressee name
in the string

Example:

• Incorrect: Mr. XXX Adlib Publishing Systems Inc 10 5100 South
Service Rd Burlington ON Canada

• Correct: Adlib Publishing Systems Inc 10 5100 South Service Rd
Burlington ON Canada

Including any of your address components inside brackets "()"
will leave it unparsed.

Do not have bracketed "()"
address component

Example: (Adlib Publishing Systems Inc) 10 5100 South Service
Rd Burlington ON Canada

Limitations for Canada Addresses

These are the limitations of the address parser for Canada addresses:

• Unit or Apartment information is not supported.
• French characters present in the address are not displayed correctly.

Guidelines for France Addresses

Presence of non-address components in the input string might lead to
wrong prediction. Remove such components before feeding the string
for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName > AddressNumber > Street > PostCode > City
> StateProvince > Country.

Maintain a sequence in
address components

Example:

• Incorrect: Normandie Hôtel 236 Rue Denis Papin Barentin
Seine-Maritime 76360 France

• Correct: Normandie Hôtel 236 Rue Denis Papin 76360 Barentin
Seine-Maritime France

534Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The input address string should not have repeated address
components, such as two different organization names or repetitive
name of an organization in one string.

Remove redundant
address components

Example: School André Marie 351 Boulevard de Normandie 76360
André Marie Barentin France

Merged address components result in incorrect prediction.Do not have merged
components in address
strings

Example:

• Incorrect: School-André-Marie 351 Boulevard de Normandie
76360 Barentin Seine-Maritime France

• Correct: School André Marie 351 Boulevard de Normandie 76360
Barentin Seine-Maritime France

Address name in the string results in incorrect prediction for the France
addresses.

Avoid addressee name
in the string

Example:

• Incorrect:Mr. XXXXXSchool AndréMarie 351 Boulevard de Normandie
76360 Barentin Seine-Maritime France

• Correct: School André Marie 351 Boulevard de Normandie 76360
Barentin Seine-Maritime France

Including any of your address components inside brackets "()"
will leave it unparsed.

Do not have bracketed "()"
address component

Example: School (André Marie) 351 Boulevard de Normandie
76360 Barentin Seine-Maritime France

Limitations for France Addresses

These are the limitations of the address parser for France addresses:

• Streets including city name are not supported.

Example: 14 Rue de Maule 78870 Bailly France

• The overseas regions of France are incorrectly parsed (for example, Martinique, Réunion, and
Guadeloupe).

Guidelines for German Addresses

Presence of non-address components in the input string might lead
to wrong prediction. Remove such components before feeding the
string for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName > Floor > PlaceName > AddressNumber >

Maintain a sequence in
address components

535Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Street > Neighbourhood > City/Suburb/County > PostCode >
Country.
Example:

• Incorrect: 3 Weseler Strasse 46514 Schermbeck DEU
• Correct:Weseler Strasse 3 46514 Schermbeck DEU

The input address string should not have repeated address
components, such as two different organization names or repetitive
name of an organization in one string.

Remove redundant address
components

Example:Weseler Strasse 3 Weseler Strasse 46514 Schermbeck
DEU

Your address string needs to have address number and street
name. Missing out these essential address components will impact
the accuracy of the result.

Ensure address number and
street name are included

Example:

• Incorrect: 46514 Schermbeck DEU
• Correct:Weseler Strasse 3 46514 Schermbeck DEU

Merged address components result in incorrect prediction.Donot havemerged components
in address strings Example:

• Incorrect:Weseler-Strasse-3 46514 Schermbeck DEU
• Correct:Weseler Strasse 3 46514 Schermbeck DEU

Addressee name in the string results in incorrect prediction for the
German addresses.

Avoid addressee name in
the string

Example:

• Incorrect:Mr John DoeWeseler Strasse 3 46514 Schermbeck DEU
• Correct:Weseler Strasse 3 46514 Schermbeck DEU

Including any of your address components inside brackets
"()" will leave it unparsed.

Do not have bracketed "()"
address component

Example:Weseler Strasse 3 46514 (Schermbeck) DEU

Guidelines for Spain Addresses

Presence of non-address components in the input string might lead
to wrong prediction. Remove such components before feeding the
string for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName > Street > AddressNumber > PostCode > City
> StateProvince > Country.

Maintain a sequence in
address components

536Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Example:

• Incorrect:Calle San Fernando 4 University of Seville 41004 Sevilla
Spain

• Correct: University of Seville Calle San Fernando 4 41004 Sevilla
Spain

The input address string should not have repeated address
components, such as two different organization names or repetitive
name of an organization in one string.

Remove redundant
address components

Example: University of Seville Calle San Fernando 4 University of
Seville 41004 Sevilla Spain

Merged address components result in incorrect prediction.Do not have merged
components in address strings Example:

• Incorrect: University of Seville Calle-San-Fernando 4 41004
Sevilla Spain

• Correct: University of Seville Calle San Fernando 4 41004
Sevilla Spain

Addressee name in the string results in incorrect prediction for Spain
addresses.

Avoid addressee name
in the string

Example:

• Incorrect: Francisco Rodríguez University of Seville Calle San
Fernando 4 41004 Sevilla Spain

• Correct: University of Seville Calle San Fernando 4 41004 Sevilla
Spain

Including any of your address components inside brackets "()"
will leave it unparsed.

Do not have bracketed "()"
address component

Example: University of Seville (Calle San Fernando) 4 41004
Sevilla Spain

Limitations for Spain Addresses

These are the limitations of the address parser for Spain addresses:

• Addresses starting with an abbreviation (for example, PL., Av., BL., C.) addresses are not supported.
• Streets including landmark information (for example, At, Near, Between) are not supported.

Guidelines for United Kingdom Addresses

Presence of non-address components in the input string might lead to
wrong prediction. Remove such components before feeding the string
for prediction.

Avoid non-address
components

537Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The address components should be placed in this order:
OrganizationName > Floor >PlaceName >AddressNumber >Street
> Neighbourhood > City/Suburb/County > PostCode > Country.

Maintain a sequence in
address components

Example:

• Incorrect:Widget Limited London Milenium street Unit 3 AB10 3DF
GBR

• Correct:Widget Limited Unit 3 Milenium street London AB10 3DF
GBR

The input address string should not have repeated address components,
such as two different organization names or repetitive name of an
organization in one string.

Remove redundant
address components

Example:

• Incorrect:Widget Limited Widget Limited Unit 10 Logix Cyber Park
10 Manor Street London AB10 3DF GBR

A single-token organization name should be followed by the type of the
organization, such as Ltd, Inc, and Reg. In the example below, Ardian

Follow single-token
organization names with
organization type is a single-token organization name. In this case, the organization name

is not followed by the type "Limited," and the results may be inaccurate.
Example:

• Incorrect: Ardian Fourth Floor Channel House St Helier Je2 4UH
GBR

• Correct: Ardian Limited Fourth Floor Channel House St Helier Je2
4UH GBR

Limitations for United Kingdom Addresses

An address string of any of these kind is susceptible to getting inaccurately predicted by the address
parser. Watch out for these in your address strings.

If the name of the organization includes any other address
component, such as Floor, Flat, and House, the prediction
accuracy may be affected.

Presence of another address
component as name of the
organization

Example: Flat Seasons 632 Kings Road London Middlesex
SW6 2DU GBR

If an organization name has numbers, it is susceptible to getting
erroneously predicted.

Organization name having
numbers

Example: 123 Limited ABC Street AB10 3DF GBR

538Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Guidelines for United States Addresses

Presence of non-address components in the input string might lead
to wrong prediction. Remove such components before feeding the
string for prediction.

Avoid non-address
components

The address components should be placed in this order:
OrganizationName > AddressNumber > Street > City >
StateProvince > PostCode > Country.

Maintain a sequence in
address components

Example:

• Incorrect: 2200 Western CT Widget USA Lisle IL 60532
• Correct:Widget 2200 Western CT Lisle IL 60532 USA

The input address string should not have repeated address
components, such as two different organization names or repetitive
name of an organization in one string.

Remove redundant address
components

Example:Widget 2200 Western CT Widget Lisle IL 60532 USA

Merged address components result in incorrect prediction.Do not have merged
components in address strings Example:

• Incorrect:Widget-Ltd-2200 Western CT Lisle IL 60532 USA
• Correct:Widget Ltd 2200 Western CT Lisle IL 60532 USA

Addressee name in the string results in incorrect prediction for the
United States addresses.

Avoid addressee name in
the string

Example:

• Incorrect: Mr John Doe Widget 2200 Western CT Lisle IL 60532
USA

• Correct:Widget 2200 Western CT Lisle IL 60532 USA

Including any of your address components inside brackets
"()" will leave it unparsed.

Do not have bracketed "()"
address component

Example:Widget 2200 Western CT (Lisle) IL 60532 USA

Limitations for United States Addresses

These are the limitations of the address parser for United States addresses:

• PO Box addresses are not supported.
• In Care of (C/O) addresses are not supported.
• If AddressNumber is missing, StreetNumber may be returned as AddressNumber (only in cases
of numeric digits without superscripts).

• Direction may be returned in StateProvince for a few defined addresses (especially in cases where
Direction is comprised of two letters).

539Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Accessing Global Address Parser
When you install and deploy Spectrum Global Addressing Management, you will be able to use the
Global Address Parser in these two ways:

• As a stage from the Enterprise Designer
• As a service from the Management Console

Using the Address Parser screen, you can perform these tasks:

1. Set the parsing options: Specify the country to which the addresses belong and the minimum
confidence level required for parsing.

2. Parse addresses: Feed the address strings and get the parsed output.

Note: For details on how to perform these tasks, see the sections Using Global Address
Parser As a Stage on page 540 and Using Global Address Parser As a Service on page
541.

Using Global Address Parser As a Stage
You can use Global Address Parser as an address parsing stage in your job. In this case, you can
only perform batch address parsing.

To parse a batch of input address strings, append the Global Address Parser stage with an input
and an output stage.

Note: For details on creating a job using any stage in the Enterprise Designer, see My First
Dataflow (Job) in the Dataflow Designer Guide.

This table displays the Global Address Parser options.

Table 65: Global Address Parser Options

DescriptionField Name

Select this check-box to change the default options.Override system default option with the
following values

Default Options

540Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Select the country to which the addresses to be parsed belong. The options are:

• Australia

• Canada

• France

• Germany

• Spain

• United Kingdom

• United States

Country

On a scale of 0 to 100, assign the minimum confidence the parser should have
on the result to display it.

Note: Parsing results having a confidence score lesser than specified
here are not displayed as output.

Minimum confidence score

Note: For details on the output fields, see Parsed Address Output on page 543.

Using Global Address Parser As a Service
To split your address strings into the appropriate components, you must perform these steps:

• Set the parsing options.
• Feed the input addresses to be parsed to the Global Address Parser.

To access the Global Address Parser screen and perform address parsing, follow these steps:

1. In a web browser, go to:
http://server:port/managementconsole

Where server is the server name or IP address of your the Spectrum Technology Platform server
and port is the HTTP port. By default, the HTTP port is 8080.

2. Log in with your credentials.
3. Under the Services tab, select Global Addressing.
4. From the list of services on the left side of the pane, select Global Address Parser.

The Global Address Parser screen is displayed with the Default Options tab selected.
5. Select the Country to which the addresses you are parsing belong. You can parse addresses

in these countries:

• Australia
• Canada
• France

541Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Germany
• Spain
• United Kingdom

• United States

6. Assign the Minimum confidence score you want for this parsing. The parser will not display
results that fall below the confidence score you specify here.

7. Click Save.
The options specified are saved for the next operation: Entering the addresses to be parsed.

8. Click the Preview tab.
9. Click one of these icons to feed the address that needs to be parsed.

• To add records one at a time to the parser, perform these tasks:

a. Click the Add record button .
b. In the Address field of the Input Record <sequence of the address record> section,

enter the address string to be parsed.

Note: Repeat steps 'a' and 'b' to add multiple address strings. You can add up to
100 address strings.

• To import multiple addresses from a CSV file, click the Import records button . In the Import
Data pop-up window that is displayed, enter these values:

a. In the File name field, select the file that has the address records.
b. Select the Field separator used in the address file.
c. Specify the Maximum number of records to import.
d. Click OK .

The entered or selected address records are displayed as input records below the Run Preview
button.

Note: The input address string should have more than one token. For example, an input
address string with London as the only value will not be recognized by the parser. An
address need to have at least one more token (or component) to the string, such as city
name, place name, or post code.

10. To delete any of the address strings, hover the cursor on the corresponding Input Record
<sequence of the address record> and click the Delete this record icon that is displayed.

Note: To delete all records, clickDelete all records icon placed below Input Records.

11. To view parsed output, click the Run Preview button.
The parsed address components (Output Record) are displayed adjacent to the corresponding
input records. For details on the output fields, see Parsed Address Output on page 543.

542Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Parsed Address Output
The parsed output displays a list of all the address components along with the corresponding values
in the input address strings. The components for all countries are not identical. The table below gives
a description of all the address components, the values the components can take, and if those are
applicable for Australia (AUS), Canada (CAN), France (FRA), German (DEU), Spain (ESP), United
Kingdom (GBR), and United States (USA) addresses.

Note: The values of some address components can be interchanged in the output:

• For Canada addresses: City and StateProvince can be interchanged.
• For German addresses: Suburb, City, County and StateProvince can be interchanged.
• For United Kingdom addresses: City, Suburb and Neighbourhood can be interchanged.

Table 66: Address Components, Definition, and Validity

Accepted and Parsed ValuesValid
for
USA

Valid
for
GBR

Valid
for
FRA

Valid
for
ESP

Valid
for
DEU

Valid
for
CAN

Valid
for
AUS

Address
Components

Name of organization, hospital,
institute, school, and bank.

YesYesYesYesYesYesYesOrganizationName

Apartment number, sub-building
information, floor, suite, and flat
number.

-Yes-----Floor

Landmark, building, building name,
cluster name, society name, residential
and commercial complex, and special
economic zone.

-Yes-----PlaceName

Building number, address number on
streets.

YesYesYesYesYesYesYesAddressNumber

Name of thoroughfare.YesYesYesYesYesYesYesStreet

Small subdivision of a locality, city, or
town.

-Yes-----Neighbourhood

Name of village, city, district, or suburb,
per the geographical division of the
country. These elements together
constitute location information.

YesYesYesYesYesYesYesCity

-Yes--Yes--Suburb

-Yes--Yes--County

543Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Accepted and Parsed ValuesValid
for
USA

Valid
for
GBR

Valid
for
FRA

Valid
for
ESP

Valid
for
DEU

Valid
for
CAN

Valid
for
AUS

Address
Components

Series of letters and/or digits assigned
to geographical areas primarily for
sorting mails. Post Code sometimes
also includes spaces or punctuation.

YesYesYesYesYesYesYesPostCode

A lockable box having a unique
address. It is located on the premises
of a post office station.

-Yes--Yes--POBox

Largest geographical entity with respect
to a country.

Yes-YesYesYesYesYesStateProvince

Name of the country.YesYesYesYesYesYesYesCountry

Note: All the components listed in the table may not be displayed for all the input addresses.
For a component to display, the input string should have a value for it.

US Database Lookup
USDatabase Lookup provides the ability to search the USDatabase directly for address information.
US Database Lookup is part of Spectrum Global Addressing Management.

Supported Countries
US Database Lookup provides search capability for the US database only.

Using US Database Lookup
After installing and deploying Spectrum Global Addressing Management, use the US Database
Lookup to perform a:

• Last line lookup
• Street name lookup
• House number lookup
• ZIP Code lookup for a city or a city/state combination

To use US Database Lookup from Management Console:

1. Open the Management Console.
2. Under the Services tab, select Global Addressing.
3. From the list of services on the left side of the pane, select US Database Lookup.

544Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. On the Database Resources tab, specify the Global Address Validation database resource to
use.

5. Click Save to save your database selection.
6. Click the Default Options tab.
7. On the Default Options tab, specify the maximum number of candidates you want returned.

The default is 100.
8. If you make changes to the global default options, click Save to save those changes.
9. Click the Preview tab.
10. Follow the steps for the type of lookup you want to perform.
11. Click Run Preview.
12. In Preview Output Records on the right side of the pane, note that the results of the search

have been placed in the appropriate output field. For information on the output fields.

Using Last Line Lookup for City, State, and ZIP Code

You can use Last Line Lookup to:

• Find all cities and ZIP Codes for a full or partial city and state
• Find all cities and ZIP Codes for a full or partial ZIP Code
• Find all cities for a ZIP Code and all ZIP Codes for a city

Using City and State for Last Line Lookup

To view all cities and ZIP Codes for a partial or full city and state:

1. In the LastLine field, enter a full or partial city and state.
2. Click Run Preview.
3. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example: You enter "Whe" and "IL" in the LastLine field. The output records include all cities
and ZIP codes for "Wheaton IL" and "Wheeling IL".

Using ZIP Code for Last Line Lookup

To view all cities and ZIP Codes for a full or partial ZIP Code:

1. In the LastLine field, enter a full or partial ZIP Code.
2. Click Run Preview.
3. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example: You enter "6018" in the LastLine field. The output records include all ZIP Codes that
start with the characters "6018" beginning with "60180" through "60189" and all the cities that
correspond to the ZIP codes in that range.

545Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Using City/State and ZIP Code for Last Line Lookup

To view all cities for a ZIP Code and all ZIP Codes for a City:

1. In the LastLine field, enter a full or partial City/State and ZIP Code.
2. Click Run Preview.
3. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example: You enter "Wheaton IL 60187" in the LastLine field. The output records include
"Wheaton IL 60187" and "Wheaton IL 60189". The output returns all cities for "60187" and all
ZIP Codes for "Wheaton IL".

Using Last Line Lookup for Street Name

You can use Last Line Lookup to:

• Find all street names for a city/state
• Find all street names for a ZIP Code

Note: You must use a complete city/state and ZIP Code for a Street Name lookup.

Using City and State for Street Name Lookup

To view all street names for a city/state:

1. In the LastLine field, enter a full city and state.
2. In the StreetName field, enter "*" (asterisk without quotation marks).
3. Click Run Preview.
4. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example: You enter "Wheaton" and "IL" in the LastLine field. You also enter "*" in the StreetName
field. The output records include all street names found for "Wheaton IL".

Example:You enter "Wheaton" and "IL" in the LastLine field. You also enter "a" in the StreetName
field. The output records include all street names that begin with "a" that are found for "Wheaton
IL". You can also enter "and" to see all street names that begin with "and" that are found for
"Wheaton IL".

Using ZIP Code for Street Name Lookup

To view all street names for a city/state:

1. In the LastLine field, enter a ZIP Code.
2. In the StreetName field, enter "*" (asterisk without quotation marks).

546Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Click Run Preview.
4. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example:You enter "60187" in the LastLine field. You also enter "*" in the StreetName field. The
output records include all street names found for the ZIP Code "60187".

Example:You enter "60187" in the LastLine field. You also enter "a" in the StreetName field.
The output records include all street names that begin with "a" that are found for the ZIP Code
"60187". You can also enter "as" to see all street names that begin with "as" that are found for
"60187".

Using Last Line Lookup for House Number

You can use Last Line Lookup to:

• Find all house numbers for a street name in a city/state
• Find all house numbers for a street name in a ZIP Code

Note: You must use a complete city/state and ZIP Code for the House Number lookup.

Using City and State for House Number Lookup

To view all house numbers for a street name in a city/state:

1. In the LastLine field, enter a full city and state.
2. In the StreetName field, enter a full street name.
3. In the HouseNumber field, enter "*" (asterisk without quotation marks).
4. Click Run Preview.
5. In Preview Output Records on the right side of the pane, note that the results of the search,

based on the scope of the input provided, have been placed in the appropriate output fields.

Example:You enter "Wheaton" and "IL" in the LastLine field. You also enter "Lincoln" in the
StreetName field and "*" in the HouseNumber field. The output records include all house numbers
for Lincoln Ave in Wheaton IL.

Using ZIP Code for House Number Lookup

To view all house numbers for a street name in a city/state:

1. In the LastLine field, enter a full ZIP Code.
2. In the StreetName field, enter a full street name.
3. In the HouseNumber field, enter "*" (asterisk without quotation marks).
4. Click Run Preview.

547Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. In Preview Output Records on the right side of the pane, note that the results of the search,
based on the scope of the input provided, have been placed in the appropriate output fields.

Example: You enter "60187" in the LastLine field. You also enter "Lincoln" in the StreetName
field and "*" in the HouseNumber field. The output records include all house numbers for Lincoln
Ave for the ZIP Code 60187.

Information Extraction stages

Read from Documents
Read from Documents is a source stage that reads unstructured input data from various file formats
and extracts the contents. Possible sources include legal documents, customer feedback, product
reviews, news articles, blogs, social networks, and so on. Read from Documents also extracts
metadata fields such as author and creation date. Once the data has been extracted it can be used
for various types of processing, including entity extraction and string manipulation among others.
The data can also be used to build search indexes for unstructured text searches.

Note: Each document is considered one record for this stage.

Input
The input for Read from Documents is a single file or folder. This stage supports the following file
types:

• Text
• PDF
• Microsoft Outlook
• Microsoft Word
• HTML

Read from Documents performs three types of extractions:

• Document—Use the entire document
• Page—Use a specific page of a document
• Selective—Use a selected part of a document
• Bookmarks—Use bookmarks from a PDF document

Read from Documents is part of Spectrum Entity Extraction.

548Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options

File Properties Tab

The following table lists the options that control the type of information returned by Read from
Documents.

Table 67: Read from Documents Options

DescriptionOption

Specifies the name of the Spectrum Technology Platform server being
used.

Server name

The path and name of the source document or folder. If you want to
point to a folder, use an asterisk as a wildcard character ("*") to select
all files in the folder. If you want to point to multiple files of the same
type within a folder, use the wildcard character plus the file extension
("*.pdf").

File/folder name

The source document's file type, which will automatically be selected
once you select a source:

• Text
• PDF
• Microsoft Outlook
• Microsoft Word
• HTML

File type

Use the entire document.Documentation

Use a specific page of a document.Page

Use a selected portion of a document.Selection

Use bookmarks from a PDF document.Bookmarks

Extraction type

Only with Page extraction type. Select all pages or a range of pages.Page selection

Only with Selection extraction type. Specifies the type of search.Selected extraction

549Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Only with Selection extraction type. Specifies the text to look for.Specify text

Only with Selection extraction type and Start text option. Omits entered
string from the returned data.

Exclude start text

Only with Selection extraction type. Specifies the end text to look for.Specify end text

Only with Selection extraction type. Omits entered string from the end
of the returned data.

Exclude end text

Only with Selection extraction type. Specifies how many paragraphs to
return for each result. For example, if you choose "2" here, the returned
data for each result will include the paragraph the result is in plus the
subsequent paragraph, totaling two paragraphs. Default is 1. Not valid
when end text is specified.

Selection return

Fields Tab
Click Regenerate to define input fields.

Table 68: Output Data Options

DescriptionOption

Shows the attribute that is most like the input field. For instance, if one
if your fields contains date information and you call it "Date," you will
see the "Date" attribute assigned to that field. This column is not editable.

Attribute Name

The name of the field. This column is editable.Name

The field's data type.Type

Specifies which fields to be included in a search index.Include

550Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output
The Read from Documents stage has two outgoing ports. One port captures the data that was read
by the stage and returned based on the criteria entered. It can include plain text or metadata (such
as author, language, date created, and so on). This port can be connected to any stage that reads
incoming data, such as Write to File or Write to XML, as well as primary stages such as Validate
Address or Write to Search Index. It can also be connected to the Information Extractor stage if you
want to return information about certain entity types that are in the document. When you select the
Document extraction type the output will contain flat data; when you select the Page or Selection
extraction type the output will contain hierarchical data.

The other port collects any records that the dataflow did not process correctly. This is called the Error
Port, and records that pass through this port into the sink are considered malformed. Capturing
malformed records can help you identify the problem with those records. When you attach a sink to
the Error Port, the resulting output file will contain all the fields from the malformed records. It will
also contain a Reason field that specifies why the record failed.

Table 69: Unstructured Reader Output

Description / Valid ValuesField Name

Typically contains the name of the person who created or updated the document.
This information is part of the document's metadata.

Author

Contains all the bookmarks from the PDF input file. For Bookmarks extraction types
only.

Bookmark

Contains all the bookmarks from the PDF input file. For Bookmarks extraction types
only.

BookmarkNo

Indicates the length of the document. This value varies depending on the extraction
type selected:

The number of pages in the document.Document

"1", to represent the single page of content.Page

ContentLength

Varies based on extraction type. For example, Document extraction types will output
the entire document as flat data. Page, Selection, and Bookmarks extraction types
will output hierarchical data.

Contents

551Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Indicates the type of document that was read, such as PDF, .txt, and so on.ContentType

Typically ontains the name of the person who created the document. This information
is part of the document's metadata.

Creator

Indicates the date the document was created or last updated.Date

Contains any keywords that were provided in the document's metadata.Keywords

Indicates the language in which the document was written.Language

Indicates the number of pages in the document.NPages

Contains the contents of the selected page(s). For Page extraction types only.PageContents

Contains the page number for the bookmark. For Page extraction types only.PageNo

Contains the path of the bookmark, similar to XPath of an XML file. For Bookmarks
extraction types only.

Parent

Indicates the file name of the document.ResourceName

Contains the contents of the selected section. For Selection extraction types only.SectionContents

Indicates the number of that section within the document. For Selection extraction
types only.

SectionNo

Contains the subject of the document that was provided in the document's metadata.Subject

Contains the title of the document that was provided in the document's metadata.Title

552Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Entity Extractor
Entity Extractor extracts entities such as names and addresses from strings of unstructured data
(also known as plain text).

It is possible that not all entities for any selected type will be returned because accuracy varies
depending on the type of input. Because Entity Extractor uses natural-language processing, a string
containing a grammatically correct sentence from a news article or blog would likely have a more
accurate return of names than a simple list of names and dates.

Input
Entity Extractor takes unstructured strings of data as the input. It can also use the Read from
Documents stage as an input if you want to extract entities from an unstructured document. The
Read from Documents stage reads the document and returns text based on the user-defined
settings. The Entity Extractor extracts the required information from this text based on the selected
entities.

Table 70: Input Format

DescriptionField Name

The unstructured string of data from which you want to extract information.PlainText

Options
Entity Extractor options enable you to select entities based on which you want to extract information
from the input string. By default, you can extract information using Person and Address as the entity
types. However, you can use the Quick Add function and select any or all of the 15 pre-configured
entities.

DescriptionOption Name

Select the check box to override the default entity types Address and Person.

When you select the check box, the Quick Add button gets enabled. Click this
button and select the entities you need for extracting the text.

The selected entities get added to the Entity Type list.

Override system default options with
the following values

553Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the type of data you want to extract from the unstructured string.

Address

CreditCard

Date

Email

HashTag

ISBN

Location

Mention

Organization

Person

Phone

ProperNouns

SSN

WebAddress

ZipCode

Entity Type

Specifies whether to return a count of the number of times a particular entity occurred
in the output.

Return a count of the entities found in the unstructured string.true

Do not return a count of the entities found in the unstructured
string.

false

Output entities count

Output
The output from Entity Extractor is a list of the matching entities found in the input string. For
example, if you selected an entity type as "Person," the output would contain a list of the person
names found in the input string. Similarly, if you selected the Entity Type as "Date," the output will
be a list of the dates found in the input string.

Each entity, whether a name, address, or date, is returned only once even if the entity appears
multiple times in the input string.

To see the number of times the entity appeared in the input string you can select the Output entity
count option in the Entity Extractor Options window.

554Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The text extracted from the string.Text

The entity type of the extracted text. One of the following:

Address

CreditCard

Date

Email

HashTag

ISBN

Location

Mention

Organization

Person

Phone

ProperNouns

SSN

WebAddress

ZipCode

Type

If the option to return a count is enabled, this field contains the number of times
a particular entity appeared in the input. For example, if you chose to return Name
entities and the input text contained five instances of the name John, the name
John will be included in the output just once, with Name as the entity type, and
"5" as the output count.

Count

Relationship Extractor
TheRelationship Extractor stage allows you to identify the relationship types between the identified
entities in the source content.

The Relationship Extractor stage identifies:

1. Entity1
2. Entity1 Type
3. Relation Type
4. Entity2
5. Entity2 Type

555Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Important: The stage tries to achieve the maximum possible accuracy while identifying the
relationship types between any two entities in the input text. However, relationships other than the
accurate relationship between the two entities can also be identified while parsing complicated
sentences in the input text.

Input
The Relationship Extractor stage takes natural language strings of data as the input, and identifies
the entities and the relationship types existing between each pair of entities.

Use the Read from Documents stage as a source stage if the input text is from an unstructured
document. The Read from Documents stage reads the document and returns text based on the
user-defined settings.

The Relationship Extractor stage then identifies all the entities and the relationship type existing
between each pair of entities.

Table 71: Input Format

DescriptionField Name

The unstructured string of data from which you want to identify the relationship types
existing between each pair of entities.

PlainText

Options
The Relationship Extractor stage options enable you to specify which relationship types you wish
to identify in the input text.

By default, the relationship types identified are:

1. AffiliatedWith
2. LivesIn
3. OrgBasedIn
4. LocatedIn

556Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Select the check box to override the default relationship types identified and specify
which relationship types you wish to identify and extract from the input text.

On selecting the check box, the Quick Add button is enabled. Click Quick Add to
select the relationship types you wish to identify in the text.

The selected entities get added to the Relationship Type list.

Override system default options with
the following values

Output
The output from Relationship Extractor is a list of the sets of relationships identified between pairs
of entities found in the input string.

For example, if in the stage options, you have selected the LivesIn and OrgBasedIn relationship
types to be extracted, the output contains a list of the all the sets of Person LivesIn Location and
Organization OrgBasedIn Location identified in the input text.

Each entity pair with its binding relationship type is listed only once.

For each extracted set of entities and their relationship, the information extracted is:

DescriptionField Name

The first entity of a pair of entities extracted from the input text.Entity1

The entity type of the first entity of the pair of entities extracted from the input
text.

The entity type is any one of these:

• Person
• Organisation
• Location

Entity1 Type

The relationship type identified between Entity1 and Entity2.

For more information about relationship types, see Relationship Types.

Note: Only the relationship types selected for extraction in the stage
options are identified and listed.

Type

The second entity of a pair of entities extracted from the input text.Entity2

557Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The entity type of the second entity of the pair of entities extracted from the input
text.

The entity type is any one of these:

• Person
• Organisation
• Location

Entity2 Type

Text Categorizer
This stage helps you assign custom categories to unstructured content or plain text (such as email,
news articles, and comments) based on the extent of matching content it has. The stage lists the
defined categories, from which you can select the one you need for your categorization. However,
you need to create these categories by training a categorizer model with your data. For details, see
Text Categorizer.

Input
The stage takes unstructured strings of data as input . It can also use the Read from Documents
stage as an input if you want to categorize text from an unstructured document. The Read from
Documents stage reads the document and returns text based on the user-defined settings. This is
read by the Text Categorizer stage to give you the desired output.

Table 72: Input Format

DescriptionField Name

The unstructured string of data from which you want to extract information.PlainText

Options
The Text Categorizer Options gives you the choice of selecting parameters based on which you
want to classify your input string of data. You can select the model for categorization and the number
of matching levels to which you want the output. For example, only the closest match or closest plus
the second close match.

558Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

To override the default option and select the categorizer from theCategorizer name
drop down.

Override system default options with
the following values

Specifies the model to be used for text categorization. It lists all the models you
trained in the text categorization phase.

Note: For more information, see Training the Model.

Categorizer name

The count of matching levels of category that you want in the output. For example,
select 1 to display just the closest match and 2 to display the closest plus the second
close match.

Note: Themaximum value corresponds to the number of different classes
specified while training the model.

Category count

Output
The output lists the categories into which the content of the input string are classified and the rank
of that category. The rank signifies how close the input content matches the category. For example,
1 means it is the closest match to the category and 2 means closest plus the next close match.

DescriptionField Name

The predicted category for each record in the input file.Category

The rank of categories from the highest score to the lowest score.Rank

559Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Machine Learning Stages

Binning

Introduction
The Binning stage performs what is known as unsupervised binning, which divides a continuous
variable into groups (bins) without taking into account objective information. The data captured
includes ranges, quantities, and percentage of values within each range.

Advantages to performing binning include the following:

• It allows records with missing data to be included in the model.
• It controls or mitigates the impact of outliers over the model.
• It solves the issue of having different scales among the characteristics, making the weights of the
coefficients in the final model comparable.

In Spectrum Technology Platform unsupervised binning, you can use equal-width bins, where the
data is divided into bins of equal size, or equal-frequency bins, where the data is divided into groups
containing approximately the same number of records. In the Binning stage, equal-width bins are
referred to as Equal Range bins and equal-frequency bins are referred to as Equal Population bins.

You can perform more binning functions using the Machine Learning Model Management Binning
Management tool.

You can also view a list of binning and delete binning using command line instructions. See "Binning"
in the "Administration Utility" section of the Administration Guide.

Defining Binning Properties
1. Under Primary Stages > Deployed Stages > Machine Learning, click the Binning stage and

drag it onto the canvas, placing it where you want on the dataflow and connecting it to other
stages.

Note: The input stage must be the data source that contains both the objective and input
variable fields for your model. An output stage is not required unless you select the Score
input data option on the Basic Options tab. You may also connect an output stage if
you wish to capture your output independent of the Machine Learning Model Management
tool.

2. Double-click the Binning stage to show the Binning Options dialog box.
3. Enter a Binning name if you do not want to use the default name.
4. Check the Overwrite box to overwrite the existing model with new data.
5. Enter a Description of the model.

560Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

6. Click Include for each field whose data you want included in binning. Note that only numeric
fields will appear in this list.

7. Click OK to save your settings.

Configuring Basic Options
1. Select whether you want to perform an equal-range or equal-population Binning style.
2. Select in Null value bin how you want to handle empty bin fields, which represent unknown

values due to missing data.

• Select Highest to assign null values to the highest bin.
• Select Lowest to assign null values to the lowest bin.

The lowest bin is always bin 1.

3. Click Target internal bins and enter the number of bins you want to fill between the end bins.
If you are performing equal-range binning, you may select this type of processing or Bin width,
but not both. If you are performing equal-population binning, you may only perform internal-bin
processing.

4. If you are performing equal-range binning and want to select this type of processing rather than
internal-bin processing, click Bin width and enter the number of units you want in each bin.

5. Click Include for each field whose data you want included in binning.

Note: Only numeric fields will appear in this list.

6. Click OK to save your settings.

Binning Output
The Binning stage has two output ports. The first port will output all input fields plus a binned field
for each selected input field. For example, if the input contains Name, Age, and Income fields and
you perform binning on Age and Income, the output from the first port will contain the following fields:

• Name
• Age
• Binned_Age
• Income
• Binned_Income

The second port outputs four types of information for each selected input field. For example, if you
perform binning on Age, the output from the second port will contain the following fields:

• Age_Bins
• Age_BinValue
• Age_Count
• Age_Percentage

561Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

K-Means Clustering

Introduction
K-Means Clustering creates models based on analytical clustering, which segments a set of records
into clusters of similar records based on data values.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can alter those
settings to meet your needs. You then run your job and a limited version of the resulting model output
details appears on theModel Output tab. The model is stored on the Spectrum Technology Platform
server and the complete output is available in the Machine Learning Model Management tool.

Defining Model Properties
1. Under Primary Stages >Deployed Stages >Machine Learning, click theK-Means Clustering

stage and drag it onto the canvas, placing it where you want on the dataflow and connecting it
to other stages.

Note: The input stage must be the data source that contains input variable fields for your
model. An output stage is not required unless you select the Score input data option on
the Basic Options tab. You may also connect an output stage if you wish to capture your
output independent of the Machine Learning Model Management tool.

2. Double-click the K-Means stage to show the K-Means Clustering Options dialog box.
3. Enter a Model name if you do not want to use the default name.
4. Optional: Check the Overwrite box to overwrite the existing model with new data.
5. Enter the Number of clusters you want in your model if you do not want the default number (5).
6. Optional: Enter a Description of the model.
7. Click Include for each field whose data you want added to the model.
8. Use theModel Data Type drop-down to specify whether the input field is to be used as a numeric,

categorical, or datetime field.
9. Click OK to save the model and configuration or continue to the next tab.

Configuring Basic Options
1. Leave Standardize input fields checked to standardize the numeric columns to have zero mean

and unit variance.
If you do not use standardization, the results may include components dominated by variables
appearing to have larger variances relative to other attributes as a matter of scale rather than
true contribution.

2. Check Estimate number of clusters to have the K-Means algorithm attempt to determine the
number of clusters that your model will contain. Even though you designate the number of desired

562Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

clusters on the Model Properties tab, the routine may discover in its processing that a different
number of clusters is more appropriate given the data.

3. Specify a value between 1 and 100 as the Percentage for training data when the input data is
randomly split into training and test data samples.

4. Enter the value of 100 minus the amount you entered in step 3 on page 563 as the Percentage
for test data.

5. Enter a number as the Seed for sampling to ensure that when the data is split into test and
train data it will occur the same way each time you run the dataflow. Uncheck this field to get a
random split each time you run the flow.

6. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.
2. Leave Seed for algorithm checked and enter a seed number to ensure that when the data is

split into test and training data it will occur the same way each time you run the dataflow. Uncheck
this field to get a random split each time you run the flow.

3. Select the correct initialization mode in the Init dropdown.

DescriptionInitialization mode

Initializes the first centroid randomly, but then initializes the second centroid
to be the data point farthest away from it. Initializes the centroids to be
well spread-out from each other.

Furthest

Initializes the cluster centers before proceeding with the standard k-means
optimization iterations. With the k-means++ initialization, the algorithm is

Plus-Plus

guaranteed to find a solution that is O(log k) competitive to the optimal
k-means solution.

Chooses K clusters from the set of N observations at random so that each
observation has an equal chance of being chosen. This is the default
initialization mode.

Random

4. Leave Seed for N fold checked and enter a seed number to ensure that when the data is split
into test and train data it will occur the same way each time you run the dataflow. Uncheck this
field to get a random split each time you run the flow.

5. Check N fold and enter the number of folds if you are performing cross-validation.
6. Check Fold assignment and select from the drop-down list if you are performing cross-validation.

563Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFold assignment

Allows the algorithm to automatically choose an option; currently it
uses Random. This is the default.

Auto

Evenly splits the dataset into the folds and does not depend on the
seed.

Modulo

Note: This field is applicable only if you entered a value in N fold.

7. Check Maximum iterations and enter the number of training iterations that should take place.
8. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.
The Training column will always contain data. If you selected a train/test split on the Basic Options
tab, the Test column will also be filled, unless you have selected an N Fold validation on theAdvanced
Options tab, in which case the N Fold column will be filled. Click the Output button to regenerate
the output, and click Model details to view the entire output in the Machine Learning Model
Management tool.

Output Port
The K-Means Clustering stage contains one optional output port: the Model Metrics Port. This port's
functionality is determined by your selections and input when completing the stage's basic and
advanced options. For example, if you choose to conduct N Fold validation by checking the N Fold
field on the Advanced Options tab, the N Fold column in the output metrics will be populated with
data. Alternatively, if you choose not to conduct N Fold validation, the N Fold column will be blank.

Model Metrics Port
Perform this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the K-Means Clustering stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.
4. Alternative to step 3 on page 564: Add an inspection point to the channel that connects the

K-Means Clustering stage to the sink stage you added in step 2 on page 564 by right-clicking the
channel and selecting "Add inspection point." Then click the Inspect Current Flow button on
the Enterprise Designer toolbar.

564Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Inspection will run and you should see results similar to those shown below.

Linear Regression

Introduction
Linear Regression enables you to perform machine learning by creating models from datasets that
use continuous objectives with input variables.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can change
those settings to meet your needs. You then run your job and a limited version of the resulting model
appears on the Model Output tab; the complete output is available in the Machine Learning Model
Management tool.

Defining Model Properties
1. Under Primary Stages > Deployed Stages >Machine Learning, click the Linear Regression

stage and drag it onto the canvas, placing it where you want on the dataflow and connecting it
to other stages. Note that the input stage must be the data source that contains both the objective
and input variable fields for your model; an output stage is not required unless you select the
Score input data option on the Basic Options tab. You may also connect an output stage if you
wish to capture your output independent of the Machine Learning Model Management tool.

2. Double-click the Linear Regression stage to show the Linear Regression Options dialog box.
3. Enter a Model name if you do not want to use the default name.
4. Check the Overwrite box to overwrite the existing model with new data.
5. Click the Objective field drop-down and select a numerical field.
6. Enter a Description of the model.
7. Click Include for each field whose data you want added to the model; be sure to include the field

you selected as the Objective field.
8. Use the Model Data Type drop-down to specify whether each input field is to be used as a

numeric, categorical, or datetime field.
9. Click OK to save the model and configuration or continue to the next tab.

Configuring Basic Options
1. Leave Standardize input fields checked to standardize the numeric columns to have zero mean

and unit variance.

565Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

If you do not use standardization, the results may include components dominated by variables
appearing to have larger variances relative to other attributes as a matter of scale rather than
true contribution.

2. Check Score input data to add a column for the model prediction (score) to the input data.
3. Select a Link function from the drop-down list. This specifies the link between random and

systematic components. It says how the expected value of the response relates to the linear
predictor of explanatory variables.

DescriptionLink function

Predicts nonsense "probabilities" less than zero or greater than one;
sometimes used for binomial data to yield a linear probability model.

Identity

g(p) = p

Computes the inverse of link functions for real estimates.Inverse

g(μi)=1μi

Counts occurrences in a fixed amount of time and space.Log

g(μi)=log(μi)

4. Specify how to handle missing data by checking Skip or Imputemeans, which will add themean
value for any missing data.

5. Specify a value between 1 and 100 as the Percentage for training data when the input data is
randomly split into training and test data samples.

6. Enter the value of 100 minus the amount you entered in step 5 on page 566 as the Percentage
for test data.

7. Enter a number as the Seed for sampling to ensure that when the data is split into test and
train data it will occur the same way each time you run the dataflow. Uncheck this field to get a
random split each time you run the flow.

8. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.
2. Check Compute p values to calculate p values for the parameter estimates.
3. Check Remove collinear column to automatically remove collinear columns during model

building.
This option must be checked if Compute p values is also checked.

566Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

This will result in a 0 coefficient in the returned model.
4. Leave Include constant term (Intercept) checked to include a constant term (intercept) in the

model.
This field must be checked if Remove collinear column is also checked.

5. Select a Solver from the dropdown list.

DescriptionSolver

Solver will be determined based on input data and parameters.Auto

IRLSM with the covariance updates version of cyclical coordinate
descent in the innermost loop.

CoordinateDescent

IRLSM with the naive updates version of cyclical coordinate
descent in the innermost loop.

CoordinateDescentNaive

Ideal for problems with a small number of predictors or for Lambda
searches with L1 penalty.

IRLSM

Note: CoordinateDescent and CoordinateDescentNaive are currently experimental.

6. Leave Seed for N fold checked and enter a seed number to ensure that when the data is split
into test and train data it will occur the same way each time you run the dataflow. Uncheck in
this field to get a random split each time you run the flow.

7. Check N fold and enter the number of folds if you are performing cross-validation.
8. Click Fold assignment and select from the drop-down list if you are performing cross-validation.

This field is applicable only if you entered a value in N fold and Fold field is not specified.

DescriptionOption

Allows the algorithm to automatically choose an option; currently it
uses Random.

Auto

Evenly splits the dataset into the folds and does not depend on the
seed.

Modulo

Randomly splits the data into nfolds pieces; best for large datasets.Random

9. If you are performing cross-validation, check Fold field and select the field that contains the
cross-validation fold index assignment from the drop-down list.
This field is applicable only if you did not enter a value in N fold and Fold assignment.

567Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

10. Check Maximum iterations and enter the number of training iterations that should take place.
11. CheckObjective epsilon and enter the threshold for convergence; this must be a value between

0 and 1.
If the objective value is less than this threshold, the model will be converged.

12. Check Beta epsilon and enter the threshold for convergence; this must be a value between 0
and 1.
If the objective value is less than this threshold, the model will be converged. If the L1
normalization of the current beta change is below this threshold, consider using convergence.

13. Select the Regularization type you want to use.

DescriptionRegularization type

Selects a small subset of variables with a value of lambda high enough
to be considered crucial. May not perform well when there are correlated

LASSO (Least
Absolute Shrinkage

predictor variables, as it will select one variable of the correlated groupand Selection
Operator) and remove all others. Also limited by high dimensionality; when a model

contains more variables than records, LASSO is limited in how many
variables it can select. Ridge Regression does not have this limitation.
When the number of variables included in the model is large, or if the
solution is known to be sparse, LASSO is recommended.

Retains all predictor variables and shrinks their coefficients proportionally.
When correlated predictor variables exist, Ridge Regression reduces the

Ridge Regression

coefficients of the entire group of correlated variables towards equaling
one another. If you do not want correlated predictor variables removed
from your model, use Ridge Regression.

Combines LASSO and Ridge Regression by acting as a variable selector
while also preserving the grouping effect for correlated variables (shrinking

Elastic Net

coefficients of correlated variables simultaneously). Elastic Net is not
limited by high dimensionality and can evaluate all variables when a
model contains more variables than records.

A common concern in predictive modeling is overfitting, when an analytical model corresponds
too closely (or exactly) to a specific dataset and therefore may fail when applied to additional
data or future observations. Regulization is one method used to mitigate overfitting.

14. Check Value of alpha and change the value if you do not want to use the default of .5.
The alpha parameter controls the distribution between the ℓ1 and ℓ2 penalties. Valid values range
between 0 and 1; a value of 1.0 represents LASSO, and a value of 0.0 produces ridge regression.
The table below illustrates how alpha and lambda affect regularization.

568Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: The single equals sign is an assignment operator meaning "is," while the double
equals sign is an equality operator meaning "equal to."

15. Check Value of lambda and specify a value if you do not want Linear Regression to use the
default method of calculating the lambda value, which is a heuristic based on training data.
The lambda parameter controls the amount of regularization applied. For instance, if lambda is
0.0, no regularization is applied and the alpha parameter is ignored.

16. Check Search for optimal value of lambda to have Linear Regression compute models for full
regularization path.
This starts at lambda max (the highest lambda value that makes sense—that is, the lowest value
driving all coefficients to zero) and goes down to lambda min on the log scale, decreasing
regularization strength at each step. The returned model will have coefficients corresponding to
the optimal lambda value as decided during training.

17. Check Stop early to end processing when there is no more relative improvement on the training
or validation set.

18. CheckMaximum lambdas to search and enter the maximum number of lambdas to use during
the process of lambda search.

19. CheckMaximum active predictors and enter the maximum number of predictors to use during
computation.
This value is used as a stopping criterion to prevent expensive model building with many
predictors.

20. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.
The Training column will always contain data. If you selected a train/test split on the Basic Options
tab, the Test column will also be filled, unless you have selected an N Fold validation on the Advanced
Options tab, in which case the N Fold column will be filled.

After you run your job, the resulting model is stored on the Spectrum Technology Platform server.
Click the Output button to regenerate the output and click Model details to view the entire output
in the Machine Learning Model Management tool.

569Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output Ports
The Linear Regression stage contains two optional output ports: the Model Score Port and the Model
Metrics Port. The functionality of these ports is determined by your selections and input when
completing the stage's basic and advanced options. For example, if you choose to conduct N Fold
validation by checking the N Fold field on the Advanced Options tab, the N Fold column in the output
metrics generated by the Model Metrics Port will be populated with data. Alternatively, if you choose
not to conduct N Fold validation, the N Fold column will be blank. Likewise, The Model Score Port
is activated when you check the Score input data field on the Basic Options tab.

Model Score Port

When you check the Score input data field on the Basic Options tab, this tells Linear Regression
to calculate predicted values when creating the model, which in turn adds the Predicted_Value
column for that score in the output data. You can attach any kind of sink to this port: a Write to File
stage, a Write to Null stage, and so on.

Model Metrics Port
Follow steps in this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the Linear Regression stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.
4. Alternative to step 3 on page 570: Add an inspection point to the channel that connects the Linear

Regression stage to the sink stage you added in step 2 by right-clicking the channel and selecting
"Add inspection point." Then click the Inspect Current Flow button on the Enterprise Designer
toolbar. Inspection will run and you should see results similar to the ones shown below.

Logistic Regression

Introduction
Logistic Regression enables you to perform machine learning by creating models from datasets that
use binary objectives with input variables.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can change
those settings to meet your needs. You then run your job and a limited version of the resulting model

570Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

appears on the Model Output tab. The complete output is available in the Machine Learning Model
Management tool.

Defining Model Properties
1. Under Primary Stages >Deployed Stages >Machine Learning, click the Logistic Regression

stage and drag it onto the canvas, placing it where you want on the dataflow and connecting it
to other stages.

Note: The input stage must be the data source that contains both the objective and input
variable fields for your model; an output stage is not required unless you select the Score
input data option on the Basic Options tab. You may also connect an output stage if
you wish to capture your output independent of the Machine Learning Model Management
tool.

2. Double-click the Logistic Regression stage to show the Logistic Regression Options dialog
box.

3. Enter a Model name if you do not want to use the default name.
4. Check the Overwrite box to overwrite the existing model with new data.
5. Click the Objective field drop-down and select "Categorical."
6. Enter a Description of the model.
7. Click Include for each field whose data you want added to the model.

Be sure to include the field you selected as the Objective field.

8. Use the Model Data Type drop-down to specify whether each input field is to be used as a
numeric, categorical, or datetime field.

9. Click OK to save the model and configuration or continue to the next tab.

Configuring Basic Options
1. Leave Standardize input fields checked to standardize the numeric columns to have zero mean

and unit variance.
If you do not use standardization, the results may include components dominated by variables
appearing to have larger variances relative to other attributes as a matter of scale rather than
true contribution.

2. Check Score input data to add a column for the model prediction (score) to the input data.
3. Check Prior if the data has been sampled and the mean of response does not reflect reality;

then enter the prior probability for p(y==1) in the text field.
4. Specify how to handle missing data by checking Skip or Imputemeans, which will add themean

value for any missing data.
5. Specify a value between 1 and 100 as the Percentage for training data when the input data is

randomly split into training and test data samples.
6. Enter the value of 100 minus the amount you entered in Step 5 as the Percentage for test data.

571Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

7. Enter a number as the Seed for sampling to ensure that when the data is split into test and
train data it will occur the same way each time you run the dataflow. Uncheck this field to get a
random split each time you run the flow.

8. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.
2. Leave Compute p values checked to calculate p values for the parameter estimates.
3. Leave Remove collinear column checked to automatically remove collinear columns during

model building.
This option must be checked if Compute p values is also checked.
This will result in a 0 coefficient in the returned model.

4. Leave Include constant term (Intercept) checked to include a constant term (intercept) in the
model.
This field must be checked if Remove collinear column is also checked.

5. Select a Solver from the dropdown list.

DescriptionSolver

Solver will be determined based on input data and parameters.Auto

IRLSM with the covariance updates version of cyclical coordinate
descent in the innermost loop.

CoordinateDescent

IRLSM with the naive updates version of cyclical coordinate
descent in the innermost loop.

CoordinateDescentNaive

Ideal for problems with a small number of predictors or for Lambda
searches with L1 penalty.

IRLSM

Ideal for datasets with many columns.L_BFGS

Note: CoordinateDescentNaive and CoordinateDescentNaive are currently
experimental.

6. Leave Seed for N fold checked and enter a seed number to ensure that when the data is split
into test and train data it will occur the same way each time you run the dataflow. Uncheck this
field to get a random split each time you run the flow.

7. Check N fold and enter the number of folds if you are performing cross-validation.
8. Check Fold assignment and select from the drop-down list if you are performing cross-validation.

572Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFold assignment

Allows the algorithm to automatically choose an option; currently it uses
Random.

Auto

Evenly splits the dataset into the folds and does not depend on the seed.Modulo

Randomly splits the data into nfolds pieces; best for large datasets.Random

Stratifies the folds based on the response variable for classification
problems. Evenly distributes observations from the different classes to

Stratified

all sets when splitting a dataset into train and test data. This can be
useful if there are many classes and the dataset is relatively small.

This field is applicable only if you entered a value in N fold and Fold field is not specified.

9. If you are performing cross-validation, check Fold field and select the field that contains the
cross-validation fold index assignment from the drop-down list.
This field is applicable only if you did not enter a value in N fold and Fold assignment.

10. Check Maximum iterations and enter the number of training iterations that should take place.
11. CheckObjective epsilon and enter the threshold for convergence; this must be a value between

0 and 1.
If the objective value is less than this threshold, the model will be converged.

12. Check Beta epsilon and enter the threshold for convergence; this must be a value between 0
and 1.
If the objective value is less than this threshold, the model will be converged. If the L1
normalization of the current beta change is below this threshold, consider using convergence.

13. Select the Regularization type you want to use.

DescriptionRegularization type

Selects a small subset of variables with a value of lambda high enough
to be considered crucial. May not perform well when there are correlated

LASSO (Least
Absolute Shrinkage

predictor variables, as it will select one variable of the correlated groupand Selection
Operator) and remove all others. Also limited by high dimensionality; when a model

contains more variables than records, LASSO is limited in how many
variables it can select. Ridge Regression does not have this limitation.
When the number of variables included in the model is large, or if the
solution is known to be sparse, LASSO is recommended.

Retains all predictor variables and shrinks their coefficients proportionally.
When correlated predictor variables exist, Ridge Regression reduces the

Ridge Regression

573Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionRegularization type

coefficients of the entire group of correlated variables towards equaling
one another. If you do not want correlated predictor variables removed
from your model, use Ridge Regression.

Combines LASSO and Ridge Regression by acting as a variable selector
while also preserving the grouping effect for correlated variables (shrinking

Elastic Net

coefficients of correlated variables simultaneously). Elastic Net is not
limited by high dimensionality and can evaluate all variables when a
model contains more variables than records.

A common concern in predictive modeling is overfitting, when an analytical model corresponds
too closely (or exactly) to a specific dataset and therefore may fail when applied to additional
data or future observations. Regularization is one method used to mitigate overfitting.

14. Check Value of alpha and change the value if you do not want to use the default of .5.
The alpha parameter controls the distribution between the ℓ1 and ℓ2 penalties. Valid values range
between 0 and 1; a value of 1.0 represents LASSO, and a value of 0.0 produces ridge regression.
The table below illustrates how alpha and lambda affect regularization.

Note: The single equals sign is an assignment operator meaning "is," while the double
equals sign is an equality operator meaning "equal to."

15. Check Value of lambda and specify a value if you do not want Logistic Regression to use the
default method of calculating the lambda value, which is a heuristic based on training data.
The lambda parameter controls the amount of regularization applied. For example, if lambda is
0.0, no regularization is applied and the alpha parameter is ignored.

16. Check Search for optimal value of lambda to have Logistic Regression compute models for
full regularization path.
This starts at lambda max (the highest lambda value that makes sense—that is, the lowest value
driving all coefficients to zero) and goes down to lambda min on the log scale, decreasing
regularization strength at each step.
The returned model will have coefficients corresponding to the optimal lambda value as decided
during training.

17. Check Stop early to end processing when there is no more relative improvement on the training
or validation set.

574Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

18. CheckMaximum lambdas to search and enter the maximum number of lambdas to use during
the process of lambda search.

19. CheckMaximum active predictors and enter the maximum number of predictors to use during
computation.
This value is used as a stopping criterion to prevent expensive model building with many
predictors.

20. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.
The Training column will always contain data. If you selected a train/test split on the Basic Options
tab, the Test column will also be filled, unless you have selected an N Fold validation on the Advanced
Options tab, in which case the N Fold column will be filled.

After you run your job, the resulting model is stored on the Spectrum Technology Platform server.
Click the Output button to regenerate the output and click Model details to view the entire output
in the Machine Learning Model Management tool.

Output Ports
The Logistic Regression stage contains two optional output ports: the Model Score Port and the
Model Metrics Port. The functionality of these ports is determined by your selections and input when
completing the stage's basic and advanced options. For example, if you choose to conduct N Fold
validation by checking the N Fold field on the Advanced Options tab, the N Fold column in the
output metrics generated by the Model Metrics Port will be populated with data. Alternatively, if you
choose not to conduct N Fold validation, the N Fold column will be blank. Likewise, The Model Score
Port is activated when you check the Score input data field on the Basic Options tab.

Model Score Port

When you check the Score input data field on the Basic Options tab, this tells Logistic Regression
to calculate predicted values when creating the model, which in turn adds the Predicted_Value,
Probability_of_class_A, and Probability_of_class_B columns for that score in the output data.
You can attach any kind of sink to this port: a Write to File stage, a Write to Null stage, and so on.

Model Metrics Port
Perform this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the Logistic Regression stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.

575Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. Alternative to step 3 on page 575: Add an inspection point to the channel that connects the Logistic
Regression stage to the sink stage you added in step 2 on page 575 by right-clicking the channel
and selecting "Add inspection point." Then click the Inspect Current Flow button on the
Enterprise Designer toolbar. Inspection will run and you should see results similar to the ones
shown below.

Principal Component Analysis

Introduction
Principal Component Analysis (PCA) is a statistical process that converts a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables known as principal
components.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can change
those settings to meet your needs. You then run your job and a limited version of the resulting model
appears on the Model Output tab; the complete output is available in the Machine Learning Model
Management tool. If you are satisfied with the output of your model, you can then expose it and use
it in a scoring dataflow.

Defining Model Properties
1. Under Primary Stages > Deployed Stages >Machine Learning, click the PCA Options stage

and drag it onto the canvas, placing it where you want on the dataflow and connecting it to other
stages.

Note: The input stage must be the data source that contains the principal components
for your model. An output stage is not required but you may connect one if you wish to
capture your output independent of the Machine Learning Model Management tool.

2. Double-click the PCA Options stage to show the PCA Options dialog box.
3. Enter a Model name if you do not want to use the default name.
4. Optional: Check the Overwrite box to overwrite the existing model with new data.
5. Enter the number of Principal components you want your model to contain.
6. Optional: Enter a Description of the model.
7. In the Inputs table click "Include" for each field whose data you want added to the model.
8. Use the Model Data Type drop-down to specify whether the input field is to be used as a

categorical, datetime, numeric, string, or uniqueid field.
9. Click OK to save the model and configuration or continue to the next tab.

576Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Configuring Basic Options
1. Configure Use all factor level.

• Leave this option unchecked to skip the first principal component, which has the largest variance
in the data.

• Check this box to retain the first principal component.

2. Select the appropriate Transform for the training data.

DescriptionTransform

Subtracts the mean of each column.Demean

Divides by the standard deviation of each column.Descale

No transform.None

Demeans and divides each column by its range (maximumminus
minimum).

Normalize

Uses zero mean and unit variance. This is the default transform.Standardize

3. Specify how to handle Missing data by checking Skip or Impute means, which will add the
mean value for any missing data.

4. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.
2. Select a PCA method from the dropdown list. Note that GLRM and Power are currently

experimental.

DescriptionPCA method

Fits a generalized low-rank model with L2 loss function and no
regularization; solves for the SVD using local matrix algebra. This

GLRM

option is enabled only if you checked Use all factor level on the Basic
Options tab.

Uses a distributed computation of the Gram matrix, followed by a local
SVD using the JAMA package.

GramSVD

577Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionPCA method

Computes the SVD using the power iteration method.Power

Uses the randomized subspace iteration method.Randomized

3. LeaveMaximum iterations unchecked to have an unlimited number of training iterations (default).
Check the box and enter a number to limit the amount of training iterations.

4. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.

After you run your job, the resulting model is stored on the Spectrum Technology Platform server.
Click the Output button to regenerate the output and click Model details to view the entire output
in the Machine Learning Model Management tool.

Output Port
The Principal Component Analysis stage contains one optional output port: the Model Metrics Port.
This port's functionality is determined by your selections and input when completing the stage's basic
and advanced options.

Model Metrics Port
Perform this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the PCA stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.
4. Alternative to step 3 on page 578: Add an inspection point to the channel that connects the PCA

stage to the sink stage you added in step 2 on page 578 by right-clicking the channel and selecting
"Add inspection point." Then click the Inspect Current Flow button on the Enterprise Designer
toolbar. Inspection will run and you should see results similar to the ones shown below.

578Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Random Forest Classification

Introduction
Random Forest Classification enables you to perform machine learning by creating models from
datasets that use continuous objectives with input variables.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can change
those settings to meet your needs. You then run your job and a limited version of the resulting model
appears on the Model Output tab; the complete output is available in the Machine Learning Model
Management tool.

Note: For additional information, refer to this article aboutDistributed Random Forest (DRF)
for additional information regarding Random Forest Classification and its options.

Defining Model Properties
1. Under Primary Stages > Deployed Stages > Machine Learning, click the Random Forest

Classification stage and drag it onto the canvas, placing it where you want on the dataflow and
connecting it to other stages.

Note: The input stage must be the data source that contains both the objective and input
variable fields for your model; an output stage is not required unless you select the Score
input data option on the Basic Options tab. You may also connect an output stage if you
wish to capture your output independent of the Machine Learning Model Management
tool.

2. Double-click the Random Forest Classification stage to show theRandom Forest Classification
Options dialog box.

3. Enter a Model name if you do not want to use the default name.
4. Optional: Check the Overwrite box to overwrite the existing model with new data.
5. Click the Objective field drop-down and select a numeric field.
6. ClickMultinomial levels and enter the maximum number of categories into which the objective

field can be grouped. Note that checking this option will disable the Score input data option on
the Basic Options tab.

7. Optional: Enter a Description of the model.
8. Click Include for each field whose data you want added to the model.

Be sure to include the field you selected as the Objective field.

9. Use the Model Data Type drop-down to specify whether each input field is to be used as a
numeric, categorical, or datetime field.

10. Click OK to save the model and configuration or continue to the next tab.

579Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html?highlight=mae

Configuring Basic Options
1. Enter the maximum Number of trees in your model.
2. Enter the Maximum depth.

This is the maximum number of levels you want your model to contain.

3. Enter the Minimum rows.
This is the minimum number of rows (or records) you want your model to contain.

4. Enter the Number of bins numeric.
This is the number of bins you want the histogram to build and then split at the best point.

5. Enter the Number of bins top level.
This is the minimum number of bins you want at the root level.

6. Enter the Number of bins categorical.
This is the maximum number of bins you want the histogram to build and then split at the best
point.

7. Check Sample rate and enter the percentage of the rows to be used as a sample in each tree.
This can be a value from 0.0 to 1.0.

8. Check Column sample rate per tree and enter the column sampling rate for each tree.
This can be a value from 0.0 to 1.0.

9. Check Columns at each level and enter the relative change of the column sampling rate for
every level.
Valid values range from 1.0 to the number of the selected input predictor. Default is 1.0.

10. Check Score input data to add a column for the model prediction (score) to the input data.

Note: This option is disabled if you checkedMultinomial levels on the Model Properties
tab.

11. Specify a value between 1 and 100 as the Percentage for training data when the input data is
randomly split into training and test data samples.

12. Enter the value of 100 minus the amount you entered in step 11 on page 580 as the Percentage
for test data.

13. Seed for sampling to ensure that when the data is split into test and train data it will occur the
same way each time you run the dataflow. Uncheck this field to get a random split each time
you run the flow.

14. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.

580Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

2. Check Balance classes to balance the class distribution and either under sample the majority
classes or over sample the minority classes.

3. Select a Histogram type.

DescriptionHistogram type

Buckets are binned fromminimum to maximum in steps of (max-min)/N.
Use this option to specify the type of histogram for finding optimal split
points.

Auto

Buckets have equal population. This computes nbins quantiles for
each numeric (non-binary) column, then refines/pads each bucket

QuantilesGlobal

(between two quantiles) uniformly (and randomly for remainders) into
a total of nbins_top_level bins.

The algorithm will sample N-1 points from minimum to maximum and
use the sorted list of those to find the best split.

Random

The algorithm will cycle through all histogram types (one per tree).RoundRobin

Each feature is binned into buckets of equal step size (not population).
This is the quickest method but can lead to less accurate splits if the
distribution is highly skewed.

UniformAdaptive

4. Select a Categorical encoding.

DescriptionCategorical encoding

Automatically performs enum encoding.Auto

Converts categories to integers, then to binary, and assigns each digit
a separate column. Encodes the data in fewer dimensions but with
some distortion of the distances.

Binary

Note: No more than 32 columns can exist per categorical
feature.

k columns per categorical feature, keeping projections of
one-hot-encoded matrix onto k-dim eigen space only.

Eigen

Cycles through all histogram types (one per tree).Enum

581Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionCategorical encoding

One column exists per category, with "1" or "0" in each cell representing
whether the row contains that column’s category.

OneHotExplicit

5. Leave Seed for algorithm and N fold checked and enter a seed number to ensure that when
the data is split into test and training data it will occur the same way each time you run the
dataflow. Uncheck this field to get a random split each time you run the flow.

6. If you are performing cross-validation, check N fold and enter the number of folds.
7. If you are performing cross-validation, check Fold assignment and select from the dropdown

list.

DescriptionFold assignment

Allows the algorithm to automatically choose an option; currently it uses
Random.

Auto

Evenly splits the dataset into the folds and does not depend on the seed.Modulo

Randomly splits the data into nfolds pieces; best for large datasets.Random

Stratifies the folds based on the response variable for classification
problems. Evenly distributes observations from the different classes to

Stratified

all sets when splitting a dataset into train and test data. This can be
useful if there are many classes and the dataset is relatively small.

This field is applicable only if you entered a value in N fold and Fold field is not specified.

8. If you are performing cross-validation, check Fold field and select the field that contains the
cross-validation fold index assignment from the drop-down list.
This field is applicable only if you did not enter a value in N fold and Fold assignment.

9. Check Stopping rounds to end training when the Stopping_metric option does not improve for
the specified number of training rounds and enter the number of unsuccessful training rounds
to occur before stopping. To disable this feature, specify 0.
The metric is computed on the validation data (if provided); otherwise, training data is used.

10. Select a Stopping metric to determine when to quit creating new trees.

DescriptionStopping metric

Area under ROC curve.AUC

582Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionStopping metric

Note: Applicable only to binomial models.

Defaults to deviance.Auto

Top 1%.Lifttopgroup

Logarithmic loss.Logloss

The average misclassification rate.Meanperclasserror

The value of (1 - (correct predictions/total predictions)) * 100.Misclassification

Mean squared error; incorporates both the variance and the bias
of the predictor.

MSE

Root mean square error; measures the differences between values
(sample and population values) predicted by a model or an

RMSE

estimator and the values actually observed. Also the square root
of MSE.

11. Check Stopping tolerance and enter a value to specify the relative tolerance for the metric-based
stopping to end training if the improvement is less than this value.
This field is enabled only if you checked Stopping rounds.

12. Check Minimum split improvement and enter a value to specify the minimum relative
improvement in squared error reduction in order for a split to happen.
When properly executed, this option can help reduce overfitting. Optimal values would be in the
1e-10...1e-3 range. This field is enabled only if you checked Stopping rounds.

13. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.
The Training column will always contain data. If you selected a training/test split on theBasic Options
tab, the Test column will also be filled, unless you have selected an N Fold validation on theAdvanced
Options tab, in which case the N Fold column will be filled.

583Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

After you run your job, the resulting model is stored on the Spectrum Technology Platform server.
Click the Output button to regenerate the output and click Model details to view the entire output
in the Machine Learning Model Management tool.

Output Ports
The Random Forest Classification stage contains two optional output ports: the Model Score Port
and the Model Metrics Port. The functionality of these ports is determined by your selections and
input when completing the stage's basic and advanced options. For example, if you choose to conduct
N Fold validation by checking the N Fold field on the Advanced Options tab, the N Fold column in
the output metrics generated by the Model Metrics Port will be populated with data. Alternatively, if
you choose not to conduct N Fold validation, the N Fold column will be blank. Likewise, The Model
Score Port is activated when you check the Score input data field on the Basic Options tab.

Model Score Port

When you check the Score input data field on the Basic Options tab, this tells Random Forest
Classification to calculate predicted values when creating the model, which in turn adds the
Predicted_Value, Probability_of_class_A, and Probability_of_class_B columns for that score
in the output data. You can attach any kind of sink to this port: a Write to File stage, a Write to Null
stage, and so on.

Note: This port is not functional for Random Forest Classification multinomial models.

Model Metrics Port
Perform this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the Random Forest Classification stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.
4. Alternative to step 3 on page 584: Add an inspection point to the channel that connects the

Random Forest Classification stage to the sink stage you added in step 2 on page 584 by
right-clicking the channel and selecting "Add inspection point." Then click the Inspect Current
Flow button on the Enterprise Designer toolbar. Inspection will run and you should see results
similar to the ones shown below.

584Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Random Forest Regression

Introduction
Random Forest Regression enables you to perform machine learning by creating models from
datasets that use binary objectives with input variables.

To create your model, you must first complete the Model Properties tab. The Basic Options and
Advanced Options tabs provide sufficient default settings to complete a job, but you can change
those settings to meet your needs. You then run your job and a limited version of the resulting model
appears on the Model Output tab; the complete output is available in the Machine Learning Model
Management tool.

Note: For more information regarding Random Forest Regression and its options, see
Distributed Random Forest (DRF).

Defining Model Properties
1. Under Primary Stages / Deployed Stages / Machine Learning, click the Random Forest

Regression stage and drag it onto the canvas, placing it where you want on the dataflow and
connecting it to other stages.

Note: The input stage must be the data source that contains both the objective and input
variable fields for your model; an output stage is not required unless you select the Score
input data option on the Basic Options tab. You may also connect an output stage if you
wish to capture your output independent of the Machine Learning Model Management
tool.

2. Double-click the Random Forest Regression stage to show the Random Forest Regression
Options dialog box.

3. Enter a Model name if you do not want to use the default name.
4. Optional: Check the Overwrite box to overwrite the existing model with new data.
5. Click the Objective field drop-down and select a numeric field.
6. Optional: Enter a Description of the model.
7. Click Include for each field whose data you want added to the model; be sure to include the field

you selected as the Objective field.
8. Use the Model Data Type drop-down to specify whether each input field is to be used as a

numeric, categorical, or datetime field.
9. Click OK to save the model and configuration or continue to the next tab.

Configuring Basic Options
1. Enter the maximum Number of trees in your model. Default is 50.
2. Enter the Maximum depth.

This is the maximum number of levels you want your model to contain. The default is 5.

585Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html?highlight=mae

3. Enter the Minimum rows.
This is the minimum number of rows (or records) you want your model to contain. The default
is 10.

4. Enter the Number of bins numeric.
This is the number of bins you want the histogram to build and then split at the best point. The
default is 20.

5. Enter the Number of bins top level.
This is the minimum number of bins you want at the root level. The default is 1024.

6. Enter the Number of bins categorical.
This is the maximum number of bins you want the histogram to build and then split at the best
point. The default is 1024.

7. Check Sample rate and enter the percentage of the rows to be used as a sample in each tree.
This can be a value from 0.0 to 1.0.

8. Check Column sample rate per tree and enter the column sampling rate for each tree.
This can be a value from 0.0 to 1.0.

9. Check Columns at each level and enter the relative change of the column sampling rate for
every level.
This option defaults to 1.0 and can be a value from 0.0 to 2.0.

10. Check Score input data to add a column for the model prediction (score) to the input data.
11. Specify a value between 1 and 100 as the Percentage for training data when the input data is

randomly split into training and test data samples.
12. Enter the value of 100 minus the amount you entered in step 11 on page 586 as the Percentage

for test data.
13. Seed for sampling to ensure that when the data is split into test and train data it will occur the

same way each time you run the dataflow. Uncheck this field to get a random split each time
you run the flow.

14. Click OK to save the model and configuration or continue to the next tab.

Configuring Advanced Options
1. Leave Ignore constant fields checked to skip fields that have the same value for each record.
2. Select a Histogram type.

DescriptionHistogram type

Buckets are binned fromminimum to maximum in steps of (max-min)/N.
Use this option to specify the type of histogram for finding optimal split
points.

Auto

586Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionHistogram type

Buckets have equal population. This computes nbins quantiles for
each numeric (non-binary) column, then refines/pads each bucket

QuantilesGlobal

(between two quantiles) uniformly (and randomly for remainders) into
a total of nbins_top_level bins.

The algorithm will sample N-1 points from minimum to maximum and
use the sorted list of those to find the best split.

Random

The algorithm will cycle through all histogram types (one per tree).RoundRobin

Each feature is binned into buckets of equal step size (not population).
This is the quickest method but can lead to less accurate splits if the
distribution is highly skewed.

UniformAdaptive

3. Select a Categorical encoding.

DescriptionCategorical encoding

Automatically performs enum encoding.Auto

Converts categories to integers, then to binary, and assigns each digit
a separate column. Encodes the data in fewer dimensions but with
some distortion of the distances.

Binary

Note: No more than 32 columns can exist per categorical
feature.

k columns per categorical feature, keeping projections of
one-hot-encoded matrix onto k-dim eigen space only.

Eigen

Cycles through all histogram types (one per tree).Enum

One column exists per category, with "1" or "0" in each cell representing
whether the row contains that column’s category.

OneHotExplicit

4. Leave Seed for algorithm and N fold checked and enter a seed number to ensure that when
the data is split into test and training data it will occur the same way each time you run the
dataflow. Uncheck this field to get a random split each time you run the flow.

587Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

5. Check N fold and enter the number of folds if you are performing cross-validation.
6. If you are performing cross-validation, check Fold assignment and select from the dropdown

list .

DescriptionFold assignment

Allows the algorithm to automatically choose an option; currently
it uses Random.

Auto

Evenly splits the dataset into the folds and does not depend on the
seed.

Modulo

Randomly splits the data into nfolds pieces; best for large datasets.Random

This field is applicable only if you entered a value in N fold and Fold field is not specified.

7. If you are performing cross-validation, check Fold field and select the field that contains the
cross-validation fold index assignment from the drop-down list.
This field is applicable only if you did not enter a value in N fold and Fold assignment.

8. Check Stopping rounds to end training when the Stopping_metric option does not improve for
the specified number of training rounds and enter the number of unsuccessful training rounds
to occur before stopping. To disable this feature, specify 0.
The metric is computed on the validation data (if provided); otherwise, training data is used.

9. Select a Stopping metric to determine when to quit creating new trees.

DescriptionStopping metric

Defaults to deviance.Auto

Mean residual deviance; identical to MSE.deviance

Mean absolute error; the difference between two continuous variables.MAE

Mean squared error; incorporates both the variance and the bias of the
predictor.

MSE

Root mean square error; measures the differences between values
(sample and population values) predicted by a model or an estimator
and the values actually observed. Also the square root of MSE.

RMSE

Root mean squared logarithmic error; measures the ratio between
predicted and actual.

RMSLE

588Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

10. Check Stopping tolerance and enter a value to specify the relative tolerance for the metric-based
stopping to end training if the improvement is less than this value.

11. Check Minimum split improvement and enter a value to specify the minimum relative
improvement in squared error reduction in order for a split to happen.
When properly executed, this option can help reduce overfitting. Optimal values would be in the
1e-10...1e-3 range. This field is enabled only if you checked Stopping rounds.

12. Click OK to save the model and configuration or continue to the next tab.

Model Output
This tab shows the metrics you are using to assess the fitted model. These fields cannot be edited.
The Training column will always contain data. If you selected a training/test split on the Basic Options
tab, the Test column will also be filled, unless you have selected an N Fold validation on the Advanced
Options tab, in which case the N Fold column will be filled.

After you run your job, the resulting model is stored on the Spectrum Technology Platform server.
Click the Output button to regenerate the output and click Model details to view the entire output
in the Machine Learning Model Management tool.

Output Ports
The Random Forest Regression stage contains two optional output ports: the Model Score Port and
the Model Metrics Port. The functionality of these ports is determined by your selections and input
when completing the stage's basic and advanced options. For example, if you choose to conduct N
Fold validation by checking the N Fold field on the Advanced Options tab, the N Fold column in
the output metrics generated by the Model Metrics Port will be populated with data. Alternatively, if
you choose not to conduct N Fold validation, the N Fold column will be blank. Likewise, The Model
Score Port is activated when you check the Score input data field on the Basic Options tab.

Model Score Port

When you check the Score input data field on the Basic Options tab, this tells Random Forest
Regression to calculate predicted values when creating the model, which in turn adds the
Predicted_Value column for that score in the output data. You can attach any kind of sink to this
port: a Write to File stage, a Write to Null stage, and so on.

Model Metrics Port
Perform this procedure to use the Model Metrics Port.

The Model Metrics Port lets you output the model assessment metrics to a data file. This will help
you compare many models generated from within and outside of Spectrum Technology Platform
and perform other data processing tasks on the metrics.

1. Open a dataflow that uses the Random Forest Regression stage.
2. Attach a Write to File stage or another data output stage to the second output port.
3. Run the job.

589Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

4. Alternative to step 3 on page 589: Add an inspection point to the channel that connects the
Random Forest Regression stage to the sink stage you added in step 2 on page 589 by
right-clicking the channel and selecting "Add inspection point." Then click the Inspect Current
Flow button on the Enterprise Designer toolbar. Inspection will run and you should see results
similar to the ones shown below.

Universal Addressing Stages

Auto Complete Loqate
Auto Complete Loqate offers real-time entry of address data for fast, accurate results. Users are
returned instant results based on each character entered into the form, ensuring only accurate data
is entered into the database. Auto Complete Loqate also includes the Powersearch option, which
reduces input time by up to 80% for 238 countries by using data in the form of an index file.

Input
The following table lists the input for Auto Complete Loqate.

Table 73: Input Format

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.AddressLine3

The fourth address line.AddressLine4

The city name.City

590Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The country code or name, in any of the following formats:

• 2-digit ISO country code
• 3-digit UPU Country code
• English country name

For a list of ISO codes, see ISO Country Codes and Module Support.

Country

The company or firm name.FirmName

The postal code for the address.PostalCode

The state or province.StateProvince

Options

Table 74: Auto Complete Loqate Options

DescriptionOption Name

Specifies the database to be used for address processing. Only databases that have
been defined in the Database Resources panel in the Management Console are
available.

Database

Specifies the casing of the output data. One of the following:

Returns the output in mixed case (default). For example:

123 Main St
Mytown FL 12345

Mixed

Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Upper

Casing

591Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the default country. You should specify the country where most of your
addresses reside. For example, if most of the addresses you process are in Germany,
specify Germany.

Default country

Specifies the format to use for the country name returned in theCountry output field.
For example, if you select English, the country name "Deutschland" would be returned
as "Germany".

Use English country names (default).English Names

Use two-letter ISO abbreviation for the countries instead
of country names.

ISO Codes

Use Universal Postal Union abbreviation for the countries
instead of country names.

UPU Codes

Country format

Specifies the alphabet or script in which the output should be returned. This option
is bi-directional and generally takes place from Native to Latin and Latin to Native.

Do not perform transliteration and provide output in the
same script as the input (default).

Input Script

Output in the native script for the selected country
wherever possible.

Native

Use English values.Latin (English)

Script/Alphabet

The maximum number of addresses that Auto Complete Loqate should return. The
default is 10.

Maximum records to return

592Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Reduces input time by up to 80% for 240 countries by using data in the form of an
index file. When you conduct a search, the Loqate Engine will first look for the
corresponding index. If present, the method will attempt to instantly return a list of
candidate addresses. If the index is not present, or if the index does not return any
results, the original search process will be triggered.

Note: Powersearch can be performed when there are two and only two
fields in the input file: the Country field and any one of the AddressLine
fields. If you select this option and your input file contains additional fields,
the original search process will automatically be triggered.

To conduct its search, Auto Complete indexes use up to the first 10 characters for
searches within the United States and up to the first 15 characters for searches within
all other eligible countries. Spaces and punctuation are not factored into this count.

Powersearch cannot be used for the following countries: Botswana, Ethiopia, India,
Kazakhstan, Malaysia, Mongolia, Saint Kitts and Nevis, and San Marino.

Note: You must have a valid license for Powersearch processing. If you
enable Powersearch processing but are not licensed for this feature, or if
your license has expired, your entire job will fail.

Prefer Powersearch

Enables the duplicate handling mask and specifies how duplicate records are
processed and removed. Select one or more of the following options:

Selected by default. Pre-process the input and remove
duplicates that occur in a single field.

Single

Selected by default. Preprocess the input and remove duplicates
across all fields.

Multi

Preprocess the input and remove duplicates in fields that are
not standard address fields.

Non-standard

Selected by default. Post-process the output from verification
and remove duplicates from non-verified fields.

Output

Duplicate handling

Specifies how you want Spectrum Technology Platform to respond when a data
license error occurs.

Fail the entire job if a data license error occurs.Fail the job

Fail the record(s) for which the data license error occurs
and continue processing.

Fail the record

Data license error handling

593Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output
The output from Auto Complete Loqate is optional and corresponds directly to the fields you selected
in the Output Fields section of the Auto Complete Loqate Options dialog box.

Table 75: Auto Complete Loqate Output

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.AddressLine3

The fourth address line.AddressLine4

The city name.City

The three-character ISO 3166-1 Alpha 3 code for the country. For a list of ISO codes,
see ISO Country Codes and Module Support.

Country

The firm name.FirmName

The ending house number for the range in which the candidate address's house
number falls.

HouseNumber

The postal code.PostalCode

The last four digits of the ZIP + 4® Code.PostalCode.AddOn

Indicates which address coder processed the address.

The Loqate coder processed the address.LOQATE

ProcessedBy

594Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The validated state/province or its abbreviated value.StateProvince

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

The reason for failure, if there is one.

• DisabledCoder
• RequestFailed
• NoLookupAddressFound

Status.Code

A description of the problem, if there is one.

The input address matched only one address in the
database. Auto Complete Loqate returns data only
if multiple possible matches were found.

Did not return multiples

Auto Complete Loqate is not able to process the
partial address.

Not able to look up the
address pattern

Status.Description

Get Candidate Addresses
Get Candidate Addresses returns a list of addresses that are considered matches for a given input
address. Get Candidate Addresses returns candidate addresses only if the input address matches
multiple addresses in the postal database. If the input address matches only one address in the
postal database, then no address data is returned.

For addresses outside the U.S. and Canada, you may notice inconsistent results between the multiple
matches returned by Validate Address and the results for that same address returned by Get
Candidate Addresses. If you experience inconsistent results, it is likely because you set the
performance tuning setting in Validate Address to a value other than 100. To obtain consistent results
between Get Candidate Addresses and Validate Address, set the performance tuning option to 100.

Note: By default, Get Candidate Addresses does not match to individual house numbers.
Rather, it uses house number ranges for each street. After Get Candidate Addresses has
determined the street name, city name, state/province name, and postal code, it checks to
make sure the input house number falls within one of the ranges of house numbers given for
the matched street name. The same type of logic applies to unit numbers. If you want to
determine that an individual house number is valid, you should use the Validate Address

595Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Delivery Point Validation (DPV) processing option. DPV processing is only available for U.S.
addresses.

The Canadian coder contains a reverse lookup routine that takes as input a specific postal code and
returns the street information stored in the database for that postal code. To use this function enter
nothing but a Canadian postal code in the PostalCode field. See the second example to view the
return from a sample postal code.

Get Candidate Addresses is part of Spectrum Universal Address.

U.S. Address Example

AddressLine1:

PO Box 1 City: NY State: NY

Preview Output:

Output Record 2Output Record 1Field Name

PO Box 1PO Box 1AddressLine1

New YorkNew YorkCity

USAUSACountry

960HouseNumberHigh

11HouseNumberLow

BBHouseNumberParity

AAMatchLevel

1000810002PostalCode

00010001PostalCode.AddOn

USAUSAProcessedBy

PostOfficeBoxPostOfficeBoxRecordType

RecordType.Default

596Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output Record 2Output Record 1Field Name

NYNYStateProvince

UnitNumberParity

Canadian Address Example

PostalCode:

A1A1A1

Preview Output:

Output Record 2Output Record 1Field Name

LOWER BATTERY RDLOWER BATTERY RDAddressLine1

ST. JOHN'SST. JOHN'SCity

CANCANCountry

000004 A000003HouseNumberHigh

000002000001HouseNumberLow

EOHouseNumberParity

AAMatchLevel

A1A1A1A1A1A1PostalCode

CANCANProcessedBy

NormalNormalRecordType

NLNLStateProvince

Input
The following table lists the input for Get Candidate Addresses.

597Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 76: Input Format

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.

Does not apply to U.S. and Canadian addresses.

AddressLine3

The fourth address line.

Does not apply to U.S. and Canadian addresses.

AddressLine4

The fifth address line.

Applies only to U.K. addresses. May contain street name, unit number, building
number, and so on.

AddressLine5

The city name.City

The state or province.

For U.S. addresses only, you may put the state in the City field instead of the
StateProvince field.

StateProvince

The postal code for the address. For U.S. addresses this is the ZIP Code™ in one of
the following formats:

99999
99999-9999
A9A9A9
A9A 9A9
9999 999

Note: For Canadian addresses you can complete just this field and have
candidate address data returned. For other countries, AddressLine1 and
AddressLine2 must also be completed.

PostalCode

598Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The country code or name, in any of the following formats:

• 2-digit ISO country code
• 3-digit UPU Country code
• English country name
• French country name
• German country name
• Spanish country name

For a list of ISO codes, see ISO Country Codes and Module Support.

Country

The company or firm name.FirmName

U.S. address urbanization name. Used primarily for Puerto Rico addresses.USUrbanName

Options

Table 77: Get Candidate Addresses Options

DescriptionOption Name

Specifies whether or not to process U.S. addresses. If you enable U.S.
address processing Get Candidate Addresses will attempt to retrieve
candidate addresses for U.S. addresses. If you disable U.S. address
processing, U.S. addresses will fail, meaning they are returned with an
"F" in the Status output field. The output field Status.Code will say
"DisabledCoder." If you are not licensed for U.S. address processing
you must disable U.S. address processing in order for your jobs to
complete successfully, regardless of whether or not they contain U.S.
addresses.

Note: You must have a valid license for U.S. address
processing to successfully process U.S. addresses. If you
enable U.S. address processing but are not licensed for this
feature, or your license has expired, your entire job will fail.

Enable U.S. address processing

Specifies the database to be used for U.S. address processing. Only
databases that have been defined in theUSDatabase Resources panel
in the Management Console are available.

Database

599Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether or not to process Canadian addresses. If you enable
Canadian address processing Get Candidate Addresses will attempt to
retrieve candidate addresses for Canadian addresses. If you disable
Canadian address processing, Canadian addresses will fail, meaning
they are returned with an "F" in the Status output field. The output field
Status.Code will say "DisabledCoder." If you are not licensed for
Canadian address processing you must disable Canadian address
processing in order for your jobs to complete successfully, regardless
of whether or not they contain Canadian addresses.

Note: You must have a valid license for Canadian address
processing to successfully process Canadian addresses. If you
enable Canadian address processing but are not licensed for
this feature, or your license has expired, your entire job will fail.

Enable Canadian address processing

Specifies the database to be used for Canadian address processing.
Only databases that have been defined in the Canadian Database
Resources panel in the Management Console are available.

Database

Specifies whether or not to process international addresses (addresses
outside the U.S. and Canada). If you enable international address
processing Get Candidate Addresses will attempt to retrieve candidate
addresses for international addresses. If you disable international address
processing, international addresses will fail, meaning they are returned
with an "F" in the Status output field. The output field Status.Code will
say "DisabledCoder." If you are not licensed for international address
processing you must disable international address processing in order
for your jobs to complete successfully, regardless of whether or not they
contain international addresses.

Note: You must have a valid license for international address
processing to successfully process international addresses. If
you enable international address processing but are not licensed
for this feature, or your license has expired, your entire job will
fail.

Enable International address processing

Specifies the database to be used for international address processing.
Only databases that have been defined in the International Database
Resources panel in the Management Console are available.

Database

600Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the casing of the output data. One of the following:

Returns the output in mixed case (default). For example:

123 Main St
Mytown FL 12345

Mixed

Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Upper

Casing

The maximum number of candidate addresses that Get Candidate
Addresses should return. The default is 10. The maximum is 10.

Maximum records to return

For U.S. addresses, specifies whether or not to return the
USPS®-approved abbreviation for the city, if there is one. The USPS®

provides abbreviations for city names that are 14 characters long or
longer. City abbreviations are 13 characters or less and can be used
when there is limited space on the mailing label. If there is no short city
name for the city, then the full city name is returned.

Return short city name

(U.S. addresses only). Controls whether Get Candidate Addresses should
return a street match or a PO Box/Rural Route/Highway Contract match
when the address contains both street and POBox/Rural Route/Highway
Contract information. For more information, see About Dual Address
Logic on page 636.

(Default) USPS® CASS™ regulations determine the
address returned based on the following order of
priority:

Normal Match

1. PO Box
2. Firm
3. Highrise
4. Street
5. Rural Route
6. General Delivery

Return a street match, regardless of the address
line.

Street Match

Return a PO Boxmatch, regardless of the address
line.

PO Box Match

Dual address match logic

601Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

The strictness of the street name match (U.S. addresses only).

The input street name must match the database
exactly.

Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium" (default).Medium

The matching algorithm is "loose."Loose

Street matching

The strictness of the firm name match (U.S. addresses only).

The input firm name must match the database
exactly.

Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium" (default).Medium

The matching algorithm is "loose."Loose

Firm matching

The strictness of the directional match.

The input directional must match the database
exactly.

Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium" (default).Medium

The matching algorithm is "loose."Loose

Directional matching

Specifies whether or not to perform Enhanced Street Matching (ESM).
ESM applies extra matching logic with additional data to any input
address that is not matched through the regular address validation
process. ESM applies to U.S. addresses only.

Perform enhanced street matching

602Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether ValidateAddress will search address lines for the city,
state/province, and postal code.

This option enables Validate Address to search the AddressLine input
fields for the city, state/province, postal code, and country when the
address cannot be matched using the values in the City, StateProvince,
and PostalCode input fields.

Consider enabling this option if your input addresses have the city,
state/province, and postal code information in the AddressLine fields.

Consider disabling this option if your input addresses use the City,
State/Province and PostalCode fields. If you enable this option and these
fields are used, there is an increased possibility that Validate Address
will fail to correct values in these fields (for example a misspelled city
name).

Search address lines on fail

Output
Get Candidate Addresses returns the following output.

Table 78: Get Candidate Addresses Output

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.AddressLine3

The fourth address line.AddressLine4

For U.K. addresses only. If the address was validated, the fifth line of the validated
and standardized address. If the address could not be validated, the fifth line of the
input address without any changes.

AddressLine5

603Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Delivery installation name (Canadian addresses only)CanadianDeliveryInstallation

AreaName

Delivery installation qualifier (Canadian addresses only)CanadianDeliveryInstallation

QualifierName

Delivery installation type (Canadian addresses only)CanadianDeliveryInstallation

Type

The city name.City

The three-character ISO 3166-1 Alpha 3 code for the country. For a list of ISO codes,
see ISO Country Codes and Module Support.

Country

The firm name.FirmName

The ending house number for the range in which the candidate address's house
number falls.

HouseNumberHigh

The beginning house number for the range in which the candidate address's house
number falls.

HouseNumberLow

Indicates the numbering scheme for the house numbers between HouseNumberLow
and HouseNumberHigh, as follows:

Only even valuesE

Only odd valuesO

BothB

HouseNumberParity

604Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

For addresses outside the U.S. and Canada, identifies the match level for the
candidate address. U.S. and Canadian addresses are always "A." One of the
following:

The candidate matches the input address at the street level.A

The candidate matches the input address at the state/province level.B

MatchLevel

The postal code. In the U.S. this is the ZIP Code™.PostalCode

The last four digits of the ZIP + 4® Code. U.S. addresses only.PostalCode.AddOn

The type of address record, as defined by U.S. and Canadian postal authorities (U.S.
and Canadian addresses only):

• FirmRecord
• GeneralDelivery
• HighRise
• PostOfficeBox
• RRHighwayContract
• Normal

RecordType

Code indicating the "default" match:

The address matches a default record.Y

The address does not match a default record.null

RecordType.Default

The validated state/province or its abbreviated value.StateProvince

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

The reason for failure, if there is one. There is only one possible value:

• DisabledCoder
• RequestFailed

Status.Code

605Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

A description of the problem, if there is one.

The input address matched only one address in
the database. Get Candidate Addresses only
returns data if multiple possible matches were
found.

Did not return multiples

The input address matched more than one
address in the database but no addresses were
returned.

Number of candidates is not
greater than 1

This value will appear if
Status.Code=DisabledCoder.

PerformUSProcessing disabled

This value will appear if
Status.Code=DisabledCoder.

PerformCanadianProcessing
disabled

This value will appear if
Status.Code=DisabledCoder.

PerformInternationalProcessing
disabled

Status.Description

The ending unit number for the range in which the candidate address's unit number
falls.

UnitNumberHigh

The beginning unit number for the range in which the candidate address's unit number
falls.

UnitNumberLow

Indicates the numbering scheme for the unit numbers between UnitNumberLow and
UnitNumberHigh, as follows:

Only even valuesE

Only odd valuesO

BothB

UnitNumberParity

The validated city urbanization name. Urbanization names are used primarily for
Puerto Rico addresses.

USUrbanName

Get Candidate Addresses Loqate
Get Candidate Addresses Loqate returns a list of addresses that are considered matches for a given
input address. Get Candidate Addresses Loqate returns candidate addresses only if the input address
matches multiple addresses in the postal database. If the input address matches only one address

606Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

in the postal database, then no address data is returned. The Country input field is required; if this
field is blank, no output will be returned.

Note: By default, Get Candidate Addresses Loqate does not match to individual house
numbers. Rather, it uses house number ranges for each street. After Get Candidate Addresses
Loqate has determined the street name, city name, state/province name, and postal code, it
checks to make sure the input house number falls within one of the ranges of house numbers
given for the matched street name. The same type of logic applies to unit numbers.

Get Candidate Addresses Loqate is part of Spectrum Universal Address.

U.S. Address Example

Preview Input:

InputField Name

PO Box 1AddressLine1

73 baruchAddressLine2

AddressLine3

AddressLine4

nyCity

nyStateProvince

PostalCode

usaCountry

FirmName

U.S. Address Example

Preview Output:

607Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output Record
5

Output Record
4

Output Record
3

Output Record
2

Output Record
1

Field Name

PO Box 1 73PO Box 1 73PO Box 1 73PO Box 1 73PO Box 1 73AddressLine1

BaruchBaruchBaruchBaruchBaruchAddressLine2

AddressLine3

AddressLine4

New YorkNew YorkNew YorkNew YorkNew YorkCity

USAUSAUSAUSAUSACountry

FirmName

1001310012-0003100091000810002PostalCode

0003PostalCode.AddOn

LOQATELOQATELOQATELOQATELOQATEProcessedBy

NYNYNYNYNYStateProvince

Canadian Address Example

PostalCode:

A1A1A1

Preview Output:

Output Record 2Output Record 1Field Name

LOWER BATTERY RDLOWER BATTERY RDAddressLine1

ST. JOHN'SST. JOHN'SCity

CANCANCountry

608Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output Record 2Output Record 1Field Name

000004 A000003HouseNumberHigh

000002000001HouseNumberLow

EOHouseNumberParity

AAMatchLevel

A1A1A1A1A1A1PostalCode

CANCANProcessedBy

NormalNormalRecordType

NLNLStateProvince

Input
The following table lists the input for Get Candidate Addresses Loqate.

Table 79: Input Format

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.AddressLine3

The fourth address line.AddressLine4

The city name.City

609Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The country code or name, in any of the following formats:

• 2-digit ISO country code
• 3-digit UPU Country code
• English country name

For a list of ISO codes, see ISO Country Codes and Module Support.

Note: This field is required. If this field is blank, no output will be returned.

Country

The company or firm name.FirmName

The postal code for the address. For U.S. addresses this is the ZIP Code™ in one of
the following formats:

PostalCode

The state or province.

For U.S. addresses only, you may put the state in the City field instead of the
StateProvince field.

StateProvince

Options

Table 80: Get Candidate Addresses Loqate Options

DescriptionOption Name

Specifies the database to be used for address processing. Only databases that have
been defined in the Management Console are available.

Database

610Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the casing of the output data. One of the following:

Returns the output in mixed case (default). For example:

123 Main St
Mytown FL 12345

Mixed

Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Upper

Casing

Specifies the method of searching for candidates. One of the following:

Enter a full or partial address as input and return as output a list of
closely matching results (default).

Search

Enter address information in address lines, address components,
or a combination of both as input and return as output results that
more closely match the input.

Verify

Address Lookup Process

Specifies the default country. You should specify the country where most of your
addresses reside. For example, if most of the addresses you process are in Germany,
specify Germany. Get Candidate Address Loqate uses the country you specify to
attempt validation when it cannot determine the country from the StateProvince,
PostalCode, and Country address fields.

Default Country

Specifies the format to use for the country name returned in theCountry output field.
For example, if you select English, the country name "Deutschland" would be returned
as "Germany".

Use English country names (default).English Names

Use two-letter ISO abbreviation for the countries instead
of country names.

ISO Codes

Use Universal Postal Union abbreviation for the countries
instead of country names.

UPU Codes

Country format

611Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the alphabet or script in which the output should be returned. This option
is bi-directional and generally takes place from Native to Latin and Latin to Native.

Do not perform transliteration and provide output in the
same script as the input (default).

Input Script

Output in the native script for the selected country
wherever possible.

Native

Use English values.Latin (English)

Script/Alphabet

Themaximum number of candidate addresses that Get Candidate Addresses Loqate
should return. The default is 10. The maximum is 99.

Maximum records to return

Output
Get Candidate Addresses Loqate returns the following output.

Table 81: Get Candidate Addresses Loqate Output

DescriptionField Name

The first address line.AddressLine1

The second address line.AddressLine2

The third address line.AddressLine3

The fourth address line.AddressLine4

The city name.City

The three-character ISO 3166-1 Alpha 3 code for the country. For a list of ISO codes,
see ISO Country Codes and Module Support.

Country

612Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The firm name.FirmName

The postal code. In the U.S. this is the ZIP Code™.PostalCode

The last four digits of the ZIP + 4® Code. U.S. addresses only.PostalCode.AddOn

Indicates which address coder processed the address.

The Loqate coder processed the address.LOQATE

ProcessedBy

The validated state/province or its abbreviated value.StateProvince

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

The reason for failure, if there is one. There is only one possible value:

• RequestFailed

Status.Code

A description of the problem, if there is one. There is only one possible value:

The input address matched only one address in the
database. Get Candidate Addresses Loqate only returns
data if multiple possible matches were found.

Did not return
multiples

Status.Description

Get City State Province
Get City State Province returns a city and state/province for a given input postal code.

Note: Get City State Province works with U.S. and Canadian addresses only.

Get City State Province is part of Spectrum Universal Address.

613Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input
The following table shows the input fields.

Table 82: Get City State Province Input

DescriptionField Name

A U.S. ZIP Code™ or Canadian postal code in one of the following formats:

99999

99999-9999

A9A9A9

A9A 9A9

PostalCode

Options

Table 83: Get City State Province Options

DescriptionOption Name

Specifies whether or not to process U.S. addresses. If you enable U.S. address
processing Get City State Province will attempt to return the state for U.S. addresses.
If you disable U.S. address processing, U.S. addresses will fail, meaning they are
returned with an "F" in the Status output field. The output field Status.Code will say
"DisabledCoder." If you are not licensed for U.S. address processing youmust disable
U.S. address processing in order for your jobs to complete successfully, regardless
of whether or not they contain U.S. addresses.

Note: You must have a valid license for U.S. address processing to
successfully process U.S. addresses.

Enable U.S. address processing

Specifies the database to be used for U.S. address processing. Only databases that
have been defined in theUSDatabase Resources panel in theManagement Console
are available.

Database

614Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether or not to process Canadian addresses. If you enable Canadian
address processing Get City State Province will attempt to return the province for
Canadian addresses. If you disable Canadian address processing, Canadian
addresses will fail, meaning they are returned with an "F" in the Status output field.
The output field Status.Code will say "DisabledCoder." If you are not licensed for
Canadian address processing you must disable Canadian address processing in
order for your jobs to complete successfully, regardless of whether or not they contain
Canadian addresses.

Note: You must have a valid license for Canadian address processing to
successfully process Canadian addresses.

Enable Canadian address
processing

Specifies the database to be used for Canadian address processing. Only databases
that have been defined in the Canadian Database Resources panel in the
Management Console are available.

Database

Specifies whether or not to include non-mailing city names in the output. A non-mailing
city name is an alternate name for the primary city name. For example, Hollywood
is a non-mailing city name for Los Angeles.

Include non-mailing city

Specifies the maximum number of city-state/province pairs to return. The default
value is 10.

Maximum records to return

Output
Get City State Province returns the matching city and state/province for the input postal code as well
as a code to indicate the success or failure of the match attempt. If more than one city/state or
city/province matches the input postal code, multiple output records are returned.

Table 84: Get City State Province Output

DescriptionField Name

The matched city name.City

615Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The USPS® standardized city name type (U.S. addresses only).

Vanity (non-mailing) city name.V

Primary. The city name is the primary mailing city name.P

Secondary. The city name is an alternate city name but is acceptable.
A city can have multiple secondary city names.

S

City.Type

The input postal code.PostalCode

Indicates which address coder processed the address. One of the following:

The U.S. address coder processed the address.USA

The Canadian address coder processed the address.CAN

ProcessedBy

The validated state/province or its abbreviated value.StateProvince

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

The reason for failure, if there is one. The only valid value is:

• DisabledCoder
• UnrecognizedPostalCode

Status.Code

The description of the failure. The valid values are:

This value will appear if
Status.Code=UnrecognizedPostalCode.

Postal code not found

This value will appear if
Status.Code=DisabledCoder.

PerformUSProcessing disabled

This value will appear if
Status.Code=DisabledCoder.

PerformCanadianProcessing
disabled

Status.Description

616Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Get City State Province Loqate
Get City State Province Loqate returns a city and state/province for a given input postal code.

This stage is part of the Spectrum Universal Addresse.

Input
The following table shows the input fields.

Table 85: Get City State Province Loqate Input

DescriptionField Name

The country code or name, in any of the following formats:

• 2-digit ISO country code
• 3-digit UPU Country code
• English country name

For a list of ISO codes, see ISO Country Codes and Module Support.

Country

The postal code for the address.PostalCode

Options

Table 86: Get City State Province Loqate Options

Description / Valid ValuesField Name

Specifies the database to be used for address processing. Only databases that have
been defined in the Database Resources panel in the Management Console are
available.

Database

The maximum number of addresses that Get City State Province Loqate should
return. The default is 10.

Maximum records to return

617Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Specifies the alphabet or script in which the output should be returned. This option
is bi-directional and generally takes place from Native to Latin and Latin to Native.

Do not perform transliteration and provide output in the
same script as the input (default).

Input Script

Output in the native script for the selected country
wherever possible.

Native

Use English values.Latin (English)

Script/Alphabet

Specifies how you want Spectrum Technology Platform to respond when a data
license error occurs.

Fail the entire job if a data license error occurs.Fail the job

Fail the record(s) for which the data license error occurs
and continue processing.

Fail the record

Data license error handling

Output
Get City State Province Loqate returns the matching city and state/province for the input postal code
as well as a code to indicate the success or failure of the match attempt. If more than one city/state
or city/province matches the input postal code, multiple output records are returned.

Table 87: Get City State Province Loqate Output

DescriptionField Name

The matched city name.City

The country in the format determined by what you selected in Country format:

• ISO Code
• UPU Code
• English

Country

The input postal code.PostalCode

618Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Indicates which address coder processed the address.

The Loqate coder processed the address.LOQATE

ProcessedBy

The validated state/province or its abbreviated value.StateProvince

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

The reason for failure, if there is one. The only valid value is:

• UnrecognizedPostalCode

Status.Code

The description of the failure. The only valid value is:

This value will appear if
Status.Code=UnrecognizedPostalCode.

Postal code not found

Status.Description

Get Postal Codes
Get Postal Codes allows you to look up the postal codes for a particular city. The service takes a
city, state, and country as input and returns the postal codes for that city. The input must be exactly
correct in order to return postal codes.

Note: Get Postal Codes only works with U.S. addresses.

Get Postal Codes is part of the Spectrum Universal Address.

Input
Get Postal Codes takes a city, state/province, and country as input.

619Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 88: Get Postal Codes Input

DescriptionField Name

The city whose postal codes you want to look up.

You may put the city and state in the City field. If you do this, you must leave the
StateProvince field blank.

The total length of the City and StateProvince fields cannot exceed 100 characters.

City

The state or province of the city whose postal codes you want to look up.

You may also put the state in the City field instead of the StateProvince field.

The total length of the City and StateProvince fields cannot exceed 100 characters.

StateProvince

The country code or name of the city whose postal codes you want to look up. The
only valid value is US.

Country

Options

Table 89: Get Postal Codes Options

DescriptionOption

Specifies the database to be used for postal code look-ups. Only databases that
have been defined in the US Database Resources panel in the Management Console
are available.

Database

Specifies whether or not to include postal codes for the city's non-mailing city names.
A non-mailing city name is an alternate name for the primary city name. For example,
Hollywood is a non-mailing city name for Los Angeles.

Include non-mailing city

Specifies whether or not to return the city type in the output. If enabled, the city type
is returned in the City.Type field.

Include city type

620Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output
Get Postal Codes returns the postal codes for a specified city. Each postal code is returned in a
separate record along with the data listed in the following table.

Table 90: Get Postal Codes Output

DescriptionField Name

The USPS® city type (U.S. addresses only). The city type is determined by looking
at the ZIP Code and the city name. For example, the city Lanham MD has the postal
codes 20703, 20706, and 20784. Lanham is the primary city in 20703 and 20706
but is a vanity city in 20784.

This field column is only populated if Include city type is checked. The possible
values are:

Vanity (non-mailing) city name.V

Primary. The city name is the primary mailing city name.P

Secondary. The city name is an alternate city name but is acceptable.
A city can have multiple secondary city names.

S

City.Type

A postal code in the specified city.PostalCode

Because this service only works for U.S. addresses, ProcessedBy will always contain
one value: USA.

ProcessedBy

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

Reason for failure, if there is one. One of the following:

• CountryNotSupported
• UnableToLookup

Status.Code

621Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Description of failure.

• Input country is not supported
• Input city was blank
• Input city & state / province was blank, or no match found
• City-state mismatch (different spelling found, or city-state was a vanity name and
vanity matching was not allowed, or city-state did not match ZIP Code)

Status.Description

Get Postal Codes Loqate
Get Postal Codes Loqate allows you to look up the postal codes for a particular city. The service
takes a city, state, and country as input and returns the postal codes for that city. The input must be
exactly correct in order to return postal codes.

Get Postal Codes Loqate is part of Spectrum Universal Address.

Input
Get Postal Codes Loqate takes a city, state/province, and country as input.

Table 91: Get Postal Codes Loqate Input

Description / Valid ValuesField Name

The city whose postal codes you want to look up.

You may put the city and state in the City field. If you do this, you must leave the
StateProvince field blank.

City

The country code or name, in any of the following formats:

• 2-digit ISO country code
• 3-digit UPU Country code
• English country name

For a list of ISO codes, see ISO Country Codes and Module Support.

Country

The state or province of the city whose postal codes you want to look up.

You may also put the state in the City field instead of the StateProvince field.

StateProvince

622Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Options

Table 92: Get Postal Codes Loqate Options

DescriptionOption

Specifies the database to be used for postal code look-ups. Only databases that
have been defined in the Management Console are available.

Database

Specifies how you want Spectrum Technology Platform to respond when a data
license error occurs.

Fail the entire job if a data license error occurs.Fail the job

Fail the record(s) for which the data license error occurs
and continue processing.

Fail the record

Data license error handling

Output
Get Postal Codes Loqate returns the postal codes for a specified city. Each postal code is returned
in a separate record along with the data listed in the following table.

Table 93: Get Postal Codes Loqate Output

Description / Valid ValuesField Name

A postal code in the specified city.PostalCode

Indicates which address coder processed the address.

The Loqate coder processed the address.LOQATE

ProcessedBy

Reports the success or failure of the match attempt.

Successnull

FailureF

Status

623Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesField Name

Reason for failure, if there is one. One of the following:

• InvalidCountry
• UnableToLookup

Status.Code

Description of failure.

• Input country is not supported
• Input city was blank
• Input city & state / province was blank, or no match found

Status.Description

Validate Address
Validate Address standardizes and validates addresses using postal authority address data. It can
correct information and format the address using the format preferred by the applicable postal
authority. It also adds missing postal information, such as postal codes, city names, state/province
names, and more.

Validate Address also returns result indicators about validation attempts, such as whether or not it
validated the address, the level of confidence in the returned address, the reason for failure if the
address could not be validated, and more.

During address matching and standardization, Validate Address separates address lines into
components and compares them to the contents of the Universal Addressing Module databases. If
a match is found, the input address is standardized to the database information. If no database match
is found, it optionally formats the input addresses. The formatting process attempts to structure the
address lines according to the conventions of the appropriate postal authority.

Validate Address is part of the Universal Addressing Module.

The ValidateMailingAddressUSCAN API analyzes and compares the input addresses against the
known address databases for US and CANADA only, to output standardized details along with DPV
and RDI. It also returns parsed address fields and field validation codes. It corrects addresses, adds
missing postal information, and formats the address per rules of the applicable postal authority.

Credit Calculation

0.33 credit is deducted for each address.

HTTP Method

POST

624Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input
Validate Address takes an address as input. All addresses use this format regardless of the address's
country. See Address Line Processing for U.S. Addresses on page 626 for important information
about how address line data is processed for U.S. addresses.

Table 94: Input Format

DescriptionFormatField Name

The first address line.String [50]AddressLine1

The second address line.String [50]AddressLine2

The city name.

For U.S. addresses only, you may put the city, state, and ZIP Code™ in
the City field. If you do this, you must leave the StateProvince and
PostalCode fields blank.

String [50]City

The state or province.

For U.S. addresses only, you may put the state in the City field instead
of the StateProvince field.

String [50]StateProvince

The postal code for the address in one of the following formats:

99999
99999-9999
A9A9A9
A9A 9A9
9999 999

For U.S. addresses only, you may put the ZIP Code™ in the City field.

For U.S. addresses only, if the city/state/ZIP Code™ is in the PostalCode
field, Validate Address may parse the data and successfully process the
address. For best results, put this data in the appropriate fields (City,
StateProvince, and PostalCode).

String [10]PostalCode

625Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The country code or name, in any of the following formats:

• Two-character ISO 3166-1 Alpha 2 country code
• Three-character ISO 3166-1 Alpha 3 country code
• English country name
• French country name
• German country name
• Spanish country name

String [50]Country

The company or firm name.String [50]FirmName

The U.S. address urbanization name. This is used primarily for Puerto
Rico addresses.

String [50]USUrbanName

For Canadian addresses only, indicates whether the address is in English
or French, if the option the Determine language using field on the
CanadianAddressOptions tab is set to CanLanguage input field.

If this field is blank, the address is formatted in English. If the field
contains any non-blank value, the address is formatted in French. Note
that addresses in Quebec are always formatted in French regardless of
the value in this field.

StringCanLanguage

Address Line Processing for U.S. Addresses

The input fields AddressLine1 through AddressLine4 are handled differently for U.S. addresses
depending on whether the firm name extraction or urbanization code extraction options are enabled.
If either of these options is enabled, Validate Address will look at the data in all four fields to validate
the address and extract the requested data (firm name and/or urbanization code). If neither of these
options is enabled, Validate Address uses only the first two non-blank address line fields in its
validation attempt. The data in the other address line fields is returned in the output field
AdditionalInputData. For example,

AddressLine1: A1 Calle A
AddressLine2:
AddressLine3: URB Alamar
AddressLine4: Precisely

In this address, if either firm name extraction or urbanization code extraction were enabled, Validate
Address would examine all four address lines. If neither firm name extraction nor urbanization code
extraction were enabled, Validate Address would examine AddressLine1 and AddressLine3 (the first

626Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

two non-blank address lines) and attempt to validate the address using that data; the data in
AddressLine4 would be returned in the output field AdditionalInputData.

Options

Output Data Options

The following table lists the options that control the type of information returned by Validate Address.
Some of these options can be overridden for Canadian addresses. For more information, see
Canadian Address Options on page 648.

Table 95: Output Data Options

DescriptionOption

Returns 1 to 4 lines of address data plus city, state, postal code, firm
name, and urbanization name information. Each address line represents
an actual line of the address as it would appear on an envelope. For
more information, see Standard Address Output on page 658.

If Validate Address could validate the address, the address lines contain
the standardized address.When addresses are standardized, punctuation
is removed, directionals are abbreviated, street suffixes are abbreviated,
and address elements are corrected.

If Validate Address could not validate the address, the address lines
contain the address as it appeared in the input ("pass through" data).
Non-validated addresses are always included as pass through data in
the address line fields even if you uncheck this option.

Include a standard address

Each part of the address, such as house number, street name, street
suffix, directionals, and so on is returned in a separate field. For more
information, seeParsed Address Elements Output on page 729 . Note
that if you select this option and also select Return normalized data
when no match is found, the address elements will contain the input
address for addresses that could not be validated.

Include matched address elements

Output addresses contain various additional data for each validated
address. For more information, see Postal Data Output on page 663.

Include postal information

627Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

This option returns the input address in parsed form regardless of whether
or not Validate Address is able to validate the address. Each part of the
input address, such as house number, street name, street suffix,
directionals, and so on is returned in a separate field.

Selecting this option differs from selecting the combination of Include
matched address elements/Return normalized data when nomatch
is found in that Return standardized input address elements returns
all input address in parsed form, not just input that could not be validated.
For more information, see Parsed Input on page 732.

Include standardized input address elements

Specifies whether to return a formatted address when an address cannot
be validated. The address is formatted using the preferred address format
for the address's country. If this option is not selected, the output address
fields are blank when the address cannot be validated.

Note: This option applies only to U.S. and Canadian addresses.
Formatted data will not be returned for any other address.

Formatted addresses are returned using the format specified by the
Include a standard address, Include address line elements, and
Include postal information check boxes. Note that if you select Include
address line elements, the parsed address elements will contain the
parsed, validated address for addresses that could be validated. If the
address could not be validated the parsed address elements will contain
the input address in parsed form. If you always want the output to contain
the input address in parsed form, regardless of whether or not Validate
Address could validate the address, select Include standardized input
address elements.

If you check this option, you must select Include a standard address
and/or Include address line elements.

Return normalized data when no match is found

628Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

For U.S. addresses only, specifies how to handle street name aliases
used in the input. A street alias is an alternate name for a street and
applies only to a specific range of addresses on the street.

If you enable this option, street name aliases used in the input will appear
in the output. If you do not enable this option, street name aliases in the
input will be converted to the base street name in the output, with the
following exceptions:

• If a preferred alias is used in input the preferred alias will always be
used in output.

• Changed aliases used in input are always converted to the base street
name in output.

This is one of three options that control how Validate Address handles
street name aliases. The other two are Preferred street name alias
processing and Abbreviated street name alias processing.

Note: If Abbreviated street name alias processing is
enabled, the abbreviated alias will always appear in the output
even if you have Return street name alias disabled.

Return street name alias

Specifies whether to return a formatted version of the address as it would
be printed on a physical mailpiece. Each line of the address is returned
in a separate address block field. There can be up to nine address block
output fields: AddressBlock1 through AddressBlock9.

For example, this input address:

AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
City: Lanham
StateProvince: MD
PostalCode: 20706

Results in this address block output:

AddressBlock1: 4200 PARLIAMENT PL STE 600
AddressBlock2: LANHAM MD 20706-1882
AddressBlock3: UNITED STATES OF AMERICA

Validate Address formats the address into address blocks using postal
authority standards. The country name is returned using the Universal
Postal Union country name. Note that the option Country format does
not affect the country name in the address block, it only affects the name
returned in the Country output field.

For addresses outside the U.S. and Canada, if Validate Address is unable
to validate the address, no address blocks are returned. For addresses
in the U.S. and Canada, address blocks are returned even if validation
fails.

Return address data blocks

629Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Obtaining Congressional Districts

Validate Address can determine the U.S. congressional district for an address.

To obtain congressional districts, select the Include postal information check box on the Output
Data Options tab. This will return a variety of data about the address, including the congressional
district. For information on the specific data that this option will return, see Postal Data Output on
page 663.

Table 96: Congressional District Output

DescriptionField Name

Congressional district number. If the address is a non-state address (for example
Puerto Rico or Washington D.C.) this field is blank.

USCongressionalDistrict

Obtaining County Names

Validate Address can determine the county where a particular address is located and return the
county name.

Note: County names are available for U.S. addresses only.

To obtain county names, select the Include postal information check box on the Output Data
Option tab. This will return a variety of data about the address, including county names. For
information on the specific data that this option will return, see Postal Data Output on page 663.

Table 97: County Name Output

DescriptionField Name

County nameUSCountyName

Obtaining FIPS County Numbers

Federal Information Processing Standards (FIPS) county numbers are numbers that identify each
county in a state. Note that these numbers are only unique at the state level, not the national level.
For more information, see http://www.census.gov.

Note: FIPS county numbers are available for U.S. addresses only.

630Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.census.gov

To obtain FIPS county numbers, select the Include postal information check box on the Output
Data Options tab. This will return a variety of data about the address, including FIPS county numbers.
For information on the specific data that this option will return, see Postal Data Output on page 663.

Table 98: FIPS County Number Output

DescriptionField Name

FIPS (Federal Information Processing Standards) county numberUSFIPSCountyNumber

Obtaining Carrier Route Codes

Carrier route codes are unique identifiers assigned to each mail carrier who delivers mail, allowing
unique identification of each U.S. delivery route. Validate Address can return the code that represents
an addressee's carrier route.

Note: Carrier route codes are available for U.S. addresses only.

To obtain carrier route codes, select the Include postal information check box on the Output Data
Options tab. This will return a variety of data about the address, including carrier route codes. For
information on the specific data that this option will return, see Postal Data Output on page 663.

Table 99: Carrier Route Code Output

DescriptionField Name

Carrier route codeUSCarrierRouteCode

Creating Delivery Point Barcodes

A Delivery Point Barcode (DPBC) is a POSTNET™ barcode representation of the address. It consists
of 62 bars with beginning and ending frame bars and five bars each for the ZIP + 4® Code, a value
calculated based on the street address number, and a correction digit. The DPBC allows automated
sortation of letter mail to the carrier level in walk sequence. Validate Address generates the data you
need to assemble a DPBC.

Note: Delivery Point Barcodes are available for U.S. addresses only. For more information
on Delivery Point Barcodes, see http://www.usps.com.

631Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.usps.com

To generate the data needed to assemble a DPBC, select the Include postal information check
box on the Output Data Options tab. This will return a variety of data about the address, including
data needed to construct DPBCs. For information on the specific data that this option will return, see
Postal Data Output on page 663.

Table 100: Delivery Point Barcode Output

DescriptionField Name

The delivery point portion of the delivery point barcode.PostalBarCode

Check-digit portion of the 11-digit delivery point barcode.USBCCheckDigit

To assemble a DPBC you concatenate the values found in the Validate Address output fields as
follows:

PostalCode.Base + PostalCode.Addon + PostalBarcode + USBCCheckDigit

For example, if you have the following:

• PostalCode.Base = 49423
• PostalCode.Addon = 4506
• PostalBarcode = 29
• USBCCheckDigit = 2

The assembled barcode would be:

494234506292

Default Options

The following table lists the options that control the format and processing of addresses. These are
called "default options" because by default the apply to all addresses. Some of these options can
be overridden for Canadian addresses. For more information, see Canadian Address Options on
page 648.

632Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 101: Default Options

DescriptionOption

Specifies the casing of the output address. One of the following:

Returns the output in mixed case (default). For example:

123 Main St
Mytown FL 12345

Mixed

Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Upper

Casing

Specifies whether to use separators (spaces or hyphens) in ZIP™ Codes
or Canadian postal codes.

For example, a ZIP + 4® Code with the separator would be 20706-1844
and without the separator it would be 207061844. A Canadian postal
code with the separator would be P5E"1S7 and without the separator it
would be P5E1S7.

Note: Spaces are used in Canadian postal codes and hyphens
in U.S. ZIP + 4® Codes.

Insert postal code separation character

Specifies whether or not to return multinational characters, including
diacritical marks such as umlauts or accents. (Not supported for U.S.
addresses).

Output multinational characters

633Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies where to place secondary address information for U.S.
addresses. Secondary address information refers to apartment numbers,
suite numbers, and similar designators. For example, in this address the
secondary address information is "Apt 10E" and the primary address
information is "424 Washington Blvd".

Apt 10E
424 Washington Blvd
Springfield MI 49423

Place both primary and secondary address
information in AddressLine1 (default).

Same line as
address

Place the primary address information in
AddressLine1 and the secondary address
information in AddressLine2.

Separate
address line

Place both primary and secondary address
information in AddressLine1 and place dropped
information from dual addresses in AddressLine2.
A dual address is an address that contains both
street information and POBox/Rural Route/Highway
Contract information. For more information, see
About Dual Address Logic on page 636.

Dual address
separation

Secondary address placement

634Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies how to format city names that have short city name or
non-mailing city name alternatives. Applies to U.S. and Canadian
addresses.

Returns the USPS®-approved abbreviation for the city, if
there is one. The USPS® provides abbreviations for city
names that are 14 characters long or longer. City
abbreviations are 13 characters or less and can be used
when there is limited space on the mailing label. If there
is no short city name for the city, then the full city name
is returned.

Short

Returns the long city name (default).Long

Returns the abbreviated city name only if an abbreviated
city name is used in the input address. If the input address
does not use a short city name, either the long or short
city name could be returned, depending on USPS®

regulations for the particular city. Select this option if you
are performing a CASS™ test.

Standard

Output the non-mailing city name (the vanity name) if the
input city name is a non-mailing city name. For example,
"Hollywood" is a non-mailing city name for "Los Angeles".
If you do not select this option and the input city name is
a non-mailing city name the long version of the mailing
city is returned.

Non-Mailing
(Vanity)

City format

Specifies the format to use for the country name returned in theCountry
output field. For example, if you select English, the country name
"Deutschland" would be returned as "Germany".

Use English country names (default).English Names

Use Spanish country names.Spanish Names

Use French country names.French Names

Use German country names.German Names

Use two-letter ISO abbreviation for the
countries instead of country names.

ISO Codes

Use Universal Postal Union abbreviation for
the countries instead of country names.

UPU Codes

Country format

635Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the default country. You should specify the country where most
of your addresses reside. For example, if most of the addresses you
process are in Canada, specify Canada. Validate Address uses the
country you specify to attempt validation when it cannot determine the
country from the StateProvince, PostalCode, and Country address fields.

Default country

Indicates how to return a match if multiple non-blank address lines are
present or multiple address types are on the same address line. (U.S.
addresses only.)

(Default) USPS® CASS™ regulations determine the
address returned based on the following order of
priority:

Normal Match

1. PO Box
2. Firm
3. Highrise
4. Street
5. Rural Route
6. General Delivery

Return a street match, regardless of the address
line.

Street Match

Return a PO Boxmatch, regardless of the address
line.

PO Box Match

For more information, see About Dual Address Logic on page 636.

Dual address logic

About Dual Address Logic

For U.S. addresses only, the Dual address logic option controls whether Validate Address should
return a street match or a PO Box/Rural Route/Highway Contract match when the address contains
both street and PO Box/Rural Route/Highway Contract information in the same address line.

Note: The Dual address logic option has no effect if the street information is in a different
address line input field than the PO Box/Rural Route/Highway Contract information.

For example, given the following input address:

AddressLine1: 401 N Main St Apt 1 POB 1
City: Kemp
StateProvince: TX
PostalCode: 75143

Validate Address would return one of the following:

636Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• If Dual address logic is set to either Normal Match or PO Box Match:

AddressLine1: PO Box 1
City: Kemp
StateProvince: TX
PostalCode: 75143-0001

• If Dual address logic is set to Street Match:

AddressLine1: 401 N Main St Apt 1
City: Kemp
StateProvince: TX
PostalCode: 75143-4806

The address data that is not used to standardize the address can be returned in one of two places:

• AddressLine2—The address information not used to standardize the address is returned in the
AddressLine2 field if you select Dual address separation in the Secondary address
placement field. For more information, see Default Options on page 632. For example, if you
choose to return a street match for dual addresses,

AddressLine1: 401 N Main St Apt 1
AddressLine2: PO Box 1
City: Kemp
StateProvince: TX
PostalCode: 75143-0001

• AdditionalInputData—If you do not select Dual address separation in the Secondary
address placement field then the address information not used to standardize the address is
returned in theAdditionalInputData field. For more information on this option, seeDefault Options
on page 632. For example, if you choose to return a street match for dual addresses,

AddressLine1: 401 N Main St Apt 1
City: Kemp
StateProvince: TX
PostalCode: 75143-0001
AdditionalInputData: PO Box 1

Address information that is dropped can be retrieved by settingSecondary address placement to
Dual address separation. For more information, see Default Options on page 632 .

Returning Multiple Matches

If Validate Address finds multiple address in the postal database that are possible matches for the
input address, you can have Validate Address return the possible matches. For example, the following
address matches multiple addresses in the U.S. postal database:

637Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

PO BOX 1
New York, NY

Options

To return multiple matches, use the options described in the following table.

Table 102: Multiple Match Option

DescriptionOption Name

Indicates whether or not to return multiple address for those input addresses that
have more than one possible match.

Return multiple addresses

Next to the Return multiple addresses check box, enter a number between 1 and
10 that indicates the maximum number of addresses to return.

The default value is 1.

Note: The difference between unchecking Return multiple addresses
and checking Return multiple addresses and specifying a maximum
number of results of 1 is that a multiple match will return a failure if Return
multiple addresses is unchecked, whereas a multiple match will return
one record if Return multiple addresses is checked and the maximum
number of results is 1.

Maximum results

To identify which output addresses are candidate addresses, you must check Include
result codes for individual fields on theOutput Data tab. When you do this, records
that are candidate addresses will have one or more "M" values in the field-level result
indicators.

Include result codes for individual
fields

Output

When you choose to return multiple matches, the addresses are returned in the address format you
specify. For information on specifying address format, see Output Data Options on page 627. To
identify which records are the candidate addresses, look for multiple "M" values in the field-level
result indicators. For more information, see Field-Level Result Indicators on page 670.

638Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

U.S. Address Options

DescriptionOption Name

Specifies whether to process U.S. addresses. If you enable U.S. address processing
Validate Address will attempt to validate U.S. addresses. If you disable U.S. address
processing, U.S. addresses will fail, meaning they are returned with an "F" in the
Status output field. The output field Status.Code will say "DisabledCoder." If you are
not licensed for U.S. address processing you must disable U.S. address processing
in order for your jobs to complete successfully, regardless of whether or not they
contain U.S. addresses.

Note: You must have a valid license for U.S. address processing to
successfully process U.S. addresses. If you enable U.S. address processing
but are not licensed for this feature, or your license has expired, your entire
job will fail.

Enable U.S. address processing

Specifies which database to use for validating U.S. addresses. Only databases that
have been defined in the US Database Resources panel in the Management Console
are available.

Database

Enhanced Line of Travel (eLOT) processing assigns a Line of Travel sequence code
to your addresses. Note that addresses are not sorted into eLOT sequence but they
are assigned a Line of Travel sequence code that allows you to sort addresses into
eLOT sequence.

To perform eLOT processing you must have the eLOT database installed.

For a listing of the output fields returned by this option, see Enhanced Line of Travel
Output on page 684.

Line of travel

Residential Delivery Indicator (RDI™) processing checks if an address is a residential
address (not a business address). To perform RDI™ processing, you must have the
RDI™ database installed.

If you enable both DPV® and RDI™ processing, RDI™ information is only returned if
the address is a valid delivery point. If DPV® does not validate the address no RDI™
data is returned.

Residential Delivery Indicator
processing

Enhanced Street Matching (ESM) applies additional matching logic to correct
misspelled or complex street names and obtain a match. ESM enables more
addresses to be validated but it reduces performance. You cannot perform ESM
when ASM is enabled.

Enhanced street matching

639Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

All Street Matching (ASM) applies ESM processing as well as additional matching
logic to correct errors in street names and obtain a match. It is effective at matching
streets when the first letter of the street is incorrect. ASM provides the best address
validation but reduces performance.

All street matching

Delivery Point Validation (DPV®) validates that a specific address exists, as opposed
to validating that a specific address is within a range of valid addresses. CMRA
processing checks if an address is for a mailbox rented from a private company,
referred to as a Commercial Mail Receiving Agent (CMRA).

To perform DPV and CMRA processing, you must have the DPV database installed.
The DPV database contains both DPV and CMRA data.

For a listing of the output fields returned by this option, see DPV and CMRA Output
on page 687.

Delivery Point Validation & CMRA

The USPS® Locatable Address Conversion System (LACS) allows you to correct
addresses that have changed as a result of a rural route address converting to
street-style address, a PO Box renumbering, or a street-style address changing.
When enabled, LACSLink processing is attempted for addresses that could not be
validated, or addresses were validated and flagged for LACSLink conversion.

To perform LACSLink processing, you must have the LACSLink database installed.

For a listing of the output fields returned by this option, see LACSLink Output on
page 685

LACS/Link conversion

The Early Warning System (EWS) uses the USPS® EWS File to validate addresses
that are not in the ZIP + 4® database.

To perform EWS processing, you must have the EWS database installed.

If an input address matches an address in the EWS file, the following record-level
result indicators are returned:

• Status="F"
• Status.Code="EWSFailure"
• Status.Description="Address found in EWS table"

Early Warning System

640Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Firm name extraction

641Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether to extract the firm name from AddressLine1 through AddressLine4
and place it in the FirmName output field. This option works in cases where the input
record's FirmName field is blank and there is more than one address line.

To identify firm names in address lines, the address lines are scanned for keywords
and patterns that identify which fields are address lines and which are FirmName
lines. Since this is done based on patterns, fields may be misidentified. The following
tips can help ensure optimal firm extraction:

• If possible, place the primary address elements in AddressLine1, the secondary
elements in AddressLine2, Urbanization in AddressLine3, and firm in AddressLine4.
If the address has no urbanization code, then place the firm name in AddressLine3
and leave AddressLine4 blank. For example,

AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
AddressLine3: Precisely
AddressLine4: <blank>

• When you define just two address lines, AddressLine2 is assigned to the secondary
address most of the time. If you want to increase the chance that AddressLine2
will be treated as a firm name, put the firm name in AddressLine3 and leave
AddressLine2 blank.

• Numbers in a firm name (such as the "1" in "1 Stop Software") will increase the
likelihood that the field will be treated as an address line.

Here are some examples of firm name extraction:

• In this example, AddressLine2 would get extracted into the FirmName output field

FirmName: <blank>
AddressLine1: 4200 Parliament Place Suite 600
AddressLine2: International Goose Feathers inc.

• In this example, AddressLine3 would get extracted into the FirmName output field.

FirmName: <blank>
AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
AddressLine3: Precisely

• In this example, AddressLine3 would be placed in the AdditionalInputData output
field. The firm name would not be extracted because the FirmName input field is
not blank.

FirmName: International Goose Feathers Inc.
AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
AddressLine3: Precisely

• In this example, no firm name would be extracted because there is only one
non-blank address line, which is always treated as the primary address element.

FirmName: <blank>
AddressLine1: 4200 Parliament Place Suite 600

642Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

In this example, AddressLine2 would be treated as a secondary address element
because the numeral "1" causes that field to be treated as a secondary address
element.

FirmName: <blank>
AddressLine1: 4200 Parliament Place Suite 600
AddressLine2: 1 Stop Software

•

Specifies whether to extract the urbanization name from AddressLine1 through
AddressLine4 and place it in the USUrbanName output field. This option works in
cases where the input record's USUrbanName field is blank and there is more than
one address line.

To identify urbanization names, the address lines are scanned for keywords and
patterns that identify which fields are address lines and which are urbanization name
lines. Since this is done based on patterns, it is possible for fields to be incorrectly
identified. To help ensure optimal urbanization extraction, place the primary address
elements in AddressLine1, the secondary elements in AddressLine2, Urbanization
in AddressLine3, and firm in AddressLine4, if possible. For example,

AddressLine1: A1 Calle A
AddressLine2:
AddressLine3: URB Alamar
AddressLine4: Precisely

U.S. urbanization name extraction

Specifies whether to perform SuiteLink™ processing.

SuiteLink corrects secondary address information for U.S. business addresses whose
secondary address information could not be validated. If SuiteLink processing is
enabled, the firm name is matched to a database of known firm names and their
secondary address information.

For example,

Firm Name: Precisely
Address Line 1: 4200 Parliament Place
Address Line 2: STE 1
Postal Code: 20706

In this case, SuiteLink processing would provide the correct suite number:

Firm Name: Precisely
Address Line 1: 4200 Parliament Pl
Address Line 2: STE 500
Postal Code: 20706-1844

To perform SuiteLink™ processing, you must have the SuiteLink™ database installed.

For a listing of fields returned by this option, see SuiteLink Output on page 689.

Suite/Link support

643Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether to use a street's preferred alias in the output.

Street name aliases in the United States are alternative names given to sections of
a street. There are four types of street name aliases:

• Preferred—A preferred alias is the street name preferred locally. It typically applies
only to a specific range of addresses on the street.

• Abbreviated—An abbreviated alias is a variation of the street name that can be
used in cases where the length of AddressLine1 is longer than 31 characters. For
example, the street name 1234 BERKSHIRE VALLEY RD APT 312A could be
abbreviated to 1234 BERKSHIRE VLLY RD APT 312A.

• Changed—There has been an official street name change and the alias reflects
the new name. For example if SHINGLE BROOK RD is changed to CANNING
DR, then CANNING DR would be a changed alias type.

• Other—The street alias is made up of other names for the street or common
abbreviations of the street.

The non-alias version of the street name is called the base street name.

If the preferred alias is used in the input then the preferred alias will be the street
name in the output regardless of whether you enable this option.

This is one of three options that control how Validate Address handles street name
aliases. The other two are Return street name alias and Abbreviated street name
alias processing.

In most cases, if you select both Preferred street name alias processing and
Abbreviated street name alias processing, and Validate Address finds both a
preferred and an abbreviated alias in the postal database, the abbreviated alias will
be used in the output. The exception to this rule is if the input street name is a
preferred alias. In this case, the preferred alias will be used in the output.

Note: If the input address contains a street name alias of type "changed"
the output address will always contain the base street name regardless of
the options you specify.

Preferred alias street name
processing

Specifies whether to use a street's abbreviated alias in the output if the output address
line is longer than 31 characters.

This is one of three options that control how Validate Address handles street name
aliases. The other two are Return street name alias and Preferred street name
alias processing.

Note: If a preferred alias is specified in the input, the output street name
will always be the preferred alias, even if you enable abbreviated street
name alias processing.

Note: If the input address contains a street name alias of type "changed"
the output address will always contain the base street name regardless of
the options you specify.

Abbreviated alias street name
processing

644Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Determines the "no stat" status of an address. An address is considered "no stat" if
it exists but cannot receive mail, and therefore is not counted as a delivery statistic
on a carrier's route (hence the term "no stat"). Examples include buildings under
construction or those that the letter carrier has identified as not likely to receive mail.

Note: You must enable DPV processing to use this option.

The result is returned in the DPVNoStat field. For more information see LACSLink
Output on page 685

Determine if delivery point is active

Determines if the location has been unoccupied for at least 90 days.

Note: You must enable DPV processing to use this option.

The result is returned in the DPVVacant field. For more information see LACSLink
Output on page 685

Determine if address is vacant

Specifies whether to supress addresses with Carrier Route R777. These addresses
are phantom routes and are not eligible for street delivery. Since these addresses
are assigned a ZIP + 4® code by the USPS®, Validate Address marks these addresses
as deliverable. Select this option if you do not want addresses with Carrier Route
R777 marked as deliverable. This will cause the following actions:

• No ZIP + 4 code is assigned
• Address is not counted on the USPS Form 3553 (CASS Summary Report)
• DPV Footnote of R7 is returned

Suppress zip+4 carrier route R777

Specifies the algorithm to use when determining if an input address matches an
address in the postal database. One of the following:

The input street name must match the database exactly.Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium" (default).Medium

The matching algorithm is "loose."Loose

Street matching

645Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies the algorithm to use when determining if an input address matches an
address in the postal database. One of the following:

The input firm name must match the database exactly.Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium" (default).Medium

The matching algorithm is "loose."Loose

Firm matching

Specifies the algorithm to use when determining if an input address matches an
address in the postal database. One of the following:

The input directionals, such as the "N" in 123 N Main St.,
must match the database exactly.

Exact

The matching algorithm is "tight."Tight

The matching algorithm is "medium". Default.Medium

The matching algorithm is "loose."Loose

Directional matching

Select the match condition where a DPV result does NOT cause a record to fail.

Note: You must enable DPV processing to use this option.

DPV Success Condition

Treat Commercial Mail Receiving Agency (CMRA) matches as failures?

Note: You must enable DPV processing to use this option.

Fail on CMRA match

Specifies where Private Mailbox (PMB) information is placed.

Do not include the PMB information in Standard Address
output (default).

No AddressLine

Place the PMB information in AddressLine1.If you choose
AddressLine1, you must set the Address Format field to
either Combined Unit or Separate Dual Address.

AddressLine1

Place the PMB information in AddressLine2. You may not
select this option if Generate 3553 Form is checked.

AddressLine2

Place PMB elements in

646Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether the preferred last line city name should be stored.

Store the Preferred Last Line City Name from the USPS ZIP+4
File (Override City Name).

ZIP+4 Last
Line

Note: If you select this option, Validate Address
generates a CASS-certified configuration and the USPS
3553 Report.

Store the USPS-preferred City Name from USPS City/State File.USPS
City/State Note: If you select this option, Validate Address does

not generate a CASS-certified configuration and does
not generate the USPS 3553 Report.

Store the Primary City Name from the USPS City/State File.Primary

Note: If you select this option, Validate Address does
not generate a CASS-certified configuration and does
not generate the USPS 3553 Report.

Preferred City

CASS Certified Processing

Validate Address can operate in a CASS Certified™ mode when a specific combination of options
are enabled. CASS Certified™ processing enables you to qualify for USPS® postal discounts.

When you use CASS Certified™ processing, Validate Address generates USPS CASS Form 3553.
This form must be given to the USPS along with the mailing to qualify for certain discounts. The form
contains information about the software you used for CASS processing, information about your
name-and-address list, information about your output file, information about the mailer, and other
statistics about your mailing. For detailed information about USPS Form 3553, see www.usps.com
.

CASS Certified™ processing also generates the USPS CASS Detailed Report, which contains some
of the same information as the 3553 report but provides much greater detail about DPV, LACS, and
SuiteLink statistics. The USPS CASS Detailed Report is not required for postal discounts and does
not need to be submitted with your mailing.

Note: USPS CASS Form 3553 and the USPS CASS Detailed Report are available for batch
processing only.

To run Validate Address in CASS Certified™ mode, follow these steps:

1. Validate Address must be in CASS Certified™ mode. If (Not CASS Certified) appears at the
top of the window, click the Enable CASS button. The Enforce CASS rules check box will
appear.

647Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.usps.com

2. Click Configure CASS 3553. The CASS Report Fields dialog box appears.
3. Type the List Processor company name, List Name or ID#, and the Number of Lists being

processed for this job.
4. Type the Mailer Name, Address, and City, State, ZIP.
5. Click OK.

The List information will appear in Section B and the Mailer information in Section D of the
generated USPS® CASS Form 3553.

6. In Enterprise Designer, drag CASS3553 from the Reports pallet to the canvas.
7. Double-click the CASS3553 icon on the canvas.
8. On the Stages tab, check the Validate Address check box. Note that if you have renamed the

Validate Address stage to something else, you should check the box with the name you have
given the address validation stage.

9. On the Parameters tab, select the format for the report. You can create the report in PDF, HTML,
or plain text format.

10. Click OK.
11. Repeat steps 6-10 for CASSDetail if you want to produce the CASS Detail Report.

Note: You do not need to draw a connector between the Validate Address stage and the
reports.

Canadian Address Options

DescriptionOption Name

Specifies whether to process Canadian addresses. If you
enable Canadian address processing Validate Address will
attempt to validate Canadian addresses. If you disable
Canadian address processing, Canadian addresses will fail,
meaning they is returned with an "F" in the Status output
field. The output field Status.Code will say "DisabledCoder."
If you are not licensed for Canadian address processing you
must disable Canadian address processing in order for your
jobs to complete successfully, regardless of whether or not
they contain Canadian addresses.

Note: You must have a valid license for Canadian
address processing to successfully process
Canadian addresses. If you enable Canadian
address processing but are not licensed for this
feature, or your license has expired, your entire job
will fail.

Enable Canadian address processing

648Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies which database you want to use for validating
Canadian addresses. To specify a database for Canadian
address validation, select a database in the Database
drop-down list. Only databases that have been defined in
the CAN Database Resources panel in the Management
Console are available.

Database

Specifies how to determine the language (English or French)
to use to format the address and directional. The following
example shows an address formatted in English and French:

English: 123 Main St W
French: 123 Rue Main O

The parameter controls the formatting of the address. It also
affects the spelling of the directional but not spelling of the
suffix.

Use the street suffix returned by the
matching process to determine the
language. The street suffix returned by the
matching process, which is used internally
by Validate Address during processing, may
be different from that in the input address.
Ambiguous records are formatted like the
input. Default. All addresses in Quebec are
formatted using French.

Street suffix

Use the Canadian database to determine
the language. The Canadian database
contains data from the Canada Post
Corporation (CPC). All addresses in
Quebec are formatted using French.

CPC
database

Use the CanLanguage input field to
determine the language. If there is a
non-blank value in this field the address are
formatted using French.

CanLanguage
field

Determine language using

649Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

For English addresses, specifies the default apartment label
to use in the output if there is no apartment label in the input
address. This setting is ignored if you select Number in
front in the Secondary address format field.

Use "Apt" as the label. Default.Apt

Use "Apartment" as the label.Apartment

Use "Suite" as the label.Suite

Use "Unit" as the label.Unit

Default English apt label

For French addresses, specifies the default apartment label
to use in the output if there is no apartment label in the input
address. This setting is ignored if you select Number in
front in the Secondary address format field.

Use "App" as the label. Default.App

Use "Appartement" as the label.Appartement

Use "Bureau" as the label.Bureau

Use "Suite" as the label.Suite

Use "Unite" as the label.Unite

Default French apt label

In cases where the house number and postal code are both
valid but in conflict, you can force the postal code to be
corrected based on the house number by selecting Prefer
house number on postal code conflict. If you do not select
this option the house number is changed to match the postal
code.

Prefer house number on postal code conflict

Specifies whether or not to return the city alias when the
alias is in the input address. This option is disabled when
you select Use default option in the City format field.

Return city alias

Specifies whether or not non-civic keywords are abbreviated
in the output. For example, Post Office Box vs. PO Box.

Abbreviate non-civic keywords

650Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies where to place secondary address information in
the output address. Secondary address information refers
to apartment numbers, suite numbers, and similar
designators.

Place apartment information in the
location specified in theSecondary
address format field in the Default
Options tab Default.

Use default
option

Place apartment information at the at
the end of the AddressLine1 field.

End of address
line

Place the apartment number only (no
label) at the beginning of the
AddressLine1 field. For example,
400-123 Rue Main

Front, number
only

Place the apartment number and label
at the beginning of the AddressLine1
field. For example, Apt 400 123 Rue
Main

Front, number
and label

Place apartment information in the same
location as the input address.

Same as input

Secondary address format

Specifies whether to use the long, medium, or short version
of the city if the city has a long name. For example,

Long: BUFFALO HEAD PRAIRIE
Medium: BUFFALO-HEAD-PR
Short: BUFFALO-HD-PR

Use the default option specified on the
Default Options tab, City format field.
Default. If you select Non-mailing
(vanity) in theCity format field, the city
is formatted as if you select Long for this
option (see below) and check the Return
city alias box.

Use default
option

Output short city name.Short

Output the long city name.Long

Output the medium city name.Medium

Use the same city format as used in the
input address. Output is L, M, or S.

Same as
input

City format

651Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies where to place rural route delivery information. An
example of an address with rural route delivery information
is:

36 GRANT RD RR 3
ANTIGONISH NS

In this address, "RR 3" is the rural route delivery information.

Place rural route delivery information on
the same line as the address, after the
address information. Default. For example,

36 GRANT RD RR 3

AddressLine1

Place rural route delivery information on a
separate address line. For example,

36 GRANT RD
RR 3

AddressLine2

Place rural route into in

Specifies where to place station information. An example of
an address with station information is:

PO BOX 8625 STN A
ST. JOHN'S NL

Place station information in the same
location as it is in the input address.
Default.

Same as input

Place station information on the same line
as the address, after the address
information. For example,

PO BOX 8625 STN A

AddressLine1

Place station information on a separate
address line. For example,

PO BOX 8625
STN A

AddressLine2

Place delivery office info in

652Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether Validate Address should return a street
match or a PO Box/non-civic match when the address
contains both civic and non-civic information. One of the
following:

Use DualAddressLogic Global
Option. Default.

Use default option

Match to PO Box or other
non-street data.

PO Box Match

Match to street.Street Match

For example, given the following input address:

AddressLine1: 36 GRANT RD
AddressLine2: RR 4
City: ANTIGONISH
StateProvince: NS

Validate Address would return one of the following:

• If Dual address logic is set to Street Match, Validate
Address returns the following:

AddressLine1: 36 GRANT RD
AddressLine2: RR 3
City: ANTIGONISH
StateProvince: NS
PostalCode: B2G 2L1

• If Dual address logic is set to PO Box Match, Validate
Address returns the following:

AddressLine1: RR 4
City: ANTIGONISH
StateProvince: NS
PostalCode: B2G 2L2

The address data that is not used to standardize the address
is returned in the AdditionalInputData field. For more
information, see Output Data Options on page 627.

Dual address logic

SERP Processing

Validate Address allows for Software and Evaluation Recognition Processing (SERP). SERP
processing enables you to qualify for Canada Post® postal discounts. Validate Address returns
PoCAD data, which improves accuracy for house number and apartment data.

Note: You can return PoCAD data in batch mode only. If you try to return PoCAD data in real
time, Validate Address will return with an error.

653Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

When you use SERP Certified™ processing, Validate Address generates a Canada Post SERP
Statement of Accuracy. This form must be given to Canada Post along with the mailing to qualify for
certain discounts. The form contains information about the software you used for SERP processing,
information about your name-and-address list, information about your output file, information about
the mailer, and other statistics about your mailing. For detailed information about Canada Post
Address Accuracy Statement, see
http://www.canadapost.ca/cpo/mc/business/productsservices/atoz/addressaccuracy.jsf.

To run Validate Address in SERP Certified™ mode, follow these steps:

1. Validate Address must be in SERP Certified™ mode. If (Not SERP Certified) appears at the
top of the window, click the Enable SERP settings button. TheConfigure SERP box will appear.

2. Click Configure SERP. The SERP Report Fields dialog box appears.
3. Type your merchant CPC number.
4. Type the mailer Name, Address, and City, State, ZIP.
5. Click OK.
6. In Enterprise Designer, drag SERPReport from the Reports pallet to the canvas.

Note: You do not need to draw a connector between the Validate Address stage and the
CASS3553 report.

7. Double-click the SERPReport icon on the canvas.
8. On the Stages tab, ensure that the Validate Address check box is checked. Note that if you

have renamed the Validate Address stage to something else, you should check the box with the
name you have given the address validation stage.

9. On the Parameters tab, select the format for the report. You can create the report in PDF, HTML,
or plain text format. PDF format is the default.

10. Click OK.

Obtaining SERP Return Codes

SERP return codes indicate the quality of the input address as determined by the Canada Post's
Software Evaluation and Recognition Program regulations.

To obtain SERP return codes, on theOutput Data tab, select the Include postal information check
box. This will return a variety of data about the address, including the SERP return codes. For
information on the specific data that this option will return, see Postal Data Output on page 663.

SERP return codes are provided in the following output field.

654Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.canadapost.ca/cpo/mc/business/productsservices/atoz/addressaccuracy.jsf

Table 103: SERP Return Code Output

DescriptionField Name

Validation/correction return code (Canadian addresses only):

The input was valid. Canada Post defines a "valid" address as an address
that meets all the following requirements:

V

Note: There are exceptions. For further information, contact the
CPC.

• The address must contain all required components as found in CPC's Postal
Code Data Files.

• The address must provide an exact match on all components for only one
address in CPC's Postal Code Data Files, allowing for acceptable alternate
words and names listed in the CPC Postal Code Data Files.

• Address components must be in a form that allows recognition without
ambiguity. Certain components may require "qualifiers" to identify them.
For instance, a Route Service address requires the key words "Rural Route"
or "RR" for differentiation from a "Suburban Service" or "SS" address with
the same number.

The input was invalid. An "invalid" address is one that does not meet CPC
requirements for a valid address (see above). Examples of this include address
components that are missing, invalid, or inconsistent.

I

The input was correctable. A "correctable" address is one that can be corrected
to match one, and only one, address.

C

The input was non-correctable. A "non-correctable" address is one that could
be corrected a number of different ways such that Validate Address cannot
identify a single correct version.

N

The input address was foreign (outside of Canada).F

CanadianSERPCode

International Address Options

Addresses outside of the U.S. and Canada are referred to as "international" addresses. The following
options control international address processing:

655Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies whether to process international addresses
(addresses outside the U.S. and Canada). If you enable
international address processing Validate Address will
attempt to validate international addresses. If you disable
international address processing, international addresses
will fail, meaning they is returned with an "F" in the Status
output field. The output field Status.Code will say
"DisabledCoder." If you are not licensed for international
address processing you must disable international address
processing in order for your jobs to complete successfully,
regardless of whether or not they contain international
addresses.

Note: You must have a valid license for
international address processing to successfully
process international addresses. If you enable
international address processing but are not
licensed for this feature, or your license has expired,
your entire job will fail.

Enable international address processing

Specifies which database you want to use for validating
international addresses. To specify a database for
international address validation, select a database in the
Database drop-down list. Only databases that have been
defined in the INTL Database Resources panel in the
Management Console are available.

Database

656Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

By default, Validate Address provides a balance of good
address matching accuracy with good performance. If you
are willing to tradematching accuracy for faster performance,
use the International city and street searching field to
increase processing speed. When you do this, some
accuracy is lost. This option only controls performance for
addresses outside the U.S. and Canada. This setting affects
a small percentage of records, mostly addresses in the U.K.
There is no performance control for U.S. and Canadian
address processing.

If you use Get Candidate Addresses, the candidate
addresses returned by Get Candidate Addresses may differ
from the multiple matches returned by Validate Address if
you set the performance tuning option for international
addresses to any value other than 100.

To control performance for addresses outside the U.S. and
Canada, use the International city and street searching
slider. To increase matching accuracy, move the slider to
the right. A value of 100 results in the greatest accuracy. To
increase processing speed, move the slider to the left. A
value of 0 results in the greatest processing speed.

International city and street searching

This option enables Validate Address to search the
AddressLine input fields for the city, state/province, postal
code, and country when the address cannot be matched
using the values in the City, StateProvince, and PostalCode
input fields.

Consider enabling this option if your input addresses have
the city, state/province, and postal code information in the
AddressLine fields.

Consider disabling this option if your input addresses use
the City, State/Province and PostalCode fields. If you enable
this option and these fields are used, there is an increased
possibility that Validate Address will fail to correct values in
these fields (for example a misspelled city name).

Search address lines on fail

Output
The output from Validate Address contains different information depending on the output categories
you select.

657Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Standard Address Output

Standard address output consists of four lines of the address which correspond to how the address
would appear on an address label. City, state/province, postal code, and other data is also included
in standard address output. Standard address output is returned for validated addresses if you select
the Include a standard address check box. Standard address fields are always returned for
addresses that could not be validated. For non-validated addresses, the standard address output
fields contain the address as it appeared in the input ("pass through" data). If you want addresses
to be standardized according to postal authority standards when validation fails, select the Include
normalized data when no match is found check box.

Table 104: Standard Address Output

DescriptionField Name

Input data not used by the address validation process. For more information, see
About Additional Input Data.

AdditionalInputData

If the address was validated, the first line of the validated and standardized address.
If the address could not be validated, the first line of the input address without any
changes.

AddressLine1

If the address was validated, the second line of the validated and standardized
address. If the address could not be validated, the second line of the input address
without any changes.

AddressLine2

The validated city name.City

The country in the format determined by what you selected in Country format:

• ISO Code
• UPU Code
• English
• French
• German
• Spanish

Country

The validated firm or company name.FirmName

658Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The validated ZIP Code™ or postal code.PostalCode

The 4-digit add-on part of the ZIP Code™. For example, in the ZIP Code™ 60655-1844,
1844 is the 4-digit add-on. (U.S. addresses only.)

PostalCode.AddOn

The 5-digit ZIP Code™; for example 20706 (U.S. addresses only).PostalCode.Base

The validated state/province or its abbreviated value.StateProvince

The validated urbanization name. (U.S. addresses only.) This is used primarily for
Puerto Rico addresses.

USUrbanName

This field is generated only for Canadian addresses.

A value of Y indicates that the record is non-correctable (VN) type. In such cases,
you have the option of lowering the output Confidence score for the record. To do
this, select the Switch default valid postal code confidence check-box in the Input
Options. For more information, see section Canadian Address Options on page
648.

Note: For all other records, the field value is blank.

DefaultValidPostalCode

Parsed Address Elements Output

Output addresses are formatted in the parsed address format if you select the Include matched
address elements check box. If you want Validate Address to return formatted data in the Parsed
Address format when validation fails (that is, a normalized address), select the Return normalized
data when no match is found check box.

Note: If you always want return parsed input data returned regardless of whether or not
validation is successful, select Include standardized input address elements. For more
information, see Parsed Input on page 732.

659Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 105: Parsed Address Output

DescriptionField Name

Input data not used by Validate Address. For more
information, see Additional Input Data on page 690.

AdditionalInputData

Input data that was not output to the standardized address
by Validate Address. For more information, see Additional
Input Data on page 690.

AdditionalInputData.Base

Input data passed to the matcher but not used by Validate
Address for validation. For more information, seeAdditional
Input Data on page 690.

AdditionalInputData.Unmatched

Apartment designator (such as STE or APT), for example:
123 E Main St APT 3

ApartmentLabel

Secondary apartment designator, for example: 123 E Main
St APT 3, 4th Floor

Note: In this release, this field will always be blank.

ApartmentLabel2

Apartment number. For example: 123 E Main St APT 3ApartmentNumber

Secondary apartment number. For example: 123 E Main St
APT 3, 4th Floor

Note: In this release, this field will always be blank.

ApartmentNumber2

Delivery installation name (Canadian addresses only)CanadianDeliveryInstallationAreaName

Delivery installation qualifier (Canadian addresses only)CanadianDeliveryInstallationQualifierName

Delivery installation type (Canadian addresses only)CanadianDeliveryInstallationType

660Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

House number, for example: 123 E Main St Apt 3HouseNumber

Leading directional, for example: 123 E Main St Apt 3LeadingDirectional

Post office box number. If the address is a rural route
address, the rural route box number will appear here.

POBox

Private mailbox indicator.PrivateMailbox

The type of private mailbox. Possible values include:

• Standard
• Non-Standard

Note: This replaces PrivateMailboxType (no period
in field name). Please modify your API calls
accordingly.

PrivateMailbox.Type

Rural Route/Highway Contract indicatorRRHC

Street name, for example: 123 E Main St Apt 3StreetName

Street suffix, for example: 123 E Main St Apt 3StreetSuffix

Trailing directional, for example: 123 Pennsylvania Ave NWTrailingDirectional

Parsed Input

The output can include the input address in parsed form. This type of output is referred to as "parsed
input." Parsed input fields contain the address data that was used as input regardless of whether or
not Validate Address validated the address. Parsed input is different from the "parsed address
elements" output in that parsed address elements contain the validated address if the address could
be validated, and, optionally, the input address if the address could not be validated. Parsed input
always contains the input address regardless of whether or not Validate Address validated the
address.

661Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

To include parsed input fields in the output, select the Return parsed input data check box.

Table 106: Parsed Input

DescriptionField Name

Apartment designator (such as STE or APT), for example:
123 E Main St APT 3

ApartmentLabel.Input

Apartment number, for example: 123 E Main St APT 3ApartmentNumber.Input

Delivery installation name (Canadian addresses only)CanadianDeliveryInstallationAreaName.Input

Delivery installation qualifier (Canadian addresses only)CanadianDeliveryInstallationQualifierName.Input

Delivery installation type (Canadian addresses only)CanadianDeliveryInstallationType.Input

Validated city nameCity.Input

Country. Format is determined by what you selected in
Country format:

• ISO Code
• UPU Code
• English
• French
• German
• Spanish

Country.Input

The validated firm or company nameFirmName.Input

House number, for example: 123 E Main St Apt 3HouseNumber.Input

Leading directional, for example: 123 E Main St Apt 3LeadingDirectional.Input

662Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Post office box number. If the address is a rural route
address, the rural route box number will appear here.

POBox.Input

Validated postal code. For U.S. addresses, this is the ZIP
Code.

PostalCode.Input

Private mailbox indicatorPrivateMailbox.Input

The type of private mailbox. Possible values include:

• Standard
• Non-Standard

PrivateMailbox.Type.Input

Rural Route/Highway Contract indicatorRRHC.Input

Validated state or province nameStateProvince.Input

Street name, for example: 123 E Main St Apt 3StreetName.Input

Street suffix, for example: 123 E Main St Apt 3StreetSuffix.Input

Trailing directional, for example: 123 Pennsylvania Ave NWTrailingDirectional.Input

USPS® urbanization nameUSUrbanName.Input

Postal Data Output

If you select Include postal information then the following fields are returned in the output.

663Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 107: Postal Data Output

DescriptionField Name

For addresses in France only, a numeric code that represents the street. For
information about Hexavia codes, see www.laposte.fr.

IntHexaviaCode

For addresses in France only, a numeric code that represents the city. For a listing
of INSEE codes, see www.insee.fr.

IntINSEECode

The two-digit delivery point portion of the delivery point barcode (U.S. addresses
only). For more information, see Creating Delivery Point Barcodes on page 631.

PostalBarCode

Indicates whether or not alternate address matching logic was used, and if so which
logic was used (U.S. addresses only). One of the following:

No alternate address scheme used.null

Delivery point alternate logic was used.D

Enhanced highrise alternate match logic was used.E

Small town default logic was used.S

Unique ZIP Code logic was used.U

USAltAddr

Check-digit portion of the 11-digit delivery point barcode (U.S. addresses only). For
more information, see Creating Delivery Point Barcodes on page 631.

USBCCheckDigit

Carrier route code (U.S. addresses only). For more information, seeObtaining Carrier
Route Codes on page 631.

USCarrierRouteCode

Congressional district (U.S. addresses only). For more information, see Obtaining
Congressional Districts on page 630.

USCongressionalDistrict

County name (U.S. addresses only). For more information, see Obtaining County
Names on page 630.

USCountyName

664Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.laposte.fr/
http://www.insee.fr

DescriptionField Name

The finance number in which the address resides (U.S. addresses only). The finance
number is a number assigned by the USPS to an area that covers multiple ZIP Codes.
An address is validated only if its finance number matches the finance number of the
candidate address in the U.S. Database.

USFinanceNumber

FIPS (Federal Information Processing Standards) county number (U.S. addresses
only). For more information, see Obtaining FIPS County Numbers on page 630.

USFIPSCountyNumber

Indicates whether or not the address is a candidate for LACSLink conversion (U.S.
addresses only). One of the following:

Yes, the address is a candidate for LACSLink processing. If LACSLink is enabled,
an attempt is made to convert the address using the LACSLink database. If the
conversion attempt is successful, the output address is the new address
obtained from the LACSLink database. If the attempt is not successful, the
address will not be converted.

Y

No, the address is not a candidate for LACSLink processing. LACSLink processing
may still be attempted if LACSLink processing is requested, the LACSLink

database is installed, and one of the following is true:

N

• The address matches to a Rural Route address and the RecordType.Default
field returns a Y.

• The input address could not be matched to any address in the U.S. Postal
Database (Failures due to multiple matches are not LACSLink candidates.)

USLACS

A six-character alphanumeric value that groups together ZIP Codes that share the
same primary city. For example, addresses with the following two last lines would
have the same last line number:

Chantilly VA 20151

Chantilly VA 20152

USLastLineNumber

Result Indicators

Result indicators provide information about the kinds of processing performed on an address. There
are two types of result indicators:

Record-Level Result Indicators

Record-level result indicators provide data about the results of Validate Address processing for each
record, such as the success or failure of the match attempt, which coder processed the address,

665Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

and other details. The following table lists the record-level result indicators returned by Validate
Address.

Table 108: Record Level Indicators

DescriptionField Name

The type of address data being returned:

French format (for example: 123 Rue Main)F

English format (for example: 123 Main St)E

AddressFormat

The level of confidence assigned to the address being returned. Range is from zero (0) to
100; zero indicates failure, 100 indicates a very high level of confidence that the match
results are correct. For multiple matches, the confidence level is 0. For details about how
this number is calculated, see Introduction to the Validate Address Confidence
Algorithm.

Confidence

If no match was found, which address component could not be validated:

• ApartmentNumber
• HouseNumber
• StreetName
• PostalCode
• City
• Directional
• StreetSuffix
• Firm
• POBoxNumber
• RuralRoute

Note: More than one component may be returned, in a comma-separated list.

CouldNotValidate

666Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The category of address matching available. This is always "A" for U.S. and Canadian
addresses. One of the following:

The address is in a country for which there is highly detailed postal data available.
Addresses in this match level can have the following address elements validated
and corrected, and added if missing from the input:

A

• Postal code
• City name
• State/county name
• Street address elements
• Country name

The address is in a country for which there is a medium level of postal data available.
Addresses in this match level can have the following address elements validated
and corrected, and added if missing from the input:

B

• Postal code
• City name
• State/county name
• Country name

The address is in a country for which the postal data is least detailed. Addresses
in this match level can have the following actions performed on them:

C

• Validate and correct country name (cannot supply missing country name)
• Validate the format of the postal code (cannot supply missing postal code or
validate the code)

CountryLevel

667Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

MatchScore provides an indication of the degree to which the output address is correct. It
is significantly different from Confidence in that Confidence is indicates howmuch the input
address changed to obtain a match, whereas the meaning of Match Score varies between
U.S. and non-U.S. addresses.

For U.S. addresses, MatchScore is a one-digit score on a scale of 0 to 9 that reflects the
closeness of the street-name match (after transformations by Validate Address, if any).
Zero indicates an exact match and 9 indicates the least likely match. If no match was found,
this field is blank.

For non-U.S. and non-Canadian addresses, MatchScore is a five-digit score, with a
maximum value of 00999. Higher numbers indicates a closer match.

This field does not apply to Canadian addresses.

Note that you cannot equate match scores from U.S. addresses with those of non-U.S.
addresses. For example, a match score of 4 for a U.S address does not indicate the same
level of match as a 00004 for a non-U.S. address.

Note: The Validate Address and Advanced Matching Module components both
use the MatchScore field. The MatchScore field value in the output of a dataflow
is determined by the last stage to modify the value before it is sent to an output
stage. If you have a dataflow that contains Validate Address and Advanced
Matching Module components and you want to see the MatchScore field output
for each stage, use a Transformer stage to copy the MatchScore value to another
field. For example, Validate Address produces an output field called MatchScore
and then a Transformer stage copies the MatchScore field from Validate Address
to a field called AddressMatchScore. When the matcher stage runs it populates
the MatchScore field with the value from the matcher and passes through the
AddressMatchScore value from Validate Address.

MatchScore

If multiple matches were found, indicates the number of records that are possible matches.MultimatchCount

Indicates which address component had multiple matches, if multiple matches were found:

• Firm
• LeadingDirectional
• PostalCode
• StreetName
• StreetSuffix
• TrailingDirectional
• Urbanization

Note: More than one component may be returned, in a comma-separated list.

MultipleMatches

668Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Indicates the accuracy of a match on the scale of 0 to 9. The result can be:

• Blank - No Match Found
• 0 - Most likely to be correct (Exact Match)
• 1- 8 - Intermediate probability of being correct
• 9 - Match least likely to be correct

ProbableCorrectness

Which address coder processed the address:

U.S. address coderUSA

Canadian address coderCAN

International address coderINT

ProcessedBy

Type of address record, as defined by U.S. and Canadian postal authorities (supported for
U.S. and Canadian addresses only):

• FirmRecord
• GeneralDelivery
• HighRise
• PostOfficeBox
• RRHighwayContract
• Normal

RecordType

Code indicating the "default" match:

The address matches a default record.Y

The address does not match a default record.null

RecordType.Default

Reports the success or failure of the match attempt. For multiple matches, this field is "F"
for all the possible matches.

Successnull

FailureF

Status

669Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Reason for failure, if there is one. For multiple matches, all possible matches is
"MultipleMatchesFound."

• DisabledCoder
• InsufficientInputData
• MultipleMatchesFound
• UnableToValidate

Status.Code

Description of the problem, if there is one.

This value will appear if
Status.Code=MultipleMatchesFound.

Possible Multiple Addresses Found

This value will appear if
Status.Code=UnableToValidate.

Address Not Found

This value will appear if
Status.Code=DisabledCoder.

PerformUSProcessing disabled

This value will appear if
Status.Code=DisabledCoder.

PerformCanadianProcessing
disabled

This value will appear if
Status.Code=DisabledCoder.

PerformInternationalProcessing
disabled

Status.Description

Field-Level Result Indicators

Field-level result indicators describe how Validate Address handled each address element. Field-level
result indicators are returned in the qualifier "Result". For example, the field-level result indicator for
HouseNumber is contained in HouseNumber.Result.

To enable field-level result indicators, check the Include result codes for individual fields check
box. For more information, see Output Data Options on page 627.

The following table lists the field-level result indicators. If a particular field does not apply to an
address, the result indicator may be blank.

670Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 109: Field-Level Result Indicators

DescriptionField Name

These result codes apply to international addresses only.

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

AddressRecord.Result

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. and Canadian addresses only. For more
information, see About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. U.S. and Canadian addresses only.

P

The apartment label is required but is missing from
the input address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

ApartmentLabel.Result

671Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. U.S. addresses that are an EWS match will
have a value of P. U.S. and Canadian addresses
only.

P

The apartment number is required but is missing
from the input address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations. Does not apply to U.S. addresses.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

ApartmentNumber.Result

672Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Hyphens missing or punctuation errors. Canadian
addresses only.

F

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field. Does not
apply to U.S. or Canadian addresses.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output.

P

The city is required but is missing from the input
address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations. Does not apply to U.S. addresses.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

City.Result

These result codes do not apply to U.S. or Canadian
addresses.

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field.

M

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

Country.Result

673Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Corrected. U.S. addresses only.C

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. U.S. and Canadian addresses only.

P

Unmatched. U.S. and Canadian addresses only.U

Validated. The data was confirmed correct and
remained unchanged from input. U.S. addresses
only.

V

FirmName.Result

Appended. The field was added to a blank input
field. Canadian addresses only.

A

Corrected. Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Out of range. Does not apply to U.S. or Canadian
addresses.

O

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

The house number is required but is missing from
the input address. Canadian addresses only.

R

Standardized. This option includes any standard
abbreviations. Does not apply to U.S. or Canadian
addresses.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

HouseNumber.Result

674Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. Non-blank input was corrected to a
non-blank value. U.S. addresses only.

C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple. The input addressmatchedmultiple records
in the postal database, and each matching record
has a different value in this field. U.S. addresses
only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input. Does not apply to
Canadian addresses.

V

LeadingDirectional.Result

675Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. Canadian addresses only.

A

Corrected. Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple matches. The input address matched
multiple records in the postal database, and each
matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

The P.O. Box number is required but is missing
from the input address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

Not applicable.Blank

POBox.Result

676Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field.
U.S. and Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple. The input addressmatchedmultiple records
in the postal database, and each matching record
has a different value in this field. Does not apply to
Canadian addresses.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the output.
Does not apply to U.S. addresses.

P

The postal code is required but is missing from the
input address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations. Does not apply to U.S. or Canadian
addresses.

S

Unmatched. For example, if the street name does
not match the postal code, both StreetName.Result
and PostalCode.Result will contain U.

U

Validated. The data was confirmed correct and
remained unchanged from input.

V

PostalCode.Result

These result codes apply to international addresses only.

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output.

P

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

PostalCodeCity.Result

677Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

These result codes apply to U.S. addresses only.

The ZIP Code™ in the input was verified
by using USPS® Finance Number
groupings.

FinanceNumber

The ZIP Code™ in the input address was
corrected because the USPS® redrew
ZIP Code™ boundaries and the address
is now in a different ZIP Code™.

ZIPMOVE

PostalCode.Source

The ZIP Code™ contains only POBox addresses.
U.S. addresses only.

P

The ZIP Code™ is a unique ZIP Code™ assigned
to a specific company or location. U.S. addresses
only.

U

The ZIP Code™ is for military addresses. U.S.
addresses only.

M

The ZIP Code™ is a standard ZIP Code™.null

PostalCode.Type

Corrected. Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Multiple matches. The input address matched
multiple records in the postal database, and each
matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

The rural route/highway contract is required but is
missing from the input address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations. U.S. and Canadian addresses only.

S

Unmatched. U.S. and Canadian addresses only.U

Validated. The data was confirmed correct and
remained unchanged from input. U.S. and Canadian
addresses only.

V

RRHC.Result

678Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

These result codes apply to U.S. addresses only.

The address is a Highway Contract address.HC

The address is a Rural Route address.RR

RRHC.Type

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. U.S. addresses only.C

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field. Does not
apply to U.S. or Canadian addresses.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output.

P

The state is required but is missing from the input
address. U.S. addresses only.

R

Standardized. This option includes any standard
abbreviations. Does not apply to U.S. addresses.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

StateProvince.Result

These result codes apply to international addresses only.

Multiple. The input address matched multiple
records in the postal database, and each matching
record has a different value in this field.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output.

P

Street corrected. House number is out of range.
Applies to French, UK, and Japanese records only.

R

Standardized. This option includes any standard
abbreviations.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

Street.Result

679Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Indicates the result of abbreviated alias processing. One of
the following:

No abbreviated alias processing attempted.null

The StreetName field contains the base street
name.

B

The standardized address length is less than 31
characters so the StreetName field contains the
base name.

L

No abbreviated alias found.N

An abbreviated alias was found for input address.
The StreetName field contains the abbreviated
alias.

Y

StreetName.AbbreviatedAlias.Result

This result code applies to U.S. addresses only.

Note: In previous releases this field was named
StreetName.AliasType with no "." between "Alias"
and "Type." This old name is obsolete. Please
update your processes to use the new name
StreetName.Alias.Type.

The alias is an abbreviation of the street
name. For example, HARTS-NM RD is an
abbreviated alias for HARTSVILLE NEW
MARLBORO RD.

Abbreviated

There has been an official street name
change and the alias reflects the new name.
For example if SHINGLE BROOK RD is
changed to CANNING DR, then CANNING
DR would be a changed alias type.

Changed

The street alias is made up of other names
for the street or common abbreviations of the
street.

Other

The street alias is the locally preferred alias.
For example, a street is named "South Shore
Dr." because it runs along the southern shore
of a lake, not because it is south of a
municipal demarcation line. So, "South" is not
a predirectional in this case and should not
be shorted to "S". So, "South Shore Dr."
would be the preferred alias.

Preferred

StreetName.Alias.Type

680Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Indicates the result of preferred alias processing. One of the
following:

No preferred alias processing attempted.null

Preferred alias processing was not attempted
because the input address matched to an alias.
Preferred alias processing is only attempted for
base addresses.

A

No preferred alias found.N

A preferred alias was found for the input address.
The StreetName field contains the preferred alias.

Y

StreetName.PreferredAlias.Result

Appended. The field was added to a blank input
field. Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. addresses only. For more information, see
About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple. The input addressmatchedmultiple records
in the postal database, and each matching record
has a different value in this field. U.S. addresses
only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Does not apply to U.S. addresses.

P

Standardized. This option includes any standard
abbreviations. U.S. and Canadian addresses only.

S

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

StreetName.Result

681Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. and Canadian addresses only. For more
information, see About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple. The input addressmatchedmultiple records
in the postal database, and each matching record
has a different value in this field. U.S. addresses
only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

Standardized. This option includes any standard
abbreviations.

S

Unmatched. Does not apply to U.S. addresses.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

StreetSuffix.Result

682Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input
field. U.S. and Canadian addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Dropped. The field provided on input was removed.
U.S. and Canadian addresses only. For more
information, see About Additional Input Data.

D

Formatted. The spacing and/or punctuation was
changed to conform to postal standards. Does not
apply to U.S. or Canadian addresses.

F

Multiple. The input addressmatchedmultiple records
in the postal database, and each matching record
has a different value in this field. U.S. addresses
only.

M

Pass-through. The data was not used in the
validation process, but it was preserved in the
output. Canadian addresses only.

P

Standardized. This option includes any standard
abbreviations.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

TrailingDirectional.Result

These result codes apply to U.S. addresses only.

Appended. The field was added to a blank input
field.

A

Corrected.C

Multiple. The input address matched multiple
records in the postal database, and eachmatching
record has a different value in this field.

M

Unmatched.U

Validated. The data was confirmed correct and
remained unchanged from input.

V

USUrbanName.Result

Output from Options

Validate Address returns additional data depending on the options you select. For information on
the output generated by each option, see the options listed in the following sections:

683Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Enhanced Line of Travel Output

Enhanced Line of Travel processing produces the following output.

DescriptionField Name

Line of Travel sequence code and an indicator denoting USPS® LOT sequence. This
field is in the format nnnnY where:

The four-digit LOT code.nnnn

One of the following:Y

• A—Ascending LOT sequence
• D—Descending LOT sequence

USLOTCode

A hexadecimal value that allows you to sort your file in ascending order only. The
hexadecimal values range from 0 to FF ascending, then FF through 0 descending.

USLOTHex

A two-byte value used for final sortation in place of the DPC add-on. It consists of
an uppercase letter followed by a digit 0 through 9. Values range from A0 (99
descending) through J9 (00 descending), and K0 (00 ascending) through T9 (99
ascending).

USLOTSequence

684Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

LACSLink Output

DescriptionField Name

Indicates whether or not the address is a candidate for LACSLink conversion (U.S.
addresses only). One of the following:

Yes, the address is a candidate for LACSLink processing. If LACSLink is enabled,
Validate Address will attempt to convert the address using the LACSLink

database. If the conversion attempt is successful, the output address is the
new address obtained from the LACSLink database. If the attempt is not
successful, the address will not be converted.

Y

No, the address is not a candidate for LACSLink processing. LACSLink

processing may still be attempted if LACSLink processing is requested, the
LACSLink database is installed, and one of the following is true:

N

• The address matches to a Rural Route address and the RecordType.Default
field returns a Y.

• The input address could not be matched to any address in the U.S. Postal
Database (Failures due to multiple matches are not LACSLink candidates.)

USLACS

Indicates the success or failure of LACSLink processing. (U.S. addresses only.)

LACSLink processing successful. Record matched through LACSLink

processing.
A

LACSLink processing failed. No matching record found during LACSLink

processing.
00

LACSLink processing matched the input address to an older highrise
default address. The address has been converted. Rather than provide
an imprecise address, LACSLink processing does not provide a new
address.

09

LACSLink processing failed. Match found during LACSLink processing
but conversion did not occur due to other USPS® regulations.

14

LACSLink processing successful. Record matched through LACSLink

processing. Unit number dropped on input.
92

LACSLink did not process the record, or LACSLink processing was not
attempted.

null

USLACS.ReturnCode

685Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

RDI Output

DescriptionField Name

Return values indicating address type.

The address is a business address.B

The address is a residential address.R

The address is both a residential and a business address.M

Not checked because the address did not code at a ZIP + 4® level,
or RDI™ was not performed.

null

RDI

686Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DPV and CMRA Output

DescriptionField Name

Indicates the results of Delivery Point Validation (DPV) processing.

DPV confirmed. Mail can be delivered to the address.Y

Mail cannot be delivered to the address.N

The building number was validated but the unit number could not be
confirmed. A building number is the primary address number for a building.
A unit number is a number of a distinct mailing address within a building
such as an apartment, suite, floor, and so on. For example, in this address
424 is the building number and 12 is the unit number:

424 Washington Blvd. Apt. 12
Oak Park IL 60302
USA

S

The building number was validated but the unit number was missing from
input. A building number is the primary address number for a building. A
unit number is a number of a distinct mailing address within a building such
as an apartment, suite, floor, and so on. For example, in this address 424
is the building number and 12 is the unit number:

424 Washington Blvd. Apt. 12
Oak Park IL 60302
USA

D

The address matches multiple valid delivery points.M

The address could not be confirmed because the address did not code at
the ZIP + 4® level.

U

The address caused a false-positive violation.V

DPV

Indicates if the address is a Commercial Mail Receiving Agency (CMRA)

Yes, the address is a CMRA.Y

No, the address is not a CMRA.N

Unconfirmed.U

CMRA

687Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

DPV footnote codes.

Input address matched to the ZIP + 4® file.AA

Input address not matched to the ZIP + 4® file.A1

Input address matched to DPV (all components).BB

Input address primary number matched to DPV but secondary
number not match (present but not valid).

CC

Input address is military; DPV bypassed.F1

Input address is general delivery; DPV bypassed.G1

Input address primary number missing.M1

Input address primary number invalid.M3

Input address primary numbermatched to DPV but high rise address
missing secondary number.

N1

Input address missing RR or HC Box number.P1

Input address missing PO, RR, or HC Box numberP3

Input address matched to CMRA.RR

Input addressmatched to CMRA but secondary number not present.R1

Input address matched to phantom carrier route R777 (not eligible
for street delivery).

R7

Input address is unique ZIP; DPV bypassed.U1

DPVFootnote

Indicates whether the building is vacant (unoccupied for 90 days). One of the following:

Yes, the building is vacant.Y

No, the building is not vacant.N

The Determine if address is vacant option was not turned on.null

DPVVacant

Indicates whether the building is a "no stat" building and therefore unable to receive
mail. One of the following:

Yes, the building is a "no stat" building, which means the building is
not receiving mail.

Y

No, the building is not a "no stat" building, which means the building
does receive mail.

N

The Determine if delivery point is active option was not turned on.null

DPVNoStat

688Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

SuiteLink Output

DescriptionField Name

Indicates whether or not Validate Address corrected the secondary address
information (U.S. addresses only). One of the following:

Validate Address corrected the secondary address information.A

Validate Address did not correct the secondary address information.00

SuiteLink was not performed.null

SuiteLink processing encountered an error. For example, an error
would occur if the SuiteLink database is expired.

XX

SuiteLinkReturnCode

Provides additional information on the SuiteLinkmatch attempt. (U.S. addresses only)

Validate Address corrected the secondary address information.A

Validate Address did not correct the secondary address information. No
additional detail about the match attempt is available.

B

The words in the FirmName field are all "noise" words. Noise words are
defined by the USPS® and are ignored when attempting to mach the firm
name. Examples of noise words are "company" and "corporation". Validate
Address is not able to correct secondary address information for firm names
that consist entirely of noise words. For example "Company and
Corporation" is all noise words.

C

The address is not a high-rise default address. SuiteLink matching is only
done for high-rise default addresses. A high-rise default is a default to use
when the address does not contain valid secondary information (the
apartment number or apartment type is missing).

D

SuiteLink processing failed because the SuiteLink database is expired.E

SuiteLink was not performed or there was an error.null

SuiteLinkMatchCode

689Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Indicates how well Validate Address matched the firm name to the firm names in the
SuiteLink database.

The firm name matches the SuiteLink database exactly.1

Good match. All words in the firm name except one matched the firm
name in the SuiteLink database.

2

Poor match. More than one word in the firm name did not match the firm
name in the SuiteLink database.

3

SuiteLink could not match the firm name, or was not performed, or there
was an error.

null

SuiteLinkFidelity

VeriMove Output

DescriptionField Name

Indicates whether or not Validate Address should return a 250-byte field containing
input data to pass to VeriMove Express. This field contains the Detail Results Indicator
data required by VeriMove. For more information about the contents of this field, see
the VeriMove User’s Guide. One of the following:

Yes, return the field VeriMoveDataBlock.Y

No, do not return the field VeriMoveDataBlock.N

VeriMoveDataBlock

Additional Input Data

Some input data is ignored during the address standardization process. This extraneous data
(sometimes referred to as "dropped data") is returned in the AdditionalInputData field. Some examples
of dropped data include:

• Delivery instructions (for example, "Leave at back door")
• Phone numbers (for example, "555-135-8792")
• Attention lines (for example, "Attn: John Smith")

Data such as this is generally not embedded in an address. If it is embedded, the extraneous data
can usually be identified and returned in the AdditionalInputData field.

Note: Dropped data from split indicia addresses is not returned. A split indicia address is one
where a primary address is split between multiple address lines. For example, if the primary

690Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

address is "1 Green River Valley Rd" then the following would be a split indicia version of this
address:

1 Green River
Valley Rd
01230

If there is more than one piece of dropped data in an address, each piece of data is separated by a
semicolon and a space ("; ") for U.S. addresses and a space for addresses outside the U.S. The
order of dropped data in AdditionalInputData is:

1. Care of, mail stop (U.S. addresses only)
2. Other extraneous data found on address lines
3. Entire unused data lines

For example, if this is the input address:

123 Main St C/O John Smith
Apt 5 Drop at back dock
jsmith@example.com
555-123-4567
05674

Then AdditionalInputData would contain:

C/O John Smith; Apt 5 Drop At Back Dock; 555-123-4567; Jsmith@example.com; 555-123-4567

Care of Data

For U.S. addresses only, "care of" data is returned in AdditionalInputData. The following addresses
contain examples of "care of" data:

123 Main St C/O John Smith
Apt 5
05674

123 Main St
Apt 5 ATTN John Smith
05674

123 Main St Apt 5
MailStop 2
05674

Extraneous Data on Its Own Address Line

Validate Address returns extraneous data on its own address line for U.S. and Canadian addresses.

For U.S. addresses, Validate Address uses the first two non-blank address lines to perform address
standardization, unless either the firm name extraction or urbanization code extraction options are
enabled (see Address Line Processing for U.S. Addresses on page 626 for more information).

691Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Data on other address lines is returned in AdditionalInputData. In the following address, "John Smith"
would be returned in AdditionalInputData because it is in the third non-blank address line and Validate
Address only uses the first two non-blank address lines for U.S. addresses.

123 Main St
Apt 5
John Smith
05674

If one of either of the first two non-blank address lines contains extraneous data, that data is returned
in AdditionalInputData. For example, in the following addresses "John Smith" would be returned in
AdditionalAddressData.

123 Main St
John Smith
05674

John Smith
123 Main St
05674

In the following address both "John Smith" and "Apt 5" would both be returned in AdditionalInputData.
"John Smith" would be returned because it is extraneous data in one of the first two address lines
and "Apt 5" would be returned because U.S. address data must be in the first two non-blank address
lines.

John Smith
123 Main St
Apt 5
05674

Extraneous Data Within an Address Line

Extraneous data that is within an address line is returned in AdditionalInputData. For example, in
the following addresses "John Smith" would be returned in AdditionalInputData.

123 Main St John Smith
05674

123 Main St Apt 5 John Smith
05674

123 Main St John Smith
Apt 5
05674

123 Main St
Apt 5 John Smith
05674

For U.S. addresses, only extraneous data at the end of the address line is returned in
AdditionalInputData. Extraneous data that is not at the end of an address line is not returned for U.S.
addresses. For example, in the following addresses "John Smith" is not returned.

692Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

John Smith 123 Main St
05674

123 Main John Smith St
05674

The AdditionalInputData field will sometimes contain the original street name or suffix if the street
name was changed to obtain a match and the street name or suffix was at the end of a line. For
example this address:

Precisely
4200 Parlament
Lanham MD

Validate Address would correct the spelling of the street name and add the suffix, returning "4200
Parliament Pl" as the corrected street address and "Parlament" in AdditionalInputData.

Dual Addresses

A dual address is an address that contains both street and PO Box/Rural Route/Highway Contract
information. Depending on the processing options you select, the portion of the dual address that is
not used for address standardization may be returned in AdditionalInputData. For more information,
see About Dual Address Logic on page 636.

Reports

USPS CASS 3553 Report

The USPS CASS 3553 report must be given to the USPS along with the mailing to qualify for certain
discounts. The report contains information about the software you used for CASS processing,
information about your name-and-address list, information about your output file, information about
the mailer, and other statistics about your mailing. For detailed information about USPS Form 3553,
see www.usps.com.

For more information about CASS settings see CASS Certified Processing on page 647. For
instructions on how to use reports, see the Spectrum Technology Platform Dataflow Designer Guide.

USPS CASS Detail Report

The USPS CASS Detailed Report does not need to be given to the USPS to qualify for certain
discounts. This report contains some of the same information as the 3553 report but provides much
greater detail about DPV, LACS, and SuiteLink statistics.

For more information about CASS settings see CASS Certified Processing on page 647. For
instructions on how to use reports, see the Spectrum Technology Platform Dataflow Designer Guide.

Validate Address Summary Report

The Validate Address Summary Report lists statistics about the job, such as the total number of
records processed, the number of addresses validated, and more.

693Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.usps.com

For instructions on how to use reports, see the Spectrum Technology Platform Dataflow Designer
Guide.

Validate Address Global
Validate Address Global provides enhanced address standardization and validation for addresses
outside the U.S. and Canada. Validate Address Global can also validate addresses in the U.S. and
Canada but its strength is validation of addresses in other countries. If you process a significant
number of addresses outside the U.S. and Canada, you should consider using Validate Address
Global.

Validate Address Global is part of the Universal Addressing Module.

Validate Address Global performs several steps to achieve a quality address, including transliteration,
parsing, validation, and formatting.

Character Set Mapping and Transliteration

Validate Address Global handles international strings and their complexities. It uses fully Unicode
enabled string processing which enables the transliteration of non-roman characters into the Latin
character set and mapping between different character sets.

Character set mapping and transliteration features include:

• Support for over 30 different character sets including UTF-8, ISO 8859-1, GBK, BIG5, JIS, EBCDIC
• Proper "elimination" of diacritics according to language rules
• Transliteration for various alphabets into Latin Script
• Greek (BGN/PCGN 1962, ISO 843 - 1997)
• Cyrillic (BGN/PCGN 1947, ISO 9 - 1995)
• Hebrew
• Japanese Katakana, Hiragana and Kanji
• Chinese Pinyin (Mandarin, Cantonese)
• Korean Hangul

Address Parsing, Formatting, and Standardization

Restructuring incorrectly fielded address data is a complex and difficult task especially when done
for international addresses. People introduce many ambiguities as they enter address data into
computer systems. Among the problems are misplaced elements (such as company or personal
names in street address fields) or varying abbreviations that are not only language, but also country
specific. Validate Address Global identifies address elements in address lines and assigns them to
the proper fields. This is an important precursor to the actual validation. Without restructuring, "no
match" situations might result.

Properly identified address elements are also important when addresses have to be truncated or
shortened to fit specific field length requirements. With the proper information in the right fields,
specific truncation rules can be applied.

694Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Parses and analyzes address lines and identifies individual address elements
• Processes over 30 different character sets
• Formats addresses according to the postal rules of the country of destination
• Standardizes address elements (such as changing AVENUE to AVE)

Global Address Validation

Address validation is the correction process where properly parsed address data is compared against
reference databases supplied by postal organizations or other data providers. Validate Address
Global validates individual address elements to check for correctness using sophisticated fuzzy
matching technology and produces standardized and formatted output based on postal standards
and user preferences. FastCompletion validation type can be used in quick address entry applications.
It allows input of truncated data in several address fields and generates suggestions based on this
input.

In some cases, it is not possible to fully validate an address. Here Validate Address Global has a
unique deliverability assessment feature that classifies addresses according to their probable
deliverability.

Input
Validate Address Global takes a standard address as input. All addresses use this format no matter
what country the address is from.

Table 110: Validate Address Global Input

DescriptionFormatField Name

These fields contain address line data. AddressLine1 contains the first
address line, AddressLine2 contains the second address line, and so
forth. Note that the city, state/province, and postal code information
should be placed in their respective fields, not address line fields. For
example:

AddressLine1: 17413 Blodgett Road
AddressLine2: PO Box 123
City: Mount Vernon
StateProvice:WA
PostalCode: 97273
Country: USA

If the input address is not already parsed into the appropriate address
line and City, StateProvice, and PostalCode fields, use the
UnformattedLine fields instead of the address line fields.

String [79]AddressLine1 through
AddressLine6

695Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

City nameString [79]City

State or province.String [79]StateProvince

The postal code for the address. In the U.S. this is the ZIP Code®.String [79]:

99999
99999-9999
A9A9A9
A9A 9A9
9999 999

PostalCode

The name of the addressee. For example, "Mr. Jones".String [79]Contact

The name of the country. If no value is specified in the Force country
(ISO3) or Default country (ISO3) option, you must specify a country.

String [79]Country

The company or firm name.String [79]FirmName

StreetString [79]Street

NumberBuilding
[79]

Number

BuildingString [79]Building

SubBuildingString [79]SubBuilding

DeliveryServiceString [79]DeliveryService

696Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

Use these fields if the input address is completely unparsed and you
want Validate Address Global to attempt to parse the address into the
appropriate fields. For example:

UnformattedLine1: 17413 Blodgett Road
UnformattedLine2: PO Box 123
UnformattedLine3: Mount Vernon WA 97273
UnformattedLine4: USA

This address would be parsed into these output fields:

AddressLine1: 17413 Blodgett Road
AddressLine2: PO Box 123
City: Mount Vernon
StateProvice:WA
PostalCode: 97273
Country: USA

Note: If you specify input in the unformatted line fields you
must specify the entire address using only unformatted line
fields. Do not use other fields such as City or StateProvince in
combination with unformatted line fields.

String [79]UnformattedLine1 through
UnformattedLine10

Address Guidelines for Japan

Address Guidelines for Japan

For information on Japanese addresses, see the Japan Post website: http://www.post.japanpost.jp.

A typical Japanese address looks like this:

The elements of this address are described in the following table.

ExampleField NameAddress Element

areaName1Prefecture

areaName2City (Shi)

697Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

http://www.post.japanpost.jp

ExampleField NameAddress Element

areaName3Municipality Subdivision (Oaza)

areaName4City District (Chome)

Block and lot numbers are the most
specific address elements in Japan.
Japanese addresses typically do not
have street names.

mainAddressBlock/lot number

For multiline addresses in Kanji, the general pattern is to enter the postal code on the first line. On
the second line, enter the other address elements starting from largest (prefecture) to smallest. The
name of the recipient, business, or organization is entered on the third line. For example:

For multiline addresses using Western conventions, the order of address elements is reversed. For
example:

Tokyo Central Post Office
5-3, Yaesu 1-Chome
Chuo-ku, Tokyo 100-8994

Options

Input Options

Table 111: Validate Address Global Input Options

Description/Valid ValuesOption

Specifies the database resource containing the postal data to use for address validation.
Only databases that have been defined in the Global Database Resources panel in the
Management Console are available. For more information, see the Spectrum Technology
Platform Administration Guide.

Database

698Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description/Valid ValuesOption

Specifies a default country to use when the input record does not contain explicit country
information. Specify the country using the ISO3 country code. If you do not specify a default
country each input record must have the country specified in the Country input field. For
a list of ISO codes see ISO Country Codes and Module Support.

Default country (ISO3 format)

Causes address records to be always treated as originating from the country specified
here, overriding the country in the address record and the default country. Specify the
country using the ISO3 country code. For a list of ISO codes, see ISO Country Codes
and Module Support.

Force country (ISO3 format)

Enables you to use non-standard formatting for multiline addresses in input files. Acceptable
values for this field include the following:

• CRLF (default)
• LF
• CR
• SEMICOLON (2101 MASSACHUSETTS AVE NW ;WASHINGTON DC 20008)
• COMMA (2101 MASSACHUSETTS AVE NW ,WASHINGTON DC 20008)
• TAB (2101 MASSACHUSETTS AVE NW WASHINGTON DC 20008)
• PIPE (2101 MASSACHUSETTS AVE NW |WASHINGTON DC 20008)
• SPACE (2101 MASSACHUSETTS AVE NW WASHINGTON DC 20008)

Note: The same value must be selected for both the input option and output
option.

Format Delimiter

Output Options

Table 112: Validate Address Global Output Options

DescriptionOption

This option specifies the maximum number of candidate addresses to return. This
field is disabled for batch processing; for all other processing modes the default is 1
and the maximum is 99. If you are using FastCompletion mode, you may want to
enter a number greater than 1 to ensure you are provided with multiple options for
completing a field.

Maximum number of results
returned

Specifies whether to include the input data in the output. If enabled, the output will
contain fields that end with .Input containing the corresponding input field. For
example, the output field AddressLine1.Input would contain the data specified in the
input field AddressLine1.

Return input data with results

699Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the format for the StateProvince field. One of the following.

Return the abbreviation for the state or province. For
example, North Carolina would be returned as "NC".

Abbreviation

Return either the abbreviation or the full name depending on
the format used by the country's postal authority. (Default)

Country standard

Return the full name of the state or province, not the
abbreviation. For example "North Carolina".

Extended

State/Province

Specifies the language or code to use for the country name returned by Validate
Address Global.

• Chinese
• Danish
• Dutch
• English (default)
• Finnish
• French
• German
• Greek
• Hungarian
• ISO number (returns the ISO number for the country)
• ISO2 (returns the two-character ISO country code)
• ISO3 (returns the three-character ISO country code)
• Italian
• Japanese
• Korean
• Polish
• Portuguese
• Russian
• Sanskrit
• Spanish
• Swedish

Country format

700Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the alphabet in which the output should be returned. The alphabet in which
the data is returned differs from country to country. For most countries the output
will be Latin I regardless of the selected preferred language.

ASCII characters with expansion of special characters
(for example, Ã– = OE)

ASCII extended

ASCII charactersASCII simplified

(default) Latin I or ASCII characters (as per reference
database standard)

Database

Latin I charactersLatin

Latin I characters (alternative transliteration)Latin alternate

Latin I or ASCII characters (local postal administration
alternative)

Postal admin alternate

Latin I or ASCII characters (as preferred by local
postal administration)

Postal admin preferred

For countries that use an alphabet other than Latin I, the returned alphabet differs
from country to country. For more information, see Alphabets for Non-Latin 1
Countries on page 702.

Script/Alphabet

Specifies the language in which the output should be returned. The alphabet in which
the data is returned differs from country to country, but for most countries the output
will be Latin, regardless of the selected preferred language.

Language derived from reference data for each address.
Default.

Database

English locality and state/province names output, if available.English

Language

Enables you to use non-standard formatting for multiline addresses in the output.
Acceptable values for this field include the following:

• CRLF (default)
• LF
• CR
• SEMICOLON (2101 MASSACHUSETTS AVE NW ;WASHINGTON DC 20008)
• COMMA (2101 MASSACHUSETTS AVE NW ,WASHINGTON DC 20008)
• TAB (2101 MASSACHUSETTS AVE NW WASHINGTON DC 20008)
• PIPE (2101 MASSACHUSETTS AVE NW |WASHINGTON DC 20008)
• SPACE (2101 MASSACHUSETTS AVE NW WASHINGTON DC 20008)

Note: The same value must be selected for both the input option and output
option.

Format Delimiter

701Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the casing of the output.

Output will be based on the reference database standard.Native

Output will be in upper case for all countries.Upper

Output will be in lower case for all countries.Lower

Casing determined by country-specific rules.Mixed

For parse mode, returns the data the way it was entered. For
validation mode, uses the casing found in the reference data
and according to postal rules. Values that could not be checked
against the reference data will retain their input casing.

No change

Casing

Alphabets for Non-Latin 1 Countries

For countries that use an alphabet other than Latin I, the returned alphabet differs from country to
country. The following table shows how the output is returned for specific countries. All countries
that are not listed use the value specified in the Script/Alphabet field option.

ASCII
extended

ASCII
simplified

Latin
alternate

LatinPostal
admin
alternate

Postal
admin
preferred

DatabaseCountry

CYRILLIC_ISO
+ LATIN

CYRILLIC_ISO
+
LATIN_SIMPLE

CYRILLIC_BGNCYRILLIC_ISOCyrillicCyrillicCyrillicRUS

JAPANESE +
LATIN

JAPANESE +
LATIN_SIMPLE

JAPANESEJAPANESEKanaKanjiKanjiJPN

CHINESE_
MANDARIN +
LATIN

CHINESE_
MANDARIN +
LATIN_SIMPLE

CHINESE_
CANTONESE

CHINESE_
MANDARIN

HanziHanziHanziCHN

CHINESE_
CANTONESE
+ LATIN

CHINESE_
CANTONESE
+
LATIN_SIMPLE

CHINESE_
MANDARIN

CHINESE_
CANTONESE

HanziHanziHanziHKG

702Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ASCII
extended

ASCII
simplified

Latin
alternate

LatinPostal
admin
alternate

Postal
admin
preferred

DatabaseCountry

CHINESE_
CANTONESE
+ LATIN

CHINESE_
CANTONESE
+
LATIN_SIMPLE

CHINESE_
MANDARIN

CHINESE_
CANTONESE

HanziHanziHanziTWN

GREEK_ISO +
LATIN

GREEK_ISO +
LATIN_SIMPLE

GREEK_BGNGREEK_ISOGreekGreekGreekGRC

KOREAN +
LATIN

KOREAN +
LATIN_SIMPLE

KOREANKOREANHanjaHangulLatinKOR

HEBREW +
LATIN

HEBREW +
LATIN_SIMPLE

HEBREWHEBREWHebrewHebrewLatinISR

LATINLATIN_SIMPLELatin-3Latin-3Latin-3Latin-3Latin-3ROM

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2POL

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2CZE

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2CRI

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2HUN

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2MDA

LATINLATIN_SIMPLELatin-2Latin-2Latin-2Latin-2Latin-2SVK

LATINLATIN_SIMPLELatin-7Latin-7Latin-7Latin-7Latin-7LAT

703Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Process Options

Table 113: Validate Address Global Process Options

DescriptionOption

Use this option to set the appropriate balance between processing speed and quality. One
of the following:

The parser will honor input assignment strictly, with the exception of
separation of House Number from Street information.

Narrow

The parser will separate address element more actively as follows:Standard

• Province will be separated from Locality information
• PostalCode will be separated from Locality information
• House Number will be separated from Street information
• SubBuilding will be separated from Street information
• DeliveryService will be separated from Street information
• SubBuilding will be separated from Building information
• Locality will be separated from PostalCode information

Parser separation will happen similarly to Standard, but additionally up to
10 parsing candidates will be passed to validation for processing. Validation
will widen its search tree and take additional reference data entries into
account for matching.

Wide

Please note that adjusting the optimization level might have no effect for countries that
lack the postal reference data information required for the kind of separation described
above.

Increasing separation granularity from Narrow to Standard consumes some processing
power, but the major impact on processing speed is from validation processing a larger
search tree, thus increasing the number of data accesses and comparisons for the
optimization level Wide, in an attempt to make the most out of the input data given.

Optimization level

704Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the type of processing to perform on the addresses. One of the following:

Use this mode in batch processing environments when no human input
or selection is possible. It is optimized for speed and will terminate its
attempts to correct an address when ambiguous data is encountered
that cannot be corrected automatically. The Batch processing mode will
fall back to Parse mode when the database is missing for a specific
country.

Batch

Note: When the Process Status returns a value of I3, the
attempt is considered a failure and the Status will return a value
of F.

Use this mode in batch processing environments for Australian mail.
Validate Address Global is certified by Australia Post's Address Matching
Approval System (AMAS). It will standardize and validate your mail
against the Postal Address File, providing postal discounts and allowing
for the least amount of undeliverable pieces.

Certified

Use this mode if you want to use FastCompletion mode to enter
truncated data in address fields and have Validate Address Global
generate suggestions. For example, if you work in a call center or
point-of-sale environment, you can enter just part of an address element
and the FastCompletion feature will provide valid options for the complete
element.

FastCompletion

Use this mode when working in interactive environments to generate
suggestions when an address input is ambiguous. This validation type
is especially useful in data entry environments when capturing data from
customers or prospects. It requires the input of an almost-complete
address and will attempt to validate or correct the data provided. If
ambiguities are detected, this validation type will generate up to 20
suggestions that can be used for pick lists. The Interactive processing
mode will fall back to Parse mode when the respective database is
missing for a specific country.

Interactive

Use this mode for separating address input into tokens for subsequent
processing in other systems, bypassing validation. For example, you
could use this mode when address data of already high quality simply
needs to be tokenized quickly for export to an external system or for
use by a downstream stage.

Parse

Processing mode

705Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies how closely an address must match the reference data in order for the address
to be validated. One of the following:

Note: These settings may not have an effect for countries lacking the necessary
level of detail in the postal reference data.

All address elements must match.All levels

Validate Global Addressmust achieve amatch on StateProvince,
PostalCode, City/Locality/Suburb, street, house number, and
sub building.

Delivery point level

Validate Global Addressmust achieve amatch on StateProvince,
PostalCode, City/Locality/Suburb, and street.

Street level

Validate Global Addressmust achieve amatch on StateProvince,
PostalCode, and City/Locality/Suburb.

Locality level

Matching scope

Output

Address Data

Table 114: Parsed Address Elements

DescriptionField Name

The AddressBlock output fields contain a formatted version of the standardized or
normalized address as it would be printed on a physical mailpiece. Validate Address
Global formats the address into address blocks using postal authority standards.
Each line of the address is returned in a separate address block field. There can be
up to nine address block output fields: AddressBlock1 through AddressBlock9. For
example, this input address:

AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
City: Lanham
StateProvince: MD
PostalCode: 20706

Results in this address block output:

AddressBlock1: 4200 PARLIAMENT PL STE 600
AddressBlock2: LANHAM MD 20706-1882

AddressBlock1-9

706Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

If the address was validated, the address line fields contain the validated and
standardized address lines. If the address could not be validated, the address line
fields contain the input address without any changes. Note that the last line of the
address is contained in the LastLine field. For example:

AddressLine1: 4200 PARLIAMENT PL STE 600
LastLine: LANHAM MD 20706-1882

AddressLine1-6

An area smaller than a state/province but larger than a city.AdministrativeDistrict

The flat or unit type (such as STE or APT), for example: 123 E Main St Apt 3ApartmentLabel

The flat or unit number, for example: 123 E Main St Apt 3ApartmentNumber

An estate or block name.BlockName

The name of a building, for example Sears Tower.BuildingName

The name of the town or city. For example, Vancouver, BC.City

Additional information about the city.City.AddInfo

A code used by the postal authority to speed up delivery in certain countries for large
localities, for example Prague or Dublin.

City.SortingCode

The name of the addressee. For example, Mr. Jones.Contact

The country in the language or code specified in the Country format option.Country

Dependent state or province information that further subdivides a state or province.
An example would be a U.S. county.

County

The name of a company.FirmName

Information that further subdivides a building, for example, the suite or apartment
number. For example: 123 E Main St Apt 3, 4th Floor

Floor

707Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The house number 1, for example: 298A-1B New South Head RdHouseNumber

Complete last address line (city, state/province, and postal code).LastLine

Street directional that precedes the street name. For example, the N in 138 N Main
Street.

LeadingDirectional

Dependent place name that further subdivides a Locality. Examples are colonias in
Mexico, Urbanisaciones in Spain.

Locality

Post Box descriptor (POBox, Postfach, Case Postale etc.) and number.POBox

The postal code for the address. The format of the postcode varies by country.PostalCode

The second part of a postcode. For example, for Canadian addresses this will be
the LDU. For U.S. addresses this is the ZIP + 4 add on. This field is not used by most
countries.

PostalCode.AddOn

The base portion of the postcode.PostalCode.Base

A room number in a building.Room

The name of a secondary street or rural route.SecondaryStreet

The name of the state or province.StateProvince

The name of street where property is located, for example: 123 E Main St Apt 3StreetName

The street suffix, for example: 123 E Main St Apt 3StreetSuffix

A portion of a building, such as a suite. For example, Suite 102.SubBuilding

Dependent place name that further subdivides a Locality. An example would be
Mahalle in Turkey.

Suburb

The name of a territory. Territories are larger than a state/province.Territory

708Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The trailing directional, for example: 123 Pennsylvania Ave NWTrailingDirectional

Original Input Data

This option outputs the original input data in <FieldName>.Input fields.

Table 115: Original Input Data

DescriptionFormatField Name

First address lineString [79]AddressLine1.Input

Second address lineString [79]AddressLine2.Input

Third address lineString [79]AddressLine3.Input

Fourth address lineString [79]AddressLine4.Input

Fifth address lineString [79]AddressLine5.Input

Sixth address lineString [79]AddressLine6.Input

City nameString [79]City.Input

State or provinceString [79]StateProvince.Input

709Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The postal code for the address. In the U.S. this is the ZIP Code. One
of these formats:

99999
99999-9999
A9A9A9
A9A 9A9
9999 999

String [79]:PostalCode.Input

The name of the addressee. For example, "Mr. Jones".String [79]Contact.Input

Specify the country using the format you chose for input country format
(English name, ISO code, or UPU code). For a list of valid values, see
ISO Country Codes and Module Support.

String [79]Country.Input

The company or firm name.String [79]FirmName.Input

StreetString [79]Street.Input

NumberBuilding
[79]

Number.Input

BuildingString [79]Building.Input

SubBuildingString [79]SubBuilding.Input

DeliveryServiceString [79]DeliveryService.Input

Result Codes

These output fields contain information about the result of the validation processing.

710Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 116: Result Codes

Result CodeField Name

For United States and Canada addresses only, the AddressType field indicates the type
of address. One of the following:

The address was validated/corrected to the firm name.F

The address was validated/corrected to the building name.B

The address is a general delivery address.G

The address was validated/corrected to the high-rise default.H

The address is a large volume receiver.L

The address is a military address.M

The address was validated/corrected to PO box.P

The address was validated/corrected to a rural route.R

The address was validated/corrected to a street address.S

The address could not be validated/corrected so the type is unknown.U

AddressType

The level of confidence assigned to the address being returned. Range is from zero (0) to
100; zero indicates failure, 100 indicates a very high level of confidence that the match
results are correct.

Confidence

Indicates whether the number of candidate addresses exceeds the number returned. One
of the following:

Yes, there are additional candidate addresses. To obtain the additional
candidates, increase the Maximum number of results returned value.

Yes

No, there are no additional candidates.No

CountOverflow

ElementInputStatus provides per element information on the matching of input elements
to reference data. The values in this field vary depending on whether you are using batch
mode or parse mode. For information about the value in this field, see Interpreting
ElementInputStatus, ElementResultStatus, and ElementRelevance on page 716.

ElementInputStatus

Indicates which address elements are actually relevant from the local postal authority's
point of view. For information about the value in this field, see Interpreting
ElementInputStatus, ElementResultStatus, and ElementRelevance on page 716 .

ElementRelevance

711Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Result CodeField Name

ElementResultStatus categorizes the result in more detail than the ProcessStatus field by
indicating if and how the output fields have been changed from the input fields. For
information about the value in this field, see Interpreting ElementInputStatus,
ElementResultStatus, and ElementRelevance on page 716.

ElementResultStatus

An estimate of how likely it is that mail sent to the address would be successful delivered.
One of the following:

Completely confident of deliverability5

Almost certainly deliverable4

Should be deliverable3

Fair chance2

Risky1

No chance0

MailabilityScore

Indicates the processing mode used. The processing mode is specified in the Processing
Mode option. For a description of the modes, see Process Options on page 704.

ModeUsed

If the address was matched to multiple candidate addresses in the reference data, this
field contains the number of candidate matches found.

MultimatchCount

712Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Result CodeField Name

ProcessStatus

713Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Result CodeField Name

Provides a general description of the output quality. For a more detailed description of the
output quality, see the ElementResultStatus field.

One of the following:

Verified. The input data is correct. All elements were checked and input
matched perfectly.

V4

Verified. The input data is correct on input but some or all elements were
standardized or the input contains outdated names or exonyms.

V3

Verified. The input data is correct but some elements could not be verified
because of incomplete reference data.

V2

Verified. The input data is correct but the user standardization has
deteriorated deliverability (wrong element user standardization - for
example, postcode length chosen is too short). Not set by validation.

V1

Corrected. All elements have been checked.C4

Corrected, but some elements could not be checked.C3

Corrected, but delivery status unclear (lack of reference data).C2

Corrected, but delivery status unclear because user standardization was
wrong. Not set by validation.

C1

Data could not be corrected completely, but is very likely to be deliverable.
Single match (for example, HNO is wrong but only 1 HNO is found in
reference data).

I4

Data could not be corrected completely, but is very likely to be deliverable.
Multiple matches (for example, HNO is wrong but more than 1 HNO is
found in reference data).

I3

Data could not be corrected, but there is a slim chance that the address
is deliverable.

I2

Data could not be corrected and is unlikely to be delivered.I1

Country recognized from the Force country SettingRA

Country recognized from DefaultCountryISO3 SettingR9

Country recognized from name without errorsR8

Country recognized from name with errorsR7

Country recognized from territoryR6

Country recognized from provinceR5

Country recognized from major townR4

Country recognized from formatR3

Country recognized from scriptR2

Country not recognized - multiple matchesR1

714Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Result CodeField Name

R0 Country not recognized

Parsed perfectlyS4

Parsed with multiple resultsS3

Parsed with errors. Elements change position.S2

Parse Error. Input Format Mismatch.S1

Validation Error: No validation performed because country was not
recognized.

N1

Validation Error: No validation performed because required reference
database is not available.

N2

Validation Error: No validation performed because country could not be
unlocked.

N3

Validation Error: No validation performed because reference database is
corrupt or in wrong format.

N4

Validation Error: No validation performed because reference database is
too old.

N5

Validation Error: No validation performed because input data was
insufficient.

N6

FastCompletion Status: Suggestions are available - complete address.Q3

FastCompletion Status: Suggested address is complete but combined with
elements from the input (added or deleted).

Q2

FastCompletion Status: Suggested address is not complete (enter more
information).

Q1

FastCompletion Status: Insufficient information provided to generate
suggestions.

Q0

Reports the success or failure of the processing attempt.

Successnull

FailureF

Status

The reason for the failure, if there was one.Status.Code

A description of the reason for the failure, if there was one.Status.Description

715Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Interpreting ElementInputStatus, ElementResultStatus, and ElementRelevance

The ElementInputStatus, ElementResultStatus, and ElementRelevance output fields contain a series
of digits that describe the outcome of the validation operation in detail. ElementInputStatus contains
some information for parsing operations.

This is what an ElementInputStatus value looks like:

44606040600000000060

This is what an ElementResultStatus value looks like:

88F0F870F00000000040

This is what an ElementRelevance value looks like:

11101010100000000000

To understand the values in these fields you need to know which element each position represents,
and the meaning of the values in each position. For example, the first digit indicates the result from
the PostalCode.Base output field. The position meanings are listed below.

• Position 1—PostalCode.Base
• Position 2—PostalCode.AddOn
• Position 3—City
• Position 4—Locality and Suburb
• Position 5—StateProvice
• Position 6—County
• Position 7—StreetName
• Position 8—SecondaryStreet
• Position 9—HouseNumber
• Position 10—Number level 1
• Position 11—POBox
• Position 12—Delivery service level 1
• Position 13—Building level 0
• Position 14—BuildingName
• Position 15—Sub building level 0
• Position 16—Floor and Room
• Position 17—FirmName
• Position 18—Organization level 1
• Position 19—Country
• Position 20—Territory

For ElementInputStatus, the possible values for validation are:

• 0—Empty
• 1—Not found
• 2—Not checked (no reference data)

716Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• 3—Wrong - Set by validation only: The reference database suggests that either Number or
DeliveryService is out of valid number range. Input is copied, not corrected for batch mode, for
interactive mode and FastCompletion suggestions are provided.

• 4—Matched with errors in this element
• 5—Matched with changes (inserts and deletes) For example:

• Parsing: Splitting of house number for "MainSt 1"
• Validation: Replacing input that is an exonym or dropping superfluous fielded input that is invalid
according to the country reference database

• 6—Matched without errors

For ElementInputStatus, the possible values for parsing are:

• 0—Empty
• 1—Element had to be relocated
• 2—Matched but needed to be normalized
• 3—Matched

For ElementRelevance, the possible values for parsing are:

• 0—Empty
• 1—Element had to be relocated
• 2—Matched but needed to be normalized
• 3—Matched

For ElementResultStatus, the possible values are (for all address elements apart from country):

• 0—Empty
• 1—Not validated and not changed. Original is copied.
• 2—Not validated but standardized.
• 3—Validated but not changed due to invalid input, database suggests that number is out of valid
ranges. Input is copied, not corrected - this status value is only set in batch mode.

• 4—Validated but not changed due to lack of reference data.
• 5—Validated but not changed due to multiple matches. Only set in batch mode, otherwise multiple
suggestions that replace the input are marked as corrected (status value 7).

• 6—Validated and changed by eliminating the input value
• 7—Validated and changed due to correction based on reference data
• 8—Validated and changed by adding value based on reference data
• 9—Validated, not changed, but delivery status not clear (for example, DPV value wrong; given
number ranges that only partially match reference data).

• C—Validated, verified but changed due to outdated name
• D—Validated, verified but changed from exonym to official name
• E—Validated, verified but changed due to standardization based on casing or language. Validation
only sets this status if input fully matches a language alternative.

• F—Validated, verified and not changed due to perfect match

717Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For Country (position 19 & 20), the following values are possible:

• 0—Empty
• 1—Country not recognized
• 4—Country recognized from DefaultCountryISO3 setting
• 5—Country not recognized - multiple matches
• 6—Country recognized from script
• 7—Country recognized from format
• 8—Country recognized from major town
• 9—Country recognized from province
• C—Country recognized from territory
• D—Country recognized from name with errors
• E—Country recognized from name without errors
• F—Country recognized from ForceCountryISO3 setting

Reports

Validate Address Global Summary Report

The Validate Address Global Summary Report lists summary statistics about the job, such as the
total number of records processed, the number of addresses validated, and more. For instructions
on how to use reports, see the Spectrum Technology Platform Dataflow Designer's Guide.

Job Summary

This section contains summary information about the job.

• Started—The date and time that the job started.
• Finished—The date and time that the job ended.
• Processing time—The duration of the job.
• Total Records—The total number of records presented to Validate Address Global for processing.
This may be different from the number of input records for the job depending on how the job is
designed.

• Processed Records—The number of addresses that were successfully processed by Validate
Address Global. This is the total number of records less records not processed.

• Default country—The default country specified in the Default country (ISO3 format) option.
• Casing—The casing selected in the Casing option.
• Script/Alphabet—The script specified in the Script/Alphabet option.
• Countries—The number of countries represented in the input addresses.

Status Summary

This section lists the validation and correction results.

• Validated—Addresses that were correct on input.

718Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Corrected—Addresses that were corrected by Validate Address Global.
• Good deliverability—Addresses that could not be corrected but that are very likely to be deliverable.
• Fair deliverability—Addresses that could not be corrected but have a fair chance that the address
is deliverable.

• Poor deliverability—Addresses that could not be corrected and are unlikely to be deliverable.
• Parsed—Addresses that were successfully parsed.
• Failed—Addresses that could not be verified, corrected, or parsed.

Validate Address Global Detail Report

The Validate Address Detail Report shows the results of validation/correction/parsing for each country.
For instructions on how to use reports, see the Spectrum Technology Platform Dataflow Designer's
Guide.

Status Details

This section lists the validation and correction results for each country.

• V (Validated)—Addresses that were correct on input.
• C (Corrected)—Addresses that were corrected by Validate Address Global.
• I4 (Good deliverability)—Addresses that could not be corrected but that are very likely to be
deliverable.

• I3 (Fair deliverability)—Addresses that could not be corrected but have a fair chance that the
address is deliverable.

• I2 (Poor deliverability)—Addresses that could not be corrected and are unlikely to be deliverable.
• S (Parsed)—Addresses that were successfully parsed.
• F (Failed)—Addresses that could not be verified, corrected, or parsed.

Validate Address Loqate
Validate Address Loqate standardizes and validates addresses using postal authority address data.
Validate Address Loqate can correct information and format the address using the format preferred
by the applicable postal authority. It also adds missing postal information, such as postal codes, city
names, state/province names, and so on.

Validate Address Loqate also returns result indicators about validation attempts, such as whether
or not Validate Address Loqate validated the address, the level of confidence in the returned address,
the reason for failure if the address could not be validated, and more.

During address matching and standardization, Validate Address Loqate separates address lines into
components and compares them to the contents of the Spectrum Universal Address databases. If
a match is found, the input address is standardized to the database information. If no database match
is found, Validate Address Loqate optionally formats the input addresses. The formatting process
attempts to structure the address lines according to the conventions of the appropriate postal authority.

Validate Address Loqate is part of Spectrum Universal Address.

719Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Input
Validate Address Loqate takes an address as input. All addresses use this format regardless of the
address's country.

Table 117: Input Format

DescriptionFormatField Name

The first address line.StringAddressLine1

The second address line.StringAddressLine2

The third address line.StringAddressLine3

The fourth address line.StringAddressLine4

The city name.StringCity

The country code or name, in any of the following formats:

• Two-character ISO 3166-1 Alpha 2 country code
• Three-character ISO 3166-1 Alpha 3 country code
• English country name

See ISO Country Codes and Module Support for a list of ISO codes.

See ISO Country Code and Precision Level for a list of ISO codes.

StringCountry

The company or firm name.StringFirmName

The postal code for the address in one of these formats:

99999
99999-9999
A9A9A9
A9A 9A9
9999 999

StringPostalCode

720Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The state or province.StringStateProvince

Options
The following table lists the options that control the type of information returned by Validate Address
Loqate.

Table 118: Output Data Options

DescriptionOption

Specifies which database you want to use for validating international
addresses. To specify a database for international address validation,
select a database in the Database drop-down list.

Database

Returns 1 to 4 lines of address data plus city, state, postal code, and
firm name. Each address line represents an actual line of the address
as it would appear on an envelope. For more information, see Output
on page 728.

If Validate Address Loqate could validate the address, the address lines
contain the standardized address. When addresses are standardized,
punctuation is removed, directionals are abbreviated, street suffixes are
abbreviated, and address elements are corrected.

If Validate Address Loqate could not validate the address, the address
lines contain the address as it appeared in the input ("pass through"
data). Non-validated addresses are always included as pass through
data in the address line fields even if you uncheck this option.

Include a standard address

Each part of the address, such as house number, street name, street
suffix, directionals, and so on is returned in a separate field. For more
information, see Parsed Address Elements Output on page 729. Note
that if you select this option and also select Return normalized data
when no match is found, the address elements will contain the input
address for addresses that could not be validated.

Include matched address elements

721Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

This option returns the input address in parsed form regardless of
whether or not Validate Address Loqate is able to validate the address.
Each part of the input address, such as house number, street name,
street suffix, directionals, and so on is returned in a separate field.

Selecting this option differs from selecting the combination of Include
matched address elements/Return normalized data when nomatch
is found in thatReturn standardized input address elements returns
all input address in parsed form, not just input that could not be validated.
For more information, see Parsed Input on page 732.

Include standardized input address elements

Specifies whether to perform geocoding during processing. Geocoding
output provides the latitude and longitude for each input address, as
well as the level of accuracy of the match and the likely maximum
distance between the geocode and the actual physical location of the
address.

Return geocoded address fields

Specifies whether to include field-level result indicators. Field-level result
indicators describe how Validate Address Loqate handled each address
element. Field-level result indicators are returned in the qualifier "Result".
For example, the field-level result indicator for HouseNumber is
contained in HouseNumber.Result. For a complete listing of result
indicator output fields, see Result Indicators on page 736.

Include result codes for individual fields

Specifies whether to return a formatted address when an address cannot
be validated. The address is formatted using the preferred address
format for the address's country. If this option is not selected, the output
address fields are blank when Validate Address Loqate cannot validate
the address.

Formatted addresses are returned using the format specified by the
Include a standard address, Include address line elements, and
Include postal information check boxes. Note that if you select Include
address line elements, the parsed address elements will contain the
parsed, validated address for addresses that could be validated. If the
address could not be validated the parsed address elements will contain
the input address in parsed form. If you always want the output to contain
the input address in parsed form, regardless of whether or not Validate
Address Loqate could validate the address, select Include standardized
input address elements.

If you check this option, you must select Include a standard address
and/or Include address line elements.

Return normalized data when no match is found

722Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies whether to return a formatted version of the address as it
would be printed on a physical mailpiece. Each line of the address is
returned in a separate address block field. There can be up to nine
address block output fields: AddressBlock1 through AddressBlock9.

For example, this input address:

AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
City: Lanham
StateProvince: MD
PostalCode: 20706

Results in this address block output:

AddressBlock1: 4200 PARLIAMENT PL STE 600
AddressBlock2: LANHAM MD 20706-1882
AddressBlock3: UNITED STATES OF AMERICA

Validate Address Loqate formats the address into address blocks using
postal authority standards. The country name is returned using the
Universal Postal Union country name. Note that the option Country
format does not affect the country name in the address block, it only
affects the name returned in the Country output field.

Return address data blocks

Specifies that output address data is to be formatted using Address
Matching Approval System (AMAS) conventions.

This option causes Validate Address Loqate to use AMAS rules when
standardizing an address. AMAS is an Australia Post program for
enforcing addressing standards. For more information on the AMAS
formatting conventions, refer to the Address Matching Approval System
(AMAS) Handbook.

This option modifies the output data as follows.

• Numeric fields are padded with zeros. This affects the following output
fields: HouseNumber, HouseNumber2, PostalDeliveryNumber, and
DPID. For example, if the input address is 298 New South Head Rd
Double Bay NSW 2028, then the format of the HouseNumber field is
changed from 298 to 00298.

• If a match is not made, then all digits in the DPID field will be zero.
For example, 00000000.

• If a match is not made, then all return fields (parsed address elements)
will be blank, except numeric fields which will contain all zeros.

• The CCD field is not output.

Note: When this option is selected, results will be returned
with AMAS formatting regardless of selections made in the
Acceptance level and Minimum match score fields.

Format data using AMAS conventions

723Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the casing of the output data. One of the following:

Returns the output in mixed case (default). For
example:

123 Main St
Mytown FL 12345

Mixed

Returns the output in upper case. For example:

123 MAIN ST
MYTOWN FL 12345

Upper

Casing

Specifies the default country. You should specify the country where
most of your addresses reside. For example, if most of the addresses
you process are in Germany, specify Germany. Validate Address Loqate
uses the country you specify to attempt validation when it cannot
determine the country from the StateProvince, PostalCode, and Country
address fields.

Default country

Specifies the format to use for the country name returned in theCountry
output field. For example, if you select English, the country name
"Deutschland" would be returned as "Germany".

Use English country names (default).English Names

Use two-letter ISO abbreviation for the countries
instead of country names.

ISO Codes

Use Universal Postal Union abbreviation for the
countries instead of country names.

UPU Codes

Country format

Specifies the alphabet or script in which the output should be returned.
This option is bi-directional and generally takes place from Native to
Latin and Latin to Native.

Do not perform transliteration and provide output
in the same script as the input (default).

Input Script

Output in the native script for the selected
country wherever possible.

Native

Use English values.Latin (English)

Script/Alphabet

724Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies the minimum verification level a record must reach to be
considered successfully processed. The value in this field corresponds
to the second character of the Address Verification Code, which is called
"Post-Processed Verification Match Level":

• 5—Delivery point (building or post box). The record will be passed or
will have high confidence if ApartmentNumber, HouseNumber, Street,
City, and StateProvince supplied in the input record match to the
Loqate reference dataset. Will have moderate confidence if
ApartmentNumber is correct but other remaining fields are incorrect,
but in this case the Loqate engine should able to identify the
ApartmentNumber as ApartmentNumber is at a more granular level.
It will have zero confidence if ApartmentNumber and other fields are
unable to parsed by the Loqate engine.

• 4—Premise or building. The record will be passed or will have high
confidence if House Number, Street, City, and StateProvince supplied
in the input record match the Loqate reference dataset. Will have
moderate confidence if HouseNumber is correct but the other fields
are not; however, in this case the Loqate engine should able to identify
the HouseNumber because HouseNumber is at a more granular level.
It will have zero confidence if the HouseNumber and other fields are
unable to parsed by the Loqate engine.

• 3—Thoroughfare, road, or street. The record will be passed or will
have high confidence if Street, City, and StateProvince supplied in
the input record match the Loqate reference dataset. Will have
moderate confidence if City is correct but StateProvince is not;
however, in this case the Loqate engine should able to identify the
StateProvince as City itself is the part of StateProvince. It will have
zero confidence if City or both fields (City and State Province) are
unable to parsed by the Loqate engine.

• 2—Locality (city or town). The record will be passed or will have high
confidence if both City and StateProvince supplied in the input record
match the Loqate reference dataset. Will have moderate confidence
if City is correct but StateProvince is not; however, in this case the
Loqate Engine should able to identify the StateProvince as City itself
is the part of StateProvince. It will have zero confidence if City or both
fields (City and StateProvince) are unable to be parsed by the Loqate
engine.

• 1—Administrative area (state or region). The record will be passed
or will have high confidence if the StateProvince supplied in the input
record matches the Loqate reference dataset.

• 0—None. This is equivalent to loosest match option.

Acceptance level

725Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Enables the duplicate handlingmask and specifies how duplicate records
are processed and removed. Select one or more of the following options:

Selected by default. Preprocess the input and remove
duplicates that occur in a single field.

Single

Selected by default. Pre-process the input and remove
duplicates across all fields.

Multi

Pre-process the input and remove duplicates in fields
that are not standard address fields.

Non-standard

Selected by default. Post-process the output from
verification and remove duplicates from non-verified
fields.

Output

Duplicate handling

Specifies a numeric value between 0 and 100 that indicates the degree
to which Validate Address Loqate will change an address in order to
obtain a match in the Loqate reference database. The lower the number,
the greater amount of change is allowed. A value of 100 means that
after parsing the input address is nearly identical to the validated
address. A value of 0 means that the parsed input address may be
completely changed in order to obtain a validated address.

Minimum match score

Specifies whether or not to return multiple address for those input
addresses that have more than one possible match.

For more information, see Returning Multiple Matches on page 726.

Return multiple addresses

Fails multiple addresses for those input addresses that have more than
one possible match.

Fail Multiple Matches

Returning Multiple Matches

If Validate Address Loqate finds multiple address in the postal database that are possible matches
for the input address, you can have Validate Address Loqate return the possible matches. For
example, the following address matches multiple addresses in the U.S. postal database:

PO BOX 1 New York, NY

Options

To return multiple matches, use the options described in the following table.

726Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 119: Multiple Match Option

Description/Valid ValuesOption Name

Indicates whether or not to return multiple address for those input addresses that
have more than one possible match.

Return multiple addresses

Next to the Return multiple addresses check box, enter a number between 1 and
10 that indicates the maximum number of addresses to return. The default value is
1.

Note: The difference between unchecking Return multiple addresses
and checking Return multiple addresses and specifying a maximum
number of results of 1 is that a multiple match will return a failure ifReturn
multiple addresses is unchecked, whereas a multiple match will return
one record ifReturn multiple addresses is checked and the maximum
number of results is 1.

Maximum results

To identify which output addresses are candidate addresses, you must check Include
result codes for individual fields on theOutput Data tab. When you do this, records
that are candidate addresses will have one or more "M" values in the field-level result
indicators.

Include result codes for individual
fields

Output

When you choose to return multiple matches, the addresses are returned in the address format you
specify. For information on specifying address format, see Options on page 721. To identify which
records are the candidate addresses, look for multiple "M" values in the field-level result indicators.
For more information, see Result Indicators on page 736.

Match Score Threshold Options

There are two options for setting match score thresholds.

Note: These options are not available in the Validate Address Loqate user interface; they
are located in the following file:

SpectrumDirectory/server/modules/loqate/env.properties

The MatchScoreAbsoluteThreshold option is used to specify the minimum match score a record
must reach to be considered a candidate for matching. The default value is 60, and the maximum
value is 100.

727Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

TheMatchScoreThresholdFactor is a value that represents a factor of the highest matching result.
This value is used as a cutoff for considering result candidates. The higher the value of the factor,
the higher the chance of getting a good verification result. The default value is 95 and the maximum
value is 100.

Output
The output from Validate Address Loqate contains various information depending on the output
categories you select.

Standard Address Output

Standard address output consists of four lines of the address which correspond to how the address
would appear on an address label. City, state/province, postal code, and other data is also included
in standard address output. Validate Address Loqate returns standard address output for validated
addresses if you select the Include a standard address check box. Standard address fields are
always returned for addresses that could not be validated regardless of whether or not you select
the Include a standard address check box. For non-validated addresses, the standard address
output fields contain the address as it appeared in the input ("pass through" data). If you want Validate
Address Loqate to standardize address according to postal authority standards when validation fails,
select the Include normalized data when no match is found check box.

Table 120: Standard Address Output

DescriptionField Name

Input data that could not be matched to a particular address component. For more
information, see About Additional Input Data.

AdditionalInputData

If the address was validated, the first line of the validated and standardized address.
If the address could not be validated, the first line of the input address without any
changes. There can be up to four address block output fields: AddressLine1 through
AddressLine4.

AddressLine1-4

The validated city name.City

The country in the format determined by what you selected in Country format:

• ISO Code
• UPU Code
• English

Country

728Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The validated firm or company name.FirmName

The validated ZIP Code™ or postal code.PostalCode

The 4-digit add-on part of the ZIP Code™. For example, in the ZIP Code™ 60655-1844,
1844 is the 4-digit add-on.

PostalCode.AddOn

The 5-digit ZIP Code™; for example 20706.PostalCode.Base

The validated state/province or its abbreviated value.StateProvince

Parsed Address Elements Output

Output addresses are formatted in the parsed address format if you select the Include matched
address elements check box. If you want Validate Address Loqate to return formatted data in the
Parsed Address format when validation fails (that is, a normalized address), select the Return
normalized data when no match is found check box.

Note: If you want Validate Address Loqate to always return parsed input data regardless of
whether or not validation is successful, select Include standardized input address elements.
For more information, see Parsed Input on page 732.

729Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 121: Parsed Address Output

DescriptionField Name

The AddressBlock output fields contain a formatted version
of the standardized or normalized address as it would be
printed on a physical mailpiece. Validate Address Global
formats the address into address blocks using postal
authority standards. Each line of the address is returned in
a separate address block field. There can be up to nine
address block output fields: AddressBlock1 through
AddressBlock9. For example, this input address:

AddressLine1: 4200 Parliament Place
AddressLine2: Suite 600
City: Lanham
StateProvince: MD
PostalCode: 20706

Results in this address block output:

AddressBlock1: 4200 PARLIAMENT PL STE 600
AddressBlock2: LANHAM MD 20706-1882

AddressBlock1-9

Apartment designator (such as STE or APT), for example:
123 E Main St APT 3

ApartmentLabel

Apartment number, for example: 123 E Main St APT 3ApartmentNumber

Secondary apartment number, for example: 123 E Main St
APT 3, 4th Floor

Note: In this release, this field will always be blank.

ApartmentNumber2

Descriptive name identifying an individual location.Building

Validated city nameCity

730Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Country. Format is determined by what you selected in
Country format:

• ISO Code
• UPU Code
• English

Country

The smallest geographic data element within a country, for
instance, USA County

County*

The validated firm or company nameFirmName

House number, for example: 123 E Main St Apt 3HouseNumber

Leading directional, for example: 123 E Main St Apt 3LeadingDirectional

Post office box number. If the address is a rural route
address, the rural route box number will appear here.

POBox

Validated postal code. For U.S. addresses, this is the ZIP
Code.

PostalCode

The largest geographic data element within a countryPrincipality *

Validated state or province nameStateProvince

Alternate street name; typically applies only to a specific
range of addresses on the street. If you do not allow street
aliases in the output then the street's "base" namewill appear
in the output regardless of whether or not there is an alias
for the street. for example: 123 E Main St Apt 3

StreetAlias

Street name, for example: 123 E Main St Apt 3StreetName

731Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Street suffix, for example: 123 E Main St Apt 3StreetSuffix

A smaller population center data element, dependent on the
contents of the Locality field. For instance, Turkish
Neighbourhood.

Subcity*

The dependent street or block data element within a country.
For instance, UK Dependent Street.

Substreet*

Trailing directional, for example: 123 Pennsylvania Ave NWTrailingDirectional

*This is a subfield and may not contain data.

Parsed Input

The output can include the input address in parsed form. This type of output is referred to as "parsed
input." Parsed input fields contain the address data that was used as input regardless of whether or
not Validate Address validated the address. Parsed input is different from the "parsed address
elements" output in that parsed address elements contain the validated address if the address could
be validated, and, optionally, the input address if the address could not be validated. Parsed input
always contains the input address regardless of whether or not Validate Address validated the
address.

To include parsed input fields in the output, select the Return parsed input data check box.

Table 122: Parsed Input

DescriptionField Name

Apartment designator (such as STE or APT), for example:
123 E Main St APT 3

ApartmentLabel.Input

Apartment number, for example: 123 E Main St APT 3ApartmentNumber.Input

Validated city nameCity.Input

732Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Country. Format is determined by what you selected in
Country format:

• ISO Code
• UPU Code
• English

Country.Input

The smallest geographic data element within a country, for
instance, USA County

County.Input*

The validated firm or company nameFirmName.Input

House number, for example: 123 E Main St Apt 3HouseNumber.Input

Leading directional, for example: 123 E Main St Apt 3LeadingDirectional.Input

Post office box number. If the address is a rural route
address, the rural route box number will appear here.

POBox.Input

Validated postal code. For U.S. addresses, this is the ZIP
Code.

PostalCode.Input

The largest geographic data element within a countryPrincipality.Input *

Validated state or province nameStateProvince.Input

Alternate street name; typically applies only to a specific
range of addresses on the street. If you do not allow street
aliases in the output then the street's "base" namewill appear
in the output regardless of whether or not there is an alias
for the street. The base name is the name that applies to
the entire street. For example: If StreetName is “N MAIN
ST” the StreetAlias field would contain “MAIN” and the
thoroughfare type,"ST", would be returned in the StreetSuffix
field.

StreetAlias.Input

733Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Street name, for example: 123 E Main St Apt 3StreetName.Input

Street suffix, for example: 123 E Main St Apt 3StreetSuffix.Input

A smaller population center data element, dependent on the
contents of the Locality field. For instance, Turkish
Neighbourhood.

Subcity.Input*

The dependent street or block data element within a country.
For instance, UK Dependent Street.

Substreet.Input*

Trailing directional, for example: 123 Pennsylvania Ave NWTrailingDirectional.Input

*This is a subfield and may not contain data.

Geocode Output

Validate Address Loqate returns the latitude/longitude, geocoding match code, dependent and double
dependent localities, dependent thoroughfare, subadministrative and superadministrative areas, and
the search distance as output. Match codes describe how well the geocoder matched the input
address to a known address; they also describe the overall status of a match attempt. Search distance
codes represent how close the geocode is to the actual physical location of an address.

734Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 123: Geocode Address Output

DescriptionField Name

This two-byte code reflects the status and level of geocode matching for an address.

The first byte represents the geocoding status and is one of the following:

Multiple candidate geocodes were found to match the input address, and
an average of these was returned

A

A geocode was able to be interpolated from the input addresses location
in a range

I

A single geocode was found matching the input addressP

A geocode was not able to be generated for the input addressU

The second byte represents the level of geocoding matching and is one of the
following:

Delivery point (post box or subbuilding)5

Premise or building4

Thoroughfare3

Locality2

Administrative area1

None0

Geocode.MatchCode

Eight-digit number in degrees and calculated to five decimal places (in the format
specified).

Latitude

Eight-digit number in degrees and calculated to five decimal places (in the format
specified).

Longitude

The radius of accuracy in meters, providing an indication of the probable maximum
distance between the given geocode and the actual physical location. This field is
derived from and dependent upon the accuracy and coverage of the underlying
reference data.

SearchDistance

735Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 124: City/Street/Postal Code Centroid Match Codes

Match CodeElement

P4Address Point

I4Address Point Interpolated

A4/P3Street Centroid

A3/P2/A2Postal Code/City Centroid

Note: Geocode.Match.Code does not return two coordinates for a street segment (such as
the beginning and ending of a portion of a street). Instead, with input resulting in return codes
of I3 (interpolated to thoroughfare or street level, where no input premise number was provided),
the complete street is used in the computation.

Result Indicators

Result indicators provide information about the kinds of processing performed on an address. There
are two types of result indicators:

Record-Level Result Indicators

Record-level result indicators provide data about the results of Validate Address Loqate processing
for each record, such as the success or failure of the match attempt, which coder processed the
address, and other details. The following table lists the record-level result indicators returned by
Validate Address Loqate.

Table 125: Record Level Indicators

DescriptionField Name

The level of confidence assigned to the address being returned. Range is from zero
(0) to 100; zero indicates failure, 100 indicates a very high level of confidence that
the match results are correct. For multiple matches, the confidence level is 0. For
details about how this number is calculated, see Introduction to the Validate
Address Confidence Algorithm.

Confidence

736Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

If no match was found, which address component could not be validated:

• ApartmentNumber
• HouseNumber
• StreetName
• PostalCode
• City
• Directional
• StreetSuffix
• Firm
• POBoxNumber

Note: More than one component may be returned, in a comma-separated
list.

CouldNotValidate

MatchScore provides an indication of the similarity between the input data and the
closest reference data match. It is significantly different from Confidence in that
Confidence indicates how much the input address changed to obtain a match,
whereas the meaning of Match Score varies between U.S. and non-U.S. addresses.

The int getFieldMatchscore (unit record, const char*) field is a decimal value between
0 and 100 that reflects the similarity between the identified input data and the closest
reference data match. A result of 100 indicates that no changes other than alias,
casing, or diacritic changes have been made to the input data. A result of 0 indicates
that there is no similarity between the input data and closest reference data match.

Note: The Validate Address Loqate and Advanced Matching Module
components both use the MatchScore field. The MatchScore field value in
the output of a dataflow is determined by the last stage to modify the value
before it is sent to an output stage. If you have a dataflow that contains
Validate Address Loqate and Advanced Matching Module components and
you want to see the MatchScore field output for each stage, use a
Transformer stage to copy the MatchScore value to another field. For
example, Validate Address Loqate produces an output field called
MatchScore and then a Transformer stage copies the MatchScore field from
Validate Address Loqate to a field called AddressMatchScore. When the
matcher stage runs it populates the MatchScore field with the value from
thematcher and passes through the AddressMatchScore value fromValidate
Address Loqate.

MatchScore

Which address coder processed the address:

The Loqate coder processed the address.LOQATE

ProcessedBy

737Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Reports the success or failure of the match attempt. For multiple matches, this field
is "F" for all the possible matches.

Successnull

FailureF

Status

Reason for failure, if there is one.

• UnableToValidate

Status.Code

Description of the problem, if there is one.

This value will appear if
Status.Code=UnableToValidate.

Address Not Found

Status.Description

Field-Level Result Indicators

Field-level result indicators describe how Validate Address Loqate handled each address element.
Field-level result indicators are returned in the qualifier "Result". For example, the field-level result
indicator for HouseNumber is contained in HouseNumber.Result.

To enable field-level result indicators, check the Include result codes for individual fields box.

The following table lists the field-level result indicators. If a particular field does not apply to an
address, the result indicator may be blank.

738Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 126: Field-Level Result Indicators

DescriptionField Name

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards.

F

Pass-through. The data was not used in the validation process, but it
was preserved in the output. U.S. and Canadian addresses only.

P

The apartment label is required but is missing from the input address.
U.S. addresses only.

R

Standardized. This option includes any standard abbreviations.S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and remained unchanged
from input.

V

ApartmentLabel.Result

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Pass-through. The data was not used in the validation process, but it was
preserved in the output. U.S. addresses that are an EWSmatch will have
a value of P. U.S. and Canadian addresses only.

P

The apartment number is required but is missing from the input address.
U.S. addresses only.

R

Standardized. This option includes any standard abbreviations. Does not
apply to U.S. addresses.

S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged from
input.

V

ApartmentNumber.Result

739Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Hyphens missing or punctuation errors. Canadian addresses only.F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
Does not apply to U.S. or Canadian addresses.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output.

P

The city is required but is missing from the input address. U.S. addresses
only.

R

Standardized. This option includes any standard abbreviations. Does not
apply to U.S. addresses.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and remained unchanged
from input.

V

City.Result

These result codes do not apply to U.S. or Canadian addresses.

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.

M

Standardized. This option includes any standard abbreviations.S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged
from input.

V

Country.Result

The smallest geographic data element within a country, for instance, USA CountyCounty.Result*

Corrected. U.S. addresses only.C

Pass-through. The data was not used in the validation process, but it
was preserved in the output. U.S. and Canadian addresses only.

P

Unmatched. U.S. and Canadian addresses only.U

Validated. The data was confirmed correct and remained unchanged
from input. U.S. addresses only.

V

FirmName.Result

740Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field. Canadian addresses
only.

A

Corrected. Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Out of range. Does not apply to U.S. or Canadian addresses.O

Pass-through. The data was not used in the validation process, but it
was preserved in the output. Canadian addresses only.

P

The house number is required but is missing from the input address.
Canadian addresses only.

R

Standardized. This option includes any standard abbreviations. Does not
apply to U.S. or Canadian addresses.

S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged
from input.

V

HouseNumber.Result

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. Non-blank input was corrected to a non-blank value. U.S.
addresses only.

C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Canadian addresses only.

P

Standardized. This option includes any standard abbreviations.S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged from
input. Does not apply to Canadian addresses.

V

LeadingDirectional.Result

741Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field. Canadian addresses
only.

A

Corrected. Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple matches. The input address matched multiple records in the
postal database, and each matching record has a different value in this
field. U.S. addresses only.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Canadian addresses only.

P

The P.O. Box number is required but is missing from the input address.
U.S. addresses only.

R

Standardized. This option includes any standard abbreviations.S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged
from input.

V

POBox.Result

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
Does not apply to Canadian addresses.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Does not apply to U.S. addresses.

P

The postal code is required but is missing from the input address. U.S.
addresses only.

R

Standardized. This option includes any standard abbreviations. Does not
apply to U.S. or Canadian addresses.

S

Unmatched. For example, if the street name does not match the postal
code, both StreetName.Result and PostalCode.Result will contain U.

U

Validated. The data was confirmed correct and remained unchanged from
input.

V

PostalCode.Result

742Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The ZIP Code™ contains only PO Box addresses. U.S. addresses only.P

The ZIP Code™ is a unique ZIP Code™ assigned to a specific company
or location. U.S. addresses only.

U

The ZIP Code™ is for military addresses. U.S. addresses only.M

The ZIP Code™ is a standard ZIP Code™.null

PostalCode.Type

The largest geographic data element within a countryPrincipality.Result *

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. addresses only.C

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
Does not apply to U.S. or Canadian addresses.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. U.S. and Canadian addresses only.

P

The state is required but is missing from the input address. U.S. addresses
only.

R

Standardized. This option includes any standard abbreviations. Does not
apply to U.S. addresses.

S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and remained unchanged from
input.

V

StateProvince.Result

An alternate name for a street; typically applies only to a specific range of addresses
on the street. If you do not allow street aliases in the output then the street's "base"
name will appear in the output regardless of whether or not there is an alias for the
street. The base name is the name that applies to the entire street. For example: If
StreetName is “N MAIN ST” the StreetAlias field would contain “MAIN” and the
thoroughfare type,"ST", would be returned in the StreetSuffix field.

StreetAlias.Result

743Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field. Canadian addresses
only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Does not apply to U.S. addresses.

P

Standardized. This option includes any standard abbreviations. U.S. and
Canadian addresses only.

S

Unmatched.U

Validated. The data was confirmed correct and remained unchanged from
input.

V

StreetName.Result

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Canadian addresses only.

P

Standardized. This option includes any standard abbreviations.S

Unmatched. Does not apply to U.S. addresses.U

Validated. The data was confirmed correct and remained unchanged from
input.

V

StreetSuffix.Result

A smaller population center data element, dependent on the contents of the Locality
field. For instance, Turkish Neighbourhood.

Subcity.Result*

The dependent street or block data element within a country. For instance, UK
Dependent Street.

Substreet.Result*

744Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

Appended. The field was added to a blank input field. U.S. and Canadian
addresses only.

A

Corrected. U.S. and Canadian addresses only.C

Formatted. The spacing and/or punctuation was changed to conform to
postal standards. Does not apply to U.S. or Canadian addresses.

F

Multiple. The input address matched multiple records in the postal
database, and each matching record has a different value in this field.
U.S. addresses only.

M

Pass-through. The data was not used in the validation process, but it was
preserved in the output. Canadian addresses only.

P

Standardized. This option includes any standard abbreviations.S

Unmatched. Does not apply to Canadian addresses.U

Validated. The data was confirmed correct and remained unchanged from
input.

V

TrailingDirectional.Result

*This is a subfield and may not contain data.

The AVC Code

The Address Verification Code (AVC) is an 11-byte code that is made up of accuracy indicators for
addresses; the codes tell you the quality of the processing results and provide guidelines on how to
correct the input data if necessary. Each individual address receives its own code. This code is
automatically returned within your dataflow output. An example of an AVC is:

V44-I44-P6-100

An AVC has eight parts:

• Verification Status
• Post-Process Verification Match Level
• Pre-Process Verification Match Level
• Parsing Status
• Lexicon Identification Match Level
• Context Identification Match Level
• Postcode Status
• Matchscore

Verification Status

The level to which an address was verified.

745Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• V—Verified. A complete match was made between the input data and a single record from the
available reference data. For simple address validation, this is considered the best code to return.

• P—Partially verified. A partial match was made between the input data and a single record from
the available reference data. This could mean that there is granular data for the address information
that was provided, but additional information is required to return a full validation.

• A—Ambiguous. There are multiple addresses that could match the input.
• U—Unable to verify. This gets returned when there is not enough information to verify an address
or when the input query is unreadable. The output fields will contain the input data.

• R—Reverted. The record could not be verified to the specified minimum acceptable level. This
occurs when advanced options such as minimum reversion levels are set on a process. The output
fields will contain the input data.

• C—Conflict. There is more than one close reference data match with conflicting values.

Post-Process Verification Match Level

The level to which the input data matches the available reference data after processing.

• 5—Delivery point (building or post box). The record will be passed or will have high confidence if
ApartmentNumber, HouseNumber, Street, City, and StateProvince supplied in the input record
match to the Loqate reference dataset. Will have moderate confidence if ApartmentNumber is
correct but other remaining fields are incorrect, but in this case the Loqate engine should able to
identify the ApartmentNumber as ApartmentNumber is at a more granular level. It will have zero
confidence if ApartmentNumber and other fields are unable to parsed by the Loqate engine.

• 4—Premise or building. The record will be passed or will have high confidence if House Number,
Street, City, and StateProvince supplied in the input record match the Loqate reference dataset.
Will have moderate confidence if HouseNumber is correct but the other fields are not; however, in
this case the Loqate engine should able to identify the HouseNumber because HouseNumber is
at a more granular level. It will have zero confidence if the HouseNumber and other fields are
unable to parsed by the Loqate engine.

• 3—Thoroughfare, road, or street. The record will be passed or will have high confidence if Street,
City, and StateProvince supplied in the input record match the Loqate reference dataset. Will have
moderate confidence if City is correct but StateProvince is not; however, in this case the Loqate
engine should able to identify the StateProvince as City itself is the part of StateProvince. It will
have zero confidence if City or both fields (City and State Province) are unable to parsed by the
Loqate engine.

• 2—Locality (city or town). The record will be passed or will have high confidence if both City and
StateProvince supplied in the input record match the Loqate reference dataset. Will have moderate
confidence if City is correct but StateProvince is not; however, in this case the Loqate Engine
should able to identify the StateProvince as City itself is the part of StateProvince. It will have zero
confidence if City or both fields (City and StateProvince) are unable to be parsed by the Loqate
engine.

• 1—Administrative area (state or region). The record will be passed or will have high confidence if
the StateProvince supplied in the input record matches the Loqate reference dataset.

• 0—None. This is equivalent to loosest match option.

746Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Pre-Process Verification Match Level

The level to which the input data matches the available reference data before processing.

• 5—Delivery point (building or post box)
• 4—Premise or building.
• 3—Thoroughfare, road, or street.
• 2—Locality (city or town).
• 1—Administrative area (state or region).
• 0—None.

Parsing Status

The level to which an address was parsed.

• I—Identified and parsed. The input data has been identified and placed into components. For
example, with "123 Kingston Av" Validate Address Loqate would be able to determine that "123"
was a Premise Number, "Kingston" was the Thoroughfare Name, and "Av" or "Avenue" would be
the Thoroughfare Type.

• U—Unable to parse. Validate Address Loqate was unable to identify and parse the input data. As
with the "Unverified" verification status, the input data was incomplete or vague.

Lexicon Identification Match Level

The level to which the input data has some recognized form through the use of pattern matching (for
instance, a numeric value could be a premise number) and lexicon matching (for example, "rd" could
be Thoroughfare Type "road"; "London" could be a locality, and so on).

• 5—Delivery point (building or post box)
• 4—Premise or building.
• 3—Thoroughfare, road, or street.
• 2—Locality (city or town).
• 1—Administrative area (state or region).
• 0—None.

Context Identification Match Level

The level to which the input data can be recognized based on the context in which it appears. This
is the least accurate form of matching and is based on identifying a word as a particular address
element. For example, input could be determined to be a thoroughfare because it was preceded by
something that could be a premise and followed by something that could be a locality, the latter items
being identified through a match against the reference data or the lexicon.

• 5—Delivery point (building or post box)
• 4—Premise or building.

747Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• 3—Thoroughfare, road, or street.
• 2—Locality (city or town).
• 1—Administrative area (state or region).
• 0—None.

Postcode Status

The level to which a postal code was verified.

• P8—PostalCodePrimary and PostalCodeSecondary verified.
• P7—PostalCodePrimary verified, PostalCodeSecondary added or changed.
• P6—PostalCodePrimary verified.
• P5—PostalCodePrimary verified with small change.
• P4—PostalCodePrimary verified with large change.
• P3—PostalCodePrimary added.
• P2—PostalCodePrimary identified by lexicon.
• P1—PostalCodePrimary identified by context.
• P0—PostalCodePrimary empty.

Match Score

A numeric value between 0 and 100 representing the similarity between the identified input data and
the output data for the record. A result of 100 means that no changes other than additions,alias,
casing, or diacritic changes have been made to the input data. A result of 0 means there is no
similarity between the input data item and the output data provided.

AMAS Output

The following table lists the standard fields that are output by Validate Address Loqate.

Table 127: Output Fields

DescriptionField Name

Standard barcode based on the DPID.

Failure (no barcode found)F

Success20-digit number

Barcode

748Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The Delivery Point Identifier. An eight-digit number from the Australia Post Postal
Address File that uniquely identifies a mail delivery point, such as a street address.

Note: This field will contain "00000000" for Australian addresses that are
not AMAS-verified and will be empty for non-Australian addresses.

DPID

The floor/level number, for example: 123 E Main St Apt 3, 4th FloorFloorNumber

The floor/level type, for example: 123 E Main St Apt 3, 4th FloorFloorType

The postal delivery number, for example: PO Box 42PostalBoxNum

Universal Name Stages

Name Parser (DEPRECATED)
Attention: The Name Parser stage is deprecated and may not be supported in future releases. Use
Open Name Parser for parsing names.

Name Parser breaks down personal and business names and other terms in the name data field
into their component parts. The parsing process includes an explanation of the function, form and
syntactical relationship of each part to the whole. These parsed name elements are then subsequently
available to other automated operations such as namematching, name standardization, or multirecord
name consolidation.

Name parsing does the following:

• Determines the entity type of a name in order to describe the function which the name performs.
Name entity types are divided into two major groupings: Personal names and business names with
subgroups within these major groupings.

• Determines the form of a name in order to understand which syntax the parser should follow for
parsing. Personal names usually take on a natural (signature) order or a reverse order. Business
names are usually ordered hierarchically.

• Determines and labels the component parts of a name so that the syntactical relationship of each
name part to the entire name is identified. The personal name syntax includes prefixes, first, middle,
and last name parts, suffixes and account description terms among other personal name parts.

749Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The business name syntax includes the primary text, insignificant terms, prepositions, objects of
the preposition and suffix terms among other business name parts.

• Determines the gender of the name. The gender is determined based on cultural assumptions
which you specify. For example, Jean is a male name in France but a female name in the U.S. If
you know the names you are processing are from France, you could specify French as the gender
determination culture. The Name Parser uses data from the First Name and Compound First Names
tables to determine gender. If a name is not found in either table and a title is present in the name,
the parser checks the Title table to determine gender. Otherwise, the gender is marked as unknown.

Note: If a field on your input record already contains one of the supported cultures, you can
predefine the GenderDeterminationSource field in your input to override the Gender
Determination Source in the GUI.

• Assigns a parsing score which indicates the degree of confidence which the parser has that its
parsing is correct.

Input
Attention: The Name Parser stage is deprecated and may not be supported in future releases. Use
Open Name Parser for parsing names.

750Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 128: Name Parser Input

Description / Valid ValuesField Name

The culture of the name data to use to determine gender. Default uses cross-cultural
rules. For example, Jean is commonly a female name and Default identifies it as
such, but it is identified as a male name if you select French. The options are listed
below along with example countries for each culture. Note that the list of countries
under each culture is not exhaustive.

Bosnia, Poland, Albania.SLAVIC

Armenia.ARMENIAN

Bulgaria, Cayman Islands, Ireland, U.S., U.K.DEFAULT

France.FRENCH

Denmark, Finland, Iceland, Norway, Sweden.SCANDINAVIAN

Austria, Germany, Luxembourg, Switzerland,
The Netherlands.

GERMANIC

Greece.GREEK

Hungary.HUNGARIAN

Italy.ITALIAN

Portugal.PORTUGUESE

Romania.ROMANIA

Spain.HISPANIC

Tunisia.ARABIC

GenderDeterminationSource is also used by Name Variant Finder to limit the returned
name variations based on culture. For more information, see Name Variant Finder
on page 770.

GenderDeterminationSource

The name you want to parse. This field is required.Name

Options
Attention: The Name Parser stage is deprecated and may not be supported in future releases. Use
Open Name Parser for parsing names.

To specify the Name Parser options, double-click the instance of Name Parser on the canvas. The
Name Parser Options dialog displays.

751Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 129: Name Parser Options

DescriptionOption

Check this box to parse personal names.Parse personal names

Click this box to separate names containing more than one individual into multiple
records, for example, Bill & Sally Smith.

When a conjoined record results in two separate name records, a Parser Record ID
output field is generated. Each pair of separate name records are identified with the
same Parser Record ID.

Separate conjoined names into
multiple recordsSelect a match
results in theMatch Results List and
then click Remove.

Determines how the Name Parser assigns a gender to the name. For most cases,
Default is the best setting because it covers a wide variety of names. If you are
processing names from a specific culture, select that culture. Selecting a specific
culture helps ensure that the proper gender is assigned to the names. For example,
if you leave Default selected, then the name Jean is identified as a female name. If
you select French, it is identified as a male name.

Note: If you select a culture but the name is not found in that culture, gender
is determined using the Default culture, which includes data from a variety
of cultures.

Gender Determination SourceSelect
a match results in the Match
Results List and then clickRemove.

Specifies how the name fields are ordered in your input records. One of the following:

The name fields are ordered by Title, First Name, Middle
Name, Last Name, and Suffix.

Natural

The name fields are ordered by Last Name first.Reverse

The name fields are ordered using a combination of natural
and reverse.

Mixed

Order

Retains punctuation in the parsed personal name field.Retain Periods

Check this box to parse business names.Parse Business Names

Check this box to return punctuation to the parsed business name field.Retain Periods

752Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Click any of the User-Defined Tables to add values to existing values in the various
parser tables. This capability enables you to customize tables for your unique business
environment. Click Configure to select an XML file that contains the values that you
want to add. For more information about user-defined tables, see Modifying Name
Parser User-Defined Tables on page 753.

User-Defined Table

Modifying Name Parser User-Defined Tables

Attention: The Name Parser stage is deprecated and may not be supported in future releases. Use
Open Name Parser for parsing names.

You can add, modify, and delete values in the Name Parser tables to customize them for your unique
business environment.

Name Parser's user-defined tables are XML files located by default in the <Drive>:\Program
Files\Precisely\Spectrum\server\modules\parser\data folder. Spectrum Technology
Platform includes the following user-defined tables:

UserAccountDescriptions.xml

Table 130: UserAccountDescriptions.xml Columns

Description / Valid ValuesColumn Name

A lookup term commonly found in an Account Description. Any single-word text.
Case insensitive.

LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
ART
AND

]]>
</deleted-entry-group>

</deleted-entries>

753Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

<added-entries delimiter-character="|">
<![CDATA[

LookupValue
A/C
ACCOUNT
EXP

]]>
</added-entries>

</table-data>

UserCompanyPrepositions.xml

Table 131: UserCompanyPrepositions.xml Columns

Description / Valid ValuesColumn Name

Any preposition (for example, "of" or "on") commonly found in company names. Any
single-word text. Case insensitive.

LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
AROUND
NEAR

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
ABOUT
AFTER
ACROSS

]]>
</added-entries>

</table-data>

754Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

UserCompanySuffixes.xml

Table 132: UserCompanySuffixes.xml Columns

Description / Valid ValuesColumn Name

Any suffix commonly found in company names. Examples include "Inc." and "Co."
Any single-word text. Case insensitive.

LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
SANDY
CLUE

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
LTD
LLC
CO
INC

]]>
</added-entries>

</table-data>

UserCompanyTerms.xml

Table 133: UserCompanyTerms.xml Columns

Description / Valid ValuesColumn Name

Any term commonly found in a company name. Any single-word text. Case insensitive.LookupValue

755Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
MARY
BLUE

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
ARC
ARCADE
ASSEMBLY
ARIZONA

]]>
</added-entries>

</table-data>

UserCompoundFirstNames.xml

This table contains user-defined compound first names. Compound names are names that consist
of two words.

Table 134: UserCompoundFirstNames.xml Columns

Description / Valid ValuesColumn Name

The compound first name. Maximum of two words. Case insensitive.FirstName

The culture in which this FirstName/Gender combination applies. You may use any
of the values that are valid in the GenderDeterminationSource input field. For more
information, see Input on page 750.

Culture

756Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesColumn Name

The gender most commonly associated with this FirstName/Culture combination.
One of the following:

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known. Unknown is assumed
if this field is left blank.

U

Gender

Not used in this release. You may leave this column blank.Frequency

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

FirstName
ANN MARIE
BILLY JOE

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Frequency
KAREN SUE|0.126
BILLY JOE|0.421

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Gender|Culture
JEAN ANN|M|DEFAULT
JEAN CLUADE|F|FRENCH

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
FirstName|Gender|Culture
JOHN Henry|M|DEFAULT
A'SHA A'MAR|F|ARABIC
BILLY JO|A|DEFAULT

757Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

]]>
</added-entries>

</table-data>

UserConjunctions.xml

This table contains a list of user-defined conjunctions, such as "and", "or", or "&".

Table 135: UserConjunctions.xml Columns

Description / Valid ValuesColumn Name

Any conjunction. Must be a single word. Case insensitive.LookupValue

Example entries:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
FIND
CARE
%

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
&
AND
OR

]]>
</added-entries>

</table-data>

758Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

UserFirstNames.xml

Table 136: UserFirstNames.xml Columns

Description / Valid ValuesColumn Name

The first name described by this table row. Case insensitive.FirstName

The gender most commonly associated with this FirstName/Culture combination.
One of the following:

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known. Unknown is assumed
if this field is left blank.

U

Gender

The culture in which this FirstName/Gender combination applies. You may use any
of the values that are valid in the GenderDeterminationSource input field. For more
information, see Input on page 750.

Culture

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

FirstName
AADEL
AADIL

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName
A'SACE
A'BOCKETT

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Gender|Culture

759Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

ALII|M|DEFAULT
AISHA|F|ARABIC

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Gender
JOHE|M

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
FirstName|Gender|Culture
JOHE|M|DEFAULT
A'SHAN|F|ARABIC

]]>
</added-entries>

</table-data>

UserGeneralSuffixes.xml

This table contains a list of user-defined suffixes used in personal names that are not maturity suffixes,
such as "MD" or "PhD".

Table 137: UserGeneralSuffixes.xml Columns

Description / Valid ValuesColumn Name

Any suffix that is frequently applied to personal names and is not a maturity suffix.
Must be a single word. Case insensitive.

LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
AND
WILL
TUNA

]]>
</deleted-entry-group>

760Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
ACCOUNTANT
ATTORNEY
ANALYST
ASSISTANT

]]>
</added-entries>

</table-data>

UserLastNamePrefixes.xml

This table contains a list of user-defined prefixes that occur in a person's last name such as "Van",
"De", or "La".

Table 138: UserLastNamePrefixes.xml Columns

Description / Valid ValuesColumn Name

Any prefix that occurs as part of an individual's last name. Any single-word text. Case
insensitive.

LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
DO
RUN
ANIMAL

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
D'
DA
DEN
DEL

761Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

]]>
</added-entries>

</table-data>

UserLastNames.xml

Table 139: UserLastNames.xml Columns

Description / Valid ValuesColumn Name

The last name described by this table row. Case insensitive.LastName

The gender most commonly associated with this FirstName/Culture combination.
One of the following:

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known. Unknown is assumed
if this field is left blank.

U

Gender

The culture in which this FirstName/Gender combination applies. You may use any
of the values that are valid in the GenderDeterminationSource input field. For more
information, see Input on page 750.

Culture

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LastName
Rusod
AADIL

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
LastName

762Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

KAASEEY
JOIEN

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LastName|Culture|Gender
SMITH|ENGLISH|A
WILSON|ENGLISH|A
JONES|ENGLISH|A

]]>
</added-entries>

</table-data>

UserMaturitySuffixes.xml

This table contains user-defined generational suffixes used in a person's name, such as "Jr." or "Sr.".

Table 140: UserMaturitySuffixes.xml Columns

Description / Valid ValuesColumn Name

A generational suffix used in personal names. Any single-word text. Case insensitive.LookupValue

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
I
V
18
VI

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue
I
II

763Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

III
]]>

</added-entries>
</table-data>

UserTitles.xml

This table contains user-defined titles used in a person's name, such as "Mr." or "Ms."

Table 141: UserTitles.xml Columns

Description / Valid ValuesColumn Name

A title used in personal names. Any single-word text. Case insensitive.LookupValue

The gender most commonly associated with this title. One of the following:

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known. Unknown is assumed
if this field is left blank.

U

Gender

Example entry:

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

LookupValue
Belt
Friend
Thursday
Red

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
LookupValue|Gender
Mrs|F

764Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Mr|M
Most|F

]]>
</added-entries>

</table-data>

Sample User-Defined Table

The figure below shows a sample UserFirstNames.xml table and the syntax to use when modifying
user-defined tables.

<table-data>
<deleted-entries delimiter-character="|">

<deleted-entry-group>
<![CDATA[

FirstName
AADEL
AADIL

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Frequency
A'SACE|0.126
A'BECKETT|0.421

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Gender|Culture|VariantGroup
ALI|M|DEFAULT|GROUP88
AISHA|F|ARABIC|GROUP43

]]>
</deleted-entry-group>
<deleted-entry-group>

<![CDATA[
FirstName|Gender
JOHN|M

]]>
</deleted-entry-group>

</deleted-entries>
<added-entries delimiter-character="|">

<![CDATA[
FirstName|Gender|Culture
JOHN|M|DEFAULT
A'SHA|F|ARABIC
JAMES|M|DEFAULT

]]>
</added-entries>

765Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

</table-data>

Output
Attention: The Name Parser stage is deprecated and may not be supported in future releases. Use
Open Name Parser for parsing names.

Table 142: Name Parser Output

Description / Valid ValuesFormatField Name

An account description that is part of the name. For example, in "Mary
Jones Account # 12345", the account description is "Account#12345".

StringAccountDescription

Indicates the type of name. One of the following:

The name is a company name.Firm

The name is an individual person's name.Personal

StringEntityType

Fields Related to Names of Companies

The first object of a preposition occurring in firm name. For example, in
the firm name "Pratt & Whitney Division of United Technologies", the
first object of a preposition is "United Technologies".

StringFirmModifier.1.Object

The first preposition occurring in firm name. For example, in the firm
name "Pratt & Whitney Division of United Technologies", "of" would be
the first preposition.

StringFirmModifier.1.Preposition

The second object of a preposition occurring in firm name. For example,
in the firm name "Church of Our Lady of Lourdes", the second object of
a preposition is the second "Lourdes".

StringFirmModifier.2.Object

The second preposition occurring in firm name. For example, in the firm
name "Church of Our Lady of Lourdes", the second preposition is the
second "of".

StringFirmModifier.2.Preposition

766Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesFormatField Name

The name of a company. For example, "Precisely Software, Inc."StringFirmName

The base part of a company's name. For example, "Precisely Software".StringFirmPrimary

The corporate suffix. For example, "Co." and "Inc."StringFirmSuffix

Fields Related to Names of
Individual People

The first name of a person.StringFirstName

A numeric ID that indicates the group of similar names to which first
name belongs. For example, Muhammad, Mohammed, and Mehmet all
belong to the same Name Variant Group. The actual group ID is assigned
when the add-on data is loaded.

This field is only populated if you have purchased the Name Variant
Group feature.

StringFirstNameVariantGroup

A person's gender as determined by analyzing the first name. One of
the following:

Ambiguous. The name is both a male and a female name.
For example, Pat.

A

Female. The name is a female name.F

Male. The name is a male name.M

Unknown. The name could not be found in the gender table.U

StringGenderCode

The culture used to determine a name's gender. If the name could not
be found in the gender table, this field is blank.

StringGenderDeterminationSource

A person's general/professional suffix. For example, MD or PhD.StringGeneralSuffix

The last name of a person.StringLastName

767Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesFormatField Name

A person's maturity/generational suffix. For example, Jr. or Sr.StringMaturitySuffix

The middle name of a person.StringMiddleName

Score representing quality of the parsing operation, from 0 to 100. 0
indicates poor quality and 100 indicates high quality.

StringNameScore

A unique ID assigned to each input record.StringParserRecordID

A person's title, such as Mr., Mrs., Dr., or Rev.StringTitleOfRespect

Fields Related to Conjoined
Names

The first name of the second person in a conjoined name. An example
of a conjoined name is "John and Jane Smith."

StringPersonalName.2.FirstName

A numeric ID that indicates the group of similar names to which first
name of the second person in a conjoined name belongs. For example,
Muhammad, Mohammed, and Mehmet all belong to the same Name
Variant Group. The actual group ID is assigned when the add-on data
is loaded.

This field is only populated if you have purchased the Name Variant
Group feature.

StringPersonalName.2.FirstNameVariantGroup

The gender of the second person in a conjoined name as determined
by Name Parser analyzing the first name. An example of a conjoined
name is "John and Jane Smith." One of the following:

Ambiguous. The name is both a male and a female name.
For example, Pat.

A

Female. The name is a female name.F

Male. The name is a male name.M

Unknown. The name could not be found in the gender table.U

StringPersonalName.2.GenderCode

768Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesFormatField Name

The culture used to determine the gender of the second person in a
conjoined name. An example of a conjoined name is "John and Jane
Smith."

StringPersonalName.2.GenderDeterminationSource

The general/professional suffix of the second person in a conjoined
name. An example of a conjoined name is "John and Jane Smith."
Examples of general suffixes are MD and PhD.

StringPersonalName.2.GeneralSuffix

The last name of the second person in a conjoined name. An example
of a conjoined name is "John and Jane Smith."

StringPersonalName.2.LastName

The maturity/generational suffix of the second person in a conjoined
name. An example of a conjoined name is "John and Jane Smith."
Examples of maturity suffixes are Jr. and Sr.

StringPersonalName.2.MaturitySuffix

Themiddle name of the second person in a conjoined name. An example
of a conjoined name is "John and Jane Smith."

StringPersonalName.2.MiddleName

The title of respect for the second name in a conjoined name. For
example, "Mr. and Mrs. Smith" is a conjoined name. Examples of titles
of respect are Mr., Mrs., and Dr.

StringPersonalName.2.TitleOfRespect

The first name of the third person in a conjoined name. For example,
"Mr. & Mrs. John Smith & Dr. Mary Jones" is a conjoined name.

StringPersonalName.3.FirstName

A numeric ID that indicates the group of similar names to which first
name of the second person in a conjoined name belongs. For example,
Muhammad, Mohammed, and Mehmet all belong to the same Name
Variant Group. The actual group ID is assigned when the add-on data
is loaded.

This field is only populated if you have purchased the Name Variant
Group feature.

StringPersonalName.3.FirstNameVariantGroup

769Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Description / Valid ValuesFormatField Name

The gender of the third person in a conjoined name as determined by
Name Parser analyzing the first name. An example of a conjoined name
is "Mr. & Mrs. John Smith & Adam Jones". One of the following:

Ambiguous. The name is both a male and a female name.
For example, Pat.

A

Female. The name is a female name.F

Male. The name is a male name.M

Unknown. The name could not be found in the gender table.U

StringPersonalName.3.GenderCode

The culture used to determine the gender of the third person in a
conjoined name. "Mr. & Mrs. John Smith & Adam Jones".

StringPersonalName.3.GenderDeterminationSource

The general/professional suffix of the third person in a conjoined name.
An example of a conjoined name is "Mr. & Mrs. John Smith & Adam
Jones PhD." Examples of general suffixes are MD and PhD.

StringPersonalName.3.GeneralSuffix

The last name for the third person in a conjoined name. For example,
"Mr. & Mrs. John Smith & Dr. Mary Jones" is a conjoined name.

StringPersonalName.3.LastName

The maturity/generational suffix of the third person in a conjoined name.
An example of a conjoined name is "Mr. & Mrs. John Smith & Adam
Jones Sr." Examples of maturity suffixes are Jr. and Sr.

StringPersonalName.3.MaturitySuffix

The middle name for the third person in a conjoined name. For example,
"Mr. & Mrs. John Smith & Dr. Mary Jones" is a conjoined name.

StringPersonalName.3.MiddleName

The title of respect for the third name in a conjoined name. For example,
"Mr. &Mrs. John Smith & Dr. Mary Jones" is a conjoined name. Examples
of titles of respect are Mr., Mrs., and Dr.

StringPersonalName.3.TitleOfRespect

Name Variant Finder
Name Variant Finder works in either first name or last name mode to query a database to return
alternative versions of a name. For example, "John" and "Jon" are variants for the name "Johnathan".
Name Variant Finder requires add-on dictionaries that can be installed using the Universal Name,

770Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Data Normalization, and Advanced Matching database load utility. Contact your sales representative
for information on how to obtain these optional culture-specific dictionaries.

Input

Table 143: Name Variant Finder Input Fields

Description / Valid ValuesField Name

The name for which you want to find variants, if the name is a given name.FirstName

The name for which you want to find variants, if the name is a surname.LastName

The gender of the name in the FirstName field. One of the following:

Note: Gender codes only apply to first names, not last names.

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known.U

GenderCode

The culture most commonly associated with the name in the FirstName or LastName
field. You can use the Name Parser or Open Parser stages to populate this field if
you do not know the ethnicity for a name.

Note: This field was formerly named GenderDeterminationSource.

Ethnicity

Options

Table 144: Name Variant Finder Options

DescriptionOption

Finds name variations based on first name.First Name

771Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Finds name variations based on last name.Last Name

Returns the name variations only for the gender specified in the record's GenderCode
field. For information about the GenderCode field, see Input on page 771.

Gender Code

Returns name variations only for the culture specified in the record's Ethnicity field.
For information about the Ethnicity field, see Input on page 771.

Ethnicity

Returns the English romanized version of the name. A romanized name is one that
has been converted from a non-Latin script to the Latin script. For example, Achin

is the Romanized version of the Korean name .

Romanized

Returns the name in the native script of the name's culture. For example, a Korean
name would be returned in Hangul.

Native

If you select Native, you can choose to return Japanese names in Kana by selecting
this option. Kana is comprised of hiragana and katakana scripts.

Note: You must have licensed the Asian Plus Pack database to look up
Japanese name variants. For more information, contact your sales executive.

Kana

If you select Native, you can choose to return Japanese names in Kanji by selecting
this option. Kanji is one of the scripts used in the Japanese language.

Note: You must have licensed the Asian Plus Pack database to look up
Japanese name variants. For more information, contact your sales executive.

Kanji

772Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output

Table 145: Name Variant Finder Outputs

Description / Valid ValuesFormatField Name

Identifies a grouping of an input name and its name variations. Each
input name is given a CandidateGroup number. The variations for that
input name are given the same CandidateGroup number.

StringCandidateGroup

The culture of a name determined by the Core Name and add-on
dictionaries.

Note: This field was formerly named
GenderDeterminationSource.

StringEthnicity

The given name of a person.StringFirstName

The gender of a name determined by the Core Name and add-on
dictionaries. One of the following:

The name is a male name.M

The name is a female name.F

Ambiguous. The name can be either male or female.A

Unknown. The gender of this name is not known.U

StringGenderCode

The last name of a person.StringLastName

Specifies how the name was used in the matching process. One of the
following:

A suspect record is used as input to a query.Suspect

A candidate record is a result returned from a
query.

Candidate

StringTransactionalRecordType

773Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Open Name Parser
Open Name Parser breaks down personal and business names and other terms in the name data
field into their component parts. These parsed name elements are then subsequently available to
other automated operations such as namematching, name standardization, or multiple-record name
consolidation.

Open Name Parser does the following:

• Determines the type of a name in order to describe the function that the name performs. Name
entity types are divided into two major groups: personal names and business names. Within each
of these major groups are subgroups.

• Determines the form of a name in order to understand which syntax the parser should follow for
parsing. Personal names usually take on a natural (signature) order or a reverse order. Business
names are usually ordered hierarchically.

• Determines and labels the component parts of a name so that the syntactical relationship of each
name part to the entire name is identified. The personal name syntax includes prefixes, first, middle,
and last name parts, suffixes, and account description terms, among other personal name parts.
The business name syntax includes the firm name and suffix terms.

• Parses conjoined personal and business names and either retains them as one record or splits
them into multiple records. Examples of conjoined names include "Mr. and Mrs. John Smith" and
"Baltimore Gas & Electric dba Constellation Energy".

• Parses output as records or as a list.
• Enables you to use the Open Parser Domain Editor to create new domains that can be used in the
Open Name Parser Advanced Options.

• Assigns a parsing score that reflects the degree of confidence that the parsing is correct.

Input

Table 146: Open Name Parser Input

DescriptionField Name

The culture of the input name data. The options are listed below.

Global culture (default).Null (empty)

German.de

Spanish.es

Japanese.ja

Note: If you added your own domain using the Open Parser Domain Editor,
the cultures and culture codes for that domain are also valid.

CultureCode

774Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionField Name

The name you want to parse. This field is required.Name

Options
Open Name Parser options can be configured at the stage level, through any of the Spectrum
Technology Platform clients, or at runtime, using dataflow options.

Parsing Options

The following table lists the options that control the parsing of names.

Table 147: Open Name Parser Parsing Options

DescriptionOption Name

Specifies whether to parse personal names.

The name fields are ordered by Title, First
Name, Middle Name, Last Name, and Suffix.

Natural

The name fields are ordered by Last Name
first.

Reverse

The name fields are ordered using a
combination of natural and reverse.

Both

Parse personal names

Specifies whether to parse conjoined names.Conjoined names

Specifies whether to separate names containing more than
one individual into multiple records, for example, Bill &
Sally Smith.

Use a Unique ID Generator stage to create an ID for each
of the split records.

Split conjoined names into multiple records

Specifies whether to parse business names.Parse business names

Specifies whether to return the parsed name elements in a
list form.

Output results as list

775Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption Name

Specifies how to balance performance versus quality. A
faster performance will result in lower quality output; likewise,
higher quality will result in slower performance. When this
threshold is met, no other processing will be performed on
the record.

The default is 100.

Shortcut threshold

Cultures Options

The following table lists the options that control name cultures.

Table 148: Open Name Parser Cultures Options

DescriptionOption Name

Specifies which culture(s) you want to include in the parsing
grammar. Global Culture is the default selection.

Note: If you added your own domain using the
Open Parser Domain Editor, the cultures and
culture codes for that domain will appear here as
well.

Click theUp andDown buttons to set the order in which you
want the cultures to run.

Cultures

Advanced Options

The following table lists the advanced options for name parsing.

776Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Table 149: Open Name Parser Advanced Options

DescriptionOption

Use the Domain drop-down to select the appropriate domain
for each Name.

Click theUp andDown buttons to set the order in which you
want the parsers to run. Results will be returned for the first
domain that scores higher than the number set in the
Shortcut threshold field. If no domain reaches that
threshold, results for the domain with the highest score are
returned. If multiple domains reach the threshold at the same
time, priority goes to the domain that was run first
(determined by the order set here) and its results will be
returned.

Note: If you added your own domain using the
Open Parser Domain Editor, that domain will appear
here as well.

Advanced Options

Configuring Options at Runtime

Open Name Parser options can be configured and passed at runtime if they are exposed as dataflow
options. This enables you to override the existing configuration with JSON-formatted name parsing
strings. You can also set stage options when calling the job through a process flow or through the
job executor command-line tool.

To define Open Name Parser options at runtime:

1. In Enterprise Designer, open a dataflow that uses the Open Name Parser stage.
2. Save and expose that dataflow.
3. Go to Edit > Dataflow Options.
4. In the Map dataflow options to stages table, expand Open Name Parser and edit options as

necessary. Check the box for the option you want to edit, then change the value in the Default
value drop-down.

5. Optional: Change the name of the options in the Option label field.
6. Click OK twice.

777Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Output

Table 150: Open Name Parser Output

DescriptionFormatField Name

An account description that is part of the name. For example, in "Mary
Jones Account # 12345", the account description is "Account#12345".

StringAccountDescription

A hierarchical field that contains a list of parsed elements. This field is
returned when you check the Output results as list box under Parsing
Options.

StringNames

Fields Related to Names of Companies

Indicates that the name of a firm contains a conjunction such as "d/b/a"
(doing business as), "o/a" (operating as), and "t/a" (trading as).

StringFirmConjunction

The name of a company. For example, Precisely.StringFirmName

The corporate suffix. For example, "Co." and "Inc."StringFirmSuffix

Indicates that the name is a firm rather than an individual.StringIsFirm

Fields Related to Names of
Individual People

Indicates that the name contains a conjunction such as "and", "or", or
"&".

StringConjunction

The culture codes contained in the input data.StringCultureCode

778Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

Identifies the culture-specific grammar that was used to parse the data.

Global culture (default).Null (empty)

German.de

Spanish.es

Japanese.ja

Note: If you added your own domain using the Open Parser
Domain Editor, the cultures and culture codes for that domain
will appear in this field as well.

StringCultureCodeUsedToParse

The first name of a person.StringFirstName

A person's general/professional suffix. For example, MD or PhD.StringGeneralSuffix

Indicates whether an output record was parsed. Values are true or false.StringIsParsed

Indicates whether the name is an individual rather than a firm. Values
are true or false.

StringIsPersonal

Indicates whether the input name is in reverse order. Values are true or
false.

StringIsReverseOrder

The last name of a person. Includes the paternal last name.StringLastName

Non-name information that appears before a name.StringLeadingData

A person's maturity/generational suffix. For example, Jr. or Sr.StringMaturitySuffix

The middle name of a person.StringMiddleName

The personal or firm name that was provided in the input.StringName.

779Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

Indicates the average score of known and unknown tokens for each
name. The value of NameScore will be between 0 and 100, as defined
in the parsing grammar. 0 is returned when no matches are returned.

StringNameScore

In Spanish parsing grammar, the surname of a person's mother.StringSecondaryLastName

Information that appears before a name, such as "Mr.", "Mrs.", or "Dr."StringTitleOfRespect

Non-name information that appears after a name.StringTrailingData

Fields Related to Conjoined
Names

Indicates that a second, conjoined name contains a conjunction such as
"and", "or", or "&".

StringConjunction2

Indicates that a third, conjoined name contains a conjunction such as
"and", "or", or "&".

StringConjunction3

The name of a second, conjoined company. For example, Baltimore Gas
& Electric dba Constellation Energy.

StringFirmName2

The suffix of a second, conjoined company.StringFirmSuffix2

The first name of a second, conjoined name.StringFirstName2

The first name of a third, conjoined name.StringFirstName3

The general/professional suffix for a second, conjoined name. For
example, MD or PhD.

StringGeneralSuffix2

780Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionFormatField Name

The general/professional suffix for a third, conjoined name. For example,
MD or PhD.

StringGeneralSuffix3

Indicates that the input name is conjoined. An example of a conjoined
name is "John and Jane Smith."

StringIsConjoined

The last name of a second, conjoined name.StringLastName2

The last name of a third, conjoined name.StringLastName3

The maturity/generational suffix for a second, conjoined name. For
example, Jr. or Sr.

StringMaturitySuffix2

Thematurity/generational suffix for a third, conjoined name. For example,
Jr. or Sr.

StringMaturitySuffix3

The middle name of a second, conjoined name.StringMiddleName2

The middle name of a third, conjoined name.StringMiddleName3

Information that appears before a second, conjoined name, such as
"Mr.", "Mrs.", or "Dr."

StringTitleOfRespect2

Information that appears before a third, conjoined name, such as "Mr.",
"Mrs.", or "Dr."

StringTitleOfRespect3

Open Name Parser Summary Report
The Open Name Parser Summary Report lists summary statistics about the job, such as the total
number of input records and the total number of records that contained no name data, as well as
several parsing statistics. For instructions on how to use reports, see the Spectrum Technology
Platform Dataflow Designer's Guide.

781Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

General Results

• Total number of input records—The number of records in the input file.
• Total number of records that contained no name data—The number of records in the input file
that did not contain name data to be parsed.

• Total number of names parsed out—The number of names in the input file that were parsed.
• Total Records—The total number of records processed.
• Lowest name parsing score—The lowest parsing score given to any name in the input file.
• Highest name parsing score—The highest parsing score given to any name in the input file.
• Average name parsing score—The average parsing score given among all parsed names in the
input file.

Personal Name Parsing Results

• Number of personal name records written—The number of personal names in the input file.
• Number of names parsed from conjoined names—The number of parsed names from records
that contained conjoined names. For example, if your input file had five records with two conjoined
names and seven records with three conjoined names, this value for this field would be 31, as
expressed in this equation: (5 x 2) + (7 x 3).

• Records with 2 conjoined names—The number of input records containing two conjoined names.
• Records with 3 conjoined names—The number of input records containing three conjoined
names.

• Number of names with title of respect present—The number of parsed names containing a title
of respect.

• Number of names with maturity suffix present—The number of parsed names containing a
maturity suffix.

• Number of names with general suffix present— The number of parsed names containing a
general suffix.

• Number of names that contained account descriptions—The number of parsed names containing
an account description.

• Total Reverse Order Names—The number of parsed names in the reverse order, resulting in the
output field isReversed as "True".

Business Name Parsing Results

• Number of business name records written—The number of business names in the input file.
• Number of names with firm suffix present—The number of parsed names containing a firm
suffix.

• Number of names that contained account descriptions—The number of input records containing
an account description.

• Total DBA Records—The number of input records containing Doing Business As (DBA)
conjunctions, resulting in both output fields isPersonal and isFirm as "True".

782Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Flow Output

Output stages are also known as Sinks and Write-to stages.

To define the output from a flow, use a "sink" stage. A sink is the last stage in a flow. It defines what
to do with the output from the flow. A sink can also perform other actions at the end or a flow, such
as executing a program.

Note: This version of Spectrum Flow Designer allows you to use input files and to write to
output files that are on the Spectrum Server location, only. At this time, Spectrum Flow Designer
does not support local input and output files.

Output from a Job

Output from a job can be written to a file or a database. Spectrum Technology Platform has the ability
to write data to many file formats and database types. The types of the ability to write data to many
file formats and database types. The types of sinks you can write to depend on which modules you
have licensed. See the solution guide for your modules available at docs.precisely.com.

Output from a Service

Output data from a service is defined in an Output stage. This stage defines the fields that the service
will return in response to a web service request or an API call.

Other output stages

Additional output Sink stages include:

• Terminate Job – Add to a flow to stop a job at a specified point or for a specific reason.
• Write to Null – Counts records, then discards the records that you choose to not keep according
to flow processing criteria you specify. Use this stage if there are records that you do not want to
preserve after the dataflow finishes.

• Write to XML – Sends output to an XML-format output file that can be consumed by other processes
or flows.

These additional Sink stages are not configurable.

783Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://docs.precisely.com

Defining Service Output

The Output stage defines the output fields that the service or subflow returns. Follow the steps below
to define the service output.

1. Double-click the Output icon on the canvas. The Output Options dialog box appears. When
you open the Output Options dialog box for the first time, a list of fields defined in the Input is
displayed.

2. To add a new field to the field list, click Add. The Add Custom Field dialog box appears. You
can also modify or delete a custom field.

3. Click Add again.
4. Type the field name in the text box.
5. Select the Data type and press OK. These data types are supported:

A numeric data type that supports 38 decimal points of precision. Use this data
type for data that will be used in mathematical calculations requiring a high

bigdecimal

degree of precision, especially those involving financial data. The bigdecimal
data type supports more precise calculations than the double data type.

A logical type with two values: true and false.boolean

An array (list) of bytes.bytearray

Note: Bytearray is not supported as an input for a REST service.

A data type that contains a month, day, and year. For example, 2012-01-30 or
January 30, 2012. You can specify a default date format in Spectrum
Management Console.

date

A data type that contains a month, day, year, and hours, minutes, and seconds.
For example, 2012/01/30 6:15:00 PM.

datetime

A numeric data type that contains both negative and positive double precision
numbers between 2-1074 and (2-2-52)×21023. In E notation, the range of values
is -1.79769313486232E+308 to 1.79769313486232E+308.

double

A numeric data type that contains both negative and positive single precision
numbers between 2-149 and (2-223)×2127. In E notation, the range of values
-3.402823E+38 to 3.402823E+38.

float

A numeric data type that contains both negative and positive whole numbers
between -231 (-2,147,483,648) and 231-1 (2,147,483,647).

integer

Strictly speaking, a list is not a data type. However, when a field contains
hierarchical data, it is treated as a "list" field. In Spectrum Technology Platform

list

a list is a collection of data consisting of multiple values. For example, a field

784Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Names may contain a list of name values. This may be represented in an XML
structure as:

<Names>
<Name>John Smith</Name>
<Name>Ann Fowler</Name>

</Names>

It is important to note that the Spectrum Technology Platform list data type
different from the XML schema list data type in that the XML list data type is a
simple data type consisting of multiple values, whereas the Spectrum Technology
Platform list data type is similar to an XML complex data type.

A numeric data type that contains both negative and positive whole numbers
between -263 (-9,223,372,036,854,775,808) and 263-1
(9,223,372,036,854,775,807).

long

A sequence of characters.string

A data type that contains the time of day. For example, 21:15:59 or 9:15:59 PM.time

You can also add a new, user-defined data type if necessary, and that new type can be a list of
any defined data type. For example, you could define a list of names (string), or a new data type
of addresses that includes AddressLine1 (string), City (string), StateProvince (string) and
PostalCode (string). After you create the field, you can view the data type by accessing the Input
Options dialog and pressing the button in the Data Type column. The Data Type Details dialog
box will appear, showing the structure of the field.

6. Click OK again.
7. Click the check box next to Expose to select the check box of all fields in the field list. Selecting

a field in the field list exposes it to the dataflow for stage operations. Click the check box again
to clear the check box for all fields in the list. Clearing the check box of one or more fields in the
field list and clicking OK deletes the field from the field list.

Note: If you define hierarchical data in the input fields, you will not be able to import data
or view the data vertically.

8. Click OK to return to the canvas.

Defining A Web Service Data Type
The Data type name field allows you to control the WSDL (SOAP) and WADL (REST) interfaces
for the service you are creating. The name of the Rows element is determined by the name you give
this stage in the service, and the name of the Row element is determined by the text you enter here.

Note: For WSDL, both requests and responses are affected, but for WADL only responses
are affected.

785Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Prior to naming this stage and entering text in this field, your code might look like this:

<Rows>
<Row>

<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Row>
<Row>

<FirstName>Jane</FirstName>
<LastName>Doe></LastName>
</Row>

</Rows>

After naming this stage and entering text in this field, your code might look like this:

<Names>
<Name>

<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Name>
<Name>

<FirstName>Jane</FirstName>
<LastName>Doe></LastName>

</Name>
</Names>

Running an External Program

An Execute Program stage invokes an executable entity, such as a program or command line
command, when it receives a record. To use an Execute Program stage in your flow:

Options

DescriptionOption

The executable name and arguments (if applicable). The arguments can be data
available in the flow. To access that data, click the [...] (Browse) button. You can
select from the following three contexts: Current Job ID, Current Job Name, or Current
User Name. You can also select from the available fields. For example, JobStatus
and JobComment.

Command-line

786Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

DescriptionOption

Specifies whether to cancel the job if the command does not respond within a given
amount of time:

Do not cancel the execution if the command fails to
respond.

No timeout

Cancels the execution attempt if the command does not
respond in the specified number of milliseconds.

Timeout inmilliseconds

Timeout

Optional. Specifies environment variables to use when executing the command. To
add an environment variable click Add.

Enter the appropriate key word in the Key field, such as "JAVA_HOME".

Enter the appropriate value in the Value field, such as C:\Java\jre7. Alternatively,
you can select a field from the Field List dialog box by clicking the [...] (Browse)
button. You can select from one of these contexts: Current Job ID, Current Job Name,
or Current User Name. You can also select from the available fields, such as
JobStatus and JobComment.

Environment Variables

Terminating a Job Based on a Condition

The Terminate Job stage is used in combination with Conditional Router to end a job if certain criteria
are found within a record. If a record is sent to Terminate Job, the job ends.

Note: Terminate Job is not available in services or subflows.

To use Terminate Job, add a Conditional Router and a Terminate Job stage to your flow. Then
connect the stages and configure the Conditional Router. The Conditional Router should be configured
to contain the criteria you want to trigger job termination. When a record is found that meets the
criteria, it is passed to Terminate Job and the job terminates, producing a message that says "Job
terminated by stage: <stage label>." The completed flow should look something like this:

787Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Discarding records - Write to Null

The Write to Null stage counts records then discards them. Use this stage if there are records that
you do not want to preserve after the flow runs.

Embedded flows

An embedded flow reduces the number of stages displayed on the canvas at one time by grouping
stages together. The grouped stages then appear as a single stage. You can use embedded flows
to:

• Simplify the layout of complex flows by grouping stages together and having them represented as
one stage on the canvas.

• Process records in groups using the iteration feature.
• Use a value in a field to set stage options in the embedded flow.

You can add an unlimited number of embedded flows to a flow, and you can put embedded flows
within embedded flows.

Differences between embedded flows and subflows

There are two major differences between an embedded flow and a subflow. First, iteration processing
is only available in embedded flows. Iteration allows you to process groups of records together for
purposes such as aggregating records for processing or setting stage options based on field values.
The second difference between an embedded flow and subflow is that an embedded flow cannot be
used in more than one flow. If you want to reuse a portion of a flow in multiple flows, create a subflow
instead of an embedded flow. Embedded flows can be converted into subflows if you decide you
want to reuse an embedded flow in other flows, but when you convert an embedded flow to a subflow
its iterations options are removed.

Grouping stages into an embedded flow

An embedded flow groups stages together into a single stage, allowing you to simplify the layout of
complex flows and set processing options using field values.

1. In your flow, add the stages that you want to convert to an embedded flow.
2. Select the stages you want to convert to an embedded flow by clicking and dragging a box around

the stages.

788Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

For example, this would select the Sorter and Transformer stages to convert to an embedded
flow.

Note: Report stages cannot be included in an embedded flow.

3. Right-click one of the selected stages and select Group into Embedded Dataflow
4. Enter a name for the embedded flow. The name will be used as the label for the embedded flow

stage on the canvas.
5. Click OK.

The stages you selected are now grouped into an embedded flow. This example shows an embedded
flow named SortTansform.

Editing an embedded flow

An embedded flow groups stages together into a single stage, allowing you to simplify the layout of
complex flows and set processing options using field values.

1. Right-click the icon and select Edit This Embedded Dataflow.

Tip: Alternatively, you can use the breadcrumb links at the top of the flow to open embedded
flows. For example, this shows how to open an embedded flow named SortTransform:

789Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

When you open an embedded flow you will see an Input stage and an Output stage. These
represent the input to the embedded flow from the parent flow, and the output to the parent flow
from the embedded flow.

2. Modify the embedded flow as needed.

Any changes you make to an embedded flow are saved the next time you save the parent flow.

Using iteration with an embedded flow

Iteration settings specify how an embedded flow should process incoming records. By default, an
embedded flow processes each record individually just as any other stage in the flow would. But if
you use iteration, you can process groups of records together, which can be useful for things like
performing comparisons or calculations based on groups of records rather then the entire set of input
data. You can also use iteration to set stage options based on the data in each record.

There are two kinds of iteration: per-record iteration and per-group iteration. In per-record iteration,
an embedded flow process one record at a time and the result is sent along to the next stage following
the embedded flow. Per-record iteration is useful if you want to set stage options on a record-by-record
basis using field values.

In per-group iteration, records are grouped by a key field and the embedded flow processes each
group. All the records in a group are processed in one iteration, then the group is written to the next
stage following the embedded subflow. Use per-group iteration to perform processing on groups of
related records, as well as to set stage options to use when processing the group of records. For
example, you might want to group records by customer ID so that you can perform an analysis of
each customer's records, perhaps to determine which store each customer visits most often.

You should consider the impact on performance when using iteration. Each time a new iteration
starts, there is some overhead during the initialization of the embedded flow, and this overhead can
be significant, especially if you have embedded flows within other embedded flows. For example, if
the an embedded flow iterates 1,000 times and it contains within it another embedded flow that also

790Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

iterates 1,000 times, the total number of iterations would be 1,000,000. Using per-record iteration
has a more significant impact on performance since each record kicks off a new iteration.

1. Create an embedded flow containing the stage or stages that you use for iteration.

Note: There are some limitations to what can be included in embedded flows that have
iteration enabled:

• The Stream Combiner stage cannot be the first stage in an embedded flow that has
iteration enabled.

• The embedded flow cannot contain a sink that writes to a file located on the client. Sinks
inside an embedded flow must write to a file on the Spectrum Technology Platform
server or on a file server.

2. Double-click the embedded flow icon.
3. Check the Enable iteration check box.
4. If there is more than one input channel connected to the embedded flow, use the Port field to

choose the port whose records you want to use to drive iteration.

For example, say you have two input ports, A and B, and you choose to iterate each time a key
field changes. If you choose to use port B for iteration, the embedded flow will start a new iteration
each time a key field in the records from port B changes. All the records from the other port, port
A, will be read into the embedded flow, cached, and used for each iteration.

5. Select the type of iteration you want to perform.
In this type of iteration, the embedded flow processes groups of records
that have the same value in one or more fields. When the embedded flow

Iterate each time
a key field
changes finishes processing the group of records, the embedded flow resets and a

new group of records is processed. Use this type of iteration to create
embedded flows that process groups of records and groups each output
record group separately.

Tip: If you choose this type of iteration, you can improve performance by
placing a Sorter stage in front of the embedded flow and sorting the records
by the key field.

In this type of iteration, the embedded flow processes one record at a time.
Every time one record completes the embedded flow processing, the result

Iterate per record

is sent to the output and a new record is processed. Embedded flows that
iterate for the record handle each record as a new flow execution.

6. If you choose Iterate each time a key field changes, check the box Ignore case when
comparing values if you want to ignore differences in case when evaluating key field values to
determine record groups.

7. Specify one or more key fields.
a) Click Add.
b) Choose the field you want to use as a key field.

791Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

c) If you want to use the field's value to set a stage option within the embedded flow, specify
the name of the option you want to set.

d) Click OK.
e) Add additional key fields if needed.

If you have more than one key field and you chose the option Iterate each time a key field
changes, records must contain the same value in all key fields to be grouped together.

Ungrouping an embedded flow

When you ungroup an embedded flow, the stages from the flow are placed in the parent flow at the
location of the embedded flow. This effectively removes any iteration settings youmay have configured
for the embedded flow.

To ungroup the stages from an embedded flow, right-click the embedded flow and select Ungroup
this Embedded Dataflow.

Converting an embedded flow to a subflow

If you want to reuse an embedded flow in another flow, you must convert the embedded flow to a
subflow. This is because embedded flows cannot be used in other flows. Once you convert an
embedded flow to a subflow, it can be used like any other subflow.

Note: If the embedded flow has iteration enabled, iteration settings will be removed when it
is converted to a subflow. Subflows do not support iteration.

1. Open the flow containing the embedded flow that you want to convert to a subflow.
2. Right-click the embedded flow and select Convert Stage to Subflow.
3. Enter a name for the new subflow and click OK.

The embedded flow is converted to a subflow and available to use in other flows.

Reports

Spectrum Technology Platform provides reporting capabilities for jobs. You can use standard reports
that come with some Spectrum processes or you can design your own reports. When a report is
included in a flow the entire flow runs, and after completion the report stages in the flow are run and
the reports are saved in the format you choose, for example PDF.

792Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Adding a standard report to a job

A standard report is a configured report that is included with a Spectrum Technology Platformmodule.
For example, Spectrum Spatial includes the Point In Polygon Summary report, which summarizes
the results of point in polygon calculations, such as the number of polygon matches, the database
used for the job, and other information.

This procedure describes how to add a standard report to a job.

1. In Spectrum Enterprise Designer, on the left side of the window under Palette, click Reports.
A list of available reports appears.

2. Drag the report you want to the canvas. You do not need to connect the report icon to anything.
3. Double-click the report.
4. Select the stages that you want to contribute to the report.
5. Click the Parameters tab.
6. Clear the Use default reporting options check box and select the appropriate output format if

you wish to specify a format other than PDF (such as html or txt).

Setting report options for a job

Reports provide summary information about a job, such as the number of records processed, and
the settings used for the job. Report options specify how to handle the reports generated by a job,
such as the output format and archiving options. Default values for report options are specified in
Spectrum Management Console but you can override the default options for a job in Spectrum
Enterprise Designer.

This procedure describes how to specify report options for a job.

1. Open the job in Spectrum Enterprise Designer and go to Edit > Job Options.
2. Click the Reporting tab.
3. Clear the Use global reporting options check box.
4. Choose the format you want to use to save reports. Reports can be saved as HTML, PDF, or

text.
5. Choose where you want to save reports.

Saves reports on the server as part of the job history. This makes it
convenient for Spectrum Management Console and Spectrum Enterprise

Save reports to job
history

Designer users to view reports since the reports are available in the
execution history.

Saves reports to a file in the location you specify. This is useful if you want
to share reports with people who are not Spectrum Technology Platform

Save reports to a
file

793Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

users. It is also useful if you want to create an archive of reports in a
different location. To view reports saved in this manner you can use any
tool that can open the report's format, such as a PDF viewer for PDF
reports or a web browser for HTML reports.

6. If you selected Save reports to a file, complete these fields.

The folder where you want to save reports.Report location

Specifies variable information to include in the file name. You can choose
one or more of these options:

Append to report
name

A unique ID assigned to a job execution. The first time you
run a job on your system the job has an ID of 1. The second

Job ID

time you run a job, either the same job or another job, it has
a job ID of 2, and so on.

The name of the stage that contributed data to the report,
as specified in the report stage in Enterprise Designer.

Stage

The day, month, and year that the report was created.Date

Replaces previous reports that have the same file name with the new
report. If you do not select this option and there is an existing report that

Overwrite existing
reports

has the same name as the new report, the job will complete successfully
but the new report will not be saved. A comment will appear in the
execution history indicating that the report was not saved.

7. Click OK.

When you run your job, the Execution History will contain a column that shows if there are any reports
that are associated with the job. An empty icon indicates no reports, one document icon indicates
one report, and multiple documents icons indicate multiple reports. You can use the Job Detail to
view, save, or print the report.

Note: To delete a report, right-click the report icon on the canvas and select Delete.

Viewing reports

To view reports, first run the job then do one of these steps:

• In Spectrum Enterprise Designer, the Execution Details window will appear when you run your
job. Select the report you want to view.

• In Spectrum Management Console, in the Execution node, click History then select the job whose
reports you want to view, then click Details.

794Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Note: If the Java Virtual Machine does not have the required fonts, the downloaded reports will
be empty files and the error logs will indicate that the fonts are not available to the JVM. To install
the missing font files (.ttf), follow the instructions here:
https://support.azul.com/hc/en-us/articles/360034030692-Using-Fonts-with-OpenJDK-Zulu.

Using custom reports

Important: When generating custom reports, ensure that the stages that reference the files used
by the reports reside on the Spectrum server or another file server. The Spectrum server cannot
access local files to generate custom reports.

Spectrum Technology Platformmodules comewith reports that are useful for basic reporting. However,
if you have report requirements that are not met by the standard reports, you can create your own
custom reports and include them in your flow.

1. Create the report template using the report design tool of your choice. Your design tool must be
able to export the report in the JasperReports format (*.jrxml).

2. Copy your *.jrxml file to the server\import folder on the Spectrum Technology Platform
server.

Within a few seconds, the report template will be imported into the system and made available
in Spectrum Enterprise Designer.

3. In Spectrum Enterprise Designer, open the job to which you want to add your custom report.
4. On the left side of the window, under Palette, click Reports.
5. Drag your custom report to the canvas.
6. Do one of these tasks to specify the data source for the report:

DescriptionOption

Connect the report to the source stage you want to report on using the
gray diamond-shaped report port as shown here:

To report on the
flow's input

The report will be based on the flow's input data and will not reflect any of
the processing that occurs in the flow.

795Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

https://support.azul.com/hc/en-us/articles/360034030692-Using-Fonts-with-OpenJDK-Zulu

DescriptionOption

Connect the report to the sink stage you want to report on using the gray
diamond-shaped report port as shown here:

To report on the
flow's output

The report will be based on the flow's output data and will reflect the flow's
effect on the data.

If the report template contains an embedded SQL query in the
<queryString> element of the JRXML file, double-click the report icon

To use a query
embedded in the
report template and check the Use embedded query box, then select the database

connection to use for the query.

Note: If you need to define a database connection, open the
Spectrum Management Console and go to Resources, then
Connections.

You can connect multiple reports to a source or sink, as shown here:

7. If the report contains user-defined parameters:
a) Double-click the report icon on the canvas.
b) On the Parameters tab, specify the values you want to use for the report's user-defined

parameters.

8. Optional: If necessary, right-click on the channel and map the fields from the source or sink to
the fields in the report.

796Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Performance Considerations

Design guidelines for optimal performance

Carefully designing your flows to optimize performance is the most important thing you can do to
achieve good performance on Spectrum Technology Platform. These guidelines describe techniques
you can use optimize flow performance.

Minimize the Number of Stages

Spectrum Technology Platform achieves high performance through parallel processing. Each stage
in a flow runs asynchronously in its own thread. However, it is possible to overthread the processors
when executing certain types of flows. When this happens, the system spends as much or more
time managing threads as doing "real work". We have seen flows with as many as 130 individual
stages that perform very poorly on smaller servers with one or two processors.

So the first consideration in designing flows that perform well is to use as many stages as needed,
but no more. Some examples of using more stages than needed are:

• Using multiple conditional routers where one would suffice
• Defining multiple transformer stages instead of combining the transforms in a single stage

Fortunately it is usually possible to redesign these flows to remove redundant or unneeded stages
and improve performance.

For complex flows, consider using embedded flows or subflows to reduce clutter on the canvas and
make it easier to view and navigate the flow. Using embedded flows does not have a performance
benefit at runtime, but it does make it easier to work with flows in Spectrum Enterprise Designer.
Using subflows to simplify complex flows can improve Spectrum Enterprise Designer performance
when editing flows.

Reduce Record Length

Since data is being passed between concurrently executing stages, another consideration is the
length of the input records. Generally input with a longer record length will take longer to process
than input with a shorter record length, simply because there is more data to read, write, and sort.
Dataflows with multiple sort operations will particularly benefit from a reduced record length. In the
case of very large record lengths it can be faster to remove the unnecessary fields from the input
prior to running the Spectrum Technology Platform job then append them back to the resulting output
file.

797Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Use Sorting Appropriately

Another consideration is to minimize sort operations. Sorting is often more time consuming than
other operations, and can become problematic as the number and size of input records increases.
However, many Spectrum Technology Platform stages either require or prefer sorted input data.
Spectrum Universal Addressing and Enterprise Geocoding, for example, perform optimally when the
input is sorted by country and postal code. Stages such as Intraflow Match and Interflow Match
require that the input be sorted by the "group by" field. In some cases you can use an external sort
application to presort the input data and this can be faster than sorting within the Spectrum Technology
Platform flow.

Stage Runtime Performance Options

Runtime performance options control how individual stages in a flow are run and provide settings
you can use to improve the performance of your flow. The settings available to you depend on how
your Spectrum Technology Platform environment has been configured.

• The Local option is the default setting in which stages run on the local Spectrum Technology
Platform server and use one runtime instance. The runtime instances setting can be increased,
thereby utilizing parallel processing and improving performance.

• The Distributed option is typically used in a clustered environment which involves installing a load
balancer and multiple Spectrum Technology Platform servers.

• The Remote option can be used if your environment consists of multiple Spectrum Technology
Platform servers but is not configured for distributed processing. This option allows you to have a
stage's processing performed by another server.

Database Pool Size and Runtime Instances
In most Spectrum Technology Platform environments there are multiple flows running at the same
time, whether they are batch jobs or services responding to web service or API requests. To optimize
concurrent processing, you can use the database pool size setting, which limits the number of
concurrent requests a Spectrum database handles, and runtime instances, which controls the number
of instances of a flow stage that run concurrently. These two settings should be tuned together to
achieve optimal performance.

Database Pool Size

Spectrum databases contain reference data used by certain stages, such as postal data used to
validate addresses, or geocoding data used to geocode addresses. These databases can be
configured to accept multiple concurrent requests from the stages or services that use them, thereby
improving the performance of the flows or service requests. The database pool size sets the maximum
number of concurrent requests that a Spectrum database will process. By default, Spectrum databases
have a pool size of 4, meaning the database can process four requests simultaneously.

798Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The optimal pool size varies by module. You will generally see the best results by setting the pool
size between one-half to twice the number of CPUs on the server, with the optimal pool size for most
modules being the same as the number of CPUs. For example, if your server has four CPUs you
may want to experiment with a pool size between 2 (one-half the number of CPUs) and 8 (twice the
number of CPUs) with the optimal size possibly being 4 (the number of CPUs).

When modifying the pool size you must also consider the number of runtime instances specified in
the flow for the stages accessing the database. Consider for example a flow that has a Geocode US
Address stage that is configured to use one runtime instance. If you set the pool size for the US
geocoding database to four, you will not see a performance improvement because there would be
only one runtime instance and therefore there would only be one request at a time to the database.
However, if you were to increase the number of runtime instances of Geocode US Address to four,
you might then see an improvement in performance since there would be four instances of Geocode
US Address accessing the database simultaneously, therefore using the full pool.

Runtime Instances

Each stage in a flow operates asynchronously in its own thread and is independent of any other
stage. This provides for parallel processing of stages in a flow, allowing you to utilize more than one
runtime instance for a stage. This is useful in flows where some stages process data faster than
others. This can lead to an unbalanced distribution of work among the threads. For example, consider
a flow consisting of these stages:

Depending on the configuration of the stages, it may be that the Validate Address stage processes
records faster than the Geocode US Address stage. If this is the case, at some point during the
execution of the flow all the records will have been processed by Validate Address, but Geocode
US Address will still have records to process. In order to improve performance of this flow, it is
necessary to improve the performance of the slowest stage - in this case Geocode US Address. One
way to do that is to specify multiple runtime instances of the stage. Setting the number of runtime
instances to two, for example, means that there will be two instances of that stage, each running in
its own thread, available to process records. Keep in mind that while specifying multiple runtime
instances can help improve performance, setting this value too high can strain your system resources,
resulting in decreased performance.

Tuning Procedure

Finding the right settings for database pool size and runtime instances is a matter of experimenting
with different settings to find the ones maximize available server resources without overloading
resources and causing reduced performance.

Note: You should optimize the flow pool size before tuning the database pool size. For
information about optimizing the flow pool size, see
SettingDataflowPoolSize.dita#task_utx_h3t_tp.

799Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

SettingDataflowPoolSize.dita#task_utx_h3t_tp

1. Begin by finding sample data to use as you test different settings. The sample dataset should
be large enough that execution time is measurable and can be validated for consistency. The
sample data should also be representative of the actual data you want to process. For example,
if you are doing performance testing for geocoding, be sure that your test data has an equal
number of records for all the countries you intend to geocode.

2. If you are testing a service or flow that requires the use of a database resource, such as postal
databases or geocoding databases, make sure that you have the latest version of the database
installed.

3. With sample data ready and the latest database resources installed, create a simple flow that
reads data from a file, processes it with the stage you want to optimize, and writes to a file. For
example, if you want to test performance settings for Validate Address, create a flow consisting
of Read from File, Validate Address, and Write to File.

4. Set the database resource pool size to 1:

a. Open Spectrum Management Console.
b. Go to Resources > Spectrum Databases.
c. Select the database resource you want to optimize and click the Modify button .
d. In the Pool size field, specify 1.
e. Click OK.

5. Set the stage's runtime instances to 1:

a. Open the flow in Spectrum Enterprise Designer.
b. Double-click the stage that you want to set to use multiple runtime instances.
c. Click Runtime.

Note: Not all stages are capable of using multiple runtime instances. If there is no
Runtime button at the bottom of the stage's window, the stage is not capable of using
multiple runtime instances.

d. Select Local and specify 1.
e. Click OK to close the Runtime Performance window, then click OK to close the stage.

6. Calculate baseline performance by running the flow several times and recording the average
values for:

• Elapsed time
• CPU utilization
• Memory utilization

Tip: You can use the Spectrum JMX console to monitor performance. For more information,
see Monitoring Performance with the Spectrum JMX Console.

7. Run multiple instances of the job concurrently, if this is a use case that must be supported.
Record elapsed time, CPU utilization, and memory utilization for each scenario.

Tip: You can use a file monitor to run multiple instances of a job at once. For more information,
see Triggering a Flow with a Control File on page 834.

800Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

8. Increment the database resource pool size and the stage runtime instances setting.
9. Restart the server.
10. Run the flow again, recording the elapsed time, CPU utilization, and memory utilization.
11. Continue to increment the database resource pool size and the stage runtime instances until

you begin to see diminishing performance.
12. If you are testing geocoding performance, repeat this procedure using single country and

multicountry input.

Distributed Processing
If you have a very complex job, or you are processing a very large data set such as one containing
millions of records, you may be able to improve flow performance by distributing the processing of
the flow to multiple instances of the Spectrum Technology Platform server on one or more physical
servers.

The most scalable solution for distributed processing is to install Spectrum Technology Platform in
a cluster. See the Installation Guide for instructions on installing and configuring a cluster.

Note: While it is also possible to use distributed processing on a single Spectrum Technology
Platform server, the following information describes using distributed processing in a cluster.
If you are using a single server, distributed subflow processing is broken up into microbatches
and processed by the one server instead of by the cluster.

Once your clustered environment is set up, you can build distributed processing into a flow by creating
subflows for the parts of the flow that you want to distributed to multiple servers. Spectrum Technology
Platformmanages the distribution of processing automatically after you specify just a few configuration
options for the subflow.

Distributed processing looks like this:

801Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

As records are read into the subflow, the data is grouped into batches. These batches are then
written to the cluster and automatically distributed to the a node in the cluster which processes the
batch. This processing is called a microflow. A subflowmay be configured to allowmultiple microflows
to be processed simultaneously, potentially improving performance of the flow. When the distributed
instance is finished processing a microflow, it sends the output back into the parent flow.

The more Spectrum Technology Platform nodes you have the more microflows can be processed
simultaneously, allowing you to scale your environment as needed to obtain the performance you
require.

Once set up, a clustered environment is easy to maintain since all nodes in the cluster automatically
synchronize their configuration, which means the settings you apply through SpectrumManagement
Console and the flows you design in Spectrum Enterprise Designer are available to all instances
automatically.

Designing a flow for distributed processing
Distributed processing takes parts of your flow and distributes the processing of those parts to a
cluster of Spectrum Technology Platform servers. For example, your flow may perform geocoding,
and you might want to distribute the geocoding processing among several Spectrum Technology
Platform nodes in a cluster to improve performance.

802Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

1. Decide which stages of your flow you want to distribute, then create a subflow containing the
stages that you want to distribute.

Do not use these stages in a subflow that will be used for distributed processing:

• Sorter
• Unique ID Generator
• Record Joiner
• Interflow Match

These sets of stages must be used together in a subflow for distributed processing:

• Matching stages (Intraflow Match and Transactional Match) and consolidation stages (Filter,
Best of Breed and Duplicate Synchronization).

• Aggregator and Splitter

Do not include other subflows within the subflow (nested subflows).

Note these exceptions if you will be performing matching operations in a subflow used for
distributed processing:

• Sorting must be done in the job and not in the subflow. You must turn sort off in the stage and
put the sort at job level.

• Match Analysis is not supported in a distributed subflow
• Collection numbers will be reused within a microflow batch group

Using aWrite Exception stage in a subflow may produce unexpected results. Instead, you should
add this stage to your flow at the job level.

2. Once you have created your subflow for the portion of the flow you want to distribute, add the
subflow to the parent flow and connect it to an upstream and downstream stage. Subflows used
for distributed processing may have only one input port.

3. Right-click the subflow and select Options.
4. Select Distributed.
5. Enter the number of microflows to be sent to each server.
6. Enter the number of records that should be in each microflow batch.
7. Optional: (Optional) Check Group field name and select the name of the field by which the

microflow batches should be grouped.

If you provide a group field, your batch sizes could be greater than the number you specified in
the Micro flow batch size field because a group will not be split across multiple batches. For
example, if you specify a batch size of 100, but you have 108 records within the same group,
that batch will include 108 records. Similarly, if you specify a batch size of 100, and a new group
of 28 records with the same ID starts at record 80, you will have 108 records in that batch.

This example shows a flow where a subflow named My Distributed Subflow has been configured
to run in distributed mode:

803Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Running a Stage on a Remote Server
If your system administrator has enabled remote servers in Spectrum Management Console, you
can have stages in your flow run on a remote server. Using remote servers can improve performance
by spreading flow processing among multiple Spectrum Technology Platform servers.

Your system administrator may have already designated certain stages to run on a remote server.
If a stage is already routed to a remote server, you will see a red star in the top-left corner of the
stage icon on the canvas in Spectrum Enterprise Designer.

This procedure describes how to configure remote processing for a stage in a flow.

1. Open the flow in Spectrum Enterprise Designer.
2. Double-click the stage you want to route to a remote server.
3. Click Runtime.

The Runtime Performance dialog appears.

4. Click Remote and select the remote server to which you wish to route the process for this stage.
5. Click OK.

Troubleshooting Remote Server Errors
This section discusses possible errors you may experience when using remote servers.

Module Not Licensed

The remote server must have the license for both the module and the mode of execution you are
trying to run, either batch or real-time. The license on the remote server may be different from the
license on the local server. Log in to the remote server using Spectrum Management Console and
verify that the correct license is installed. You must log in with an account that has administrative
privileges in order to view license information.

804Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Remote Server Not Available

If the remote server is not running or is not reachable for any other reason, the remote services will
become unavailable in Spectrum Enterprise Designer and Spectrum Management Console. You will
see a yellow hazard icon in the status bar at the bottom of the screen:

Click this icon to see an error message that describes which remote servers are not available.

In addition, in Spectrum Enterprise Designer any stages that use a remote stage will be replaced
with an icon showing you the stage is no longer available:

Routing Has Changed

If you delete or undeploy a service that is installed both locally and remotely and has been routed
through a remote server, and click that service within Spectrum Management Console, you will see
a routing change indicator (a blinking exclamation point) next to the routing button on the Options
tab for that service. This indicator means the routing has changed for that service.

Optimizing Stages

Optimizing Matching
Matching is typically one of the most time-consuming operations in any data quality implementation,
making it important to ensure that matching is operating as efficiently as possible. There is always
a balance between matching results and performance. If every record in a file is compared to every
other record, you can be quite confident that all matches will be identified. However, this approach
is unsustainable as the volume of data grows. For example, given an input file of 1 million records,
matching each record to every other record would require nearly 1 trillion comparisons to evaluate
each match rule.

Given that most records in a file do not match, the general approach to solving this problem is to
define a match key and only compare those records that have the same match key. Proper match
key definition is the most critical variable affecting performance of the matching engine. To define a
proper match key, you must understand how the matching engine processes records and the options
that are available.

805Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

The default matching method performs an exhaustive comparison of the record in a match queue
to identify the maximum number of matches. Because of this, it is often the most time consuming
way to do matching. Under the default matching method, the first record in the match queue becomes
the suspect record. The next record is compared, and if it matches it is written out as a duplicate. If
it does not match, it is added as a suspect, and the next record is compared to the two active suspects.
Consider this match queue:

Match KeyUnique ID

123A1

123A2

123A3

123A4

123A5

123A6

123A7

123A8

123A9

123A10

First, record 2 would be compared to record 1. Assuming it does not match, record 2 would be added
as a suspect. Then record 3 would be compared to records 1 and 2, and so forth. If there are no
matching records, the total number of comparisons would be 45. If some records match, the number
of comparisons will be less. For a match queue of a given size N, the maximum number of
comparisons will be N×(N-1)÷2. When the queue size is small this is not noticeable, but as the queue
size grows the impact is significant. For example, a queue size of 100 could result in 4,450
comparisons, and a queue size of 500 could result in 124,750 comparisons.

Defining an Appropriate Match Key

To define an appropriate match key, consider these points:

• Most records do not match. Compare only records that are likely to match.

806Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

• Only records with the same match key will be compared.
• Performance is a key consideration:

• The match key determines the size of the match queue.
• For a given number of records, as the match queue size doubles, execution time doubles.
• A "tight" match key results in better performance. A "tight" match key is one that is specific,
containing more characters from possibly more fields.

• A "loose" match key may result in more matches. A "loose" match key is one that is less specific,
containing fewer characters from possibly fewer fields.

Finding a Balance Between Performance and Match Results

To find a good balance between performance and results, consider the match rule and the density
of the data.

• Consider the match rules:

• Fields requiring an exact match could be included in the match key.
• Build an appropriate key for the match rule. For example, for a phonetic match rule, a phonetic
match key is probably appropriate.

• A match key will often consist of parts of all the fields being matched.
• Be aware of the effects of missing data.

• Consider the density of the data:

• For example, in address matching, the match key would likely be tighter if all the records are in
a single town instead of a national dataset.

• Consider the largest match queue, not just the average. Review the Match Summary report to
find the largest match queue.

• When using transactional match, the same considerations apply to the SELECT statement in
Candidate Finder.

Express Match Key

In a typical file, most of the duplicate records match either exactly or nearly exactly. Defining an
express match key allows the matching engine to perform an initial comparison of the express match
keys to determine that two records are duplicates. This can significantly improve performance by
avoiding the need to evaluate all the field level match rules.

Intraflow Match Methods

The default Intraflow Match match method compares all records having the same match key. For a
match queue size of N, the default method performs anywhere from N−1 to N×(N−1) comparisons.
If all records match, the number of comparisons is N−1. If no records match the number of

807Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

comparisons is N×(N−1). Usually the number of comparisons is somewhere in the upper part of this
range.

If performance is a priority, consider using the sliding window match method instead of the default
method. The sliding window match method compares each record to the next W records (where W
is the window size). For a given file size N, the sliding window method performs no more than N×W
comparisons. This can lead to better performance, but some matches may be missed.

Optimizing Candidate Finder
Candidate Finder selects candidate records from a database for comparison by Transactional Match.
Since transactional match compares the suspect record to all of the candidate records returned by
Candidate Finder, the performance of Transactional Match is proportional to the number of
comparisons.

However, there are things you can do to improve the performance of Candidate Finder. To maximize
the performance of Candidate Finder, a database administrator, or developer with extensive knowledge
of the database schema and indexes, should tune the SQL SELECT statement in Candidate Finder.
One of the most common performance problems is a query that contains a JOIN that requires a full
table scan. In this case, consider adding an index or using a UNION instead of a JOIN. As a general
rule, SQL queries should be examined and optimized by qualified individuals.

Optimizing Transforms
The Transformer stage provides a set of predefined operations that can be performed on the input
data. Generally, these predefined transforms run faster than custom transforms, since they are
already compiled. However, when defining a large number of transforms, a custom transform will
run faster. For example, to trim a number of fields, the custom transform below will typically run faster
than nine separate trim transforms.

data['AddressLine1'] = (data['AddressLine1'] != null) ?
data['AddressLine1'].trim() : null;
data['AddressLine2'] = (data['AddressLine2'] != null) ?
data['AddressLine2'].trim() : null;
data['AddressLine3'] = (data['AddressLine3'] != null) ?
data['AddressLine3'].trim() : null;
data['AddressLine4'] = (data['AddressLine4'] != null) ?
data['AddressLine4'].trim() : null;
data['City'] = (data['City'] != null) ? data['City'].trim() : null;
data['StateProvince'] = (data['StateProvince'] != null) ?
data['StateProvince'].trim() : null;
data['PostalCode'] = (data['PostalCode'] != null) ?
data['PostalCode'].trim() : null;
data['LastName'] = (data['LastName'] != null) ? data['LastName'].trim()
: null;
data['FirstName'] = (data['FirstName'] != null) ? data['FirstName'].trim()
: null;

808Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Optimizing Write to DB
By default the Write to DB stage commits after each row is inserted into the table. However, to
improve performance enable the Batch commit option. When this option is enabled, a commit will
be done after the specified number of records. Depending on the database this can significantly
improve write performance.

When selecting a batch size, consider the following:

• Data arrival rate to Write To DB stage: If data is arriving at slower rate than the database can
process then modifying batch size will not improve overall dataflow performance. For example,
dataflows with address validation or geocoding may not benefit from an increased batch size.

• Network traffic: For slow networks, increasing batch size to a medium batch size (1,000 to 10,000)
will result in better performance.

• Database load and/or processing speed: For databases with high processing power, increasing
batch size will improve performance.

• Multiple runtime instances: If you use multiple runtime instances of theWrite to DB stage, a large
batch size will consume a lot of memory, so use a small or medium batch size (100 to 10,000).

• Database roll backs:Whenever a statement fails, the complete batch is rolled back. The larger
the batch size, the longer it will take to perform the to rollback.

Optimizing Address Validation
Validate Address provides the best performance when the input records are sorted by postal code.
This is because of the way the reference data is loaded in memory. Sorted input will sometimes
perform several times faster than unsorted input. Since there will be some records that do not contain
data in the postal code field, we recommend this sort order:

1. Country (Only needed when processing records for multiple countries)
2. PostalCode
3. StateProvince
4. City

Optimizing Geocoding
Geocoding stages provide the best performance when the input records are sorted by postal code.
This is because of the way the reference data is loaded in memory. Sorted input will sometimes
perform several times faster than unsorted input. Since there will be some records that do not contain
data in the postal code field, the following sort order is recommended:

1. PostalCode
2. StateProvince
3. City

You can also optimize geocoding stages by experimenting with different match modes. The match
mode controls how the geocoding stage determines if a geocoding result is a close match. Consider

809Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

consider setting the match mode to the Relaxed setting and seeing if the results meet your
requirements. The Relaxed mode will generally perform better than other match modes.

Optimizing Geocode US Address

The Geocode US Address stage has several options that affect performance. These options are in
this file:

SpectrumDirectory\server\modules\geostan\java.properties

Specifies the maximum number of matches to return. A
smaller number results in better performance, but at the
expense of matches.

egm.us.multimatch.max.records

Specifies the number of searches to perform. A smaller
number results in better performance, but at the expense of
matches.

egm.us.multimatch.max.processing

Controls how much of the reference data is initially loaded
into memory.

FileMemoryLimit

Flow Versions

The Versions feature in Spectrum Enterprise Designer allows you to keep a revision history of your
flows. You can view previous versions of a flow, expose older versions for execution, and keep a
history of your changes in case you ever need to revert to a previous version of a flow.

Saving a Flow Version

There are two ways to save a version of your flow in Spectrum Enterprise Designer:

• Expose your flow. Each time you expose a flow, either by selecting File > Expose/Unexpose and
save or by clicking the light bulb in the tool bar, Spectrum Enterprise Designer automatically saves
a version of the flow.

• Manually save a version in the Versions pane in Spectrum Enterprise Designer.

Note: A flow version is not created when you simply save a flow.

This procedure describes how tomanually save a version in theVersions pane of SpectrumEnterprise
Designer.

1. In Spectrum Enterprise Designer, open the flow.
2. If the Versions pane is not visible, select View > Versions

810Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3. Make sure that the latest saved version is selected in the Versions list. This is the version at
the top of the list.

4. Click the green plus icon in the Versions pane.

A new version of the flow is saved and added to the Versions pane.

Viewing a Flow Version

You can view a previous version of a flow. This allows you to see how a flow was designed in the
past before more recent changes were made. Previous versions can only be viewed, not modified.
In order to modify a previous version it must first be promoted to the latest saved version.

1. In Spectrum Enterprise Designer, open the flow.
2. If the Versions pane is not visible, select View > Versions
3. Select the version that you want to view.

The selected version is displayed on the flow canvas.

Editing a Flow Version

You can edit a previous version of a flow by promoting it to the latest-saved version. Promoting a
flow version moves it to the latest-saved version, making it available for editing.

Note: Before performing this procedure, note that the existing latest-saved version will be
overwritten by the version you promote and edit. If you want to preserve a copy of the existing
latest-saved version, save it as a version before promoting the older version.

1. In Spectrum Enterprise Designer, open the flow.
2. If the Versions pane is not visible, select View > Versions
3. Select the version that you want to edit.
4. Click the promote icon.

The selected version is promoted to the latest-saved version. You can now edit the flow.

811Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

Editing Version Properties

When you save a flow version, it is given a default version number. You can modify the version
number and add comments to document the version's changes or purpose.

1. In Spectrum Enterprise Designer, open the flow.
2. If the Versions pane is not visible, select View > Versions
3. Select the version that you want to modify.
4. Click the properties icon:

5. In the Name field, enter a name for the version. You can use version numbers or any meaningful
name. The name can be anything you choose.

6. In theComment field, you can enter a longer comment that describes in more detail the purpose
of the version of the changes you made. Adding a comment is optional.

7. Click OK.

Exposing a Version

If you have saved multiple versions of a flow you can choose which version to expose for execution.

1. In Spectrum Enterprise Designer, open the flow.
2. If the Versions pane is not visible, select View > Versions
3. In the Versions pane, select the version of the flow that you want to expose.
4. Select File > Expose/Unexpose and Save

The selected version is now exposed and available for execution. The version with the light bulb
next to it is the version that is exposed, as shown here:

812Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

When a flow is exposed the light bulb button in the Spectrum Enterprise Designer tool bar indicates
that the flow is exposed as shown here:

The light bulb indicates that the flow is exposed even if you are viewing a version other than the
exposed version. If you click the light bulb while viewing an unexposed version it will switch the
exposed version to the version you are currently viewing. If you click the light bulb while viewing the
exposed version, it will unexpose the flow.

813Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Designing a Flow

3 - Inspecting and
Testing

In this section

Checking a Flow for Errors...815
Inspecting a flow...815
Testing a service with Spectrum Management Console.........................819

Checking a Flow for Errors

Dataflow Designer automatically checks a flow for errors when you run a flow, run inspection, expose
a flow, or save an exposed flow. You can also check for errors by clicking the validation button .

When an error is found, the Validation pane appears at the bottom of the Spectrum Enterprise
Designer window. Click an error to highlight the error on the canvas. Double-click an error to open
the options window of the item containing the error.

Inspecting a flow

Use the inspection tool to view the effect of your dataflow on the input data at different points in the
dataflow. Inspection enables you to confirm that the dataflow is having the desired effect on your
data, isolate problems, or identify records that contain defects.

1. Specify the data to use for inspection.

815Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Inspecting and Testing

The data should be representative of actual data, or, if you are troubleshooting a specific issue,
should be the data that causes the issue you are troubleshooting. There are two ways to specify
the data to use for inspection, depending on whether you are inspecting a service or a job.

DescriptionScenario

When inspecting a job, the data used for inspection is the data specified in
the source stage. The inspection tool can process a maximum of 50 records,

To specify
inspection data
for a job which by default is the first 50 records in the input file or database. If you

want to use data that starts somewhere other than the first record,
double-click the Read From File stage and complete the Starting record
field in the Runtime tab.

Service dataflows use an Input stage to define the input to the dataflow.
Because an Input stage does not have access to data when you are editing

To specify
inspection data
for a service the dataflow, you must define inspection data in the Input stage on the

Inspection Data tab. You can specify a maximum of 50 records.

There are a few ways you can enter inspection data in an Input stage.

• If you want to use just a few records for inspection, you can manually type
in the data.

Tip: If want to save the inspection data you enter to use again in another
stage, you can export the inspection data to a text file by clicking Export
Data.

• If you have data in a CSV or TXT file, you can import the data by clicking
Import Data. The data must use one of these delimiters:

• \t
• |
• ,
• ;

• You can copy delimited data from another application and paste it into
the inspection data editor.

The Inspection Input tab indicates pass-through data by enclosing the
field name in parentheses, as shown here:

Note: Certain field types have restrictions when used for inspection:

• Double and float fields must contain numeric data only. The field may have up to 16
digits and 6 decimal places. Exponential notation is not supported in inspection.

• Integer and long fields must contain numeric data only.

816Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Inspecting and Testing

2. Indicate the points in the dataflow where you want to view data.

DescriptionScenario

Right-click to the left of the Rename node on a channel and select
Add Inspection Point.

To add an inspection point
to a channel

A point is added to the job:

Add two inspection points at the points in the dataflow that you
want to compare:

To compare records at two
points in a dataflow

Tip: If you are using inspection to identify a problem, inspect
outer points on the dataflow first then move inward to narrow down
where a problem may be.

Right-click the subflow stage and select Inspect this Dataflow:To inspect a subflow
embedded in a job or
service

The input data (in a job) or the inspection data (in a service) is
automatically passed to the subflow, so there is no need to enter
inspection data in the subflow's Input stage.

Note: When you inspect a subflow, the exposed version
of the subflow is shown. If make a change to the subflow
and want to re-run inspection, you need to expose the new
version.

3. Select Run > Inspect Current Flow or click the Inspect Current Flow button on the toolbar.

If you specified one inspection point, the Inspection Results pane shows the inspected data in
horizontal view. You can change the layout of the view using the toolbar icons above the table.
If your inspection data is hierarchical, it cannot be viewed vertically.

817Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Inspecting and Testing

Note: Date and time data is displayed in the format specified in the type conversion
options.

Tip: You can move an inspection point by dragging it to another channel. The inspection data
updates automatically.

If you specified two inspection points, the Inspection Results pane displays the records as they
exist at the two points. The left pane shows the left-most inspection point in the dataflow and the
right pane shows the right-most inspection point in the dataflow. Click a record in the right pane
to highlight the corresponding record in the left pane to see how the record has changed between
the two inspection points.

Each column represents a field in the dataflow. Columns are arranged in alphabetical order.
New fields added between the inspection points are shown in the right pane after the original
columns. To reorder columns, click and drag them into the order you want.

These situations influence how the inspection results are displayed for two inspection points:

• If there is a Sorter stage between the two inspection points, the records in the inspection results
will be sorted as they were before the Sorter stage. Sorting is ignored in the second inspection
point so that you can compare corresponding records from each inspection point side by side.

• If there are stages between the two inspection points that create new records, such as an
Aggregator stage, the records shown in the second inspection point will not have a
corresponding record in the first inspection point.

• Records that exist at the second inspection point but not at the first are displayed at the bottom
of the list of records in the second inspection point.

818Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Inspecting and Testing

4. When you update or make changes to the dataflow, clickRun > Inspect Current Flow to refresh
the inspection results.

5. When you close the Inspection Results pane, the inspection data is lost. Similarly, when you
close a job, the inspection points and inspection data are lost. To save the inspection results to
a file:
a) In the inspection results grid, select the rows you wish to save. You can select all data by

right-clicking in either pane and clicking Select All.
b) Select Copy from the context menu.
c) Open the application into which you want to save the data (for example, Microsoft Excel or

Notepad).
d) In the application, paste the data.
e) Save the file.

Testing a service with Spectrum Management
Console

Spectrum Management Console provides a preview feature that allows you to send test data to a
service and see the results.

Note: A service must be saved and exposed before it can be tested through Spectrum
Management Console.

1. In a web browser go to this URL:

http://server:port/managementconsole

Where server is the server name or IP address of your Spectrum Technology Platform server
and port is the HTTP port used by Spectrum Technology Platform. By default, the HTTP port is
8080 and the HTTPS port is 8443.

2. Go to the Services menu and click the other services containing the service you want to test.
3. Click the service you want to test.
4. Click Preview.
5. Enter the input data you want to use for your test. To import data from a file, click the Import

button .
6. Click Run Preview.

819Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Inspecting and Testing

4 - Running a Flow

In this section

Running a Job or Process Flow...821
Exposing a Service...841
Runtime Options...843
Configuring Email Notification for a Flow...846

Running a Job or Process Flow

Running a Flow in Spectrum Enterprise Designer

This procedure describes how to manually run a job or process flow.

1. In Spectrum Enterprise Designer, select File > Open and open the flow you want to run.
2. Validate a flow prior to running it to ensure that it contains no errors. To validate a flow, select

Run > Validate.
3. Select Run > Run current flow.

Running A Job from the Command Line

Before you can run a job from the command line, it must be exposed. To expose a job, open the job
in Spectrum Enterprise Designer and select File > Expose/Unexpose and Save.

To run a job from the command line, you must install the job executor utility on the system where
you want to run the job. The Job Executor is available from the Spectrum Technology Platform
Welcome page on the Spectrum Technology Platform server (for example, http://myserver:8080).

Usage
java -jar jobexecutor.jar -u UserID -p Password -j Job [Optional Arguments]

DescriptionArgumentRequired

Prints usage information.-?No

Sets instance/status delimiter. This appears in synchronous output only.-d delimiterNo

Use a secure HTTPS connection for communication with the Spectrum
Technology Platform server.

-eNo

Specifies a path to a job property file. A job property file contains job
executor arguments. For more information on job property files, see
Using a Job Property File on page 828.

-f property fileNo

Specifies the name or IP address of the Spectrum Technology Platform
server.

-h host nameNo

821Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

DescriptionArgumentRequired

Specifies how often to check for completed jobs, in seconds. This
applies only in synchronous mode.

-i poll intervalNo

A comma-separated list of jobs to run. Job names are case-sensitive.
Jobs are started in the order listed.

-j job nameYes

Specifies a comma-separated list of additional email addresses for
configured job notifications.

-n email listNo

Specifies a path to a flow options property file. Use a flow options
property file to set options for stages in the flow. In order to set flow

-o property fileNo

options using a property file, you must configure the flow to expose
stage options at runtime. For more information, see Adding Flow
Runtime Options on page 843.

For example, a flow options properties file for a flow that contains an
Assign GeoTAX Info stage may look like this:

OutputCasing=U
UseStreetLevelMatching=N
TaxKey=T
Database.GTX=gsl

The password of the user.-p passwordYes

Specify this argument to return a detailed report about the job. This
option only works if you also specify -w . The report contains this
information:

-rNo

• Position 1 - Name of job
• Position 2 - Job process ID
• Position 3 - Status
• Position 4 - Start Date-Time (MM/DD/YYYY HH:MM:SS)
• Position 5 - End Date-Time (MM/DD/YYYY HH:MM:SS)
• Position 6 - Number of successful records
• Position 7 - Number of failed records
• Position 8 - Number of malformed records
• Position 9 - Currently unused

For example:

MySimpleJob|4|succeeded|04/09/2019
14:50:47|04/09/2019 14:50:47|100|0|0|

The information is delimited using the delimiter specified in the -d
argument.

The socket (port) on which the Spectrum Technology Platform server
is running. The default is 8080.

-s portNo

822Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

DescriptionArgumentRequired

Sets the timeout (in seconds) for synchronous mode. The default is
3600. The maximum is 2147483. This is a global, aggregate timeout

-t timeoutNo

and represents the maximum time to wait for all spawned jobs to
complete.

The login name of the user.-u user nameYes

Return verbose output.-vNo

Runs job executor in synchronous mode. This means that job executor
remains running until the job completes.

If you do not specify -w, job executor exits after starting the job, unless
the job reads from or writes to files on the server. In this case, job
executor will run until all local files are processed, then exit.

-wNo

Overrides the input or output file specified in Read from File or Write
to File. For more information, see Overriding Job File Locations on
page 823.

StageName=Protocol:FileNameNo

Overrides the file layout definition specified in Read from File or Write
to File with one defined in a schema file. For more information, see
Overriding the File Format at the Command Line on page 825.

StageName:schema=Protocol:SchemaFileNo

Example Use of Job Executor
This example shows command line invocation and output:

D:\spectrum\job-executor>java -jar jobexecutor.jar -u user123
-p "mypassword" -j validateAddressJob1 -h
spectrum.example.com -s 8888 -w -d "%" -i 1 -t 9999

validateAddressJob1%105%succeeded

In this example, the output indicates that the job named 'validateAddressJob1' ran
(with identifier 105) with no errors. Other possible results include "failed" or "running."

Overriding Job File Locations
When you run a job at the command line using job executor or the Administration Utility, you can
override the input file specified in the flow's source stage (such as Read from File), as well as the
output file specified in the flow's sink stage (such as Write to File).

To do this in job executor, specify this command at the end of the job executor command:

StageName=Protocol:FileName

In the Administration Utility, use the --l argument in the job execute command:

--l StageName=Protocol:FileName

823Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Where:

StageName

The stage label shown under the stage's icon in the flow in Spectrum Enterprise
Designer. For example, if the stage is labeled "Read from File" you would specify
Read from File for the stage name.

To specify a stage within an embedded flow or a subflow, preface the stage name
with the name of the embedded flow or subflow, followed by a period then the stage
name:

EmbeddedOrSubflowName.StageName

For example, to specify a stage named Write to File in a subflow named Subflow1,
you would specify:

Subflow1.Write to File

To specify a stage in an embedded flow that is within another embedded flow, add
the parent flow, separating each with a period. For example, if Embedded Dataflow
2 is inside Embedded Dataflow 1, and you want to specify the Write to File stage in
Embedded Dataflow 2, you would specify this:

Embedded Dataflow 1.Embedded Dataflow 2.Write to File

Protocol

A communication protocol that can be one of these types:

Use the file protocol if the file is on the samemachine as the Spectrum Technology
Platform server. For example, on Windows specify:

"file:/C:/myfile.txt"

file

On Linux specify:

"file:/testfiles/myfile.txt"

Use the esclient protocol if the file is on the computer where you are executing
the job if it is a different computer from the one running the Spectrum Technology
Platform server. Use this format:

esclient:ComputerName/path to file

esclient

For example,

esclient:mycomputer/testfiles/myfile.txt

Note: If you are executing the job on the server itself, you can use either
the file or esclient protocol, but are likely to have better performance using
the file protocol.

If the host name of the Spectrum Technology Platform server cannot be resolved,
you may get the error "Error occurred accessing file". To resolve this issue, open
this file on the server:

824Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

SpectrumDirectory/server/conf/spectrum-container.properties.
Set the spectrum.runtime.hostname property to the IP address of the server.
Use the esfile protocol if the file is on a file server. The file server must be defined
in Spectrum Management Console as a resource. Use this format:

esfile://file server/path to file

esfile

For example,

esfile://myserver/testfiles/myfile.txt

Wheremyserver is an FTP file server resource defined in SpectrumManagement
Console.
Use the webhdfs protocol if the file is on a Hadoop Distributed File Server. The
HDFS server must be defined in Spectrum Management Console as a resource.
Use this format:

webhdfs://file server/path to file

webhdfs

For example,

webhdfs://myserver/testfiles/myfile.txt

Wheremyserver is an HDFS file server resource defined in SpectrumManagement
Console.

FileName

The full path to the file you want to use as input or output.

Note: You must use forward slashes in file paths. Do not use
backslashes.

To specify multiple overrides, separate each override with a comma.

Example File Override
The required job executor command would use the file C:/myfile_input.txt
as the input file for the Read from File stage and would use the file
C:/myfile_output.txt as the output file for the Write to File stage.

java -jar jobexecutor.jar -j Job1 -u Bob1234 -p "" "Read from
File"="file:/C:/myfile_input.txt" "Write to
File"="file:/C:/myfile_output.txt"

Overriding the File Format at the Command Line
When you run a job using job executor or the Administration Utility, you can override the file layout
(or schema) of the file specified in the flow's Read from File stage and Write to File stage.

To do this in job executor, specify this at the end of the job executor command line command:

StageName:schema=Protocol:SchemaFile

825Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

In the Administration Utility, use the --l argument in the job execute command:

–-l StageName:schema=Protocol:SchemaFile

Where:

StageName

The stage label shown under the stage's icon in the flow in Spectrum Enterprise
Designer. For example, if the stage is labeled "Read from File" you would specify
Read from File for the stage name.

To specify a stage within an embedded flow or a subflow, preface the stage name
with the name of the embedded flow or subflow, followed by a period then the stage
name:

EmbeddedOrSubflowName.StageName

For example, to specify a stage named Write to File in a subflow named Subflow1,
you would specify:

Subflow1.Write to File

To specify a stage in an embedded flow that is within another embedded flow, add
the parent flow, separating each with a period. For example, if Embedded Dataflow
2 is inside Embedded Dataflow 1, and you want to specify the Write to File stage in
Embedded Dataflow 2, you would specify this:

Embedded Dataflow 1.Embedded Dataflow 2.Write to File

Protocol
A communication protocol:

Use the file protocol if the file is on the samemachine as the Spectrum Technology
Platform server. For example, on Windows specify:

"file:/C:/myfile.txt"

file

On Linux specify:

"file:/testfiles/myfile.txt"

Use the esclient protocol if the file is on the computer where you are executing
the job if it is a different computer from the one running the Spectrum Technology
Platform server. Use this format:

esclient:ComputerName/path to file

esclient

For example,

esclient:mycomputer/testfiles/myfile.txt

Note: If you are executing the job on the server itself, you can use either
the file or esclient protocol, but are likely to have better performance using
the file protocol.

826Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

If the host name of the Spectrum Technology Platform server cannot be resolved,
you may get the error "Error occurred accessing file". To resolve this issue, open
this file on the server:
SpectrumDirectory/server/conf/spectrum-container.properties.
Set the spectrum.runtime.hostname property to the IP address of the server.
Use the esfile protocol if the file is on a file server. The file server must be defined
in Spectrum Management Console as a resource. Use this format:

esfile://file server/path to file

esfile

For example,

esfile://myserver/testfiles/myfile.txt

Wheremyserver is an FTP file server resource defined in SpectrumManagement
Console.
Use the webhdfs protocol if the file is on a Hadoop Distributed File Server. The
HDFS server must be defined in Spectrum Management Console as a resource.
Use this format:

webhdfs://file server/path to file

webhdfs

For example,

webhdfs://myserver/testfiles/myfile.txt

Wheremyserver is an HDFS file server resource defined in SpectrumManagement
Console.

SchemaFile

The full path to the file that defines the layout you want to use.

Note: You must use forward slashes in file paths. Do not use
backslashes.

To create a schema file, define the layout you want in Read from File or Write to File,
then click the Export button to create an XML file that defines the layout.

Note: You cannot override a field's data type in a schema file when using
job executor. The value in the <Type> element, which is a child of the
FieldSchema element, must match the field's type specified in the flow's
Read from File or Write to File stage.

Example File Format Override
The job executor command below uses the file C:/myschema.xml as the layout
definition for the file read in by the Read from File stage.

java -jar jobexecutor.jar -j Job1 -u Bob1234 -p "" "Read from
File":schema="file:/C:/myschema.xml"

827Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Using a Job Property File
A job property file contains arguments that control the execution of jobs when you use the job executor
or the Administration Utility to run a job. Use a job property file if you want to reuse arguments by
specifying a single argument at the command line (-f) rather than specifying each argument
individually at the command line.

To create a property file, create a text file with one argument on each line.

d %
h spectrum.mydomain.com
i 30
j validateAddressJob1
u user
p password
s 8888
t 9999
w true

The job property file can contain these arguments:

DescriptionArgumentRequired

Prints usage information.?No

Sets instance/status delimiter. This appears in synchronous output
only.

d delimiterNo

Use a secure HTTPS connection for communication with the
Spectrum Technology Platform server.

eNo

Specifies the name or IP address of the Spectrum Technology
Platform server.

h hostnameNo

Specifies how often to check for completed jobs, in seconds. This
applies only in synchronous mode.

i pollintervalNo

A comma-separated list of jobs to run. Job names are case-sensitive.
Jobs are started in the order listed.

j jobnameYes

Specifies a comma-separated list of additional email addresses for
configured job notifications.

n emaillistNo

The password of the user.p passwordYes

Returns a delimited list with this information about the job written to
standard output:

rNo

• Position 1 - Name of job
• Position 2 - Job process ID
• Position 3 - Status
• Position 4 - Start Date - Time (MM/DD/YYYY HH:MM:SS)
• Position 5 - End Date - Time (MM/DD/YYYY HH:MM:SS)

828Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

DescriptionArgumentRequired
• Position 6 - Number of successful records
• Position 7 - Number of failed records
• Position 8 - Number of malformed records
• Position 9 - Currently unused

The information is delimited using the delimiter specified in the -d
argument. For example:

MySimpleJob|4|succeeded|04/09/2019
14:50:47|04/09/2019 14:50:47|100|0|0|

The socket (port) on which the Spectrum Technology Platform server
is running. The default is 8080.

s portNo

Sets the timeout (in seconds) for synchronous mode. The default is
3600. The maximum is 2147483. This is a global, aggregate timeout

t timeoutNo

and represents the maximum time to wait for all spawned jobs to
complete.

The login name of the user.u usernameYes

Return verbose output.vNo

Specifies to wait for jobs to complete in a synchronous mode.wNo

Using Both Command Line Arguments and a Property File

A combination of both command-line entry and property file entry is also valid. For example:

java -jar jobexecutor.jar -f /dcg/job.properties -j job1

In this case command line arguments take precedence over arguments specified in the properties
file. In the above example, the job job1 would take precedence over a job specified in the properties
file.

Running a Process Flow from the Command Line

To run a process flow from the command line, use the Process Flow Executor. You can install the
Process Flow Executor from the Spectrum Technology Platform Welcome page (for example,
http://myserver:8080).

Note: You can also use the Administration Utility to run process flows from the command
line.

829Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Usage
java -jar pflowexecutor.jar -r ProcessFlowName -u UserID -p Password [Optional
Arguments]

DescriptionArgumentRequired

Prints usage information.-?No

Sets a delimiter to use to separate the status information displayed
in the command line when you run the command. The default is "|".

-d
DelimiterCharacter

No

For example, using the default character, the message below is
displayed at the command line when you run a process flow named
"MyProcessflow":

MyProcessflow|1|Succeeded

Use an HTTPS connection for communication with the Spectrum
Technology Platform server.

-eNo

Note: If you specify any file overrides this argument must not
be the last argument specified.

Specifies a path to a property file. For more information on property
files, see Using a Process Flow Property File on page 831.

-f PropertyFileNo

Specifies the name or IP address of the Spectrum Technology
Platform server.

-h HostNameNo

Specifies how often to check for completed jobs, in seconds. The
default is "5".

-i PollIntervalNo

The password of the user. Required.-p PasswordYes

A comma-separated list of process flows to run. Required.-r
ProcessFlowNames

Yes

Note: If you specify any file overrides this argument must not
be the last argument specified.

The socket (port) on which the Spectrum Technology Platform server
is running. The default is 8080.

-s PortNo

This option is deprecated and will be ignored.-t TimeoutNo

The login name of the user. Required.-u UserNameYes

Return verbose output where Verbose is one of the following:-v VerboseNo
Return verbose output.true
Do not return verbose output.false

Note: If you specify any file overrides this argument must not
be the last argument specified.

830Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

DescriptionArgumentRequired

This option is deprecated and will be ignored.-w
WaitToComplete

No

Overrides the input or output file specified in the job. For more
information, see Overriding Process Flow File Locations.

StageName=FileNameNo

Examples
This is a basic command-line entry, with a process flow name and user ID, and
password:

java -jar pflowexecutor.jar -r MyFlow1 -u Bob1234 -p "mypassword1"

This example shows the same information as above but with additional arguments:

java -jar pflowexecutor.jar -r Flow1 -u Bob1234 -p "mypassword1" -h
spectrum.example.com -s 8080 -w -d "%" -i 1

This example shows command line invocation and output.

D:\spectrum\pflow-executor>java -jar pflowexecutor.jar -u Bob1234 -p
"mypassword1" -r
validateAddressFlow1 -h spectrum.example.com -s 8080 -w -d "%" -i
1 -t 9999
validateAddressJob1%111%succeeded

In this example, the process flow named validateAddressFlow1 ran (with identifier
111). No errors occurred. Other possible results include "failed" or "running."

Using a Process Flow Property File
A property file contains arguments that you can reuse by specifying the path to the property file with
the -f argument in the process flow executor. The property file must contain, at minimum, the process
flow (r), user ID (u), and password (p).

1. Open a text editor.
2. Specify one argument on each line as shown in the example below. See Running a Process

Flow from the Command Line on page 829 for a list of arguments.

Note: You cannot use a property file to override input or output files. Overriding input and
output files can only be done using command line arguments.

d=%
h=myserver.mydomain.com
i=30
u=user

831Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

p=password
r=MyFlow1
s=8888

3. Save the file with a file extension of *.properties (for example, example.properties).
4. When you run the process flow executor, specify the path to the property file using the -f

argument. A combination of both command-line entry and property file entry is also valid.
Command line arguments take precedence over arguments specified in the properties file.
java -jar pflowexecutor.jar -f /dcg/flow.properties -r MyFlow2

In the above example, the process flow MyFlow2 would take precedence over a process flow
specified in the properties file.

Scheduling a Flow

A flow schedule runs a job or process flow automatically at a specific time. You can schedule a flow
to run once, or set up recurring execution.

1. If you have not already done so, expose the job or process flow.

You can expose jobs and process flows by opening the job or process flow in Spectrum Enterprise
Designer and selecting File > Expose/Unexpose and Save.

2. Open Spectrum Management Console.
3. Go to Execution then click Scheduling.
4. Click Add to create a new schedule or, if you want to modify an existing schedule, choose the

schedule and click Modify.
5. In the Add Task or Modify Task window, choose the settings for this task.

• Task Name - The name you want to give to this scheduled task. This is the name that will be
displayed in the task listing.

• Flow type - Choose the type of process you are scheduling, either a job or a process flow.
• Flow name - Select the job or process flow that you want to schedule. Only jobs and process
flows that are saved and exposed are available here. If the job or process flow that you want
is not shown, open the job or process flow in Spectrum Enterprise Designer then select File
> Expose/Unexpose and Save.

• Enable task - Check this box to run the job or process flow at the specified time. Clear this
box to suspend the schedule.

• Schedule - Specify the date and time you want the job or process flow to run.

6. If the flow uses files for input or output, those files must reside on the Spectrum Technology
Platform server or on a file server defined as an external resource in Spectrum Management
Console. This applies both to jobs as well as job activities within a process flow. If a source or
sink stage references a file on a client computer do one of these steps:

832Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

DescriptionOption

Move the file to the Spectrum Technology Platform server or file server
then modify the flow:

Option 1: Modify the
flow

a. Open the flow in Spectrum Enterprise Designer.
b. Double-click the source or sink stage.
c. In the File name field, click the browse button.
d. Click Remote Machine then select the file you want.

Note: If you are running Spectrum Enterprise Designer on
the same machine as the Spectrum Technology Platform
server, it will appear that clicking Remote Machine is no
different than clicking My Computer. However, you must
select the file using Remote Machine in order for the system
to recognize the file as being on the Spectrum Technology
Platform server.

You can override the input file specified in the flow's source stage (such
as Read from File), as well as the output file specified in the flow's sink
stage (such as Write to File).

Option 2: Override
the flow file location
when this schedule
runs a. Click Options.

b. Under Stage file locations select the stage that references a local
file.

c. Click Modify and select the file on the Spectrum Technology
Platform server.

7. If you want the job or process flow to run on a recurring schedule, check the Task recurrence
check box then click the Recurrence button and complete the fields.

8. If the flow has been configured for email notification, you can specify additional recipients for the
notifications that will be sent when the flow runs.
a) Click Options.
b) Under Notification, click Add.
c) Enter the email address to receive notification. For example, me@mycompany.com.
d) Click OK.

Note: Notification must be configured in Spectrum Management Console in order for
email notifications to work. In addition, verify that the flow has been configured to support
notification. To do this, open the flow in Spectrum Enterprise Designer, select Edit >
Notifications.

9. Click OK.

833Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Triggering a Flow with a Control File

A flow can run automatically when a control file is detected in a monitored directory. This feature is
useful in situations where the flow needs another process to complete before running. For example,
you may have a flow that needs an input file generated by another business process. You can set
up the other process to place a control file into a folder, and configure Spectrum Technology Platform
to run a flow when that control file appears.

Note: Be sure that the control file is placed in the monitored folder only after all files required
by the flow are in place and ready for processing.

1. If you have not already done so, expose the flow.

You can expose a flow by opening it in Spectrum Enterprise Designer and selecting File >
Expose/Unexpose and Save.

2. Open Spectrum Management Console.
3. Go to Flows > Schedules.

4. Click the Add button .
5. In the Name field, enter the name you want to give to this schedule. This is the name that will

be displayed in the schedules listing.
6. In the Flow field, enter the job or process flow that you want to run. Only jobs and process flows

that are saved and exposed are available here.
7. After you specify a flow, additional fields appear below the Flow field, one field for each of the

flow's source stages (such as Read from File) and sink stages (such as Write to File).
These fields show the files that will be used when the flow runs by this schedule. By default, the
flow will use the files specified in the flow's sources and sinks. You can specify different files to
use when this schedule runs by replacing the file path with the path to another file. For example,
if your flow has a Read from File stage that reads data from C:\FlowInput\Customers.csv
but you want to use data from C:\FlowInput\UpdatedCustomers.csv when this schedule
runs, you would specify C:\FlowInput\UpdatedCustomers.csv in the Read from File field.

Note: In order change the files used in the source and sink stages you must have Read
permission for the Resources - File Servers secured entity type.

Note that when a flow is triggered by a schedule the files used by a flow must reside on the
Spectrum Technology Platform server or on a file server defined as an external resource in
SpectrumManagement Console. This applies both to jobs as well as job activities within a process
flow. If a source or sink stage references a file on a client computer to modify the dataflow or
override the dataflow file location.

Option 1: Move the file to the Spectrum Technology Platform server or file server then modify
the dataflow:
a) Open the dataflow in Spectrum Enterprise Designer.

834Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

b) Double-click the source or sink stage.
c) In the File name field, click the browse button.
d) Click Remote Machine then select the file you want.

Note: If you are running Spectrum Enterprise Designer on the same machine as the
Spectrum Technology Platform server, it will appear that clicking Remote Machine is
no different than clicking My Computer. However, youmust select the file using Remote
Machine in order for the system to recognize the file as being on the Spectrum
Technology Platform server.

Option 2: Override the dataflow file location when this schedule runs.

You can override the file references contained in the flow when this schedule runs. To do this,
replace the default file shown in each source and sink field with a path to a file on the Spectrum
Technology Platform server or a file server resource defined in SpectrumManagement Console.

8. In the Trigger field, choose Control File.
9. In the Control file field, specify the full path and name of the control file that will trigger the flow.

You can specify an exact file name or you can use the asterisk (*) as a wild card. For example,
*.trg would trigger the flow when any file with a .trg extension appears in the folder.

The presence of a control file indicates that all files required for the flow are in place and ready
to be used in the flow.

The control file can be a blank file. For jobs, the control file can specify overrides to file paths
configured in the Write to File or Read from File stages. To use a control file to override the file
paths, specify the Read from File or Write from File stage names along with the input or output
file as the last arguments like this:

stagename=filename

For example:

Read\ from\ File=file:C:/myfile_input.txt
Write\ to\ File=file:C:/myfile_output.txt

The stage name specified in the control file must match the stage label shown under the stage's
icon in the flow. For example, if the input stage is labeled "Read From File" you would specify:

Read\ From\ File=file:C:/inputfile.txt

If the input stage is labeled "Illinois Customers" you would specify:

Illinois\ Customers=file:C:/inputfile.txt

When overriding a Read from File or Write to File location be sure to follow these guidelines:

• Start the path with the "file:" protocol. For example, on Windows specify
"file:C:/myfile.txt" and on Linux specify "file:/testfiles/myfile.txt".

835Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

• The contents of the file must use an ASCII format ISO-8559-1 (Latin-1) compatible character
encoding.

• You must use forward slashes in file paths, not backslashes.
• Spaces in stage names need to be escaped with a backslash.
• Stage names are case sensitive.

Note: If there are multiple schedules that use a control file trigger, it is important that they
each monitor different control files. Otherwise, the same control file may trigger multiple
jobs or process flows causing unexpected behavior. For organizational purposes we
recommend putting all required files and the control file in a dedicated directory.

10. In the Poll interval field, specify how frequently to check for the presence of the control file. For
example, if you specify 10, the monitor will look every 10 seconds to see if the control file is in
the monitored folder.

The default is 60 seconds.

11. In theWorking folder field, specify a folder where the control file will reside temporarily while
the flow runs. Spectrum Technology Platform copies the file from the monitored folder to the
working folder before running the flow. This clears out the monitored folder, which prevents the
flow from being kicked off again by the same control file.

12. In theWorking folder options field, specify what to do with the files in the working folder when
the flow finishes running.

Leaves the files in their current location with their current name. If you select
this option, the files in the working folder will be overwritten each time this
schedule runs.

Keep

Moves the files from the working folder to a folder you specify. This allows
you to preserve the files that were in the working folder by moving them to

Move to

another location so that they are not overwritten the next time the file monitor
runs. You can also use this option to move the files to another monitored
folder to trigger a downstream process, like another flow or some other
process.

Adds a time stamp to the file name in the working folder. This allows you to
preserve a copy of the files in the working folder since the renamed file will

Rename with
time stamp

have a unique name and so will not be overwritten the next time the monitor
runs a flow.

Deletes the files from the working folder after the flow finishes running.Delete

13. If the flow is configured to send email notifications you can specify additional recipients for the
notifications that will be sent when this schedule runs. The recipients you specify here will receive
notifications in addition to those recipients specified in the flow's notification settings. To configure
a flow to send notifications, open the flow in Spectrum Enterprise Designer and go to Edit >
Notifications.

14. Click Save.

836Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Example: Monitored Folder and Working Folder
Let's say you have a car repair shop. Each day you want to mail the previous day's
customers a coupon for a discount on future service. To accomplish this, you have
a flow that takes the list of customers for the day, ensures the names have the
correct casing, and validates the address. The list of customers for the day is
generated by another system every evening. This other system generates a file
containing the customer list, and you want to use this file as the input to the flow.

The system that generates the customer list puts it in a folder named
DailyCustomerReport. It also places a blank trigger file in the folder when it is
done. So you configure Spectrum Technology Platform to monitor this folder,
specifying the trigger file as:

C:\DailyCustomerReport*.trg

This tells Spectrum Technology Platform to run the flow whenever any file with a
.trg extension appears in this folder. You could also specify a specific file name,
but in this example we are using a wild card.

When a .trg file is detected in the DailyCustomerReport folder, Spectrum
Technology Platform needs to move it to another folder before running the flow.
The file must be moved because otherwise it would be detected again at the next
polling interval, and this would result in the flow running again. So the file is moved
to a "working folder" where it resides during the execution of the flow. You choose
as the working folder C:\SpectrumWorkingFolder.

After the flow is finished processing the customer list, you want the trigger file to
be moved to another location where it will trigger another process for billing. So,
you select the Move to option and choose a folder named C:\DailyBilling.

So in this example, the trigger file starts off in C:\DailyCustomerReport and is
then moved to the working folder C:\SpectrumWorkingFolder. After the flow
is done, the trigger file is moved to C:\DailyBilling to initiate the billing process.

Viewing Flow Status and History

You can view a history of job, process flow, and service execution in SpectrumManagement Console
and Spectrum Enterprise Designer.

In Spectrum Management Console

To view flow status and history in Spectrum Management Console, go to Flows > History. The
Flows tab shows job and process flow history, and the Transactions tab shows services history.

837Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Note: For flow history, the record counts shown when you hover over the Results column
reflect the total number of records written as output by all the flow sinks. This number may
differ from the number of input records if the flow combines records, splits records, or creates
new records.

By default, transaction history is disabled because enabling transaction history can have an adverse
impact on performance. If you want to see transaction history you must turn on transaction history
logging by clicking the Transaction logging switch. To view user activity, consider using the audit
log which you can access under System > Logs.

The flow history list updates automatically every 30 seconds. If you want to update it sooner, click
the Refresh button .

In Spectrum Enterprise Designer

To view flow status and history in Spectrum Enterprise Designer, go to View > Execution History.

The flow history list updates automatically every 30 seconds. If you experience slowness when
viewing execution history uncheck the Auto refresh box.

The Jobs tab is used to monitor job status and to pause, resume, or cancel jobs that are running as
well as delete completed jobs.

Note: The record counts shown on the Jobs tab reflect the total number of records written
as output by all the flow sinks. This number may differ from the number of input records if the
flow combines records, splits records, or creates new records.

• The Succeeded column shows the total number of records written as output by all the flow sinks
that have an empty value in the Status field.

• The Failed column shows the total number of records written as output by the flow sinks that have
a value of F in the Status field.

• The Malformed column shows the total number of records coming out of all source stage error
ports.

The Process Flows tab is used to monitor process flow status and to cancel process flows that are
running as well as delete completed process flows. If you click the plus sign next to any given process
flow, you will view Activity Status information for the process flow. This information is included in this
area:

Includes the names of all activities, including any success activities, that
make up the process flow.

ActivityName

The status of the activity (failed, succeeded, running, canceled).State
A code that indicates the result of the process flow:ReturnCode

The process flow failed.1
The process flow finished successfully.0
The process flow was canceled.-1

838Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

If the process flow contains a Run Program activity, the
external program may return codes of its own. Any values in

Other
numbers

the ReturnCode column other than 1, 0, and -1 are from the
external program. See the external program's documentation
for an explanation of its return codes.

The date and time the activity started.Started
The date and time the activity ended.Finished
Any comments associated with the activity.Comment

Downloading Flow History
You can download the information shown in the History page in Spectrum Management Console to
a Microsoft Excel file.

1. Open Spectrum Management Console.
2. Go to Flows > History.
3. To download history information for services, click Transaction History. To download history

for jobs and process flows, leave the Flows tab selected.

4. Click the Download button .

Tip: If you want to download only certain entries in the history list, modify the filter settings to
show only the history you want to download.

Setting the Malformed Records Default

A malformed record is an input record that Spectrum Technology Platform cannot parse. By default,
if the input data for a job contains one malformed record, the job will terminate. You can change this
setting to allow more malformed input records, or even allow an unlimited number of malformed
records. This procedure describes how to set a default malformed record threshold for jobs on your
system.

Note: You can override the default malformed record threshold for a job by opening the job
in Spectrum Enterprise Designer and going to Edit > Job Options.

1. Open Spectrum Management Console.
2. Go to Flows > Defaults.
3. Click Malformed Records.
4. Select one option:

Select this option to terminate jobs if the input data contains
one or more malformed records. Enter the number of

Terminate jobs containing this
many malformed records

839Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

malformed records that you want to trigger the termination
of the job. The default is 1.

Select this option to allow an unlimited number of
malformed records in the input data.

Do not terminate flows with
malformed records

Setting Report Defaults

Reports are generated by jobs that contain a report stage. Reports can include processing summaries
such as the number of records processed by the job, or postal forms such as the USPS CASS 3553
form. Some modules come with predefined reports. You can also create custom reports. Setting
report defaults establishes the default settings for saving reports. The default settings can be
overridden for a job, or for a particular report with in a job, by using Spectrum Enterprise Designer.

This procedure describes how to set the default reporting options for your system.

1. Open Spectrum Management Console.
2. Go to Flows > Defaults.
3. Click Reports.
4. Choose the format you want to use to save reports. Reports can be saved as HTML, PDF, or

text.
5. Choose where you want to save reports.

Saves reports on the server as part of the job history. This makes it
convenient for Spectrum Management Console and Spectrum Enterprise

Save reports to job
history

Designer users to view reports since the reports are available in the
execution history.

Saves reports to a file in the location you specify. This is useful if you want
to share reports with people who are not Spectrum Technology Platform

Save reports to a
file

users. It is also useful if you want to create an archive of reports in a
different location. To view reports saved in this manner you can use any
tool that can open the report's format, such as a PDF viewer for PDF
reports or a web browser for HTML reports.

6. If you selected Save reports to a file, complete these fields.

The folder where you want to save reports.Report location

Specifies variable information to include in the file name. You can choose
one or more of these options:

Append to report
name

A unique ID assigned to a job execution. The first time you
run a job on your system the job has an ID of 1. The second

Job ID

time you run a job, either the same job or another job, it has
a job ID of 2, and so on.

840Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

The name of the stage that contributed data to the report,
as specified in the report stage in Enterprise Designer.

Stage

The day, month, and year that the report was created.Date

Replaces previous reports that have the same file name with the new
report. If you do not select this option and there is an existing report that

Overwrite existing
reports

has the same name as the new report, the job will complete successfully
but the new report will not be saved. A comment will appear in the
execution history indicating that the report was not saved.

Exposing a Service

Exposing a Service as a Web Service

Spectrum Technology Platform services can bemade available as RESTful and SOAPweb services.
To make a service available on your server as a web service:

1. Open Spectrum Enterprise Designer.
2. Open the service that you want to expose as a web service.
3. Go to Edit >Web Service Options.
4. To make the service available as a SOAP web service, check the box Expose as SOAP web

service.
5. To make the service available as a REST web service, check the box Expose as REST web

service and complete these steps.
a) If you want to override the default endpoint, specify the endpoint you want to use in the Path

field.

Specifying a path is optional. By default, a REST web service's endpoint is:

http://server:port/rest/service_name/results.qualifier

If you want to use a different endpoint, the path you specify is added after the service name.
For example, if you specify Americas/Shipping in the Path field, your JSON endpoint
would be something like this:

http://myserver:8080/rest/MyService/Americas/Shipping/results.json

You can use fields and options from the flow as variable names in the path by clicking the
Insert variable drop-down menu and selecting the field or option you want to use. The

841Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

variable is represented in the path using the notation ${Option.Name} for flow options
and ${Data.Name} for flow fields.

b) By default REST web services support the GET method and return data in XML and JSON
formats. You can define additional HTTP methods and output formats by clicking Add to
add a resource to the web service.

When you add a resource, you can choose the HTTPmethod (GET or POST). The supported
data formats are listed below. You may not have all these formats available to you because
some formats are only available if you have certain modules installed on your Spectrum
Technology Platform server.

The default XML format. Use this format if you want to use XML as the format
for requests and responses, and there is no specialized XML format for the kind
of data you want to process.

XML

The default JSON format. Use this format if you want to use JSON as the format
for requests and responses, and there is no specialized JSON format for the
kind of data you want to process.

JSON

A specialized JSON format that is appropriate for services that handle
geographic data. Support is provided only for Geometry and for these native
platform types:

GeoJSON

• boolean
• double
• float
• integer
• bigdecimal
• long
• string
• date
• time
• datetime
• timespan

If you try to expose a flow with any other type, you will not be able to specify
GeoJSON (an error will appear at design-time). Also, GeoJSON only allows a
single geometry. If the output contains multiple geometry fields, the system will
search for a field called "geometry" followed by a field called "obj." If those fields
do not exist, the first geometry field will be selected.

c) Click OK.

The new resource is added to the web service.

6. Click OK when you are done configuring the web service options.
7. Click the gray light bulb in the tool bar to expose the service.

842Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

When a flow is exposed the light bulb button in the Spectrum Enterprise Designer tool bar
indicates that the flow is exposed as shown here:

To verify that the service is now exposed as a web service, go to one of the following URLs:

• For REST: http://server:port/rest
• For SOAP: http://server:port/soap

Where server is the name or IP address of your Spectrum Technology Platform server and port is
the port used for HTTP communication.

Exposing a Service for API Access

In order for a service to be accessible from through the Spectrum Technology Platform API, you
must expose the service.

1. Open the service in Enterprise Designer.
2. Click the gray light bulb in the tool bar to expose the service.

When a flow is exposed the light bulb button in the Spectrum Enterprise Designer tool bar
indicates that the flow is exposed as shown here:

Runtime Options

Adding Flow Runtime Options

Flow runtime options enable you control the behavior of stages when you run the flow. This is useful
when you want to have the ability to modify the behavior of the flow when it runs. For example, you
may want to specify a source database for a Read from DB stage when you run the flow, rather than
using the database specified in the Read from DB stage in the flow.

This procedure describes how to expose options that can be set at runtime. After performing this
procedure you will be able to set flow options at runtime using these techniques:

843Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

• For jobs, you will be able to specify runtime options using a flow options property file and job
executor's -o argument.

• For services, you will be able to specify runtime options as API options.
• For services exposed as web service, you will be able to specify runtime options as parameters in
the request.

• For subflows, runtime options will be inherited by the parent flow and exposed through one of the
abovemeans, depending on the parent flow type (job, service, or service exposed as a web service).

To add runtime options to a flow,

1. Open the flow in Spectrum Enterprise Designer.
2. If you want to configure runtime options for a stage in an embedded flow, open the embedded

flow.
3. Click the Dataflow Options icon on the toolbar or click Edit > Dataflow Options. The Dataflow

Options dialog box appears.
4. Click Add. The Define Dataflow Options dialog box appears.
5. In the Option name field, specify the name you want to use for this option. This is the option

name that will have to be specified at runtime in order to set this option.
6. In the Label field, you can specify a different label or keep it the same as the option name.
7. Enter a description of the option in the Description field.
8. In the Target field, chose whether you want this option to be applied to all stages in the flow or

only certain stages.
Selected stage(s)

Select this option if you want the option to only be applied to the stages you specify.

All stages
Select this option if you want the option to be applied to all stages in the flow.

Includes transforms
Select this option if you want the runtime option to be made available to custom
transforms in Transformer stages in the flow. If you choose this option you can access
the value specified when you run it in the Groovy script using this syntax:

options.get("optionName")

For example, to access an option named casing, you would include this in your
custom transform script:

options.get("casing")

9. If you chose Selected stage(s) in the Target field, the Map dataflow options to stages table
displays a list of the stages in the flow. Select the option that you want to expose as a flow option.
You will see the Default value and Legal values fields be completed with data when you select
your first item.

844Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Note: You can select multiple options so that the flow option can control multiple stages
options. If you do this, each of the stage options you select must share legal values. For
example, one option has values of Y and N, each of the additional options must have
either Y or N in their set of values, and you can only allow the value in common to be
available at runtime. So, if you select an option with Y and N values, you cannot select
an option with the values of E, T, M, and L, but you could select an option with the values
of P, S, and N because both options share "N" as a value. However, only "N" would be
an available value for this option, not "Y", "P", or "S".

10. If you want to limit the values that can be specified at runtime, edit the options in the Legal
values field by clicking on the icon just to the right of the field.

11. If you want to change the default value, specify a different value in the Default value field.

Note: For a service, you can only modify default values before exposing the service for
the first time. Once you expose the service you can no longer modify default values using
Spectrum Enterprise Designer. Instead, you must use Spectrum Management Console.
For more information, see Specifying Default Service Options on page 845.

12. Click OK.
13. Continue adding options as desired.
14. Click OK in the Dataflow Options dialog box when you are done adding options.
15. If you added a runtime option to an embedded flow, you must define the runtime option parent

flow as well as all ancestor flows in order to make the options available at runtime. To do this,
open the flow that contains the embedded flow and expose the option you just created. If
necessary, open the parent of that flow and define the option there, and so on until all ancestors
have the flow option defined.

For example, say you had a flow named "A" that contained an embedded flow named "B" which
contained an embedded flow named "C", so that you have an embedded flow hierarchy like this:
A > B > C. If you wanted to expose an option named Casing in a stage in embedded flow "C",
you would open embedded flow "C" and define it. Then, you would open embedded flow "B" and
define the option. Finally, you would open flow "A" and define the option, making it available at
runtime.

The flow is now configured to allow options to be specified at runtime.

Specifying Default Service Options

Default service options control the default behavior of each service on your system. You can specify
a default value for each option in a service. The default option setting takes effect when an API call
or web service request does not explicitly define a value for a given option. Default service options
are also the settings used by default when you create a flow in Spectrum Enterprise Designer using
this service.

845Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

Note: For a service, you can only modify default values before exposing the service for the
first time. Once you expose the service you can no longer modify default values using Spectrum
Enterprise Designer. Instead, you must use Spectrum Management Console.

1. Open Spectrum Management Console.
2. Click Services.

3. Check the box next to the service you want then click the Edit button .
4. Set the options for the service. For information about the service's options, see the solution guide

for the service's module.
5. Click Save.

Deleting flow Runtime Options

Flow runtime options enable you to set stage options at runtime. The stage options can be set when
calling the job through a process flow or through the job executor command-line tool. This procedure
describes how to remove a flow runtime option so that the option can no longer be set at runtime.

1. Open the job, service, or subflow.
2. Click theDataflowOptions icon or click Edit >DataflowOptions. TheDataflowOptions dialog

box appears.
3. Highlight the option you want to delete and click Remove.

Configuring Email Notification for a Flow

A flow can be configured to send an email notification containing job status information. For example
you may want to send an email alert if a flow fails. The email notification can contain information
such as the flow name, the start and end time, the number of records processed, and more.

Note: A mail server must be configured in Spectrum Management Console before you can
set up notification for a flow. For more information, see the Spectrum Technology Platform
Administration Guide.

1. With a flow or process flow open in Spectrum Enterprise Designer, select Edit > Notifications.
2. Click Add.
3. In the Send Notification To field, enter the email address to which notifications should be sent.
4. Select the events you want to be notified about.
5. In the Subject field, enter the text you would like to appear in the subject line of the email.
6. In the Message field, enter the text you would like to appear in the body of the email.

846Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

You can choose to include information about the job in the email by clicking Click Here to Insert
a Field in the Subject or Message. Some examples of job information are: start time, end time,
and number of records failed.

7. Click Preview if you wish to see what the notification will look like.
8. Click OK. The Notifications dialog box will reappear with the new notification listed.
9. Click OK.

847Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Running a Flow

5 - Combining Flows into
a Process Flow

In this section

Introduction to Process Flows..849
Designing Process Flows...849

Introduction to Process Flows

A process flow runs a series of activities such as jobs and external applications. Each activity in the
process flow runs after the previous activity finishes. Process flows are useful if you want to run
multiple flows in sequence or if you want to run an external program. For example, a process flow
could run a job to standardize names, validate addresses, then invoke an external application to sort
the records into the proper sequence to claim postal discounts. Such a process flow would look like
this:

In this example, the jobs Standardize Names and Validate Addresses are exposed jobs on the
Spectrum Technology Platform server. Run Program invokes an external application, and the Success
activity indicates the end of the process flow.

Designing Process Flows

Creating a Process Flow

To create a process flow use Spectrum Enterprise Designer to create a sequence of activities that
run jobs and or external applications.

1. Open Spectrum Enterprise Designer.
2. Select File > New > Process Flow.
3. Add the first action you want the process flow to perform. You can chose one of these options:

• To execute a job, drag the job's icon from the Activities folder in the palette to the canvas.
• To execute an external program, drag a Run Program icon from the Activities folder in the
palette to the canvas.

4. Add the second action you want the process flow to perform.

You can add a job by dragging a job's icon to the canvas, or add an external program by dragging
a Run Program icon to the canvas.

849Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

5. Connect the two activities by clicking the gray triangle on the right side of the first icon and
dragging it to connect to the gray icon on the left side of the second icon.

For example, if you have a process flow that first runs a job named GeocodeAddress then runs
an external program, your process flow would look like this:

6. Add additional activities as needed.
7. When you have added all the activities you want to run in the process flow, drag a Success

activity to the canvas and connect it to the last activity in the process flow.

For example, this process flow contains two jobs ("Standardize Names" and "Validate Addresses")
and one Run Program activity. At the end of this process flow is the Success activity:

8. Double-click the activities you placed on the canvas to configure their runtime options. You can
also double-click the connection between activities to configure transition options.

Using a Variable to Reference a File

In a process flow, variables are useful if you want multiple activities in the process flow to reference
the same file. Using a variable, can define the file in one place, then reference the variable in all
downstream activities that need to reference the file. If the file ever changes, you can modify the
variable definition without having to modify all the downstream activities.

When you add a job activity to a process flow, the activity automatically creates variables for each
source and sink in the dataflow. If there are files you want to use in the process flow that are not
defined in the source or sink of a job, you can create variables.

When you add a Run Program activity, no variables are created by default. If you want to use variables
with a Run Program activity you must create them.

This procedure describes how to create a variable in a job activity or a Run Program activity.

1. Open the process flow in Spectrum Enterprise Designer.
2. Double-click the job activity or Run Program activity where you want to define the variable.

Note: Variables can only be referenced by activities that follow the activity where you
define the variable, so be sure to define the variable in an activity that precedes the
activities where you want to use the variable.

850Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

3. Click the Variables tab.
4. Create the variable.

DescriptionOption

Next to Inputs click Add. In the Name field enter a name for the variable.
This is the name that downstream activities will reference. In the Location
field choose one of these options:

To create a new
variable for an
input file...

Choose this option to use the file defined in
the source stage in the job. This option is only

Use file specified in job

available if you are defining a variable for a job
activity.

Choose this option if you want to select a file
to assign to this variable.

Browse for file on the
server

Choose this option if you want to use a file
assigned to an existing variable from an
upstream stage.

Reference an upstream
activity's file

Next to Inputs click Add. In the Name field enter a name for the variable.
This is the name that downstream activities will reference. In the Location
field choose one of these options:

To create a new
variable for an
output file...

Choose this option if you want to select a file to
assign to this variable.

Browse for file on
the server

Choose this option if you want this variable to
reference a temporary file that will be

Temporary file
managed by the
server automatically created and deleted as needed.

This option is useful in cases where a file used
only as an intermediate step in a process flow and
is not needed once the process flow completes.

5. Click OK to close the Add Variable window.
6. Click OK to close the activity options window.
7. To reference the variable in a downstream activity:

a) Double-click the activity that you want to reference the variable.
b) Select the input stage that you want to have reference the variable and click Modify.
c) In the Location field, select Reference an upstream activity's file....

851Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

Adding Conditional Logic to a Process Flow

You can add conditional logic to a process flow so that different activities run based on the return
code of a preceding activity. For example, you could execute one activity if a job returns a return
code of 1 and another activity if a job returns a return code of 0. In this way you can build conditional
branching into your process flow.

1. Open the process flow in Spectrum Enterprise Designer.
2. Double-click the transition between two activities of the flow.

A transition is the line that connects two activities. For example, the line between the
GeocodeAddress activity and the Run Program activity shown here is a transition:

The Transition Options window appears.

3. Select the type of transition you wish to add.
Select this option if you always want this path in the process flow to run.Simple

Select this option if you only want this path in the process flow to run if the
upstream activity returns a specific return code or return codes, or a range
of return codes.

Conditional

Select this option if you want this path in the process flow to run only if the
conditions in the other transitions leading from the activity are not met.

Otherwise

Note: Only oneOtherwise transition can exist among the transitions
leading from an activity.

4. Click OK.
5. To configure which transitions trigger an activity, right-click the activity, select Input modes, then

choose one of the following:
The first transition coming into this activity, whether through a Simple,
Conditional, orOtherwise transition, triggers the execution of the activity.
Other transitions are ignored.

First Input

852Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

The activity does not run unless all transitions coming into this activity are
taken.

All Inputs

6. To configure which transitions leading out of an activity are taken, right-click the activity, select
Output modes, then choose one of these options:

The first transition that evaluates to true is taken. Other transitions
are ignored, even if their conditions evaluate to true.

First Output

All transitions that evaluate to true are taken.All Outputs

Deleting a Process Flow

1. Go to File > Manage. The Manage dialog box will appear.
2. Right-click on the process flow you want to delete and select Delete.
3. Click OK.

Activities

Job
A job activity runs a job as part of a process flow. This example shows a process flow that runs two
job activities: Standardize Names and Validate Addresses.

To add a job activity to a process flow, drag the job activity from the Activities folder in the palette to
the canvas.

Note: In order for a job to be available to use in a process flow, the job must be exposed. If
the job you want is not exposed, open the job in Spectrum Enterprise Designer and select
File > Expose.

Double-click the job activity to configure the Options tab and the Variables tab.

Options Tab

The Options tab displays the runtime options available for the job. You can change the runtime
options so that when the job runs the options you specify here are used for the job. For example, if

853Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

one of the job's dataflow options is controls the units to use for distance and defaults to miles, you
could override that option here and have distance returned in kilometers instead when the job is
executed through this process flow.

Variables Tab

The Variables tab displays the source and sink stages in the dataflow. You can override the input
and output files specified in the dataflow so that when the job runs in this process flow, different input
or output files are used.

Overriding Input and Output Files
By default, a job executed in a process flow uses the input and output files defined in the job's source
and sink stages. You can, however, override the input and output files defined in the job so that when
the process flow runs, the job will use the input or output file you specify in the job activity in the
process flow instead of the file specified in the job's source or sink stages. You can override input
and output files by specifying a specific file or by using a variable to refer to a file defined in an
upstream activity.

1. Open the process flow in Spectrum Enterprise Designer.
2. Double-click the job activity for which you want to override an input or output file.
3. Click the Variables tab.

On the Variables tab, the variables listed under Inputs correspond to the source stages in the
job. The variables listed under Outputs correspond to the sink stages in the job.

For example, say you have a process flow that contains a job activity for a job named
MyGeocodingJob. On the Variables tab of the activity options you see this:

854Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

Each variable listed corresponds to the name of a source or sink stage in the MyGeocodingJob
dataflow. In this example the Variables tab shows one source (Read from File) and two sinks
(Write Failed and Write Successful). If you were to open up the MyGeocodingJob dataflow in
Spectrum Enterprise Designer, you would see something like this:

4. On the Variables tab, select the source stage or output stage that you want to override and click
Modify.

5. the Location field, choose one of the following to override an input or output file.
To override an input file:

855Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

ToChoose this

Use the file defined in the source stage in the job.Use file specified in job

Override the file defined in the job and use a different file that you
choose.

Browse for file on the
server

Override the file defined in the job with a file whose name and
location is defined in an upstream activity's Read from File or Write

Reference an upstream
activity's file

to File stage or an upstream activity's variable. Use this option if the
output file from a previous activity is the input for this activity. The
advantage of this option is that if the upstream activity's Write to
File stage is ever modified to point to another file, this activity will
still point to the correct file. Another advantage is that you do not
need to know the file path and name of upstream activities' input
file to point to it.

To override an output file:

ToChoose this

Override the file defined in the job and use a different file that
you choose.

Browse for file on the server

Make this variable reference a temporary file that will be
automatically created and deleted as needed. This option is

Temporary file managed by
the server

useful in cases where a file used only as an intermediate step
in a process flow and is not needed once the process flow
completes.

6. Click OK to close the Modify Variable window.
7. Click OK to close the activity options window.

When the process flow runs, the job will use the files you specified in the process flow activity instead
of the file specified in the job itself.

Clear Cache
A Clear Cache activity clears the global cache data as a part of process flow. It does not delete the
cache but only clears the cache data.

1. Drag the Clear Cache activity to the canvas.
2. Double-click the Clear Cache.
3. Select the cache. You can also select multiple caches to clear their data.

856Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

4. Run the process flow.

Execute SQL
An Execute SQL activity allows you to run the SQL statements both before and after you run a
dataflow or an external program.

Load to Hive
Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data
summarization, query, and analysis. To use Hive to query the underlying data source, use its own
query language, HiveQL.

Hive supports these Hadoop file formats:

• TEXTFILE
• SEQUENCE FILE
• ORC
• PARQUET
• AVRO

Note: The AVRO file format is supported in Hive version 0.14 and higher.

The Load to Hive activity allows you to load data into a Hive table using a JDBC connection. Using
this connection, data is read from a specified Hadoop file and loaded to either an existing table of a
selected connection, or to a newly created table in the selected connection.

To load the data to a new table, the schema of the table needs to be defined. Spectrum does not
support hierarchical data, even though Hive supports it.

Note: The stage supports reading data from and writing data to HDFS 3.x and Hive 2.1.1.
The support includes:

• Connectivity to HDFS and Hive from Spectrum on Windows
• Support and connectivity to Hadoop 3.x from Spectrum with high availability
• Kerberos-enabled HDFS connectivity through Windows
• Support and connectivity to Hive version 2.1.1 from Spectrum with high availability
• Support of Datetime datatype in the Parquet file format
• Support to Read and Write from Hive DB (JDBC) via Model Store connection

Also seeConfiguring HDFSConnection for HACluster andBest Practices for connecting
to HDFS 3.x and Hive 2.1.1.

Creating a Hive Connection
1. Open the Load to Hive activity.

857Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

2. From the File name field, enter the name of the file, which is to be read. Click Browse [...] to
select the file to be read.

3. From the File type field, select the format of the file to be read. The default file format selected
is Delimited.
If the File type selected is either Delimited or Sequence, the fields Field Separator and
Record Separator are displayed. Else, they are not displayed.

4. In the Field Separator field, select the character that separates each consecutive field of a
record.

5. Select the connection for the Hive database you want to use in the Connection field.
a) To add, modify, and delete connections, click Manage.

The Database Connection Manager window opens.
b) Click Add to create a new connection, or Modify to edit an existing connection.

The Connection Properties window opens.
c) Enter the Connection Name.
d) In the Database Driver field, select a Hive database driver for the connection.
e) Specify all the details of the connection, namely user, password, host, port, and instance.
f) To test the connection details, click Test.
g) If the connection test is successful, click OK.

The Connection Properties window closes.
h) Click OK.

The Database Connection Manager window closes.

6. In the Table/View field, select the table you wish to write to, or type in the name of a new table
to be created.
If you create a new table in the Table/View field, the External check box gets enabled. Else, if
you select an existing table, the External check box remains disabled.

7. To create the new table external to the Hive database, check the External check box.

Important: In case of External tables: You cannot overwrite records and you cannot add new
records. You are allowed to create new external tables and populate those with records. If you
select a file placed in a particular folder, all files placed in that folder are automatically selected.
Ensure that all files placed in the particular folder have the same format. Learn more about Hive
EXTERNAL tables here.

8. To overwrite all existing records of the table, check theOverwrite check box. This deletes existing
records of the selected table, and adds the records read from the file to the table.

9. The grid displays the names and data types of the columns of the selected table.
If you have specified a new table in the Table/View field, use the Add, Modify and Remove
buttons beside the grid to add columns to define the table, and specify their respective data
types. Use theMove Up andMove Down buttons to specify the sequence of the table columns.

Note: The Add, Modify, Remove, Move Up, and Move Down buttons remain disabled
if you select an existing table in the Table/View field.

858Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-ExternalTables

Important:

a. Ensure the data types of all the fields in the file match the data types of the respective table
columns, unless all data types are of String type. Else, the data load may result in inconsistent
data.

b. Ensure the number of fields in the file match the number of table columns. Else, the data in
the extra fields in the file are discarded.

c. Hive accepts names of tables and columns in small case only. If you enter the names using
block letters, Hive converts them to small case. The resultant schema displays all names in
small case.

10. Click OK.

Note: If you opt to create a new table and define its columns, the same is created at runtime.
The Load to Hive activity is only to design the table structure. At runtime, the designed table
is created and the data read from the file is written into it.

Run Program
The Run Program activity runs an external application as part of a process flow.

Table 151: Run Program Options

DescriptionOption Name

The path to the executable you wish to run.Program name

Specifies command line arguments to pass to the program
specified in the Program name field. Separate multiple
arguments with spaces. You can use variables defined on
the Variables tab as arguments by clicking Insert Variable.
For more information about variables, seeUsing a Variable
to Reference a File on page 850.

Arguments

Specifies an amount of time to wait for the program specified
in the Program name field to respond. If the program is
unresponsive for the amount of time specified the process
flow will fail.

Time out (in seconds)

859Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

DescriptionOption Name

Specifies environment variable values to use when running
this program. If you specify values here the program will use
these environment variables instead of those specified on
your system. Otherwise, it will use the environment variables
specified on your system. Note that if the program you are
calling uses multiple environment variables you must either
define values for all of them or none of them. Specifying
values here does not change the environment variable
definitions on your system.

ClickAdd and enter the name of the variable in the Variable
Name field; for example: "JAVA_HOME". Enter the value of
the variable in the Variable Value field; for example:
C:\Program Files\Java\jdkversion. Instead of
entering a value you can click Insert Variable to set it to the
value of a variable defined in on the Variables tab.

Environment variables

Specifying Input and Output Files
You can call an external application from a process flow by using a Run Program activity. You can
specify the file that contains the data you want to send to the external application as well as the
output file you want the external application to write to.

1. In a process flow, double-click a Run Program activity.
2. Click the Variables tab.
3. To specify an input file,

a) Click the Add button under the Inputs section.
b) In the Name field, enter a meaningful name for this file. The name can be anything you

choose.
c) In the Location field choose one of the following:

Choose this option to go to the input file you want and
select it.

Browse for file on the server

Choose this option if you want to use a file assigned
to an existing variable from an upstream stage.

Reference an upstream activity's
file

d) Click OK.

4. To specify an output file,
a) Click the Add button under the Outputs section.
b) In the Name field, enter a meaningful name for this file. The name can be anything you

choose.
c) In the Location field choose one of the following:

Choose this option if you want to go to an output file and select
it.

Browse for file on the
server

860Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

Choose this option if you want the output from the program to
be written to a temporary file that will be automatically created

Temporary file managed
by the server

and deleted as needed. This option is useful in cases where a
file used only as an intermediate step in a process flow and is
not needed once the process flow completes.

d) Click OK.

5. Click OK to close the Run Program Options window.

Using a Control File with an External Program
You can call an external application from a process flow by using a Run Program activity. In doing
so you can use a control file that contains configuration settings for the external application. For
example, you could call VeriMove™ with a Run Program activity and specify a control file to use
during execution.

1. In a process flow, double-click a Run Program activity.
2. Click the Variables tab.
3. In the Control Files section, click Add.
4. In the Name field, give the control file a name. The name can be anything you choose.
5. In the Contents field, specify the contents of the control file.

To reference a file using a variable defined under Inputs or Outputs, click Insert Variable.

6. Click OK to close the Add Control File window.
7. Click the Options tab.
8. Click Insert Variable.
9. Select the name of the control file you created then click OK.

A variable that points to your control file is added to the Arguments field.

10. If necessary modify the Arguments field to use the necessary command line arguments to
indicate a control file. Your external application documentation has more information.

11. Click OK to close the Run Program Options window.

Success
A Success activity indicates the end of a process flow. A process flowmust have at least one Success
activity.

861Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Combining Flows into a Process Flow

6 - Creating Reusable
Flow Components

In this section

Introduction to Subflows...863
Using a Subflow as a Source...863
Using a Subflow in the Middle of a Flow..864
Using a Subflow as a Sink..865
Modifying a Subflow...866
Deleting a Subflow..867
Exposing and Unexposing a Subflow...867
Converting a Stage to a Subflow..867

Introduction to Subflows

Subflows are snippets of flows.

A subflow is a dataflow that can be reused within other dataflows. Subflows are useful when you
want to create a reusable process that can be easily incorporated into dataflows. For example, you
might want to create a subflow that performs deduplication using certain settings in each stage so
that you can use the same deduplication process in multiple dataflows. To do this you could create
a subflow like this:

You could then use this subflow in a dataflow. For example, you could use the deduplication subflow
within a dataflow that performs geocoding so that the data is deduplicated before the geocoding
operation:

In this example, data would be read in from a database then passed to the deduplication subflow,
where it would be processed through Match Key Generator, then Intraflow Match, then Best of Breed,
and finally sent out of the subflow and on to the next stage in the parent dataflow, in this case Geocode
US Address. Subflows are represented as a puzzle piece icon in the dataflow, as shown above.

Subflows that are saved and exposed are displayed in the User Defined Stages folder.

Using a Subflow as a Source

You can use a subflow as the first stage in a flow to read data from a source and even perform some
processing on the data before passing it to the parent flow. You can create a subflow that is as simple
as a single source stage that is configured in a way that you want to reuse in multiple flows, or you
could create a more complex subflow that reads data then processes it in some way before passing
it to the parent flow.

1. In Spectrum Enterprise Designer, click File > New > Dataflow > Subflow.
2. Drag the appropriate data source from the palette to the canvas and configure it.

863Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

For example, if you want the subflow to read data from a comma-separated file, you would drag
a Read from File stage to the canvas.

3. If you want the subflow to process the data in some way before sending it to the parent flow,
add additional stages as needed to perform the preprocessing you want.

4. At the end of the flow, add an Output stage and configure it.

This allows the data from the subflow to be sent to the parent flow.

For example, if you created a subflow that reads data from a file then uses a Transformer stage
to trim white space and standardize the casing of a field, you would have a subflow that looks
like this:

5. Double-click the Output stage and select the fields you want to pass into the parent flow.
6. Select File > Save and save the subflow.
7. Select File > Expose to make the subflow available to include in flows.
8. In the flow where you want to include the subflow, drag the subflow from the palette to the canvas.
9. Connect the subflow to the flow stage you want.

Note: Since the subflow contains a source stage rather than an Input stage, the subflow
icon only has an output port. It can only be used as a source in the flow.

The parent flow now uses the subflow you created as input. For example, if you created a subflow
named "Read from File and Transform" and you add the subflow and connect it to a Broadcaster
stage, your flow would look like this:

Using a Subflow in the Middle of a Flow

You can use a subflow in the middle of a flow to perform processing that you want to make reusable
in other flows. In effect, the subflow becomes a custom stage in your flow.

1. In Spectrum Enterprise Designer, click File > New > Dataflow > Subflow.
2. Drag an Input stage from the palette to the canvas.

864Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

This allows data from the parent flow to be sent into the subflow.

3. Double-click the Input stage and add the fields that the subflow will receive from the flow in which
it is used.

4. After configuring the Input stage, add additional stages as needed to perform the processing
that you want.

5. At the end of the flow, add an Output stage.

This allows the data from the subflow to be sent to the parent flow.

For example, you might want to create a subflow that performs deduplication using certain
settings in each stage so that you can use the same deduplication process in multiple flows. To
do this you could create a subflow like this:

6. Select File > Save and save the subflow.
7. Select File > Expose to make the subflow available to include in flows.
8. In the flow where you want to include the subflow, drag the subflow from the palette to the canvas.
9. Connect the subflow to the flow stage you want.

For example, you could use the deduplication subflow within a flow that performs geocoding so
that the data is deduplicated before the geocoding operation:

Using a Subflow as a Sink

You can use a subflow as the last stage in a flow to write data to a file or database and even perform
some processing on the data before writing the data to the output destination. You can create a
subflow as simple as a single sink stage that is configured in a way that you want to reuse in multiple
flows, or you could create a more complex subflow that processes data in some way before writing
it to the output destination.

1. In Spectrum Enterprise Designer, click File > New > Dataflow > Subflow.
2. Drag an Input stage from the palette to the canvas.
3. Double-click the Input stage and add the fields that the subflow will receive from the flow in which

it is used.

865Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

4. After configuring the Input stage, add additional stages as needed to perform the post-processing
that you want.

5. At the end of the subflow, add the appropriate sink.

For example, if you created a subflow that uses a Transformer stage to trim white space and
standardize the casing of a field then writes it to a database, you would have a subflow that looks
like this:

6. Select File > Save and save the subflow.
7. Select File > Expose to make the subflow available to include in flows.
8. In the flow where you want to include the subflow, drag the subflow from the palette to the canvas

and connect it to the last stage in the flow.

Note: Since the subflow contains a sink stage rather than an Output stage, the subflow
icon only has an input port. It can only be used as a sink in the flow.

The parent flow now uses the subflow you created as a sink. For example, if you created a
subflow named "Transform andWrite to DB" and you add the subflow and connect it to a Geocode
US Address stage, your flow would look like this:

Modifying a Subflow

1. Open the subflow on the canvas.
2. Before modifying the subflow, you may want to consider how the change will impact the flows

using the subflow. To see which flows are using the subflow, select Tools > Used By.
3. Modify the subflow as needed.

• When you delete an Input or Output stage or add an additional Input or Output stage, Spectrum
Enterprise Designer displays a warning message reminding you that other flows are using the
subflow and giving you the option of seeing which flows use the subflow. If you continue saving
the reusable stage, Spectrum Enterprise Designer will conceal all flows used by the subflow.

• If you change a subflow in another way, such as by changing a file name or the stage
configurations, Spectrum Enterprise Designer will display a warning message reminding you
that other flows are using the subflow and give you the option of seeing which flows use the
subflow. You can continue without concealing those flows.

866Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

4. When you are done making your changes, select File > Save.
5. Select View > Refresh in order for the changes to be reflected in the parent flow.

Note: If you have more than one version of the subflow, remember that the version that
is used in the parent dataflow is the exposed version. When you make a change to a
subflow, be sure to expose the most recent version in order for your changes to take effect
in the dataflows that use the subflow.

Deleting a Subflow

If you try to delete an exposed subflow, Spectrum Enterprise Designer displays a warning message
reminding you that other flows are using the subflow you are about to delete. If you continue to delete
the subflow, Spectrum Enterprise Designer conceals all connected flows.

Exposing and Unexposing a Subflow

In order for a subflow to be available for use within a dataflow the subflow must be exposed. To
expose a subflow, open the subflow in Spectrum Enterprise Designer and go to File >
Expose/Unexpose and Save. This will make the subflow available for use in other dataflows.

Note: If you have more than one version of the subflow, remember that the version that is
used in the parent dataflow is the exposed version. When you make a change to a subflow,
be sure to expose the most recent version in order for your changes to take effect in the
dataflows that use the subflow.

To unexpose a subflow, open the subflow in Spectrum Enterprise Designer and select File >
Expose/Unexpose and Save. When you unexpose a subflow, SpectrumEnterprise Designer displays
a warning message reminding you that other dataflows are using the subflow you are about to alter.
If you continue to unexpose the subflow, Spectrum Enterprise Designer unexposes all dataflows that
use the subflow.

Converting a Stage to a Subflow

1. Create a new job, service, or subflow.

867Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

2. Add the stage you would like to include in the job, service, or subflow.
3. If you wish to configure the stage at this point, right-click the stage and select Options. Then

configure the stage options as desired and click OK.
4. Right-click the stage you want to convert and select Convert Stage to Subflow. The Save As

dialog box appears.
5. Enter the name you want to give the subflow and click OK, then save the service. The name

must be unique to the system. Three things happen:

• The system creates a new subflow that includes:

• the stage you selected
• a flow input for each input port on the stage
• a flow output for each output port on the stage
• connections between the stage and its inputs and outputs

• The system replaces your selected stage with the new subflow.
• The system exposes the new subflow. You will see it in the Server Explorer and in the User
Defined Stages section of the toolbox.

After you have created a subflow and used it in other flows, you can see what other flows are using
the subflow. Open the subflow and go to Tools > Used By. (Alternately, you can right-click the
subflow in Server Explorer and select Used By.) This will show a list of flows that use the current
subflow, allowing you to see which flows would be affected if you changed the current subflow.

868Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Creating Reusable Flow Components

7 - Sample Flows

In this section

Introduction...870
Integration between SugarCRM OnPremises and Microsoft Dynamics 365

Online..872
Integration between Salesforce and Oracle Eloqua...............................874

Introduction

This section describes the end-to-end process of data migration using sample flows.

Note: These sample templates are part of the Spectrum installer file and do not work
standalone. There is no further support available for these samples.

Locating the Sample Template

We provide a set of preconfigured templates that demonstrate Spectrum migration capabilities. This
provides a starting point to create flows. Create two or more connections and import these flows into
your system to demonstrate the migration capabilities. The sample template is shipped with the
Spectrum Technology Platform installer zip.

• Depending on your installation directory, you can find the sample template at this path:
Program
Files\Precisely\Spectrum\server\modules\discovery\connectors\samples

This folder contains all the required files to configure the data flow.

Creating Connections

You need to create two connections to import and deploy required files to configure the data flow.
Follow these steps to create connections:

1. Install the latest Spectrum Platform Server
2. Open the Spectrum Technology Platform home page.

To do this, in click Start > Precisely >Welcome Page > .

3. Click Platform Client Tools >Web > Open Management Console.
4. Enter a valid user name and password in the Sign in dialog box.
5. Click Resources > Connections and create two connections.

Importing and Deploying Files to the Server

With connection in place, now you need a command line utility to import and deploy the files to the
server.

870Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

1. Open the Spectrum Technology Platform home page.
2. Click Platform Client Tools > Command Line and download these files:

• Job Executor, which is an individual *.jar file
• Administration Utility, which is a zipped file (spectrum-cli)

3. Unzip the spectrum-cli file.
4. Copy all the files from the Sample Template folder to the spectrum-cli folder.

This saves you from entering full path of every file with each command.

5. Run the cli.cmd utility located in the spectrum-cli folder to launch the command line
interface.

6. Connect to the Spectrum Server with this command:

connect server:port --u username --p password

The connection is confirmed by this message: Connected to server server name :
port.

7. Run the following commands in the order shown to import and deploy sample data flows:
a) Import modelstore using this command that imports the modelstore with all dependencies:

spectrum modelstore bulkImport --importDependency true

b) Deploy modelstore using command:

modelstore deploy --n name

c) Import dbconnection using command:

dbconnection import --f name.json

d) Import data flows using command:

dataflow import --f name.df

Remove any extra spaces around commands of file names and replace the placeholder <name>
with the exact name of the file.

Viewing Imported Files

After successful import, you can use these data flows to demonstrate the Spectrum capabilities.

Files are stored at following locations:

• Modelstore: In the Physical Model and Model Store tabs in Discovery

871Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

• Dataflow: In the Server Explorer of Enterprise Designer application
• Json: In the Model Store in Management Console

Integration between SugarCRM OnPremises
and Microsoft Dynamics 365 Online

This section illustrates the migration of Account and Contacts from SugarCRM OnPremises to
Microsoft Dynamics 365 Online systems. If there is an existing association of Contacts and Account
in the SugarCRM, the migration takes care to maintain the same in Microsoft Dynamics 365 Online
system as well.

The Sample Template contains following files:

Table 152: Files in Sample Template folder

File NameFile Type

• SugarCRMAccount_Sync_MSDAccount.df

• SugarCRMContact_Sync_MDSContact.df

Data Flow

• MSDynamics_MS.json

• SugarCRM_MS.json

DB Connection

• mi_modelStore_MSDynamics_MS.smims

• mi_modelStore_SugarCRM_MS.smims

ModelStore

Do the following to migrate data from SugarCRM OnPremise to MS Dynamics 365 Online

1. Create following connections:

a. SugarCRM_TestConnection with Type SugarCRM. Click Test and a success message is
displayed: The connection SugarCRM_OnPremises successfully connected to the data
source.

b. MSDynamics_TestConnectionwith TypeMicrosoft Dynamics 365. Click Test and a success
message is displayed: Success: The connection Microsoft Dynamics 365 Online successfully
connected to the data source.

872Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

2. Import and deploy files using Spectrum Command line utility. Use following commands in given
order:

• Import modelstore using command:

modelstore bulkimport –-importDependency true

• Deploy modelstore using command:

modelstore deploy –-modelStoreName MSDynamics_MS
modelstore deploy –-modelStoreName SugarCRM_MS

• Import dbconnection using command:

dbconnection import –-f MSDynamics_MS.json
dbconnection import –-f SugarCRM_MS.json

• Import data flows using command:

dataflow import –-f SugarCRMAccount_Sync_MSDAccount.df
dataflow import –-f SugarCRMContact_Sync_MDSContact.df

3. Launch the Enterprise Designer application. You can download the executable setup of this
application fromDesktop section of PlatformClient Tool on the Spectrum Platform home page.

4. Login using your Spectrum credentials.
5. Click View from the menu; click Server Explorer.
6. Double-click the SugarCRMAccount_Sync_MSDAccount dataflow job first.
7. Double-click Read from DB_SugarCRM stage.

a. Change the value in the field date_entered as required and click OK

Select "SugarCRM_PM"."Accounts"."email1",
"SugarCRM_PM"."Accounts"."name",
"SugarCRM_PM"."Accounts"."phone_office",
"SugarCRM_PM"."Accounts"."date_entered" From
"SugarCRM_PM"."Accounts" Where
"SugarCRM_PM"."Accounts"."date_entered" Like '2017-08-28%'

b. Click OK to continue.

8. Run the flow by clicking Run button on the Tool Bar in Enterprise Designer.
9. Visit the MS Dynamics home page and clickAccounts underCustomers tab on the Sales page.

Notice that the Accounts have been migrated.
10. Double-click the SugarCRMContact_Sync_MDSContacts job.
11. Double-click Read from_MSDynamics_DB stage.

a. Change the value of the field createdon as required and click OK

Select "MSDynamics_PM"."account"."name",
"MSDynamics_PM"."account"."telephone1",
"MSDynamics_PM"."account"."emailaddress1",
"MSDynamics_PM"."account"."createdon",

873Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

"MSDynamics_PM"."account"."accountid" From
"MSDynamics_PM"."account"
Where "MSDynamics_PM"."account"."createdon" Like '2017-09-11%'

b. Click OK to continue

12. Run the flow by clicking Run button on the Tool Bar in Enterprise Designer
13. Visit the MS Dynamics home page and clickContacts underCustomers tab on the Sales page.

Notice that the Contacts are listed on the page
The successful listing of accounts and contacts in the MS Dynamics page complete the migration
process.

Integration between Salesforce and Oracle
Eloqua

This section illustrates the migration of Account and Contacts from Salesforce to Oracle Eloqua
systems. If there is an existing association of Contacts and Account in the Salesforce, the migration
takes care to maintain the same in Oracle Eloqua system as well.

The sample template contains these files:

Table 153: Files in Sample Template folder

File NameFile Type

• SalesforceAccount_Sync_OracleEloquaAccount.df
• SalesforceContact_Sync_OracleEloquaContact.df

Data Flow

• Eloqua_MS.json

• Salesforce_MS.json

DB Connection

• mi_modelStore_Eloqua_MS.smims

• mi_modelStore_Salesforce_MS.smims

ModelStore

To migrate data from Salesforce to Oracle Eloqua, perform these steps:

1. Create these connections:

874Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

Salesforce_TestConnection with Type Salesforce. Click Test and a success message is
displayed: The connection Salesforce successfully connected to the data source.

a.

b. Eloqua_TestConnection with Type Oracle Eloqua. Click Test and a success message is
displayed: Success: The connection Eloqua successfully connected to the data source.

2. Import and deploy files using the Spectrum Command line utility. Use following commands in
this order:

• Import modelstore using command:

modelstore bulkimport –-importDependency true

• Deploy modelstore using command:

modelstore deploy –-modelStoreName Eloqua_MS
modelstore deploy –-modelStoreName Salesforce_MS

• Import dbconnection using command:

dbconnection import –-f Eloqua_MS.json
dbconnection import –-f Salesforce_MS.json

• Import data flows using command:#

dataflow import –-f SalesforceAccount_Sync_OracleEloquaAccount.df
dataflow import –-f SalesforceContact_Sync_OracleEloquaContact.df

3. Launch the Enterprise Designer application. You can download the executable setup of this
application fromDesktop section of PlatformClient Tool on the Spectrum Platform home page.

4. Login using your Spectrum credentials.
5. Click View from the menu, click Server Explorer.
6. Double-click the SalesforceAccount_Sync_OracleEloquaAccount dataflow job first.
7. Double-click Read from DB stage.

a. Change the value of field CreatedDate as required and click OK.

Select "SalesforcePM"."Account".* From "SalesforcePM"."Account"
where CreatedDate > '2017-01-01'

b. Click OK to continue.

8. Run the flow by clicking Run button on the Tool Bar in Enterprise Designer.
9. Visit the Eloqua home page and click Account. Notice the accounts have migrated to Eloqua.
10. Navigate back to Enterprise Designer.
11. Double-click the SalesforceContact_Sync_OracleEloquaContact job.
12. Double-click Read from DB stage.

a. Change the value of the field CreatedDate as required and click OK.

Select "SalesforcePM"."Contact".* From "SalesforcePM"."Contact"
where CreatedDate > '2017-01-01'

875Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

b. Click OK to continue.

13. Run the flow by clicking Run button on the Tool Bar in Enterprise Designer.
14. Visit the Eloqua home page and click Contacts. Notice the contacts have migrated to Eloqua.
The successful listing of accounts and contacts in the Oracle Eloqua complete the migration process.

Note: For more details on how to create connections, see the Discovery Guide.

876Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

Sample Flows

8 - About Spectrum
Technology Platform

In this section

What Is Spectrum Technology Platform?...878
Enterprise Data Management Architecture..879
Spectrum Technology Platform Architecture..883
Modules and Components..887

What Is Spectrum Technology Platform?

Spectrum Technology Platform is a system that improves the completeness, validity, consistency,
timeliness, and accuracy of your data through data standardization, verification and enhancement.
Ensuring that your data is accurate, complete, and up to date enables your firm to better understand
and connect with your customers.

Spectrum Technology Platform aids in the design and implementation of business rules for data
quality by performing the functions described here.

Parsing, Name Standardization, and Name Validation

To perform the most accurate standardization you may need to break up strings of data into multiple
fields. Spectrum Technology Platform provides advanced parsing features that enable you to parse
personal names, company names, and many other terms and abbreviations. In addition, you can
create your own list of custom terms to use as the basis of scan and extract operations. Spectrum
Universal Name provides this functionality.

Deduplication and Consolidation

Identifying unique entities enables you to consolidate records, eliminate duplicates and develop
"best-of-breed" records. A "best-of-breed" record is a composite record that is built using data from
other records. Spectrum Advanced Matching and Spectrum Data Normalization provide this
functionality.

Address Validation

Address validation applies rules from the appropriate postal authority to put an address into a standard
form and even validate that the address is a deliverable address. Address validation can help you
qualify for postal discounts and can improve the deliverability of your mail. Spectrum Universal
Addressing provides this functionality.

Geocoding

Geocoding is the process of taking an address and determining its geographic coordinates (latitude
and longitude). Geocoding can be used for map generation, but that is only one application. The
underlying location data can help drive business decisions. Reversing the process, you can enter a
geocode (a point represented by a latitude and longitude coordinate) and receive address information
about the geocode. Spectrum Enterprise Geocoding provides this functionality.

878Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Location Intelligence

Location intelligence creates new information about your data by assessing, evaluating, analyzing
andmodeling geographic relationships. Using location intelligence processing you can verify locations
and transform information into valuable business intelligence. Spectrum Spatial provides this
functionality.

Master Data Management

Master data management enables you to create relationship-centric master data views of your critical
data assets. Context Graph helps you identify influencers and non-obvious relationships, detect
fraud, and improve the quality, integration, and accessibility of your information.

Tax Jurisdiction Assignment

Tax jurisdiction assignment takes an address and determines the tax jurisdictions that apply to the
address's location. Assigning the most accurate tax jurisdictions can reduce financial risk and
regulatory liability.

Spectrum Technology Platform software from Precisely integrates up-to-date jurisdictional boundaries
with the exact street addresses of your customer records, enabling you to append the correct state,
county, township, municipal, and special tax district information to your records. Some example uses
of tax jurisdiction assignment are:

• Sales and use tax
• Personal property tax
• Insurance premium tax

Spectrum Enterprise Tax provides this functionality.

Enterprise Data Management Architecture

With Spectrum Technology Platform, you can build a comprehensive enterprise data management
process, or you can use it as a more targeted solution. This diagram illustrates a complete solution
that takes data from its source, through data enrichment and data quality processes, feeding a Master
Data Management (MDM) hub which makes a single view of the data available to multiple business
applications.

879Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Master Information Hub

The Master Information Hub allows for rapid modeling of entities and their complex relationships
across roles, processes, and interactions. It provides built-in social network analysis capabilities to
help you understand influencers, predict churn, detect non-obvious relationships and fraudulent
patterns, and provide recommendations.

Spectrum Technology Platform supports two approaches to theMDMhub. In themaster hub approach,
the data is maintained in a single MDM database and applications access the data from the MDM
database. In the registry approach, the data is maintained in each business application and the MDM
hub registry contains keys which are used to find related records. For example, a customer's record
may exist in an order entry database and a customer support database. The MDM registry would
contain a single key which could be used to access the customer data in both places.

880Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Data Enrichment

Data enrichment processes augment your data with additional information. You can base enrichment
on spatial data, marketing data, or data from other detail sources. For example, if you have a database
of customer addresses, you could geocode the address to determine the latitude/longitude coordinates
of the address and store those coordinates as part of the record. You can then use your customer
data to perform a variety of spatial calculations, such as finding the customer's nearest bank branch.
Spectrum Technology Platform allows you to enrich your data with a variety of information, including
geocoding (with the Spectrum Enterprise Geocoding), tax jurisdiction assignment (with Spectrum
Enterprise Tax), geospatial calculations (with Spectrum Spatial), and travel directions between points
(with Spectrum Spatial).

Data Quality and Data Governance

Data quality and data governance processes check your data for duplicate records, inconsistent
information, and inaccurate information.

Duplicate matching identifies potential duplicate records or relationships between records, whether
the data is name and address in nature or any other type of customer information. Spectrum
Technology Platform allows you to specify a consistent set of business match rules using Boolean
matching methods, scoring methods, thresholds, algorithms, and weights to determine if a group of
records contains duplicates. Spectrum Technology Platform supports extensive customization so
you can tailor the rules to the unique needs of your business.

Once duplicate records have been identified, you may wish to consolidate records. Spectrum
Technology Platform allows you to specify how to link or merge duplicate records so you can create
the most accurate and complete record from any collection of customer information. For example,
you can build a single best-of-breed record from all of the records in a household. Spectrum Advanced
Matching is used to identify duplicates and eliminate them.

Data quality processes also standardize your data. Standardization is a critical process because
standardized data elements are necessary to achieve the highest possible results for matching and
identifying relationships between records. While several modules perform standardization of one
type or another, SpectrumData Normalization provides themost comprehensive set of standardization
features. In addition, Spectrum Universal Name provides specific data quality features for handling
personal name and business name data.

Standardized data is not necessarily accurate data. Spectrum Technology Platform can compare
your data to known, up-to-date reference data for correctness. The sources used for this process
may include regulatory bodies such as the U.S. Postal Service, third-party data providers such as
Experian or Dunn and Bradstreet, or your company's internal reference sources, such as accounting
data. Spectrum Technology Platform is particularly strong in address data validation. It can validate
or standardize addresses in 250 countries and territories around the world. Spectrum Universal
Addressing performs address validation.

To determine which one is right for you, discuss your needs with your account executive.

881Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

While Spectrum Technology Platform can automatically handle a wide range of data quality issues,
there are some situations where a manual review by a data steward is appropriate. To support this,
Data Stewardship provides a way to specify the rules that will trigger a manual review, and it provides
a web-enabled tool for reviewing exception records. It includes integrated access to third-party tools
such as Bing maps and Experian data to aid data stewards in the review and resolution process.

Spectrum Data Discovery and Spectrum Data Profiling

Data discovery is the process of scanning your data resources to get a complete inventory of your
data landscape. Spectrum Technology Platform can scan structured data, unstructured data, and
semi-structured data using a wide array of data profiling techniques. The results of the scan are used
to automatically generate a library of documentation describing your company's data assets and to
create a metadata repository. This documentation and accompanying metadata repository provide
the insight you need before beginning data integration, data quality, data governance, or master data
management projects.

For more information about the Spectrum Data Discovery or Spectrum Data Profiling, contact your
account executive.

Data Integration and Federation

Once you have an inventory of your data landscape, you need to consider how you will access the
data you need to manage. Spectrum Technology Platform can connect to data in multiple sources
either directly or through integration with your existing data access technologies. It supports batch
and real-time data integration capabilities for a variety of business needs, including data warehousing,
data quality, systems integration, and migration. Spectrum Technology Platform can access data in
RDBMS databases, data warehouses, XML files, flat files, and more. Spectrum Technology Platform
supports SQL queries with complex joins and aggregations and provides a visual query development
tool. In addition, Spectrum Technology Platform can access data over REST and SOAPweb services.

Spectrum Technology Platform can trigger batch processing based on the appearance of one or
more source files in a specified folder. This "hot folder" trigger is useful for monitoring FTP uploads
and processing them as they occur.

Some of these data integration capabilities require a license for the Spectrum Data Integration. For
more information, contact your account executive.

Finally, Spectrum Technology Platform can integrate with packaged applications such as SAP.

882Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Spectrum Technology Platform Architecture

Spectrum Technology Platform from Precisely consists of a server that runs a number of modules.
These modules provide different functions, such as address validation, geocoding, and advanced
parsing, among others. This diagram illustrates the Spectrum Technology Platform architecture.

Server

The foundation of the Spectrum Technology Platform is the server. The server handles data
processing, synchronizes repository data, and manages communication. It provides job management
and security features.

Modules

Modules are sets of features that perform a specific function. For example, Spectrum Universal
Addressing standardizes addresses to conform to postal standards. Spectrum Enterprise Tax

883Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

determines the tax jurisdictions that apply to a given address. Modules are grouped together to solve
common business problems and licensed together as bundles.

Components

Modules are comprised of components which perform a specific function in a flow or as a service.
For example, the Geocode US Address component in Spectrum Enterprise Geocoding takes an
address and returns the latitude and longitude coordinates for that address; Get City State Province
in Spectrum Universal Addressing takes a postal code and returns the city and state or province
where that postal code is located.

The components that you have available on your system depend on which Spectrum Technology
Platform bundle you have licensed.

Databases

Some modules depend on databases containing reference data. For example, Spectrum Universal
Addressing needs to have access to U.S. Postal Service data in order to verify and standardize
addresses in the U.S. Databases are installed separately and some are updated on a regular basis
to provide you with the latest data.

Modules have both required and optional databases. Optional databases provide data needed for
certain features that can enhance your Spectrum Technology Platform process.

Spectrum Management Console

Spectrum Management Console is a tool for administering Spectrum Technology Platform. You can
use Spectrum Management Console to:

• Define the connections between Spectrum Technology Platform and your data
• Specify the default settings for services and flows
• Manage user accounts, including permissions and passwords
• View logs
• View licenses including license expiration information

884Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Spectrum Enterprise Designer

Spectrum Enterprise Designer is a tool for creating Spectrum Technology Platform jobs, services,
subflows, and process flows. It provides a familiar drag-and-drop interface to allow you to graphically
create complex flows.

Note: Spectrum Enterprise Designer will be replaced by Spectrum Flow Designer in a future
release. Spectrum Flow Designer is in Technical Preview status at this time.

885Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Discovery

Spectrum Discovery gives you the control you need to deliver accurate and timely data-driven insights
to your business. Use Spectrum Discovery to develop data models, view the flow of data from source
to business application, and assess the quality of your data through profiling. With this insight, you
can identify the data resources to use to answer particular business questions, adapt and optimize
processes to improve the usefulness and consistency of data across your business, and troubleshoot
data issues.

Web Services and API

You can integrate Spectrum Technology Platform capabilities into your applications using web
services and programming APIs. These interfaces provide simple integration, streamline record
processing, and support backward compatibility of future versions.

The Spectrum Technology Platform API is available for these languages:

• C
• C++
• COM
• Java
• .NET

Web services are available via SOAP and REST.

Spectrum Administration Utility - Command Line Interface (CLI)

The Spectrum Administration Utility provides command line access to administrative functions. You
can run commands interactively or in scripts. Some administrative functions are not available in the
Spectrum Administration Utility. For these functions, you can use Spectrum Management Console
as well as some component applications.

886Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

Modules and Components

Table 154: Modules and Components

ComponentsDescriptionModule

Best Of Breed

Candidate Finder

Duplicate Synchronization

Filter

Interflow Match

Intraflow Match

Match Key Generator

Transactional Match

Matches records within or between input files.Spectrum Advanced
Matching

Exception Monitor

Read Exceptions

Write Exceptions

Identifies exception records and provides a
browser-enabled tool for manually reviewing exception
records.

Spectrum Data Stewardship

Country IdentifierTakes a country name or a combination of postal code
and state-province and returns the two-character ISO
country code, the three-character Universal Postal
Union (UPU) code, and the English country name.

Country Identifier

Models (Logical, Physical, and
Context Graph)

Model Store

Profile

Lineage & Impact Analysis

Gives you the control you need to deliver accurate
and timely data-driven insights to your business.
Develops data and graph models, gives you a view
the flow of data from source to business application,
and assesses the quality of your data through profiling.
It helps you identify the data resources you should
use to answer particular business questions and to
optimize processes to improve the usefulness and
consistency of data across your business.

Spectrum Discovery

887Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

ComponentsDescriptionModule

Write to Model

Read From Model

Query Model

Graph Visualization

Links and analyzes data, identifying relationships and
trends.

Spectrum Context Graph

Field Selector

Generate Time Dimension

Query Cache

Write to Cache

Provides capabilities useful in data warehousing, data
quality, systems integration, and migration.

Spectrum Data Federation

Advanced Transformer

Open Parser

Table Lookup

Transliterator

Removes inconsistencies in data.SpectrumData Normalization

Call Stored Procedure

Field Selector

Generate Time Dimension

Query Cache

Write to Cache

Connects to data in multiple sources for a variety of
business needs including data warehousing, data
quality, systems integration, and migration.

Spectrum Data Integration

Geocode Address AUS

Geocode Address GBR -
deprecated. Use Global Geocoding
geocoding stage.

Geocode Address Global

Geocode Address World

Geocode US Address

GNAF PID Location Search

Reverse APN Lookup

Reverse Geocode Address Global

Reverse Geocode US Location

Determines the geographic coordinates for an address.
Also determines the address of a given latitude and
longitude.

Spectrum Geocoding

888Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

ComponentsDescriptionModule

Assign GeoTAX Info

Calculate Distance

Determines the tax jurisdictions that apply to a given
location.

Spectrum Enterprise Tax

Party Groups

Lists

Screen

Alerts

Helps banks and financial institutions to effectively
detect financial crimes, reduce false positives, and
maintain robust detection capability as required by the
regulators.

Spectrum Screener

Geo Confidence Surface

CreatePointsConvexHull

Determines the probability that an address or street
intersection is within a given area.

GeoConfidence

Global Address Parser

Global Address Validation

Global Type Ahead

Provides enhanced address standardization and
validation. Also, automatically suggests addresses as
you type and immediately returns candidates based
on your input. Splits postal address strings into
individual address elements using machine learning
techniques.

Spectrum Global Addressing

Global Geocode

Global Reverse Geocode

Spectrum Global Interactive
Geocoding

Global Key Lookup

Determines the geographic coordinates for an address.
Also determines the address of a given latitude and
longitude. Interactive geocoding is a type-ahead
feature in Global Geocoding. Key Lookup uses a key
to geocode addresses.

Spectrum Global Geocoding

Global Sentry

Global Sentry Address Check

Global Sentry ID Number Check

Global Sentry Name Check

Global Sentry Other Data Check

Attempts to match transactions against
government-provided watch lists that contain data from
different countries.

Spectrum Global Sentry

889Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

ComponentsDescriptionModule

Find Nearest

Point In Polygon

Query Spatial Data

Read Spatial Data

Spatial Calculator

Spatial Union

Write Spatial Data

Performs point in polygon and radial analysis against
a variety of geospatial databases.

Spectrum Spatial

Get Route Data

Get Travel Boundary

Get Travel Cost Matrix

Get Travel Directions

Persistent Update

Performs routing calculations to obtain directions,
calculate drive time and drive distance, and identify
locations within a certain time or distance from a
starting point.

SAP Generate Match Key

SAP Generate Match Score

SAP Generate Search Key

SAP Generate Search Key
Constant

SAP Generate Search Key
Metaphone

SAP Generate Search Key
Substring

SAP Validate Address With
Candidates

Enables Spectrum Technology Platform to interface
with SAP Customer Relationship Management
applications.

Spectrum SAP

Get Candidate Addresses

Get City State Province

Get Postal Codes

Validate Address

Validate Address Global

Standardizes and validates addresses according to
the postal authority's standards.

Spectrum Universal Address

890Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

ComponentsDescriptionModule

Name Parser (Deprecated)

Name Variant Finder

Open Name Parser

Parses personal names, company names, addresses,
and many other terms and abbreviations.

Spectrum Universal Name

891Spectrum Enterprise Designer 2020.1.0 Spectrum Dataflow Designer's Guide

About Spectrum Technology Platform

2 Blue Hill Plaza, #1563
Pearl River, NY 10965
USA

www.precisely.com

© 2007, 2021 Precisely. All rights reserved.

	Table of Contents
	Getting Started
	Installing the Client Tools
	Starting Spectrum Enterprise Designer
	A First Look at Spectrum Enterprise Designer
	My First Dataflow (Job)
	My First Dataflow (Service)
	Dataflow Templates
	Creating a Dataflow Using a Template

	Importing and Exporting Dataflows

	Designing a Flow
	Types of Flows
	Flow Input
	Defining Job Input
	Managing malformed input records

	Defining Service Input
	Defining Input Fields for a Service or Subflow
	Defining A Web Service Data Type

	Fields
	Flat and Hierarchical Data
	Converting flat data to a list

	Data Types
	Automatic Data Type Conversion
	Setting Data Type Conversion Options for a Flow
	Date and time patterns
	Number Patterns

	*Changing a field's data type

	Changing a field name
	Reserved Field Names

	Control Stages
	Aggregator
	Broadcaster
	Conditional Router
	Configuring a Conditional Router
	Using the Expression Builder
	Writing a Custom Expression

	Group Statistics
	Operations
	Output Columns
	Pivot Tables
	Creating a Pivot Table

	Math
	Using the Calculator
	Using Functions and Constants
	Using Conditional Statements
	Using the Expressions Console
	Using the Fields Control
	Using the Preview Control

	Record Combiner
	Record Joiner
	Math

	Sorter
	Sorting Records with Sorter

	Splitter
	Stream Combiner
	Transformer stage transform types
	Changing the Order of Transforms
	Creating a Custom Transform
	Using a Mask Transform

	Unique ID Generator
	Defining a Unique ID
	Unique ID Definition Methods

	Using Algorithms to Augment a Unique ID
	Defining a Non-Unique ID

	Module Stages
	Advanced Matching stages
	Best of Breed
	Options
	Defining Template Record Rules
	Defining Best of Breed Rules and Actions

	Output

	Candidate Finder
	Database Options
	Defining the SQL Query
	Mapping Database Columns to Stage Fields
	Configuring the Connection Name at Runtime

	Search Index Options
	Simple Search Index Options
	Advanced Search Index Options
	Configuring Options at Runtime

	Output

	Duplicate Synchronization
	Options

	Filter
	Options

	Interflow Match
	Options
	Output

	Intraflow Match
	Options
	Default Matching Method
	Sliding Window Matching Method
	Output

	Match Key Generator
	Input
	Options
	Output

	Private Match
	Input
	Options
	Output

	Transactional Match
	Options
	Output

	Write to Search Index
	Options
	Output
	Search Index Management
	Standard and Keyword Analyzer

	Analytics Scoring stages
	Binning Lookup
	Introduction to Binning Lookup
	Defining Binning Properties
	Binning Output

	Java Model Scoring
	Introduction to Model Scoring
	Defining Model Properties
	Configuring Model Output

	PMML Model Scoring
	Introduction to PMML Model Scoring
	Deploying a Model
	Reconfigure PMML Model Scoring Settings
	Output
	Supported Model Formats
	QMML
	Miner Model

	PMML
	Association Rule
	Clustering
	Classification Tree
	Regression Tree
	Naive Bayes
	Regression
	Regression Classifier
	Scorecard

	Read from Miner Dataset
	Introduction to the Read from Miner Dataset
	Reading from a Miner Dataset
	Fields Tab
	Output

	Write to Miner Dataset
	Introduction to the Write to Miner Dataset
	Writing to a Miner Dataset
	Applying Metadata
	Fields Tab
	Output

	Context Graph stages
	Delete from Model
	Input
	Options
	The Options Tab
	The Runtime Tab

	Output

	Import to Model
	Input
	Options
	The Entities Tab
	The Relationships Tab
	The Options Tab

	Output

	Merge Entities
	Input
	Options
	The Options Tab
	The Runtime Tab

	Output

	Read from Model
	The Query Tab
	The Fields Tab
	Output

	Query Model
	The Query Tab
	The Fields Tab
	Input/Output Requirements

	Split Entity
	Input
	Options
	The Options Tab
	The Runtime Tab

	Output

	Write to Model
	Input
	The Entities Tab
	The Relationships Tab
	The Options Tab
	Setting Exclusive Lock Timeout Duration

	Output
	Sample Model to Context Graph Dataflow
	Flat Sample
	XML Sample

	Data Normalization stages
	Advanced Transformer
	Input
	Options
	Configuring Options
	Configuring Options at Runtime

	Output

	Open Parser
	Input
	Options
	Output

	Table Lookup
	Input
	Options
	Configuring Options
	Configuring Options at Runtime

	Output

	Transliterator
	Transliteration Concepts
	Input
	Options
	Output

	Data Stewardship Stages
	Introduction
	Exception Monitor
	Input
	Output
	Reference
	Conditions tab
	Configuration tab
	Add/Modify Condition dialog box
	Add/Modify Expression dialog box

	How to
	Add the Exception Monitor stage to a workflow
	Using Custom Expressions in Exception Monitor

	Read Exceptions
	Input
	Output
	Options
	General Tab
	Sort Tab
	Runtime Tab

	Write Exceptions
	Input
	Output
	Options

	Enterprise Data Integration Stages
	Call Stored Procedure
	DB Change Data Reader
	Adding a CDC Resource
	Editing a CDC Resource
	Deleting a CDC Resource
	Selecting Change Data Reader Options

	DB Loader
	Oracle Loader
	DB2 Loader
	PostgreSQL Loader
	Teradata Loader

	Field Parser
	Field Combiner
	Field Selector
	Generate Time Dimension
	Options
	Creating a Calendar

	Output

	Query Cache
	Query DB
	Parameterizing Query DB at Runtime

	Query NoSQL DB
	Defining Fields - Query NoSQL DB
	Configuring Dataflow Options - Query NoSQL DB

	Read From DB
	Visual Query Builder
	Adding Objects to a Query
	Setting Object Aliases
	Joining Tables
	Selecting Output Fields
	Sorting a Dataset
	Defining Criteria
	Grouping Output Fields
	Defining SQL Query Properties

	Query Variables
	Inserting a Query Variable
	Configuring a Query Variable as a Dataflow Option
	Configuring a Query Variable for Job Executor

	Read From File
	Defining Fields In a Delimited Input File
	Defining Fields In a Line Sequential or Fixed Width File
	Sorting Input Records
	The File Definition Settings File
	Configuring Dataflow Options

	Read from Hadoop Sequence File
	Defining Fields In an Input Sequence File
	Sorting Input Records
	Filtering Input Records

	Read From Hive File
	Defining Fields for Reading from Hive File

	Read from HL7 File
	Flattening HL7 Data
	Adding a Custom HL7 Message

	Read from NoSQL DB
	Defining Fields in a NoSQL Database
	NoSQL DB Dataflow Options

	Read from SAP
	Connecting to SAP
	Reading Data from a Single SAP Table
	Reading Data from Multiple SAP Tables
	Filtering Records in Read from SAP

	Read from Spreadsheet
	Read from Variable Format File
	Defining Fields in Delimited Variable Format Files
	Defining Fields in a Line Sequential or Fixed Width Variable Format File
	Flattening Variable Format Data

	Read From XML
	Flattening Complex XML Elements

	SQL Command
	Specifying SQL Command at Runtime
	Running A Job from the Command Line
	Executing SQL Commands Before or After a Dataflow

	Transposer
	Unique ID Generator
	Defining a Unique ID
	Unique ID Definition Methods

	Using Algorithms to Augment a Unique ID
	Defining a Non-Unique ID

	Write to Cache
	Clearing a Global Cache

	Write to DB
	Database Connection Manager
	Configuring Error Handling in Write to DB

	Write to File
	Defining Fields In a Delimited Output File
	Defining Fields In a Line Sequential or Fixed Width File
	Sorting Output Records
	The File Definition Settings File
	Configuring Dataflow Options

	Write to Hadoop Sequence File
	Defining Fields In an Output Sequence File

	Write to Hive File
	Defining Fields for Writing to Hive File

	Write to NoSQL DB
	Defining Fields in a NoSQL Database
	NoSQL DB Dataflow Options

	Write to Spreadsheet
	Defining fields in an Output file

	Write to Variable Format File
	Writing Flat Data to a Variable Format File
	Tag Names in Variable Format Files

	Write to XML
	Using Namespaces in an XML Output File
	Creating Complex XML from Flat Data

	Date and Number Patterns
	Date and time patterns
	Number Patterns

	Global Addressing Management Stages
	Spectrum Global Address Validation
	Supported Countries
	Using Spectrum Global Address Validation
	Using Spectrum Global Address Validation As a Service
	Using Spectrum Global Address Validation As a Stage
	Options
	Global Addressing Options
	Matching Options
	Custom Match Options

	US Addressing Options
	Additional Processing
	CASS Mailer Information
	Multiple Address Line Options
	Log Level Options

	Output Options

	Input
	Output
	Reports
	Reports
	Match Analysis by Country
	Address Matching Summary Report
	USPS Form 3553 (CASS Summary Report)

	Spectrum Global Type Ahead
	Global Type Ahead Features
	Supported Countries
	Using Global Type Ahead
	Using Global Type Ahead As a Service
	Using Global Type Ahead As a Stage
	Options
	Input
	Output
	Spectrum Global Type Ahead Sample Web Application
	Global Type Ahead Java Script Component
	Requirements
	Integrating Global Type Ahead Into Your Web Application
	Installing the Global Type Ahead Java Script Component
	Configuring Spectrum Technology Platform to Use the Global Type Ahead Java Script Component
	Enabling CORS
	Authentication

	Configuring the Global Type Ahead Java Script Component
	Customizing the Global Type Ahead Java Script Component
	Configuring Global Type Ahead Java Script Component Processing

	Alternative Global Type Ahead Java Script Component Processing
	Using the Global Type Ahead Java Script Component
	Technical Notes

	Spectrum Global Address Parser
	Features of Global Address Parser
	Standard Fields
	Guidelines to Improve Prediction Accuracy
	Accessing Global Address Parser
	Using Global Address Parser As a Stage
	Using Global Address Parser As a Service
	Parsed Address Output

	US Database Lookup
	Supported Countries
	Using US Database Lookup
	Using Last Line Lookup for City, State, and ZIP Code
	Using City and State for Last Line Lookup
	Using ZIP Code for Last Line Lookup
	Using City/State and ZIP Code for Last Line Lookup

	Using Last Line Lookup for Street Name
	Using City and State for Street Name Lookup
	Using ZIP Code for Street Name Lookup

	Using Last Line Lookup for House Number
	Using City and State for House Number Lookup
	Using ZIP Code for House Number Lookup

	Information Extraction stages
	Read from Documents
	Input
	Options
	Output

	Entity Extractor
	Input
	Options
	Output

	Relationship Extractor
	Input
	Options
	Output

	Text Categorizer
	Input
	Options
	Output

	Machine Learning Stages
	Binning
	Introduction
	Defining Binning Properties
	Configuring Basic Options
	Binning Output

	K-Means Clustering
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Port
	Model Metrics Port

	Linear Regression
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Ports
	Model Score Port
	Model Metrics Port

	Logistic Regression
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Ports
	Model Score Port
	Model Metrics Port

	Principal Component Analysis
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Port
	Model Metrics Port

	Random Forest Classification
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Ports
	Model Score Port
	Model Metrics Port

	Random Forest Regression
	Introduction
	Defining Model Properties
	Configuring Basic Options
	Configuring Advanced Options
	Model Output
	Output Ports
	Model Score Port
	Model Metrics Port

	Universal Addressing Stages
	Auto Complete Loqate
	Input
	Options
	Output

	Get Candidate Addresses
	Input
	Options
	Output

	Get Candidate Addresses Loqate
	Input
	Options
	Output

	Get City State Province
	Input
	Options
	Output

	Get City State Province Loqate
	Input
	Options
	Output

	Get Postal Codes
	Input
	Options
	Output

	Get Postal Codes Loqate
	Input
	Options
	Output

	Validate Address
	Input
	Address Line Processing for U.S. Addresses

	Options
	Output Data Options
	Obtaining Congressional Districts
	Obtaining County Names
	Obtaining FIPS County Numbers
	Obtaining Carrier Route Codes
	Creating Delivery Point Barcodes

	Default Options
	About Dual Address Logic
	Returning Multiple Matches

	U.S. Address Options
	CASS Certified Processing

	Canadian Address Options
	SERP Processing
	Obtaining SERP Return Codes

	International Address Options

	Output
	Standard Address Output
	Parsed Address Elements Output
	Parsed Input
	Postal Data Output
	Result Indicators
	Record-Level Result Indicators
	Field-Level Result Indicators

	Output from Options
	Additional Input Data
	Care of Data
	Extraneous Data on Its Own Address Line
	Extraneous Data Within an Address Line
	Dual Addresses

	Reports
	USPS CASS 3553 Report
	USPS CASS Detail Report
	Validate Address Summary Report

	Validate Address Global
	Input
	Address Guidelines for Japan

	Options
	Input Options
	Output Options
	Process Options

	Output
	Address Data
	Original Input Data
	Result Codes

	Reports
	Validate Address Global Summary Report
	Validate Address Global Detail Report

	Validate Address Loqate
	Input
	Options
	Returning Multiple Matches
	Match Score Threshold Options

	Output
	Standard Address Output
	Parsed Address Elements Output
	Parsed Input
	Geocode Output
	Result Indicators
	Record-Level Result Indicators
	Field-Level Result Indicators

	The AVC Code
	AMAS Output

	Universal Name Stages
	Name Parser (DEPRECATED)
	Input
	Options
	Modifying Name Parser User-Defined Tables

	Output

	Name Variant Finder
	Input
	Options
	Output

	Open Name Parser
	Input
	Options
	Parsing Options
	Cultures Options
	Advanced Options
	Configuring Options at Runtime

	Output
	Open Name Parser Summary Report

	Flow Output
	Defining Service Output
	Defining A Web Service Data Type

	Running an External Program
	Terminating a Job Based on a Condition
	Discarding records - Write to Null

	Embedded flows
	Grouping stages into an embedded flow
	Editing an embedded flow
	Using iteration with an embedded flow
	Ungrouping an embedded flow
	Converting an embedded flow to a subflow

	Reports
	Adding a standard report to a job
	Setting report options for a job
	Viewing reports
	Using custom reports

	Performance Considerations
	Design guidelines for optimal performance
	Stage Runtime Performance Options
	Database Pool Size and Runtime Instances
	Distributed Processing
	Designing a flow for distributed processing

	Running a Stage on a Remote Server
	Troubleshooting Remote Server Errors

	Optimizing Stages
	Optimizing Matching
	Optimizing Candidate Finder
	Optimizing Transforms
	Optimizing Write to DB
	Optimizing Address Validation
	Optimizing Geocoding

	Flow Versions
	Saving a Flow Version
	Viewing a Flow Version
	Editing a Flow Version
	Editing Version Properties
	Exposing a Version

	Inspecting and Testing
	Checking a Flow for Errors
	Inspecting a flow
	Testing a service with Spectrum Management Console

	Running a Flow
	Running a Job or Process Flow
	Running a Flow in Spectrum Enterprise Designer
	Running A Job from the Command Line
	Overriding Job File Locations
	Overriding the File Format at the Command Line
	Using a Job Property File

	Running a Process Flow from the Command Line
	Using a Process Flow Property File

	Scheduling a Flow
	Triggering a Flow with a Control File
	Viewing Flow Status and History
	Downloading Flow History

	Setting the Malformed Records Default
	Setting Report Defaults

	Exposing a Service
	Exposing a Service as a Web Service
	Exposing a Service for API Access

	Runtime Options
	Adding Flow Runtime Options
	Specifying Default Service Options
	Deleting flow Runtime Options

	Configuring Email Notification for a Flow

	Combining Flows into a Process Flow
	Introduction to Process Flows
	Designing Process Flows
	Creating a Process Flow
	Using a Variable to Reference a File
	Adding Conditional Logic to a Process Flow
	Deleting a Process Flow
	Activities
	Job
	Overriding Input and Output Files

	Clear Cache
	Execute SQL
	Load to Hive
	Creating a Hive Connection

	Run Program
	Specifying Input and Output Files
	Using a Control File with an External Program

	Success

	Creating Reusable Flow Components
	Introduction to Subflows
	Using a Subflow as a Source
	Using a Subflow in the Middle of a Flow
	Using a Subflow as a Sink
	Modifying a Subflow
	Deleting a Subflow
	Exposing and Unexposing a Subflow
	Converting a Stage to a Subflow

	Sample Flows
	Introduction
	Locating the Sample Template
	Creating Connections
	Importing and Deploying Files to the Server
	Viewing Imported Files

	Integration between SugarCRM OnPremises and Microsoft Dynamics 365 Online
	Integration between Salesforce and Oracle Eloqua

	About Spectrum Technology Platform
	What Is Spectrum Technology Platform?
	Enterprise Data Management Architecture
	Spectrum Technology Platform Architecture
	Modules and Components

